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Multiframe Blocking-Artifact Reduction for Transform-Coded Video
Bahadir K. Gunturk, Yucel Altunbasak, and Russell M. Mersereau

Abstract—A major drawback of block-based still-image or
video-compression methods at low rates is the visible block bound-
aries that are also known as blocking artifacts. Several methods
have been proposed in the literature to reduce these artifacts.
Most are single image methods, which do not distinguish between
video and still images. However, video has a temporal dimension
that can lead to better reconstruction if utilized effectively. In
this paper, we show how to combine information from multiple
frames to reduce blocking artifacts. We derive constraint sets
using motion between neighboring frames and quantization infor-
mation that is available in the video bit stream. These multiframe
constraint sets can be used to reduce blocking artifacts in an
alternating-projections scheme. They can also be included in
existing set-theoretic algorithms to improve their performance by
narrowing down the feasibility set. Experimental results show the
effectiveness of using these multiframe constraint sets.

Index Terms—Blocking-artifact reduction, dequantization, mul-
tiframe image reconstruction, POCS.

I. INTRODUCTION

T RANSFORM coding is a popular and effective compres-
sion method for both still images and video sequences, as

is evident from its widespread use in international media coding
standards such as MPEG, H.263, and JPEG. The motion-com-
pensated image (or the image itself) is divided into blocks and
each block is independently transformed by a 2-D orthogonal
transform to achieve energy compaction. The most commonly
used transform is the discrete cosine transform (DCT). After the
block transform, the transform coefficients undergo a quanti-
zation step. At low bit-rates, the DCT coefficients are coarsely
quantized. This coarse quantization with independent quantiza-
tion of neighboring blocks gives rise to blocking artifacts: vis-
ible block boundaries.

Blocking-artifact reduction methods can be classified into
three distinct groups according to their reconstruction ap-
proaches. The first group uses low-pass filtering; the filters
can be space-invariant [1] or space-varying [2], [3]. The main
problem with low-pass filtering is the over-smoothing of
images. References [4] and [5] try to avoid this problem by
first decomposing images into their frequency subbands, and
then filtering the block boundaries in high-frequency subbands.
The second group of artifact-reduction methods are statistical
estimation methods [6]–[8]. These assume a probabilistic
model, and apply maximuma posteriori probability (MAP)
technique to reduce the artifacts. The final group of methods
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consists of set-theoretic reconstruction methods [9]–[14].
These methods define constraint sets using observed data or
prior knowledge of the solution, and try to reconstruct the
original image by using a projections onto convex sets (POCS)
technique. The success of set-theoretic methods depends highly
on the constraint sets, whose intersection gives the feasibility
set: the set of all acceptable solutions [15]. If the constraint
sets do not have a small feasibility set, POCS-based algorithms
do not perform well. Moreover, incorrect constraint sets can
prevent convergence or lead to incorrect solutions.

Temporal information adds another dimension to these
methods for video sequences. Ironically, this information is not
used effectively, if used at all, for blocking-artifact reduction
in video. One method that does use temporal information was
proposed by Park and Lee [16]. It makes use of motion vectors
to extract the blocking semaphores and employs adaptive
spatial filtering to reduce the artifacts. Another method [17]
uses space-varying spatial filtering followed by a motion-com-
pensated nonlinear filter.

In this paper, we propose a way to incorporate temporal in-
formation in blocking-artifact reduction for video sequences.
The proposed method constructs convex constraint sets using
the motion between the frames and the quantization information
extracted from the video bit stream. This allows us to impose
additional constraints on a particular frame using the quantiza-
tion information of the neighboring frames. The constraint sets
defined this way are solely based on the observed data, unlike
the smoothness constraint sets that are based on a prior image
smoothness assumption. The use of these additional constraint
sets improves the performance of existing set-theoretic recon-
struction algorithms by narrowing down the feasibility set. It is
also possible to reduce blocking artifacts by using only these
constraint sets without any smoothness assumption.

In Section II, existing constraint sets used in blocking-artifact
reduction methods are reviewed. Multiframe constraint sets are
derived in Section III. The details of the POCS-based algorithm
are explained in Section IV. Section V presents the experimental
results, and conclusions are discussed in Section VI.

