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High-Resolution Image Reconstruction From
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Abstract—Super-resolution reconstruction is the process of
reconstructing a high-resolution image from multiple low-res-
olution images. Most super-resolution reconstruction methods
assume that exposure time is fixed for all observations, which is
not necessarily true. In reality, cameras have limited dynamic
range and nonlinear response to the quantity of light received, and
exposure time might be adjusted automatically or manually to
capture the desired portion of the scene’s dynamic range. In this
letter, we propose a Bayesian super-resolution algorithm based
on an imaging model that includes camera response function,
exposure time, sensor noise, and quantization error in addition to
spatial blurring and sampling.

Index Terms—Bayesian estimation, high-dynamic range
imaging, multi-frame image reconstruction, super-resolution.

I. INTRODUCTION

H IGH-RESOLUTION images are demanded not only
to give the viewer a high-quality picture but also to

provide additional detail that may be critical in various applica-
tions. Digital cameras, surveillance systems, medical imaging,
aerial/satellite imaging, and high-definition TV systems are
some of the application areas where high-resolution images
are desired. For example, in medical imaging, high-resolution
images are required to make correct diagnosis and operational
decisions. Surveillance systems require high-resolution images
to recognize faces, licence plates, etc.

The most direct way of increasing spatial resolution is to in-
crease the number of sensor elements per unit area. Although
this can be achieved by reducing pixel size and placing pixels
more densely, the cost of producing such sensor arrays may
not be appropriate for general purpose commercial applications.
Also, as pixel size decreases, the image quality may degrade be-
cause of shot noise.

An alternative approach is to use signal processing techniques
to improve spatial resolution. When there are multiple images
of a scene, it is possible to increase the spatial resolution by ex-
ploiting the correlation among those images. Such a multi-frame
resolution enhancement process is referred to as super-resolu-
tion reconstruction in the literature [1]. Super-resolution algo-
rithms model the imaging process between an unknown high-
resolution image and multiple low-resolution observations and
try to solve the inverse problem.
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Although considerable work has been done in the area of
super-resolution reconstruction, an important drawback of these
algorithms is the assumption that all images (to be used in re-
construction) capture the same portion of the dynamic range.
In other words, it is assumed that camera parameters such as
exposure time and aperture size are fixed for all images. In
fact, sensors have limited dynamic range, and the camera pa-
rameters need to be adjusted to capture the right portion of the
scene’s dynamic range. All modern cameras are equipped with
automatic parameter control units. Therefore, the assumption of
fixed camera parameters fails unless the parameters are fixed
manually, which is not desirable in video imagery because of
the wide dynamic range and potential illumination changes. In
addition, it is possible to obtain more information about a scene
by combining images that are captured with different camera
parameters.

The so-called high-dynamic range imaging has been an ac-
tive research area in the computer vision community. Refer-
ences [2]–[5] demonstrated how to improve dynamic range by
combining images captured with different exposure times. How-
ever, the issue of nonlinear sensor response and different expo-
sures has not been addressed extensively in super-resolution re-
search. Recently, Capel and Zisserman [6] used a linear model
for radiometric changes, where global gain and offset param-
eters are estimated. This is a good model when the brightness
changes are small and there is no saturation. In this letter, we
propose a stochastic super-resolution reconstruction algorithm
that models nonlinear camera response function, exposure time,
sensor noise, and quantization error in addition to spatial blur-
ring and sampling. The algorithm works even if there is satura-
tion.

II. IMAGING MODEL

Incorporating the relative motion among observed images,
super-resolution algorithms model the imaging process as a
linear mapping between a high-resolution input signal and
low-resolution observations . ( ; is the total
number of observations.) The imaging process is formulated as

(1)

where is the linear mapping that includes motion (of the
camera and the objects in the scene), blur (caused by the point
spread function of the sensor elements and the optical system),
and downsampling [7]. Therefore, super-resolution reconstruc-
tion is an inverse problem where is estimated from a set of
observations . can be space- and time-varying. In practice,

is implemented in three steps: spatial warping to compensate
for motion, convolution with a point spread function (PSF), and
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Fig. 1. Proposed super-resolution algorithm uses an imaging model that
includes dynamic range and spatial domain effects.

downsampling. Details of modeling can be found in [1], [6],
and [7].

As mentioned earlier, exposure time may not be identical for
all images. In addition to the exposure time, we also need to con-
sider sensor noise and quantization error in the imaging process.
Denoting as the additive noise term and as the quantiza-
tion error, the imaging process can be formulated as

(2)

where is the nonlinear camera response function, is the
exposure time, and is the linear mapping that incorporates
motion, PSF, and downsampling (see the block diagram in
Fig. 1).

