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We introduce non-Hermitian plasmonic waveguide-cavity systems with topological edge states (TESs) at singular
points. The compound unit cells of the structures consist of metal-dielectric-metal (MDM) stub resonators side-
coupled to an MDM waveguide. We show that we can realize both a TES and an exceptional point at the same
frequency when a proper amount of loss is introduced into a finite three-unit-cell structure. We also show that the
finite structure can exhibit both a TES and a spectral singularity when a proper amount of gain is introduced into
the structure. In addition, we show that we can simultaneously realize a unidirectional spectral singularity and a
TES when proper amounts of loss and gain are introduced into the structure. We finally show that this singularity
leads to extremely high sensitivity of the reflected light intensity to variations of the refractive index of the active
materials in the structure. TESs at singular points could potentially contribute to the development of singularity-
based plasmonic devices with enhanced performance. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.443928

1. INTRODUCTION

Exceptional points (EPs) are singular points in the spectra of
non-Hermitian Hamiltonians in open quantum systems asso-
ciated with the coalescence of the eigenvalues of the system and
their corresponding eigenvectors [1,2]. Unidirectional reflec-
tionless light propagation in non-Hermitian optical systems re-
veals the presence of EPs [3–8]. Another type of singular points
is spectral singularities (SSs) associated with the lack of com-
pleteness of the eigenvectors of non-Hermitian Hamiltonians
in the continuous spectra [9,10]. The reflection of non-
Hermitian optical systems at SSs tends to infinity and corre-
sponds to lasing at threshold gain [11]. In addition,
Ramezani et al. introduced another type of singular points
known as unidirectional spectral singularities at which the sys-
tem exhibits zero reflection from one side and infinite reflection
from the opposite side [12]. Singular points can lead to novel
optical devices such as optical network analyzers [4], switches
[13,14], directional lasers [15], isolators [16], perfect absorbers
[17], slow-light waveguides [18], and sensors [19–23] with ap-
plications in optical computation, communication, and infor-
mation processing.

Topological insulators are peculiar electronic materials that
possess non-trivial topological states on their edge or surface
[24,25]. Topological edge states (TESs) are insensitive to dis-
order and can lead to field intensity enhancement [24,25].
There have been both theoretical and experimental demonstra-
tions that topological concepts can be transferred to photonics
[26–30]. Recently, Poshakinskiy et al. demonstrated that TESs
can survive in non-Hermitian systems consisting of one-
dimensional resonant photonic crystals with modulated cou-
plings, and presented a method to detect these edge states
[31]. This opens a pathway to study the connection between
TESs and EPs. Most recently, Zhu et al. simultaneously ob-
served TESs and EPs in non-Hermitian acoustic systems with
judiciously tailored losses [32]. It would be interesting to in-
vestigate whether it is possible to realize both a TES and an
EP at the same frequency in non-Hermitian optical systems.
In addition, to date the connection between edge states and
other types of singular points, such as spectral singularities,
has not been explored. It would also be interesting to consider
simultaneously realizing edge states and other types of singular
points in non-Hermitian optical systems. This could further
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boost the potential of singular-point-based devices in photonic
applications.

In this paper, we introduce non-Hermitian plasmonic
waveguide-cavity systems with TESs at singular points. We first
calculate the eigenfrequencies of TESs in a periodic plasmonic
structure based on the Aubry–Andre–Harper (AAH) model
with compound unit cells consisting of metal-dielectric-metal
(MDM) stub resonators side-coupled to an MDM waveguide.
The AAH model is the one-dimensional momentum-space
projection of the integer quantum Hall effect, and therefore
exhibits non-trivial topological properties [30,33,34]. We show
that we can realize both a TES and an EP at the same frequency
when a proper amount of loss is introduced into a finite plas-
monic structure consisting of three compound unit cells. We
also show that the finite structure can exhibit both an TES and
an SS at the same frequency when a proper amount of gain is
introduced into the structure. In addition, we show that we can
simultaneously realize a unidirectional spectral singularity and a
TES when proper amounts of loss and gain are introduced into
the finite plasmonic structure. We finally show that this singu-
larity can lead to extremely high sensitivity of the reflected light
intensity to variations of the refractive index of the active ma-
terials in the structure.

