

Social Networking at Scale

Sanjeev Kumar
Facebook

1 What makes scaling Facebook challenging?

2 Evolution of Software Architecture

3 Evolution of Datacenter Architecture

Outline

700B
minutes spent

on the site every
month

2.5M
sites using

social plugins

30B
pieces of content

shared each
month

500M
daily active users

2004 2005 2006 2009 2010

845M users worldwide

What makes scaling Facebook challenging?

▪  Massive scale

▪  Social Graph is central to everything on the site

▪  Rapidly evolving product

▪  Complex Infrastructure

Traditional websites

Bob

Bob’s data

Julie

Julie’s data

Dan

Dan’s data

Beth

Beth’s data

Sue

Sue’s data

Erin

Erin’s data

Bob

Bob’s data

Horizontally scalable

People are only one dimension of the social graph

Social Graph

Facebook: The data is interconnected
Common operation: Query the social graph

Bob Erin Beth

Servers

Social Graph Cont’d

▪  Highly connected

▪  4.74 average degree-of-separation between users on Facebook

▪  Made denser by our connections to places, interests, etc.

▪  Examples of Queries on Social Graph

▪  What are the most interesting updates from my connections?

▪  Who are my connections in real-life who I am not connected to on
Facebook?

▪  What are the most relevant events tonight near me and related to my
interests? Or that my friends are going to?

Social Graph Cont’d

▪  System Implications of Social Graph

▪  Expensive to query

▪  Difficult to partition

▪  Highly customized for each user

▪  Large working sets (Fat tail)

What makes scaling Facebook challenging?

▪  Massive scale

▪  Social Graph: Querying is expensive at every level

▪  Rapidly evolving product

▪  Complex Infrastructure

0M

100M

200M

300M

400M

500M 800M

New Apps
February 2004

Sign Up
NewsFeed

2006

Platform launch
2007

Translations
2008

The Stream
2009

Open Graph
2010

</> Social Plugins
2010

Photos Update
2010

Places
2010

Mobile Event
2010

Groups
2010

Messages
2010

New Profile
2010

Questions
2011
? Unified Mobile

Sites
Product Launches

2011 2004

New Apps
2004/2005

Timeline Music
Video Calling

iPad App

Rapidly evolving product

▪  Facebook is a platform

▪  External developers are innovating as well

▪  One integrated product

▪  Changes in one part have major implications on other parts

▪  For e.g. Timeline surfaces some of the older photos

▪  System Implications

▪  Build for flexibility (avoid premature optimizations)

▪  Revisit design tradeoffs (they might have changed)

What makes scaling Facebook challenging?

▪  Massive scale

▪  Social Graph: Querying is expensive at every level

▪  Rapidly evolving product

▪  Complex Infrastructure

Complex infrastructure

▪  Large number of Software components

▪  Multiple Storage systems

▪  Multiple Caching Systems

▪  100s of specialized services

▪  Often deploy cutting-edge hardware

▪  At our scale, we are early adopters of new hardware

▪  Failure is routine

▪  Systems implications

▪  Keep things as simple as possible

1 What makes scaling Facebook challenging?

2 Evolution of Software Architecture

3 Evolution of Datacenter Architecture

Outline

Cache Tier

Web Tier

Storage Tier

Services Tier

Evolution of the Software Architecture
Evolution of each of these 4 tiers

Cache Tier

Web Tier

Storage Tier

Services Tier

Evolution of the Software Architecture
Evolution of Web Tier

Web Tier

▪  Stateless request processing

▪  Gather Data: from storage tiers

▪  Transform: Ranking (for Relevance) and Filtering (for Privacy)

▪  Presentation: Generate HTML

▪  Runs PHP code

▪  Widely used for web development

▪  Dynamically typed scripting language

▪  Integrated product è One single source tree for all the entire code

▪  Same “binary” on every web tier box

▪  Scalability: Efficiently process each request

0 5 10 15 20 25 30 35 40 45

PHP Zend
Python

Ruby
Ocaml

C#
Java
C++

Generation 1: Zend Interpreter for PHP

▪  Reasonably fast (for an interpreter)

▪  Rapid development

▪  Don’t have to recompile during testing

▪  But: at scale, performance matters

Relative Execution Time

Generation 2: HipHop Compiler for PHP

▪  Technically challenging, Impressive gains, Still room for improvement

▪  But: takes time to compile (slows down development)

▪  Solution: HipHop interpreter

▪  But: Interpreter and compiler sometimes disagree

▪  Performance Gains are slowing. Can we improve performance further?