II. EXISTING CONSTRAINT SETSUSED IN BLOCKING-ARTIFACT

REDUCTION ALGORITHMS

Set-theoretic reconstruction techniques produce solutions that
are consistent with the information arising from the observed
data or prior knowledge about the solution. Every single piece
of information is associated with a constraint set in the solution
space, and the intersection of these sets represents the space of
acceptable solutions [15]. By using more valid constraint sets,
the feasibility set can be made smaller, which means getting
closer to the original signal. In the blocking-artifact reduction
problem, thewell-knownconstraint set is thequantization-bound
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information. When DCT coefficients are quantized, the exact
values are lost, but the upper and lower bounds within which
the original DCT coefficients lie can be determined using the
quantization step sizes. The quantization constraint set was
first used by Zakhor to reduce blocking artifacts [9], and be-
came common to all POCS-based methods [9]–[14]. Another
constraint set is based on the range of pixel intensities. For an
8-bit representation, this range is 0–255. These two constraint
sets are based on the observed data, but they are not enough for
still-image reconstructionsince the decoded image already
lies in the feasibility set formed from these two constraint sets.
Therefore, additional constraint sets must be defined based on
prior knowledge of the original images. One such constraint set
is the smoothness constraint set, and it is used in all set-theoretic
blocking-artifact reduction methods. Zakhor assumed that im-
ages are bandlimited, and the high-frequency components above
a certain cutoff frequency are caused by blocking artifacts [9].
There are two problems with this approach: 1) this is not always a
validassumption since imagesmay contain high-frequency com-
ponents and 2) an ideal low-pass filter cannot be implemented.
Zakhor used a 3 3 low-pass filter, which over-smooths images
when applied repetitively, since it is not a projection operator.
(Although Zakhor’s method is not a POCS-based method in
its implementation, we found it more appropriate to classify it
among the POCS-based methods because of its design.) A real
smoothness-projection operator was proposed by Yanget al.
[10].Thatmethodconstrains the difference between neighboring
blocks. They later improved their algorithm by applying adaptive
smoothness constraint sets: directional smoothness-constraint
sets that do not over-smooth images [11], [12]. Paeket al. [13]
assumed that the global frequency characteristics of two adjacent
blocks are similar to the local ones, and tried to detect and remove
the undesired high-frequency components. Other constraint sets,
such as ones aimed at reducing ringing artifacts, have also been
used in blocking-artifact reduction algorithms [12].

III. M ULTIFRAME CONSTRAINT SETS

As explained in the previous section, set-theoretic
single-frame blocking-artifact reduction methods must define
smoothness constraint sets. However, smoothness constraint
sets may not always be consistent with the original image.
For video sequences there is another way to narrow down the
feasibility set: temporal information. In this section, we show
how to define additional constraint sets using motion between
the frames and the quantization-bound information at those
frames. We first establish the relation between two frames
using motion. We then consider the MPEG compression stages
to define the constraint sets.

We start with the intensity conservation assumption along the
motion trajectories. Let denote the intensity of a
continuous spatio–temporal video signal at spatial coordinate

at time . Pixel intensities of any two video frames can
be related to each other through the motion vectors.1 Denoting

, as the

1Note that these motion vectors are not the MPEG motion vectors. They are
used to relate a reference frame to neighboring frames, and therefore, they need
to be dense and accurate.

motion mapping between the frames at timesand , we can
write

(1)

We now proceed by discretizing this relation. Discrete signals
are obtained by sampling their continuous versions with a
space-time lattice . In order to re-obtain continuous signals,
discrete signals must be interpolated with an interpolant.
Denoting as the sampled version of ,
and as the interpolant, this relation can be written as

(2)

where is the 2-D impulse function, and “” represents the
convolution operation. The spatial coordinates and the
frame number are integers. The interpolant can be
a zero-order, bilinear, or higher-order filter. Substituting (2) into
(1), we get

(3)

Since we are only dealing with digital video, we evaluate
at integer locations . The discrete th

frame is then written as:

(4)