2. MODEL

Analogous to the AAH model, we consider a periodic
plasmonic structure with compound unit cells consisting of
MDM stub resonators side-coupled to an MDM waveguide
(Fig. 1). Among the different plasmonic waveguiding
geometries, MDM plasmonic waveguides have attracted a
lot of interest [35] because they support modes with deep sub-
wavelength size over a very broad range of frequencies extend-
ing from DC to visible [36] and are relatively easy to fabricate
[37]. The compound unit cells consist of N side-coupled
MDM stub resonators. The distance between the nth and
(n� 1)th side-coupled stubs in the compound unit cell is
modulated and given by

dn � df1� η cos�2πb�n − 1� � ϕ�g: (1)

Here, b � 1∕N , d is the distance without modulation, and η is
the modulation strength. Figure 1 shows a compound unit cell
with three side-coupled stubs, so that b � 1∕3 (N � 3). In
addition, ϕ is an arbitrary phase. When ϕ spans the interval
between −π and π, one-dimensional problems can be mapped
to two-dimensional integer quantum Hall effect problems with

the Landau gauge characterized by non-zero Chern num-
bers [30].

The periodic system of Fig. 1 can be described by temporal
coupled mode theory (CMT) for the mode amplitudes an of
the side-coupled stubs, as follows:

jωan �
�
jω0 −

1

τ0
−
1

τ

�
an −

1

τ0

X
n 0≠n

Λnn 0an, (2)

where ω0 is the resonant frequency, 1
τ0
is the decay rate of the

stub resonator field due to the power escape through the wave-
guide, 1τ is the decay (growth) rate due to the internal loss (gain)
in the stub resonator, Λnn 0 � e−γjxn−xn 0 j with the nth side-
coupled stub centered at xn, and γ is the complex propagation
constant of the propagating fundamental mode of the MDM
waveguide.

The properties of the compound unit cell of Fig. 1 can be
described by the transfer matrix M defined by the following
equation:�

H −
R

H�
R

�
� M

�
H�

L
H −

L

�
�

�
M 11 M 12

M 21 M 22

��
H�

L
H −

L

�
, (3)

where H�
L and H −

L are the complex magnetic field amplitudes
of the incoming and outgoing modes at the left port, respec-
tively. Similarly, H�

R and H −
R are the complex magnetic field

amplitudes of the incoming and outgoing modes at the right
port, respectively (Fig. 1). The transfer matrix M can be calcu-
lated by

M � M4MsM3MsM2MsM1, (4)

where Ms �
�
t s −

r2s
t s

rs
t s

− rs
t s

1
t s

�
is the transfer matrix of a system

consisting of an MDM waveguide side-coupled to a stub, while
rs � − 1∕τ0

j�ω−ω0��1∕τ�1∕τ0
and t s � 1� rs are the complex reflec-

tion and transmission coefficients of the system, respectively

[38]. In addition, Mi �
�
e−γLi 0
0 eγLi

�
, i � 1, 2, 3, 4, where

L1 � d 0, L2 � d 1, L3 � d 2, L4 � d 3 − d 0, and d 0 is an arbi-
trary distance with d 0 < d 3. The transmission coefficient for
the compound unit cell is given by

t1 �
H −

R

H�
L

����
H�

R �0

� H −
L

H�
R

����
H�

L �0

� M 11 −
M 12M 21

M 22

, (5)

while the left and right reflection coefficients for the compound
unit cell can be obtained by

r1l �
H −

L

H�
L

����
H�

R �0

� −
M 21

M 22

, r1r �
H −

R

H�
R

����
H�

L �0

� M 12

M 22

:

(6)

In addition, the dispersion relation of the periodic plasmonic
structure with the compound unit cell of Fig. 1 can be com-
puted using the transfer matrixM of the unit cell and the Bloch
boundary conditions H −

R � ejkLH�
L , H

�
R � ejkLH −

L by����M −

�
ejkL 0
0 ejkL

����� � 0, (7)

where L � 3d is the overall length of the compound unit cell
(Fig. 1) and k is the Bloch wave vector.

