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ABSTRACT

We demonstrate the existence of a bound optical mode supported by an air slot in a thin metallic film deposited
on a substrate, with slot dimensions much smaller than the wavelength. The modal size is almost completely
dominated by the near field of the slot. Consequently, the size is very small compared with the wavelength,
even when the dispersion relation of the mode approaches the light line of the surrounding media. In addition,
the group velocity of this mode is close to the speed of light in the substrate, and its propagation length is tens
of microns at the optical communication wavelength. We also investigate the performance of bends and power
splitters in plasmonic slot waveguides. We show that, even though the waveguides are lossy, bends and splitters
with no additional loss can be designed over a wavelength range that extends from DC to near-infrared, when
the bend and splitter dimensions are much smaller than the propagation length of the optical mode. We account
for this effect with an effective characteristic impedance model based upon the real dispersion relation of the
plasmonic waveguide structures.
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1. INTRODUCTION

In this paper we demonstrate the existence of a bound plasmonic mode supported by a slot in a thin metallic
film deposited on a substrate, with slot dimensions much smaller than the wavelength. We also show that bends
and splitters in slot-based waveguides can be designed to have no additional loss over a wavelength range that
extends from DC to near-infrared, when the bend and splitter dimensions are much smaller than the propagation
length of the optical mode. We use frequency-domain techniques for the modeling of these plasmonic devices.

The dielectric constant of metals at optical wavelengths is complex, i.e. εr(ω) = εRe(ω) + iεIm(ω) and is
a complicated function of frequency.1 Thus, several simulation techniques which are limited to lossless, non-
dispersive materials are not applicable to plasmonic devices. In time-domain methods the dispersion properties
of metals have to be approximated by suitable analytical expressions.2 In most cases the Drude model is invoked
to characterize the frequency dependence of the metallic dielectric function3

εr,Drude = 1 − ω2
p

ω(ω + iγ)
(1)

where ωp, γ are frequency-independent parameters. However, the Drude model approximation is valid over a
limited wavelength range. The range of validity of the Drude model can be extended by adding Lorentzian terms
to Eq. (1) to obtain the Lorentz-Drude model3

εr,LD = εr,Drude +
k∑

j=1

fjω
2
j

(ω2
j − ω2) − iωγj

(2)

where ωj and γj stand for the oscillator resonant frequencies and bandwidths respectively, and fj are weighting
factors. Physically, the Drude and Lorentzian terms are related to intraband (free-electron) and interband
(bound-electron) transitions respectively.3 Even though the Lorentz-Drude model extends the range of validity
of analytical approximations to metallic dielectric constants, it is not suitable for description of sharp absorption
edges observed in some metals, unless a very large number of terms is used. In particular, the Lorenz-Drude
model cannot approximate well the onset of interband absorption in noble metals (Ag, Au, Cu) even if five
Lorentzian terms are used.3 In Fig. 1 we compare the Drude and Lorentz-Drude models with experimental data
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Figure 1. Real and imaginary part of the dielectric constant of silver at optical frequencies. The solid lines show
experimental data. The dashed lines show values calculated using (a) the Drude model, (b) the Lorentz-Drude model
with five Lorentzian terms. The parameters of the models are optimal and obtained through an optimization procedure.

for silver. We observe that even a five-term Lorentz-Drude model with optimal parameters results in a factor
of two error at certain frequencies. As a result, broadband time-domain simulations can give accurate results in
a limited wavelength range. Frequency-domain techniques are more suitable for modeling of plasmonic metallic
devices, since they can treat arbitrary material dispersion.

2. GUIDED SUBWAVELENGTH PLASMONIC MODE SUPPORTED BY A SLOT IN
A THIN METAL FILM

Waveguide structures which support highly-confined optical modes are important for achieving compact inte-
grated photonic devices.4, 5 In particular, plasmonic waveguides have shown the potential to guide subwavelength
optical modes. Several different plasmonic waveguiding structures have been proposed.4, 6–15 However, these
structures support a highly-confined mode only near the surface plasmon frequency. In this regime, the optical
mode typically has low group velocity and short propagation length.