III. RECONSTRUCTION ALGORITHM

A. Derivation

Defining and using a Taylor series expansion,
(2) can be written as

(3)

where “ ” indicates element-by-element multiplication of two
vectors. Note that this derivation assumes that exists. It
is possible to guarantee this with parametric modeling of the
camera response function [5], [8] or defining it as a one-to-one
mapping [2]. Also, the approximation above neglects the
second- and higher-order terms. This is a good approximation
when the quantization error is relatively small compared to

.
We model the sensor noise and quantization error as indepen-

dent random variables with Gaussian distributions. Such mod-
eling has also been used previously [9]. We assume that there
is no correlation among the noise values at different pixel loca-
tions. As a result, we will have an analytically tractable solu-
tion. The means of the sensor noise and quantization error are
assumed to be zero. Now, let and be the variances of the
sensor noise and quantization error. It can be shown that the total
noise is also a zero-mean independent identically
distributed (i.i.d.) Gaussian random variable with variance

(4)

for all pixel locations in the image . Note that the total noise
variance is a function of the camera response function
and measured pixel intensities . Equation (4) indicates that the
total noise variance is larger for saturated pixel values. This is
illustrated in Fig. 2.

Denoting as the covariance matrix of the total noise, and
using a Gaussian prior for with mean image and covari-

Fig. 2. For a typical sensor response function shown on the left, the total noise
variance has a shape similar to the one on the right. For saturated regions, the
noise variance is larger.

ance matrix , the maximum a posteriori (MAP) estimate of
minimizes the following cost function:

(5)

Because of the i.i.d. noise assumption, is a diagonal ma-
trix, and its diagonal is equal to . In our experiments, we
will assume that there is no spatial correlation among pixels in

; therefore, will be taken as a constant diagonal matrix. This
simple prior serves as a regularization term. The mean image is
typically obtained by interpolating and averaging the observa-
tions.

Gradient descent techniques can be used to solve (5). can
be estimated by iteratively updating an initial estimate in the
direction of the negative gradient of . At the th iteration,
the estimate is

(6)

where is the step size, and can be found as

(7)
The step size in (6) can be fixed or updated adaptively

during the iterations. The Hessian of can be used for
changing .1

B. Complete Algorithm

In the reconstruction, everything but is either known or esti-
mated/set in advance. The linear mapping requires subpixel-
accurate spatial registration parameters, point spread function,
and downsampling factor. Typically, the registration parameters
are estimated, while the point spread function and the downsam-
pling factor are decided in advance. Camera response function
and relative exposure times can be estimated using multiple dif-
ferently exposed images [2], [4], [8], [10], [11].

1In our experiments, � is updated at each iteration using the formula

� =
rE q rE q

(rE (q )) H (rE (q ))

where H is the Hessian matrix found by

H = H K H +��� :
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Fig. 3. Images of the same scene captured with a Canon G5 digital camera.
The exposure times are 1/25, 1/50, 1/100, 1/200, 1/400, 1/800, and 1/1250 s.

The algorithm starts with an initial estimate , which can
be obtained by 1) interpolating of one of the observations bi-
linearly; 2) applying ; and 3) dividing by the corresponding
exposure time. This reference image is then updated iteratively,
as in (6). Each iteration requires simple image operations, such
as warping, convolution, sampling, and scaling.

• Application of involves warping to the th frame,
convolving with the point spread function, and then down-
sampling [12].

• Camera response function is estimated in advance; there-
fore, calculation of is simply a look-up-table oper-
ation.

• Because is diagonal, its application is division of
each pixel value by the corresponding .

• is implemented by upsampling the image (with zero
padding), convolving with the flipped point spread func-
tion, and motion warping back to the reference frame [12].

Note that the Hessian-based step-size can also be calculated
without constructing large matrices [7].

IV. EXPERIMENTAL RESULTS

A. Data Set

In this letter, we provide experiments with two data sets. The
first data set is a half-synthetic data set. We captured seven im-
ages with different exposure times and then simulated relative
motion by shifting and downsampling them. From each image,
four slightly shifted images are obtained. That is, 28 images in
total are obtained and used for restoration. The original seven
images are shown in Fig. 3. The second data set is a real data
set. We captured 15 images with a handheld digital camera. Ex-
posure times were manually changed for some of the images.
Three of these 15 images are shown in Fig. 4.