Fig. 1. Schematic of the compound unit cell of a periodic structure
consisting of an MDM waveguide side-coupled to three identical
MDM stub resonators.
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3. RESULTS

A. Topological Edge States
We first consider a periodic plasmonic structure without modu-
lation [η � 0 in Eq. (1) so that d 1 � d 2 � d 3 � d ]. We
choose d � 500 nm, h � 60 nm, and w0 � 50 nm (Fig. 1).
The metal is silver and the stubs are filled with InGaAsP with
InAs quantum dots. In this subsection, we assume that silver is
lossless. Please note, however, that the material loss in silver is
included in Subsections 3.B–3.D. In the presence of pumping,
InGaAsP with InAs quantum dots exhibits optical gain [35,39].
The real part of the dielectric constant of InGaAsP is 11.38
[39]. In Fig. 2(a), we show the dispersion relation of the struc-
ture without modulation calculated using the finite-difference
frequency-domain (FDFD) method (black dots). The structure
supports a middle band corresponding to a mode with slow
group velocity. We also consider a structure in which the dis-
tances between adjacent side-coupled stubs are modulated as in
Eq. (1) with b � 1∕3, η � 0.4, and ϕ � 0. The compound
unit cell has overall length L � 3d (Fig. 1). The middle band
with slow group velocity of the structure without modula-
tion [black dots in Fig. 2(a)] splits into three bands due to
band mixing for the structure with modulation [red dots in
Fig. 2(a)]. Figure 2(b) also shows the dispersion relation of the
structure with modulation calculated using CMT [Eq. (7)] (red
circles). We observe that there is very good agreement between
the CMT results and the exact results obtained using the
FDFD method.

Figure 3(a) shows the projected band structure of the peri-
odic structure with the compound unit cell of Fig. 1 for
η � 0.4 and b � 1∕3 as a function of the phase ϕ [Eq. (1)],
calculated with CMT. For a fixed ϕ, we have three bands (yel-
low regions) in the frequency range of interest. As an example,
for ϕ � 0 the system supports three bands with frequencies
ranging from 192 to 195 THz, 214 to 215 THz, and 221
to 235 THz [Figs. 2(b) and 3(a)]. As the phase ϕ varies from
−π to π, the Bloch eigenstates of the system are a function of k
and ϕ. Thus, each band is characterized by a Chern number
which is defined as 1

2πj

R
π
−π dϕ

R π∕L
−π∕L dk�∂kAϕ − ∂ϕAk�, where

Ak �
P

s a
�
s ∂kas, Aϕ � P

s a
�
s ∂ϕas, and as, s � 1, 2, 3 are the

mode amplitudes satisfying the Bloch condition as�3l �k,ϕ� �
ejlkLas�k,ϕ� for l � 0, 	 1, 	 2,…. This Chern number can
also be deduced from the winding number of the bandgap us-
ing the phase of the reflection coefficient for the semi-infinite
structure [32,40]. Imposing the Bloch boundary condition, the
reflection coefficient for the semi-infinite structure r∞, when
the waveguide mode is incident from the right, can be obtained
using the transfer matrix

r∞ � e−jkL −M 22

M 21

: (8)

Note that, in the lossless case, the left and right reflection co-
efficients are equal.

Figure 3(b) shows the absolute value of the reflection coef-
ficient jr∞j calculated using Eq. (8), when the waveguide mode
is incident from the right onto the semi-infinite plasmonic
structure consisting of compound unit cells as in Fig. 1. We
observe that jr∞j shown in Fig. 3(b) is consistent with the
dispersion relation shown in Fig. 3(a). The absolute value of
the reflection coefficient jr∞j for frequencies lying inside the
bandgaps is 1 [Fig. 3(b)]. Hence, the reflection coefficient
r∞ for frequencies lying inside the bandgaps is 1 × ejθ, where
θ is the phase of the reflection coefficient. The winding num-
ber, which is the topological invariant of the bandgap, can thus
be calculated using [41]

w � 1

2πj

Z
2π

0

∂ ln�r∞�ϕ��
∂ϕ

dϕ � 1

2π

Z
2π

0

∂θ�ϕ�: (9)

Figure 3(c) shows the phase θ of the reflection coefficient r∞
when the waveguide mode is incident from the right onto the
semi-infinite structure. The extra phase that the reflection co-
efficient accumulates when ϕ varies from −π to π is 0, 2π, −2π,
and 0 for the first, second, third, and fourth bandgaps, respec-
tively, in the frequency range of interest. The winding numbers
of these four bandgaps are therefore 0, 1, −1, and 0 [Eq. (9)].
Thus, since the Chern number of a band is equal to the wind-
ing number of the above-lying bandgap minus the winding
number of below-lying bandgap [40], the Chern numbers of