Here we investigate the characteristics of the bound optical mode supported by an air slot in a thin metallic
film deposited on a substrate (inset of Fig. 2a). This structure is hereafter referred to as a plasmonic slotline.
Of particular interest is the regime where the dimensions of the slot are much smaller than the wavelength.
We show that such a structure supports a fundamental bound mode with size almost completely dominated by
the near field of the slot over a wide range of frequencies. The size of this mode can be far smaller than the
wavelength even when its effective index approaches that of the substrate. In addition, the group velocity of the
mode is close to the speed of light in the substrate and its propagation length is tens of microns at the optical
communication wavelength. Thus, such a waveguide could be potentially important in providing an interface
between conventional optics and subwavelength electronic and optoelectronic devices.

2.1. Finite-difference frequency-domain mode solver

We calculate the eigenmodes of the plasmonic slotline at a given wavelength λ0 using a full-vectorial finite-
difference frequency-domain (FDFD) mode solver. For waveguiding structures which are uniform in the z
direction, if an exp(−γz) dependence is assumed for all field components, Maxwell’s equations reduce to two
coupled equations for the transverse magnetic field components Hx and Hy.16 These equations are discretized
on a non-uniform orthogonal grid resulting in a sparse matrix eigenvalue problem of the form Ah = γ2h, which
is solved using iterative sparse eigenvalue techniques.17 To calculate the bound eigenmodes of the waveguide,
we ensure that the size of the computational domain is large enough so that the fields are negligibly small
at its boundaries,18 while for leaky modes we use perfectly matched layer absorbing boundary conditions.17

An important feature of this formulation is the absence of spurious modes.18 In addition, the frequency-
domain mode solver allows us to directly use experimental data for the frequency-dependent dielectric constant
of metals,1 including both the real and imaginary parts, with no further approximation. We define here the
propagation length Lp and the effective index neff of a propagating mode through the equation γ ≡ L−1

p + iβ =
L−1

p + i2πneffλ−1
0 .
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Figure 2. (a) Dispersion relation of the fundamental mode of the plasmonic slotline (shown with solid line) for w, t =50
nm (see inset) and of a PEC slotline (shown with dashed line). The upper, middle, and lower thin dotted curves are the
light lines of air and silica and the lowest frequency mode of the silver film, respectively. (b) Propagation length of the
fundamental mode of the plasmonic slotline as a function of wavelength for w, t =50 nm.

2.2. Dispersion relation of the plasmonic slotline mode
In Fig. 2a we show the dispersion relation of the fundamental mode of the plasmonic slotline. The width w and
thickness t of the slot are 50 nm and the substrate material is silica (ns =1.44). We observe that such a structure
supports a bound mode in a wide frequency range. Within this range this mode has a wavevector larger than
all radiation modes in air and silica, as well as all propagating modes in the air-silver-silica thin film structure.
The cutoff frequency of this mode is ∼ 0.005(2πc/w), where c is the speed of light in free space. We also found
that, if the slot dimensions are smaller than 100 nm, the optical communication frequency (λ0 =1.55µm) is well
above ωcutoff . Since the slot dimensions are much smaller than the wavelength in the frequency range of interest,
the fundamental bound mode is quasi-TEM with dominant field components Ex and Hy, and this waveguide
does not support any higher order bound modes. Since the fundamental mode is quasi-TEM, it can be efficiently
excited by linearly polarized light.

