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What makes scaling Facebook challenging? 
  
▪  Massive scale 

▪  Social Graph is central to everything on the site 

▪  Rapidly evolving product 

▪  Complex Infrastructure 
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Horizontally scalable 



People are only one dimension of the social graph 

Social Graph 



Facebook: The data is interconnected 
Common operation: Query the social graph 

Bob Erin Beth 

Servers 



Social Graph Cont’d 

▪  Highly connected 

▪  4.74 average degree-of-separation between users on Facebook 

▪  Made denser by our connections to places, interests, etc. 

▪  Examples of Queries on Social Graph 

▪  What are the most interesting updates from my connections? 

▪  Who are my connections in real-life who I am not connected to on 
Facebook? 

▪  What are the most relevant events tonight near me and related to my 
interests? Or that my friends are going to? 



Social Graph Cont’d 

▪  System Implications of Social Graph 

▪  Expensive to query 

▪  Difficult to partition 

▪  Highly customized for each user 

▪  Large working sets (Fat tail) 



What makes scaling Facebook challenging? 
  
▪  Massive scale 

▪  Social Graph: Querying is expensive at every level 

▪  Rapidly evolving product 

▪  Complex Infrastructure 
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Rapidly evolving product 

▪  Facebook is a platform 

▪  External developers are innovating as well 

▪  One integrated product 

▪  Changes in one part have major implications on other parts 

▪  For e.g.  Timeline surfaces some of the older photos 

▪  System Implications 

▪  Build for flexibility (avoid premature optimizations) 

▪  Revisit design tradeoffs (they might have changed) 



What makes scaling Facebook challenging? 
  
▪  Massive scale 

▪  Social Graph: Querying is expensive at every level 

▪  Rapidly evolving product 

▪  Complex Infrastructure 



Complex infrastructure 

▪  Large number of Software components 

▪  Multiple Storage systems 

▪  Multiple Caching Systems 

▪  100s of specialized services 

▪  Often deploy cutting-edge hardware 

▪  At our scale, we are early adopters of new hardware 

▪  Failure is routine 

▪  Systems implications 

▪  Keep things as simple as possible 
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Evolution of the Software Architecture 
Evolution of each of these 4 tiers 
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Web Tier 

▪  Stateless request processing 

▪  Gather Data: from storage tiers 

▪  Transform: Ranking (for Relevance) and Filtering (for Privacy) 

▪  Presentation: Generate HTML 

▪  Runs PHP code 

▪  Widely used for web development 

▪  Dynamically typed scripting language 

▪  Integrated product è One single source tree for all the entire code 

▪  Same “binary” on every web tier box 

▪  Scalability: Efficiently process each request 
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Generation 1: Zend Interpreter for PHP 

▪  Reasonably fast (for an interpreter) 

▪  Rapid development 

▪  Don’t have to recompile during testing 

▪  But: at scale, performance matters 

Relative Execution Time 



Generation 2: HipHop Compiler for PHP 

▪  Technically challenging, Impressive gains, Still room for improvement 

▪  But: takes time to compile (slows down development) 

▪  Solution: HipHop interpreter 

▪  But: Interpreter and compiler sometimes disagree 

▪            Performance Gains are slowing. Can we improve performance further? 
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Generation 3: HipHop Virtual Machine 

▪  Best of both worlds 

▪  Common path, well-specified bytecode semantics 

▪  Potential performance upside from dynamic specialization 

▪  Work-In-Progress 
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Web Tier Facts 
▪  Execution time only a small factor in user-perceived performance 

▪  Can potentially use less powerful processors 

▪  Throughput matters more than latency (True for other tiers as well) 

▪  Memory management (allocation/free) is a significant remaining cost 

▪  Copy-on-Write in HipHop implementation 

▪  Poor Instruction Cache Performance 

▪  Partly due to the one massive binary 

▪  Web load predictable in aggregate 

▪  Can use less dynamic techniques to save power 

▪  Potentially even turn off machines. Failure rates is an open question? 
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Evolution of a Storage Tier 

▪  Multiple storage systems at Facebook 

▪  MySQL 

▪  HBase (NoSQL) 

▪  Haystack (for BLOBS)  ç 

▪  Case Study: BLOB storage 

▪  BLOB: Binary Large Objects (Photos, Videos, Email attachments, etc.) 