Fig. 2. (a) Dispersion relation of the periodic structure without modulation calculated using FDFD method (black dots). Results are shown for
d 1 � d 2 � d 3 � d � 500 nm, h � 60 nm, w0 � 50 nm (Fig. 1), and η � 0 [Eq. (1)]. The stubs are filled with InGaAsP with InAs quantum
dots, and the metal is silver. Here, we assume that silver is lossless. Also shown is the dispersion relation of a periodic structure with the compound
unit cell of Fig. 1, in which the distances between adjacent side-coupled stubs are modulated as in Eq. (1), calculated using FDFDmethod (red dots).
Results are shown for d 1 � d �1� η cos ϕ�, d 2 � d �1� η cos�2π3 � ϕ��, d 3 � d �1� η cos�4π3 � ϕ��, η � 0.4, and ϕ � 0. All other parameters
are the same as in the structure without modulation. (b) Zoomed-in view of the dispersion relation in a narrower frequency range for the periodic
structure in which the distances between adjacent side-coupled stubs are modulated. The dispersion relation is calculated using FDFD method
(black dots) and CMT (red circles). All other parameters are as in (a).
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the three bands in the frequency range of interest are 1, −2, and
1 [Fig. 3(a)]. Non-zero Chern numbers indicate the existence
of TESs in the bandgaps based on the bulk-boundary corre-
spondence [41].

The TESs can be obtained by direct calculation of Eq. (2).
However, this calculation is challenging since Λnn 0 depends on
the frequency ω. Alternatively, the TESs can be extracted from
the zeros of the reflection coefficient r∞ when an appropriate
amount of loss (1τ > 0) is introduced into the semi-infinite
structure; that is, r∞�ω, 1

τ� � 0 [31,32]. The underlying physi-
cal mechanism behind this can be explained as follows: when
light with the eigenfrequency of the edge state is incident on the
structure, the edge state is excited and the light is deeply
trapped in the edge region. If an appropriate amount of loss
is introduced into the system, the trapped light is completely
absorbed, and thus r∞�ω, 1

τ� � 0. The zeros of r∞�ω, 1
τ� are

identical to the zeros of r1�ω, 1
τ� for a unit cell [32]. More spe-

cifically, if one considers the transfer matrix of a unit cell with
r1l � 0 (r1r � 0), then by calculating the transfer matrix for m
unit cells, one can show that rml � 0 (rmr � 0) [32]. Thus, the
eigenfrequencies of the left and right edge states can be re-
trieved from r1l �ω, 1

τ� � 0 and r1r�ω, 1
τ� � 0, respectively.

Figure 3(a) shows that the structure possesses two chiral edge
states in each bandgap. The green dashed line corresponds to
the left edge state [r1l �ω, 1

τ� � 0], while the red dashed line
corresponds to the right edge state [r1r�ω, 1

τ� � 0].
In a two-dimensional quantum Hall system, edge states

exhibit chirality, so that edge states at opposite edges
propagate in opposite directions [41]. The AAH model is

the one-dimensional momentum-space projection of the inte-
ger quantum Hall effect. The modulation distance in Eq. (1)
provides an effective gauge magnetic field, and the phase ϕ ac-
counts for the momentum along the geometrical dimension
that was lost when moving from a two-dimensional to a
one-dimensional system. A consequence of chirality in the
one-dimensional AAH model is that in a given structure with
a specific phase ϕ left and right edge states cannot be excited at
the same frequency.