As a comparison, in Fig. 2a we also show the dispersion relation when the perfect electric conductor (PEC)
approximation is used for the metallic regions. We observe that the PEC slotline structure on substrate does not
support a bound mode at any frequency. When the slot dimensions are far smaller than the wavelength, the fields
are essentially the same as those of the static case.19 In the PEC case, the fields do not penetrate into the metal.
The field lines are either in air or in silica. The effective index of the mode neff therefore satisfies the relation
1 < neff < ns.19 The PEC model is commonly used to describe slotlines at microwave frequencies. While such
structures do not support any bound mode, in practice they guide waves effectively,19, 20 since radiation loss
turns out to be negligible for deep subwavelength structures. In comparison, the existence of a bound mode for
the plasmonic slotline is entirely due to the finite negative dielectric constant of metals at optical frequencies,
which results in higher neff for the fundamental mode.

In Fig. 2b we show the propagation length Lp of the fundamental mode of the plasmonic slotline as a function
of wavelength. The propagation length decreases as the wavelength decreases. This is due to the fact that the
propagation length of surface plasmons scales with the wavelength,21 since the fraction of the modal power
in the metal increases at shorter wavelengths,9 and also due to increased material losses of metals at shorter
wavelengths.1 At the optical communication wavelength of 1.55µm the propagation length is ∼20µm.
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Figure 3. (a) Power density profile at λ0 =1.55µm, and (b) Modal size as a function of frequency of the fundamental
mode of the plasmonic slotline for w, t =50 nm.

2.3. Modal size

In Fig. 3a we show the power density profile of the fundamental mode of the plasmonic slotline for λ0 =1.55µm.
We observe that the mode is mostly confined in the slot region and slightly extends in the adjacent silica and
air regions. The maximum intensity is observed at the silver-air interfaces in the slot. This is expected since
the mode can be seen as being formed by the coupling of the surface plasmon-polaritons at the two silver-air
interfaces. In Fig. 3b we show the modal size, defined as the square root of the area in which the mode power
density is larger than 1/e2 of its maximum value, as a function of frequency. At the optical communication
wavelength of 1.55µm the modal size is ∼87 nm, which is much smaller than the minimum achievable modal
sizes with high-index-contrast dielectric waveguides. For comparison, the minimum achievable modal size with
square silicon waveguides embedded in silica at λ0 =1.55µm is ∼400 nm.22 We also note that the modal size
varies only weakly as a function of frequency.

We observe that the modal size remains small even at low frequencies where the dispersion relation approaches
the silica light line. This behavior is fundamentally different from that of conventional dielectric waveguides. In
conventional dielectric waveguides, the fields in the low-index cladding surrounding the high-index core decay
exponentially with a decay constant α = 2π

λ0

√
n2

eff − n2
clad, where nclad is the refractive index of the cladding

region.23 In these structures, the minimum confinement of a guided optical mode is ∼ λ0/(2ncore), where ncore

is the refractive index of the core region.4 If the dimensions of the core are reduced far below λ0/(2ncore),
the dispersion relation of the optical mode approaches the cladding light line (neff → nclad), the decay constant
α becomes extremely small, and the modal size becomes extremely large.22, 23 In contrast, in the case of the
plasmonic slotline, even though the same exponential behavior should still hold in the far field, the modal size is
dominated by the near field of the slot.

2.4. Near and far field characteristics of the plasmonic slotline mode

In Fig. 4a we show the power density profile of the fundamental mode of the plasmonic slotline in a vertical cut
at x =0 (Fig. 2a) for w, t =25nm, 50nm, 100nm and λ0 =1.55µm. This profile has two distinctive characteristics
related to the near and far fields. Far from the slot, the modal power density decays asymptotically as ∼
exp(−2αρ)/ρ, where α = Re

√
−γ2 − ( 2πnclad

λ0
)2, as expected from Maxwell’s equations. If the slot dimensions
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Figure 4. (a) Power density profile at λ0 =1.55µm of the fundamental mode of the plasmonic slotline at x =0 (Fig. 2a)
for w, t =25nm, 50nm, 100nm (shown with dash-dotted, dashed, and solid lines respectively). (b) Power density profile
at x =0 in the vicinity of the slot for w, t =25nm, 50nm, 100nm. Note that the horizontal axis is normalized with respect
to w.

w, t increase, the effective index of the mode neff decreases, and therefore, the decay rate α decreases. Note also
that, since ns =1.44>1, the decay rate is always larger in air.