0 5 10 15 20 25 30 35 40 45

PHP HipHop
PHP Zend

Python
Ruby

Ocaml
C#

Java
C++

Relative Execution Time

Generation 3: HipHop Virtual Machine

▪  Best of both worlds

▪  Common path, well-specified bytecode semantics

▪  Potential performance upside from dynamic specialization

▪  Work-In-Progress

PHP AST

Optimizer

Parser

Bytecode

Bytecode
Generator

HHVM
Interpreter

HHVM
JIT

Web Tier Facts
▪  Execution time only a small factor in user-perceived performance

▪  Can potentially use less powerful processors

▪  Throughput matters more than latency (True for other tiers as well)

▪  Memory management (allocation/free) is a significant remaining cost

▪  Copy-on-Write in HipHop implementation

▪  Poor Instruction Cache Performance

▪  Partly due to the one massive binary

▪  Web load predictable in aggregate

▪  Can use less dynamic techniques to save power

▪  Potentially even turn off machines. Failure rates is an open question?

Cache Tier

Web Tier

Storage Tier

Services Tier

Evolution of the Software Architecture
Evolution of Storage Tier

Storage Tier

Evolution of a Storage Tier

▪  Multiple storage systems at Facebook

▪  MySQL

▪  HBase (NoSQL)

▪  Haystack (for BLOBS) ç

▪  Case Study: BLOB storage

▪  BLOB: Binary Large Objects (Photos, Videos, Email attachments, etc.)

▪  Large files, No updates/appends, Sequential reads

▪  More than 100 petabytes

▪  250 million photos uploaded per day

Generation 1: Commercial Filers

▪  New Photos Product

▪  First build it the easy way

▪  Commercial Storage Tier + HTTP server

▪  Each Photo is stored as a separate file

▪  Quickly up and running

▪  Reliably Store and Serve Photos

▪  But: Inefficient

▪  Limited by IO rate and not storage density

▪  Average 10 IOs to serve each photo

▪  Wasted IO to traverse the directory structure

NFS Storage

Generation 2: Gen 1 Optimized

▪  Optimization Example:

▪  Cache NFS handles to reduce wasted IO
operations

▪  Reduce the number of IO operations per
photo by 3X

▪  But:

▪  Still expensive: High end storage boxes

▪  Still inefficient: Still IO bound and wasting IOs

 directory inode
•  owner info
•  size
•  timestamps
•  blocks

 directory data
•  inode #
•  filename

 file inode
•  owner info
•  size
•  timestamps
•  blocks

 data

NFS Storage Optimized

Generation 3: Haystack [OSDI’10]

▪  Custom Solution

▪  Commodity Storage Hardware

▪  Optimized for 1 IO operation per request

▪  File system on top of a file system

▪  Compact Index in memory

▪  Metadata and data laid out contiguously

▪  Efficient from IO perspective

▪  But:

▪  Problem has changed now

Superblock

Needle 1

Needle 2

Needle 3

Magic No

Key

Flags

Photo

Checksum

Single Disk IO to read/write a photo

Generation 4: Tiered Storage

▪  Usage characteristics

▪  Fat tail of accesses: everyone has friends J

▪  A large fraction of the tier is no longer IO limited (new)

▪  Storing efficiency matters much more than serving efficiency

▪  Approach: Tiered Storage

▪  Last layer optimized for storage efficiency and durability

▪  Fronted by caching tier optimized for serving efficiency

▪  Working-In-Progress

BLOB Storage Facts

▪  Hot and Warm data. Little cold data.

▪  Low CPU utilization

▪  Single digit percentages

▪  Fixed memory need

▪  Enough for the index

▪  Little use for anything more

▪  Next generation will use denser storage systems

▪  Do we even bother with hardware raid?

▪  Details to be publicly released soon

Cache Tier

Web Tier

Storage Tier

Services Tier

Evolution of the Software Architecture
Evolution of Cache Tier

Storage Tier

Cache Tier: Memcache

Web Tier

Storage Tier

First few Generations: Memcache

Storage Tier

Look-Aside Cache
Key-Value Store
Does one thing very well
Does little else
Improved performance by 10X

Memcache limitations
▪  “Values” are opaque

▪  End up moving huge amounts of data across the network

▪  Storage hierarchy exposed to web tier

▪  Harder to explore alternative storage solutions

▪  Harder to keep consistent

▪  Harder to protect the storage tier from thundering herds

Web Tier

Storage Tier

Storage Tier

Cache Tier: Tao

Alternative Caching Tier: Tao

1. Has a data model
2. Write-Through Cache
3. Abstracts the storage tier

Tao Cont’d

▪  Data Model

▪  Objects (Nodes)

▪  Associations (edges)

▪  Have “type” and data

▪  Simple graph operations on them

▪  Efficient: Content-aware

▪  Can be performed on the caching tier

▪  In production for a couple of years

▪  Serving a big portion of data accesses

Tao opens up possibilities

▪  Alternate storage systems

▪  Multiple storage systems

▪  To accommodate different use case (access patterns)