B. Topological Edge States at Exceptional Points
In this subsection, to realize both a TES and an EP at the same
frequency, we consider a finite structure consisting of three
compound unit cells as in Fig. 1 with ϕ � 0 [Eq. (1)]. The
number of unit cells is chosen so that the structure is suffi-
ciently long to form a bandgap, and the TESs can appear within
this bandgap [32]. On the other hand, the location of the sin-
gular points is determined by the unit cell properties, so that
the number of unit cells in the structure does not affect their
location. As shown in Fig. 3(a), a right TES exists in the second
bandgap around ϕ � 0 (red dashed line), when a proper
amount of loss is introduced into the system. More specifically,
when the waveguide mode is incident onto a single-unit-cell
structure from the right, we find using CMT that r1r � 0
for decay rate due to internal loss in the stub resonators with
1∕τ equal to 8.77 × 1012 s−1. We also find that, when we take
into account the material loss of silver, the material filling the
stubs (InGaAsP with InAs quantum dots) must exhibit gain
with the imaginary part of its dielectric constant equal to 0.166,
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Fig. 3. (a) Projected dispersion relation of the periodic structure with the compound unit cell of Fig. 1 as a function of ϕ calculated with CMT.
The yellow regions correspond to the bands separated by the bandgaps (blue regions). Also shown is the Chern number of each band. The eigen-
frequencies of the edge states for right (left) incidence are shown with red (green) dashed line. All other parameters are as in Fig. 2(b). (b) The
absolute value of the reflection coefficient jr∞j as a function of ϕ, when the waveguide mode is incident from the right onto the semi-infinite
plasmonic structure consisting of compound unit cells as in Fig. 1, calculated using CMT. All parameters are as in (a). (c) The phase θ of the
reflection coefficient r∞ as a function of ϕ, when the waveguide mode is incident from the right onto the semi-infinite structure. Also shown is the
winding number of each bandgap. All parameters are as in (a).
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in order for 1∕τ to be equal to 8.77 × 1012 s−1. Figure 4(a) con-
firms that the reflection, when the waveguide mode is incident
from the right onto the single-unit-cell structure, calculated using
the FDFD method (blue solid line) becomes zero (r1r � 0) for
the dielectric constant of the material filling the stubs equal to
11.38� j0.166 at the frequency of f � 217.5 THz. We also
find that the calculated reflection using the FDFD method, when
the waveguide mode is incident from the right onto the three-
unit-cell structure (red solid line), becomes zero (r3r � 0) at the
same frequency (f � 217.5 THz) as the single-unit-cell struc-
ture [Fig. 4(a)]. Thus, we conclude that there exists a TES local-
ized at the right boundary of the three-unit-cell structure for
f � 217.5 THz. Figure 4(a) also shows the calculated reflection
using CMT, when the waveguide mode is incident from the right
onto the three-unit-cell structure (green circles). Once again, we
observe that there is very good agreement between the CMT re-
sults and the exact results obtained using the FDFD method.

In addition, we find that for the three-unit-cell structure the
reflection for the waveguide mode incident from the right (red
solid line) is zero at f � 217.5 THz, while the reflection for
the waveguide mode incident from the left (black solid line) is
non-zero [Fig. 4(a)]. Thus, the structure exhibits unidirectional
reflectionless propagation at f � 217.5 THz. The properties
of the three-unit-cell structure can also be described by the scat-

tering matrix S �
�
t3 r3r
r3l t3

�
. The matrix S is non-Hermitian

in the presence of loss, and its complex eigenvalues are

λ	s � t3 	 ffiffiffiffiffiffiffiffiffiffiffir3r r3l
p . The corresponding eigenstates, which

are ψ	 � �1, 	
ffiffiffiffi
r3r
r3l

q
� for r3l ≠ 0, are not orthogonal [8].

In the case of unidirectional reflectionless propagation in the
right direction (r3r � 0, r3l ≠ 0), both the scattering matrix
S eigenvalues and their corresponding eigenstates coalesce,
and thus an EP is formed. In other words, the three-unit-cell
structure exhibits both a TES and an EP at the same frequency.
In addition, we can observe both the localized TES and the
unidirectional reflectionless propagation in the normalized
magnetic field distributions at that frequency. When the wave-
guide mode is incident from the left, there is strong reflection,
so that the incident and reflected modal fields form a strong
interference pattern [Fig. 4(b)]. On the other hand, when
the waveguide mode is incident from the right, there is hardly
any reflection. In addition, the field is enhanced at the right
edge, demonstrating the existence of the edge state [Fig. 4(b)].
In Figs. 4(c) and 4(d) we show the real and imaginary parts,
respectively, of the eigenvalues of the scattering matrix S as
a function of frequency. We observe that the real and imaginary
parts of the two eigenvalues indeed collapse at the exceptional
point (f � 217.5 THz). In Figs. 4(c) and 4(d), we also ob-
serve a level repulsion in the real parts of the eigenvalues, as
well as a level crossing in their imaginary parts [6].

C. Topological Edge States at Spectral Singularities
Another type of singular points is spectral singularities which,
unlike EPs, can only occur in the presence of gain [9].