In Fig. 4b we show the power density profile in the vicinity of the slot. We observe that the near field of
the slot scales with the slot dimensions w, t and is independent of w/λ0. This is due to the fact that the slot
dimensions are much smaller than the wavelength. In addition, silver satisfies the condition |εmetal| � εair at
λ0 ∼1.55µm.1 Thus, based on the boundary condition for the normal component of the electric field Ex at
the silver-air interfaces in the slot, we have |Ex metal| � |Ex air|. The modal profile is therefore highly-confined
in the slot region (Fig. 3a) and the modal size is dominated by the near field of the slot. Thus, even when
the dispersion relation of the mode approaches the silica light line and the far-field decay rate α decreases, the
modal size remains relatively small (Fig. 3b). In addition, since the near field scales with the slot dimensions,
the modal size of the plasmonic slotline can be further reduced, if the slot dimensions are reduced. We note that
this comes at the cost of reduced propagation length.24

3. BENDS AND SPLITTERS IN SLOT-BASED PLASMONIC WAVEGUIDES

In this section, we investigate the performance of bends and power splitters in two-dimensional slot-based plas-
monic waveguides. Waveguide bends and splitters are basic structures for optical interconnects and therefore
essential components of optical integrated circuits.13, 25 Here, of particular interest is the regime where the
dimensions of bends and splitters are much smaller than the propagation length of the optical mode. In this
regime, the relevant question is whether these bends and splitters will induce reflection or excess absorption loss
on top of the propagation loss in the waveguides.

To answer this question we calculate the transmission coefficient of bends and splitters and normalize it with
respect to the transmission coefficient of a straight waveguide with the same length. We show that, even though
the waveguides are lossy, bends and splitters with no additional loss can be designed over a wavelength range
that extends from DC to near-infrared, if the slot width d is small enough. This range includes the optical
communication wavelength of 1.55µm. This remarkable effect is not observed in other light-guiding structures
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Figure 5. Transmission spectra of a MDM waveguide bend (shown in the inset) calculated using FDFD. We also show
with dashed line the transmission spectra of a PEC parallel-plate waveguide bend. Results are shown for d =50, 100 nm.
The vertical dashed line marks the optical communication wavelength of 1.55µm.

such as high-index contrast or photonic crystal waveguides. We account for it with an effective characteristic
impedance model based upon the real dispersion relation of the slot-based plasmonic waveguide structures.

We study the properties of silver-air-silver waveguide bends and splitters using a two-dimensional FDFD
method.26, 27 This method allows us to directly use experimental data for the frequency-dependent dielectric
constant of silver,1 including both the real and imaginary parts, with no further approximation. Perfectly
matched layer (PML) absorbing boundary conditions are used at all boundaries.17 We use a spatial grid size of
2.5 nm in FDFD which we found to be sufficient for convergence of numerical results.