▪  Large files, No updates/appends, Sequential reads 

▪  More than 100 petabytes 

▪  250 million photos uploaded per day 



Generation 1: Commercial Filers 

▪  New Photos Product 

▪  First build it the easy way 

▪  Commercial Storage Tier + HTTP server 

▪  Each Photo is stored as a separate file 

▪  Quickly up and running 

▪  Reliably Store and Serve Photos 

▪  But: Inefficient 

▪  Limited by IO rate and not storage density 

▪  Average 10 IOs to serve each photo 

▪  Wasted IO to traverse the directory structure 

NFS Storage 



Generation 2: Gen 1 Optimized 

▪  Optimization Example: 

▪  Cache NFS handles to reduce wasted IO 
operations 

▪  Reduce the number of IO operations per 
photo by 3X 

▪  But: 

▪  Still expensive: High end storage boxes 

▪  Still inefficient: Still IO bound and wasting IOs 

     directory inode 
•  owner info 
•  size 
•  timestamps 
•  blocks 

    directory data 
•  inode # 
•  filename 

     file inode 
•  owner info 
•  size 
•  timestamps 
•  blocks 

      data 

NFS Storage Optimized 



Generation 3: Haystack [OSDI’10] 

▪  Custom Solution 

▪  Commodity Storage Hardware 

▪  Optimized for 1 IO operation per request 

▪  File system on top of a file system 

▪  Compact Index in memory 

▪  Metadata and data laid out contiguously 

▪  Efficient from IO perspective 

▪  But: 

▪  Problem has changed now 

Superblock 
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Needle 3 
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Flags 

Photo 

Checksum 

Single Disk IO to read/write a photo 



Generation 4: Tiered Storage 

▪  Usage characteristics 

▪  Fat tail of accesses: everyone has friends J 

▪  A large fraction of the tier is no longer IO limited (new) 

▪  Storing efficiency matters much more than serving efficiency 

▪  Approach: Tiered Storage 

▪  Last layer optimized for storage efficiency and durability 

▪  Fronted by caching tier optimized for serving efficiency 

▪  Working-In-Progress 



BLOB Storage Facts 

▪  Hot and Warm data. Little cold data. 

▪  Low CPU utilization 

▪  Single digit percentages 

▪  Fixed memory need 

▪  Enough for the index 

▪  Little use for anything more 

▪  Next generation will use denser storage systems 

▪  Do we even bother with hardware raid? 

▪  Details to be publicly released soon 
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Cache Tier: Memcache 
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First few Generations: Memcache 

Storage Tier 
 
 
 

Look-Aside Cache 
Key-Value Store 
Does one thing very well 
Does little else 
Improved performance by 10X 



Memcache limitations 
▪  “Values” are opaque 

▪  End up moving huge amounts of data across the network 

▪  Storage hierarchy exposed to web tier 

▪  Harder to explore alternative storage solutions 

▪  Harder to keep consistent 

▪  Harder to protect the storage tier from thundering herds 
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Cache Tier: Tao 

 
 
 

Alternative Caching Tier: Tao 

1.  Has a data model 
2.  Write-Through Cache 
3.  Abstracts the storage tier 



Tao Cont’d 

▪  Data Model 

▪  Objects (Nodes) 

▪  Associations (edges) 

▪  Have “type” and data 

▪  Simple graph operations on them 

▪  Efficient: Content-aware 

▪  Can be performed on the caching tier 

▪  In production for a couple of years 

▪  Serving a big portion of data accesses 



Tao opens up possibilities 

▪  Alternate storage systems 

▪  Multiple storage systems  

▪  To accommodate different use case (access patterns) 

 

▪  Even more powerful Graph operations 

▪  Multi-Tiered caching 



Cache Tier Facts 

▪  Memcache 

▪  Low CPU utilization 

▪  Little use for Flash since it is bottlenecked on network 

▪  Tao 

▪  Much higher CPU load 

▪  Will continue to increase as it supports more complex operations 

▪  Could use Flash in a multi-tiered cache hierarchy 
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Life before Services 
Example: Wish your friend a Happy Birthday 