Fig. 4. (a) Reflection spectra when the waveguide mode is incident from the right onto the single-unit-cell structure calculated using the FDFD
method (blue solid line). Also shown are the reflection spectra when the waveguide mode is incident from the left (black solid line) and right (red
solid line) onto the three-unit-cell structure calculated using the FDFDmethod. In addition, shown are the calculated reflection spectra using CMT,
when the waveguide mode is incident from the right onto the three-unit-cell structure (green circles). Here, the material loss in silver is included. The
dielectric constant of the material filling the stubs (InGaAsP with InAs quantum dots) is equal to 11.38� j0.166. All other parameters are as in
Fig. 2(b). (b) Profile of the magnetic field amplitude in the middle of the MDM waveguide, normalized with respect to the field amplitude of the
incident waveguide mode in the middle of the waveguide, when the mode is incident from the left (black solid line) and right (red solid line) onto the
three-unit-cell structure at f � 217.5 THz. All other parameters are as in (a). The vertical dashed lines indicate the boundaries between the three-
unit-cell structure and the MDMwaveguide. (c), (d) Real and imaginary parts of the eigenvalues of the scattering matrix S as a function of frequency.
The black and red lines correspond to eigenvalues λ�s � t3 � ffiffiffiffiffiffiffiffiffiffiffir3r r3l

p and λ−s � t3 −
ffiffiffiffiffiffiffiffiffiffiffir3r r3l

p , respectively. All other parameters are as in (a).
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An optical system which supports an SS has purely outgoing ra-
diation, that is,H�

L � H�
R � 0,H −

L ≠ 0, andH −
R ≠ 0 (Fig. 1),

so that it acts as a laser. If these conditions are satisfied, we have
M 22 � 0 [Eq. (3)]. The reflection of non-Hermitian optical sys-
tems at SSs tends to infinity [11]. Based on Eqs. (3), (4), and (8),
the reflection coefficient for the semi-infinite structure r∞ de-
pends on the reflection coefficient for the single stub structure
rs which is a function of ω − j 1τ. The winding number of a
bandgap can thus be written as a function of ω − j 1τ:

w�ω − j
1

τ
� � 1

2πj

Z
2π

0

∂ ln�r∞�ω − j 1τ ,ϕ��
∂ϕ

dϕ: (10)

In the lossless case (1τ � 0), the winding number of the third
bandgap is −1 [Fig. 3(c)]. On the other hand, for 1

τ → ∞,
rs � − 1∕τ0

j�ω−ω0��1∕τ�1∕τ0
→ 0, which indicates that the wave-

guide-cavity structure reduces to a straight waveguide. The
reflection coefficient r∞ therefore becomes zero and is indepen-
dent of ϕ. Thus, based on Eq. (10), lim1

τ→∞w � 0. Since the
winding number as a topological invariant is an integer, its
value must abruptly change from −1 to 0 at certain finite
1
τ ∈ �0,∞�. Such a discontinuity can only be caused by a singu-
larity of the integrand in Eq. (10), which corresponds to a zero of
the reflection coefficient r∞, that is, r∞�ω − j 1τ� � 0 [40]. In the
lossless case (1τ � 0), jr∞j2 � 1 for frequencies lying inside the
bandgap. In the presence of loss, jr∞j2 � 1 turns into
r∞�ω − j 1τ�r�∞�ω� j 1τ� � 1. Since r∞�ω − j 1τ� � 0, we must
have r∞�ω� j 1τ� → ∞. In other words, if the reflection in
the semi-infinite structure tends to infinity when a proper
amount of gain is introduced, the structure exhibits a TES.

In addition, such a pole of the reflection coefficient r∞ corre-
sponds to the presence of an SS [11]. Thus, this analysis suggests
that, if a proper amount of gain is introduced into the structure,
it can exhibit both a TES and an SS at the same frequency.