In order to simplify the notation and emphasize the point that
is a function of frames and , corresponding

to times and , respectively, we define ;
, and write (4) as

(5)
Equation (5) gives the relation between two different frames.
Now we model the operations that take place in the process
of MPEG compression (i.e., motion compensation, block-DCT
calculation, and quantization). Motion compensation is simply
the subtraction of an offset value from . Denoting

as the motion-compensated frame and
as the predicted frame, we write:

(6)

This motion-compensated frame is then divided into 88
blocks, and each block is separately transformed by a DCT.
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Denoting , , and
as the block-DCT’s of , , and

, respectively, we can write this relation as

(7)

Here, are the block-DCT coefficients. This
block-DCT stage is followed by the quantization process,
which can be modeled by the addition of a quantization error

. Denoting as the quantized
DCT coefficients, this can be written as

(8)

Equation (5) gave the relation between theth and th frames.
By combining that relation with the MPEG compression rela-
tion given in Equation (8), we will be able define constraint sets
on the th frame using the quantization information of another
frame .

Before continuing, we write the block-DCT relation for
explicitly. Denoting as the limit

function, and as the operator, the block-DCT of
can be written as

(9)

where ; is the DCT kernel, which is
given by

(10)

with and being the normalization constants

for (11)

Now we will combine (5), (8), and (9). Substituting (5) into (9),
and changing the order of summations gives

(12)

Defining

(13)

we can write (12) as

(14)

Substituting (14) into (8), we get

(15)

Equation (15) is the key in this paper. It shows the connection
between th frame and the quantized DCT coeffi-
cients of another frame . By using the quanti-
zation bound information about , we are able to
define constraint sets on . Although the exact value
of is not known, the range within which the
original DCT coefficient lies can be extracted from the MPEG
bit stream. Defining and as the
lower and upper bounds of the DCT coefficient at spatio–tem-
poral location , the constraint set
can be written as n (16), shown at the bottom of the page.

This equation shows how to define constraint sets on any
frame using the quantization information from another frame

. Therefore, we can use any number of constraint sets while
reconstructing . These constraint sets are based on
the observed data unlike the smoothness constraint sets. By pro-
jecting the “blocky” frame onto these multiframe constraint sets,
the blocking artifacts can be reduced significantly. These con-
straint sets can also be used with other set-theoretic blocking-ar-
tifact reduction algorithms. The next section gives the projection
operator corresponding these constraint sets, and provides the
details of the algorithm.

IV. M ULTIFRAME BLOCKING-ARTIFACT REDUCTION

In order to construct the constraint sets on a reference frame
, we first compute the motion-compensated kernel function

(MCKF) between the reference
frame and another neighboring frame. This requires accu-
rate motion estimates, since incorrect motion estimation may
lead to constraint sets that are not consistent with the original
block-artifact-free frame. (It should be noted that the motion

(16)
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TABLE I
HIERARCHICAL BLOCK-MATCHING PARAMETERS

vectors available in the MPEG bit stream are generally not ac-
curate enough, since they are not selected to measure true object
motion. Therefore we need to compute true motion vectors after
decoding the frames. The details of the motion estimation and
MCKF computation are given in Section V.) Once the MCKF
is computed, frame is projected onto the constraint sets using
the projection operator , as in (17), shown at the
bottom of the page where ;

. The dependencies on are
dropped from , , and for convenience. Since this oper-
ation is valid for any , we can construct an arbitrary number
of sets to constrain the solution space. We also
note that (16) and (17) are valid regardless of the macroblock
mode used in encoding. For intramode macroblocks, no motion
compensation is done and, therefore, is zero. For
intermode macroblocks, can be predicted from the
previous intracoded frame or bidirectionally.

One way of implementing the algorithm is as follows.

1) Choose the reference frameto be reconstructed.
2) Choose another frame, and compute the motion vectors

from frame to frame . (Do not use the motion vectors
extracted from the MPEG bit stream.)

3) Determine the MCKF , and
define constraint sets according to (16) for
each pixel site where the motion estimation
is believed to be accurate. Do not define a constraint set
at a pixel where there is a little confidence in the motion
estimate.

4) For all sites where the constraint sets have
been defined, project the reference frameonto the con-
straint set using (17).

5) Make sure that the reconstructed image has pixel inten-
sities between 0 to 255. If there are any of them out this
range, project them to the closest bound (0 or 255).