B. Estimating the Registration Parameters and Exposure Time

In our experiments, spatial registration parameters are first
estimated using the feature-based method explained in [6]. The
method works as follows. First, feature points in the images
are extracted using the Harris corner detector [13]. Then these
feature points are matched using normalized cross correlation.
The RANSAC method [14] is used to eliminate the outliers
and estimate the homographies. After spatial registration, ex-
posure time is estimated using least-squares estimation. These
estimates are then fine-tuned using [11], which is based on the
Levenberg–Marquardt nonlinear optimization technique. Note
that the feature-based registration approach may fail when the
exposure time difference is significant, that is, when same fea-
tures are not extracted as a result of saturation. Alternatively, it

Fig. 4. Images of the same scene captured with a Canon G5 digital camera.
These are three of the 15 images used in restoration. The highest exposure time
is 1/50 s, and the lowest is 1/800 s.

is possible to use mutual information for registration. Mutual
information has been successfully used for intermodal registra-
tion [15]. Our experiments show that it is also effective for regis-
tering differently exposed images. The major drawback of mu-
tual information is the computational complexity.

There are various methods available in the literature to es-
timate camera response function [2], [8], [10]. In our experi-
ments, we use the nonparametric camera response estimation
method in [10].

C. Alternative Approaches

There are possible alternatives to the proposed approach. For
example, one may apply super-resolution reconstruction to im-
ages with same exposure time and then fuse the reconstructed
images to increase the dynamic range. This is definitely a sub-
optimal approach where the correlation among all images is not
utilized. In [16], Capel and Zisserman adopted a linear photo-
metric model, which uses global gain and offset terms for pho-
tometric changes. After normalizing the observations with the
gain and offset factors, standard super-resolution reconstruction
algorithms are applied. This is a good approach, unless there is
saturation. We included results of this linear photometric model
(LPM) algorithm in our experiments.

In case of saturation, it is possible to modify this model by
estimating the saturated regions in the images and eliminating
them during the restoration. This can be achieved by masking
out the saturated regions. Saturated regions are chosen as the
regions with the maximum pixel intensity. In this letter, we
also included results of this modified linear photometric model
(MLPM) algorithm.

D. Experiments

• In this experiment, we use all 28 images of the half-syn-
thetic data set. We provide reconstruction results of
three approaches. The first approach is the LPM algo-
rithm, which does not take saturation into account. The
second approach is the MLPM algorithm that uses a
binary mask to eliminate the information coming from
saturated regions. The third approach is the proposed
algorithm. The resolution is increased by three. The noise
variances and are empirically selected as 1 and
0.1, respectively. The point spread function is a 9 9
Gaussian window with standard deviation of 1.5. The
number of iterations is 12. Fig. 5 shows three of the bi-
linearly interpolated input images and results of the three
reconstruction approaches. The LPM algorithm loses
information in saturated regions. The loss of contrast is
obvious. The MLPM algorithm produces artifacts due
to binary masking. Some contouring artifacts are also
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Fig. 5. (a),(b),(c) Bilinearly interpolated observations with different exposure
times. (d) Result of the LPM algorithm. (e) Result of the MLPM algorithm. (f)
Result of proposed algorithm.

Fig. 6. (a) One of the interpolated observations. (b) Result of LPM algorithm.
(c) Result of MLPM algorithm. (d) Result of proposed algorithm.

visible. On the other hand, the proposed algorithm has
the best overall performance.

• This experiment is with the real data set. The resolution
is increased by two. The point spread function is a 5 5
Gaussian window with standard deviation of 1.0. The rest
of the restoration parameters are the same as in the pre-
vious experiment. Fig. 6 shows the results for this data set.

For nonsaturated regions, all three algorithms performed
similarly, as expected. However, the proposed algorithm
outperforms the LPM and MLPM approaches considering
the overall performance.

V. CONCLUSION

In this letter, we presented an approach to reconstruct high-
spatial-resolution and high-dynamic-range images from mul-
tiple, possibly differently exposed images simultaneously. This
is a generalization of super-resolution image reconstruction. We
showed how to incorporate sensor nonlinearity into the recon-
struction. Additive sensor noise and quantization noise are mod-
eled; the way these noise terms come into picture is formulated.
This also has implications in high-dynamic-range imaging. Ex-
perimental results with synthetic and real data sets prove the ef-
fectiveness of the approach. Some of the parameters used in the
reconstruction were chosen heuristically. As a future work, we
will investigate estimating optimal parameters and using other
prior models.
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