▪  Even more powerful Graph operations

▪  Multi-Tiered caching

Cache Tier Facts

▪  Memcache

▪  Low CPU utilization

▪  Little use for Flash since it is bottlenecked on network

▪  Tao

▪  Much higher CPU load

▪  Will continue to increase as it supports more complex operations

▪  Could use Flash in a multi-tiered cache hierarchy

Cache Tier

Web Tier

Storage Tier

Services Tier

Evolution of the Software Architecture
Evolution of Services Tier

Storage Tier

Cache Tier

Web Tier

Storage Tier

Life before Services
Example: Wish your friend a Happy Birthday

Storage Tier

Inefficient and Messy
•  Potentially access hundreds of machines
•  Solution: Nightly cron jobs
•  Issues with corner cases
What about more complex problems?
Solution: Build Specialized Services

A more complex service: News Feed
Aggregation of your friends’ activity

One of many (100s) services at Facebook

News Feed Product characteristics

▪  Real-time distribution

▪  Along edges on the Social Graph

▪  Writer can potentially broadcast to very large audience

▪  Reader wants different & dynamic ways to filter data

▪  Average user has 1000s of stories per day from friends/pages

▪  Friend list, Recency, Aggregation, Ranking, etc.

Service: News Feed

News Feed Service

▪  Build and maintain an index: Distributed

▪  Rank: Multiple ranking algorithms

Query
[Read]

User Update
[Write]

Two approaches: Push vs. Pull

▪  Push approach

▪  Distribute actions by reader

▪  Write broadcasts, read one location

▪  Pull approach

▪  Distribute actions by writer

▪  Write one location, read gathers

▪  Pull model is preferred because

▪  More dynamic: Easier to iterate

▪  “In a social graph, the number of incoming edges is much smaller than the
outgoing ones.”

9,000,000

621

Service: News Feed

 Leafs

 Aggregators

News Feed Service: Big Picture
Query

[Read]
User Update

[Write]

▪  Pull Model

▪  Leafs: One copy of the entire index. Stored in memory (Soft state)

▪  Aggregators: Aggregate results on the read path (Stateless)

Service: News Feed

 Leafs

 Aggregators

News Feed Service: Writes

▪  On User update (Write)

▪  Index sharded by Writer

▪  Need to update one leaf

Query
[Read]

User Update
[Write]

Service: News Feed

 Leafs

 Aggregators

News Feed Service: Reads

▪  On Query (Read)

▪  Query all leafs

▪  Then do aggregation/ranking

Query
[Read]

User Update
[Write]

Service: News Feed

 Leafs

 Aggregators

News Feed Service: Scalability

▪  1000s of machines

▪  Leafs: Multiple sets. Each set (10s of machines) has the entire index

▪  Aggregators: Stateless. Scale with load.

Query
[Read]

User Update
[Write]

News Feed Service: Reliability
▪  Dealing with (daily) failures

▪  Large number of failure types

▪  Hardware/software

▪  Servers/Networks

▪  Intermittent/Permanent

▪  Local/Global

▪  Keep the software architecture simple

▪  Stateless components are a plus

▪  For example, on read requests:

▪  If a leaf is inaccessible, failover the request to a different set

▪  If an aggregator is inaccessible, just pick another

New Feed Service Facts

▪  Number of leafs dominate the number of aggregators

▪  Reads are more expensive than writes

▪  Every read (query) involves one aggregator and every leaf in the set

▪  Very high network load between aggregator and leafs

▪  Important to keep a full leaf set within a single rack on machines

▪  Uses Flash on leafs to ensure this

Cache Tier

Web Tier

Storage Tier

Services Tier

Evolution of the Software Architecture
Summary

Memcache & Tao

HipHop Compiler & VM

New Feed

BLOB Storage

1 What makes scaling Facebook challenging?

2 Evolution of Software Architecture

3 Evolution of Datacenter Architecture

Outline

Recall: Characteristics of Facebook

▪  Massive Scale

▪  Social Graph

▪  Expensive to query

▪  Hard to partition

▪  Large working set (Fat tail)

▪  Product is rapidly evolving

▪  Hardware failures are routine

Implications
▪  On Datacenters

▪  Small number of massive datacenters (currently 4)

▪  On Servers

▪  Minimize the “classes” (single digit) of machines deployed

▪  Web Tier, Cache Tier, Storage Tier, and a couple of special configurations

▪  Started with

▪  Leased datacenters + Standard server configurations from vendors

▪  Moving to

▪  Custom built datacenters + custom servers

▪  Continue to rely on a small number of machine “classes”

Servers

Data Center

AMD 
Motherboard

Intel  
Motherboard

Server
Chassis

Battery
Cabinet

Triplet
Rack

Power  
Supply

Electrical Mechanical

Evaporative cooling system

Open Compute

▪  Custom datacenters & servers

▪  Minimizes power loss

▪  POE of 1.07

▪  Vanity Free design

▪  Designed for ease of operations

▪  Designs are open-sourced

▪  More on the way

1 What makes scaling Facebook challenging?

2 Evolution of Software Architecture

3 Evolution of Datacenter Architecture

Outline

Questions?

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