6) Stop, if the stopping criterion is reached; else, choose an-
other frame , and go to step 2.

V. RESULTS

To demonstrate the efficacy of the proposed method, several
experiments with real video sequences have been performed.
Before presenting these experimental results we need to clarify
the details concerning motion estimation and the computation
of the MCKF.

A. Estimating Motion

Motion estimation is an important part of the algorithm
since it directly affects the constraint sets. If motion is not
estimated accurately, incorrect constraint sets can be imposed
on the solution. In our experiments we used the hierarchical
block matching (HBM) algorithm of Bierling [18] to compute
the nonuniform translational motion between frames. The
assumption of locally translational motion is quite effective
when warping effects are small. We used three levels of hier-
archy with mean absolute difference (MAD) as the matching
criterion between measurement blocks. The parameters are
given in Table I. In that table, the maximum horizontal/vertical
displacement gives the search range in terms of number of
pixels. The window size is the size of the matching blocks
where the MAD is computed. The filter size is the support of
a Gaussian low-pass filter that is applied before determining
the motion vectors. The variance of the Gaussian filter is set to
one-half the support size. The step size is the distance between
neighboring pixels for which motion is estimated. The motion
vectors for the pixels in between are bilinearly interpolated
from these computed motion estimates. (We did not compute
motion vectors at every pixel in order to speed up the imple-
mentation.) In the final level of estimation, motion vectors are
sought with one-quarter-pixel accuracy by subsampling pixels.
It should also be noted that in order not to impose any incorrect
constraint set on the reconstructed frame, we did not use the
constraint sets at locations where the MAD was
greater than a threshold. In the experiments we chose that
threshold as four.

elsewhere

(17)
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Fig. 1. Computing the MCKF.

B. Computing the MCKF

In order to find the MCKF , we
first need to determine the interpolant . In our exper-
iments we used a bilinear interpolant. Referring to Fig. 1, if the
motion vector from spatio–temporal location points
to the th frame at coordinates , then we can
write the following relation:

(18)

where , and . We used the notation
and for the spatial coordinates to distinguish

them from the generic coordinates and . Equa-
tion (18) reveals how to find the mapping
in (5) for all coordinates. After finding ,
all we need to do is take the block-DCT as in (13) to find the
MCKF .

C. Experimental Results

We compressed the Susie test sequence at 112 kbits/s using
an MPEG-1 encoder. The original frame 13 and the compressed
frame 13 are given in Figs. 2 and 3. We then computed the mo-
tion between frame 13 and the frames 14–17. (Picture modes
for frames 13–17 are P, B, B, P, and B, respectively.) Frame 13
was projected onto constraints sets defined using frames 14–17.
After one iteration, the image in Fig. 5 was obtained. When com-
pared to the compressed frame (Fig. 3) and Zakhor’s method
with one iteration (Fig. 4), there is a significant reduction in
blocking artifacts (without over-smoothing) in the multiframe
method, but there are still regions with visible block boundaries.
From a set-theoretic point of view, this means that the feasi-
bility set is not small enough to get close to the original image.
The results can be improved by imposing other constraint sets.
These additional constraint sets can be constraint sets from other
frames as we proposed, or constraint sets such as assuming spa-
tial smoothness. In this case, we chose to impose a smooth-
ness constraint. Fig. 6 shows the result if Zakhor’s smoothness
filter is also included in the iteration. The same experiments are

Fig. 2. Susie original.

Fig. 3. Susie compressed at 112 kbits/s.

repeated for the Foreman sequence. The results are shown in
Figs. 7–11.

VI. DISCUSSION

The proposed multiframe blocking-artifact reduction method
exploits temporal information encapsulating the motion be-
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Fig. 4. Zakhor’s method (one iteration).

Fig. 5. Multiframe (one iteration).

Fig. 6. Multiframe+ Zakhor (one iteration).

tween frames and the quantization bounds available in the
video bit stream. It defines convex constraint sets based on the
observed data and uses an alternating projections scheme to
reconstruct the original image. It is a general tool in the sense

Fig. 7. Foreman original.

Fig. 8. Foreman compressed at 112 kbits/s.