3.1. Bends in slot-based plasmonic waveguides

To calculate the transmission coefficient of a 90◦ sharp slot-based plasmonic waveguide bend (inset of Fig. 5), we
excite a dipole point source in the waveguide before the bend,28 and measure the power flux of the transmitted
optical mode after the bend. We perform a similar simulation in a straight waveguide and by comparing the
two cases we extract the bending loss. In all cases d is much smaller than the wavelength so that only the
fundamental TM waveguide mode (with magnetic field perpendicular to the direction of propagation) is excited.
As an example, for d =50 nm the optical mode is fully formed ∼20 nm away from the source, the mode travels
∼200 nm before the bend, and the bent wave is measured ∼200 nm after the bend. In all cases the waveguide
lengths in the simulations were chosen large enough to ensure correct calculation of the additional loss of bends.
To validate our method, we used it to calculate the transmission coefficient of perfect electric conductor (PEC)
parallel-plate waveguide bends and splitters and found excellent agreement with analytical results29, 30 over the
entire frequency range. In Fig. 5 we show the calculated bend transmission coefficient as a function of wavelength.
We observe that at long wavelengths there is no bending loss. If the structure is small in comparison with the
wavelength, the quasistatic approximation holds.31 Under the quasistatic approximation, the bend is equivalent
to a junction between two transmission lines with the same characteristic impedance, and there is therefore no
bending loss. The limiting wavelength λc at which the transmission coefficient decreases below 99%, is 1.27µm
(0.76µm) for d =100 nm (d =50 nm). The operating wavelength range widens as d decreases, because for thinner
structures the quasistatic approximation holds over a wider range of wavelengths.

In Fig. 5 we also show the calculated transmission coefficient of the bending structures when the PEC
approximation is used for the metallic regions. In a PEC parallel-plate waveguide, the transmission coefficient of
a 90◦ bend is only a function of d/λ0, i.e. TPEC = TPEC(d/λ0). If the device is small compared to the wavelength
(d/λ0 �1), there is no bending loss. The transmission coefficient decreases below 99% for d/λ0 >0.093. Thus, the
limiting wavelength λc is 1.08µm (0.54µm) for d =100 nm (d =50 nm). We observe that the transmission spectra
of the PEC parallel-plate waveguide bend and of the slot-based plasmonic waveguide bend differ significantly.
The limiting wavelength λc is lower in the PEC case.

In order to interpret the difference between the PEC and plasmonic transmission spectra, we calculated the
guide wavelength λg of the fundamental TM mode in the slot-based plasmonic waveguide. The guide wavelength
λg, defined as λg ≡ 2π/βpl, where βpl is the real part of the mode propagation constant,31 is calculated using
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Figure 6. Calculated transmission spectra of a MDM T-shaped splitter (shown in the inset). Results are shown for
d =50, 100 nm.

FDFD by exciting the fundamental mode in a straight slot-based plasmonic waveguide with a dipole source. To
validate our method, we compared our results with results obtained by directly solving the dispersion relation of
the slot-based plasmonic waveguide and found excellent agreement.32 The calculated guide wavelength λg of the
fundamental TM mode in the slot-based plasmonic waveguide is smaller than the free-space wavelength λ0, which
is the guide wavelength of the TEM mode in the PEC waveguide. Since λg < λ0, the PEC waveguide structure
is “smaller” (in comparison to the optical mode wavelength) than the slot-based plasmonic waveguide structure,
and this can explain the lower λc in the PEC case. We actually found that the transmission spectra of the
slot-based plasmonic waveguide bend Tpl is well approximated by the spectra of the PEC waveguide bend TPEC,
if the difference between λg and λ0 is taken into account, i.e. Tpl � TPEC(d/λg). This approximation typically
holds for λ ≥ λc, where the bending loss of the slot-based plasmonic waveguide is dominated by reflection. At
shorter wavelengths the bending loss is dominated by excess absorption and therefore this approximation no
longer holds.

3.2. Splitters in slot-based plasmonic waveguides

We also calculate the transmission spectra of slot-based plasmonic splitters. The calculation method using
FDFD is similar to the one described above for the 90◦ bend. In Fig. 6 we show the calculated transmission
coefficient as a function of wavelength for a slot-based plasmonic T-shaped splitter (inset of Fig. 6). The
frequency response of the slot-based plasmonic splitter is quite similar to the response of the slot-based plasmonic
bend. At long wavelengths the transmission is equal to 44.4%. Under the quasistatic approximation, which
holds at long wavelengths, the splitter is equivalent to a junction of three transmission lines with the same
characteristic impedance Z0. The load connected to the input transmission line at the junction consists of the
series combination of the two output transmission lines. Thus, the equivalent load impedance is ZL = 2Z0

and the reflection coefficient is R = |(ZL − Z0)/(ZL + Z0)|2 = 1/9. Because of the symmetry of the structure,
the transmitted optical power is equally distributed between the two output waveguide branches, so that the
transmission coefficient is T = 4/9. As in the slot-based plasmonic bend, the operating wavelength range widens
as d decreases. At λ � λc the splitter loss is dominated by reflection, while at shorter wavelengths it is dominated
by excess absorption.