Storage Tier 
 
 
 

Inefficient and Messy 
•  Potentially access hundreds of machines 
•  Solution: Nightly cron jobs 
•  Issues with corner cases 
What about more complex problems? 
Solution: Build Specialized Services 



A more complex service: News Feed 
Aggregation of your friends’ activity 

One of many (100s) services at Facebook 



News Feed Product characteristics 
 
▪  Real-time distribution 

▪  Along edges on the Social Graph 

▪  Writer can potentially broadcast to very large audience 

 

▪  Reader wants different & dynamic ways to filter data 

▪  Average user has 1000s of stories per day from friends/pages 

▪  Friend list, Recency, Aggregation, Ranking, etc. 



 
 
 

Service: News Feed 

News Feed Service 

▪  Build and maintain an index: Distributed 

▪  Rank: Multiple ranking algorithms 

Query 
[ Read ] 

User Update 
[ Write ] 



Two approaches: Push vs. Pull 

▪  Push approach 

▪  Distribute actions by reader 

▪  Write broadcasts, read one location 

▪  Pull approach 

▪  Distribute actions by writer 

▪  Write one location, read gathers 

▪  Pull model is preferred because 

▪  More dynamic: Easier to iterate 

▪  “In a social graph, the number of incoming edges is much smaller than the 
outgoing ones.”  
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Service: News Feed 
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 Aggregators 

News Feed Service: Big Picture 
Query 

[ Read ] 
User Update 

[ Write ] 

▪  Pull Model 

▪  Leafs: One copy of the entire index. Stored in memory (Soft state) 

▪  Aggregators: Aggregate results on the read path (Stateless) 
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News Feed Service: Writes 

▪  On User update (Write) 

▪  Index sharded by Writer 

▪  Need to update one leaf 

Query 
[ Read ] 

User Update 
[ Write ] 



 
 
 

Service: News Feed 
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News Feed Service: Reads 

▪  On Query (Read) 

▪  Query all leafs 

▪  Then do aggregation/ranking 

Query 
[ Read ] 

User Update 
[ Write ] 
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News Feed Service: Scalability 

▪  1000s of machines 

▪  Leafs: Multiple sets. Each set (10s of machines) has the entire index 

▪  Aggregators: Stateless. Scale with load. 

Query 
[ Read ] 

User Update 
[ Write ] 



News Feed Service: Reliability 
▪  Dealing with (daily) failures 

▪  Large number of failure types 

▪  Hardware/software 

▪  Servers/Networks 

▪  Intermittent/Permanent 

▪  Local/Global 

▪  Keep the software architecture simple 

▪  Stateless components are a plus 

▪  For example, on read requests: 

▪  If a leaf is inaccessible, failover the request to a different set 

▪  If an aggregator is inaccessible, just pick another 



New Feed Service Facts 

▪  Number of leafs dominate the number of aggregators 

▪  Reads are more expensive than writes 

▪  Every read (query) involves one aggregator and every leaf in the set 

▪  Very high network load between aggregator and leafs 

▪  Important to keep a full leaf set within a single rack on machines 

▪  Uses Flash on leafs to ensure this 
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Recall: Characteristics of Facebook 

▪  Massive Scale 

▪  Social Graph 

▪  Expensive to query 

▪  Hard to partition 

▪  Large working set (Fat tail) 

▪  Product is rapidly evolving 

▪  Hardware failures are routine 



Implications 
▪  On Datacenters 

▪  Small number of massive datacenters (currently 4) 

▪  On Servers 

▪  Minimize the “classes” (single digit) of machines deployed  

▪  Web Tier, Cache Tier, Storage Tier, and a couple of special configurations 

▪  Started with 

▪  Leased datacenters + Standard server configurations from vendors 

▪  Moving to 

▪  Custom built datacenters + custom servers 

▪  Continue to rely on a small number of machine “classes” 
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Open Compute 

▪  Custom datacenters & servers 

▪  Minimizes power loss 

▪  POE of 1.07 

▪  Vanity Free design 

▪  Designed for ease of operations 

▪  Designs are open-sourced 

▪  More on the way 
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Questions? 
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