Fig. 9. Zakhor’s method (one iteration).

that it can easily be combined with other set-theoretic methods.
However, the method requires accurate motion estimates, and
it has high computational complexity. This is not a significant
drawback for offline applications where video quality is the
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Fig. 10. Multiframe (one iteration).

Fig. 11. Multiframe+ Zakhor (one iteration).

main concern. It can also be used in real-time applications by
implementing the algorithm as part of a dedicated hardware
solution in set-top boxes.

REFERENCES

[1] H. C. Reeves and J. S. Lim, “Reduction of blocking effects in image
coding,”Opt. Eng., vol. 23, pp. 34–37, 1984.

[2] G. Ramamurthi and A. Gersho, “Nonlinear space-variant postpro-
cessing of block coded images,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-34, pp. 1258–1267, Oct. 1986.

[3] K. Sauer, “Enhancement of lower bit-rate coded images using edge de-
tection and estimation,”Comput. Vis. Graph. Image Processing: Graph-
ical Models Image Processing, vol. 53, no. 1, pp. 52–62, Jan. 1991.

[4] Z. Xiong, M. T. Orchard, and Y.-Q. Zhang, “A deblocking algorithm
for JPEG compressed images using overcomplete wavelet representa-
tions,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 433–437,
Apr. 1997.

[5] H. Choi and T. Kim, “Blocking-artifact reduction in block-coded im-
ages using wavelet-based subband decomposition,”IEEE Trans. Cir-
cuits Syst. Video Technolo., vol. 10, pp. 801–805, Aug. 2000.

[6] R. L. Stevenson, “Reduction of coding artifacts in transform image
coding,” in Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol.
5, 1993, pp. 401–404.

[7] J. Luo, C. W. Chen, K. J. Parker, and T. S. Huang, “Artifact reduction
in low bit-rate dct-based image compression,”IEEE Trans. Image Pro-
cessing, vol. 5, pp. 1363–1368, 1996.

[8] T. Ozcelik, J. C. Brailean, and A. K. Katsaggelos, “Image and video
compression algorithms based on recovery techniques using mean field
annealing,”Proc. IEEE, vol. 83, pp. 304–316, 1995.

[9] A. Zakhor, “Iterative procedures for reduction of blocking effects in
transform image coding,”IEEE Trans. Circuits Syst. Video Technol., vol.
2, pp. 91–95, 1992.

[10] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Regularized recon-
struction to reduce blocking artifacts of block discrete cosine transform
compressed images,”IEEE Trans. Circuits Syst. Video Technol., vol. 3,
pp. 421–432, 1993.

[11] , “Projection-based spatially adaptive image reconstruction of
block-transform compressed images,”IEEE Trans. Image Processing,
vol. 4, pp. 896–908, July 1995.

[12] Y. Yang and N. P. Galatsanos, “Removal of compression artifacts using
projections onto convex sets and line process modeling,”IEEE Trans.
Image Processing, vol. 6, pp. 1345–1357, Oct. 1997.

[13] H. Paek, R. Kim, and S. Lee, “On the POCS-based postprocessing tech-
nique to reduce blocking artifacts in transform coded images,”IEEE
Trans. Circuits Syst. Video Technol., vol. 8, pp. 358–367, June 1998.

[14] Y. Jeong, I. Kim, and H. Kang, “A practical projection-based postpro-
cessing of block-coded images with fast convergence rate,”IEEE Trans.
Circuits Syst. Video Technol., vol. 10, pp. 617–623, June 2000.

[15] P. L. Combettes, “The foundations of set theoretic estimation,”Proc.
IEEE, vol. 81, pp. 182–208, Feb. 1993.

[16] H. W. Park and Y. L. Lee, “A postprocessing method for reducing quan-
tization effects in low bit-rate moving picture coding,”IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 9, pp. 161–171, Feb. 1999.

[17] C. Derviaux, F.-X. Coudoux, M. G. Gazalet, and P. Corlay, “Blocking
artifact reduction of DCT coded image sequences using visually adap-
tive postprocessing,” inProc. Int. Conf. Image Processing, vol. 2, 1996,
pp. 5–8.

[18] M. Bierling, “Displacement estimation by hierarchical blockmatching,”
in Proc. SPIE Visual Communications and Image Processing ’88, 1988,
pp. 942–951.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