3.3. Characteristic impedance of slot-based plasmonic waveguides

Based on the above discussion, in order to improve the transmission coefficient of the slot-based plasmonic
splitter, we can adjust the characteristic impedance of the input waveguide Zin so that Zin � ZL = 2Z0. The
input impedance Zin can be adjusted by varying the thickness din of the input waveguide. In Fig. 7 we show the
calculated reflection coefficient R of the slot-based plasmonic T-shaped splitter at λ0 = 1.55µm as a function of
din/dout, where dout =50 nm is the thickness of the two output waveguide branches (inset of Fig. 7). We note that
at λ0 = 1.55µm the propagation length of the fundamental mode of the plasmonic waveguide is much larger than
the splitter dimensions so that the contribution of excess absorption to the splitter loss is negligible. We observe
that the reflection coefficient is below 1% for 1.8 < din/dout < 2.8 and is minimized for din/dout �2.25. We also
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impedance ZMDM and transmission-line theory. Results are shown for dout =50 nm.

found that the limiting wavelength λc of the optimized splitter is almost the same as the limiting wavelength λc

of the symmetric splitter of Fig. 6.

The characteristic impedance of the fundamental TEM mode in a PEC parallel-plate waveguide is uniquely
defined as the ratio of voltage V to surface current density I and is equal to31

ZTEM ≡ V

I
=

Exd

Hy
=

βTEM

ωε0
d =

√
µ0

ε0
d

where Ex, Hy are the transverse components of the electric and magnetic field respectively, and we assumed a
unit-length waveguide in the y direction. For non-TEM modes, such as the fundamental mode of the plasmonic
waveguide, voltage and current are not uniquely defined. However, metals like silver satisfy the condition
|εmetal| � εdiel at the optical communication wavelength of 1.55µm.1 Thus, |Ex metal| � |Ex diel| so that the
integral of the electric field in the transverse direction can be approximated by Ex diel d and we may therefore
define the characteristic impedance of the fundamental mode of the plasmonic waveguide as

Zpl(d) ≡ Ex diel d

Hy diel
=

βpl(d)
ωε0

d

where βpl(d) = 2π/λg(d), and the guide wavelength λg is calculated as mentioned above. In Fig. 7 we show the
reflection coefficient of the slot-based plasmonic T-shaped splitter calculated based on Zpl as

R̄ =
∣∣∣∣
ZL − Z0

ZL + Z0

∣∣∣∣
2

=
∣∣∣∣
2Zpl(dout) − Zpl(din)
2Zpl(dout) + Zpl(din)

∣∣∣∣
2

We observe that there is very good agreement between R̄ and the exact reflection coefficient R calculated using
FDFD. This agreement suggests that the concept of characteristic impedance for slot-based plasmonic waveguides
is indeed valid and useful. The deviation between R̄ and R at large values of din/dout is due to the fact that
din is not very small compared to the wavelength and the quasistatic approximation therefore breaks down. We
found that similar deviations are observed for PEC parallel-plate waveguides. Such deviations decrease at longer
wavelengths in both the PEC and slot-based plasmonic waveguide cases.

As final remarks, we expect that the impedance concept can be generalized to three-dimensional slot-based
plasmonic waveguides when the dielectric layer thickness is much smaller than the wavelength. Finally we note
that, even though the choice of metal affects the propagation length of slot-based plasmonic waveguides,24 our
conclusions on bends and splitters are valid regardless of the choice of metal.
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