To implement this in plasmonic waveguide-cavity systems as
in Fig. 1, we consider as before a finite structure consisting of
three compound unit cells with ϕ � 0 for d � 500 nm,
h � 60 nm, w0 � 50 nm, and η � 0.4 [Eq. (1)]. Using
CMT, we find that the reflection coefficient for the waveguide
mode incident onto the finite structure from the right jr3r j tends
to infinity, when the decay rate of the stub resonator mode am-
plitude 1

τ approximately equals −1.37 × 1013 s−1. To satisfy this
condition we find that, when we take into account the material
loss of silver, the material filling the stubs (InGaAsP with InAs
quantum dots) must exhibit gain with the imaginary part of its
dielectric constant equal to 0.58. Figure 5(a) shows that the cal-
culated reflection using the FDFDmethod when the waveguide
mode is incident from the right onto the three-unit-cell structure
becomes extremely large for the dielectric constant of
the material filling the stubs equal to 11.38� j0.58 at
f � 217.5 THz. This result indicates that a TES exists at
the right boundary of the structure for f � 217.5 THz. In ad-
dition, the narrow-width resonance corresponding to a lasing
process suggests that the structure exhibits an SS. The TES
and right lasing can also be observed in the normalized magnetic
field distributions at the SS [Fig. 5(b)]. When the waveguide
mode is incident from the right, the reflected fields are greatly
amplified. In addition, the greatly enhanced field at the right
edge of the structure confirms the existence of the edge state.

Fig. 5. (a), (c) Reflection spectra when the waveguide mode is incident from the right and left, respectively, onto the three-unit-cell structure
calculated using the FDFD method. The material loss in silver is included. The dielectric constant of the material filling the stubs (InGaAsP with
InAs quantum dots) is equal to 11.38� j0.58. All other parameters are as in Fig. 2(b). (b), (d) Profile of the magnetic field amplitude in the middle
of the MDM waveguide, normalized with respect to the field amplitude of the incident waveguide mode in the middle of the waveguide, when the
mode is incident from the right and left, respectively, onto the three-unit-cell structure at f � 217.5 THz. All other parameters are as in (a). The
vertical dashed lines indicate the boundaries between the three-unit-cell structure and the MDM waveguide.
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In contrast to the incidence from the right side, the reflection
from the left side does not diverge at f � 217.5 THz
[Fig. 5(c)]. In addition, no TES exists at the left boundary of
the structure [Fig. 5(d)].

D. Topological Edge States at Unidirectional
Spectral Singularities
A unidirectional spectral singularity is a singular point at which
zero reflection from one side and infinite reflection from the
opposite side are simultaneously realized [12]. As we saw in
Subsection 3.C, the edge state at the SS shows up as a nar-
row-width resonance in the reflection spectra when a proper
amount of gain is introduced into the stub resonators. Based
on Eqs. (6) and (8), it is possible that the reflection coefficient
in the right direction for the semi-infinite structure r∞ ap-
proaches infinity, and the reflection coefficient in the left direc-
tion for the structure consisting of a single unit cell is zero. This
suggests that a properly designed structure could exhibit both a
TES and a unidirectional spectral singularity at the same
frequency.

To implement this in plasmonic waveguide-cavity systems,
we consider a compound unit cell with three stubs which have
the same resonance frequency ω0 and the same decay rate due
to power escape through the waveguide 1

τ0
, but different decay

(growth) rates due to the internal loss (gain) in the stub reso-
nators 1

τi
, i � 1, 2, 3 [Fig. 6(a)]. We consider as before a finite

structure consisting of three compound unit cells with ϕ � 0,
d � 500 nm, and η � 0.4 [Eq. (1)]. Recall that the zeros of
the reflection coefficient for the single-unit-cell structure r1 are
identical to the zeros of the reflection coefficient for the three-
unit-cell structure r3. We first use CMT to optimize the decay

(growth) rates due to internal loss (gain) of all three stubs
1
τi
, i � 1, 2, 3, to simultaneously make the amplitude of the

transfer matrix element M 21 as close to zero as possible, and
the amplitude of the reflection coefficient in the right direc-
tion for the three-unit-cell structure r3r as large as possible.
Using this approach, we find that M 21 vanishes and r3r
diverges for 1

τ1
� 2.21 × 1013 s−1, 1

τ2
� 1.81 × 1011 s−1, and

1
τ3
� −2.86 × 1013 s−1. Thus, the first two stubs in the com-

pound unit cell exhibit loss, while the third one exhibits gain.
Figure 6(b) shows the reflection spectra for the optimized three-
unit-cell structure calculated using the FDFD method for in-
cident waveguide modes from both the left and right
directions. At f � 217 THz the reflection from the left (black)
is close to zero, while the reflection from the right (red) tends to
infinity. In other words, the optimized structure simultaneously
supports a unidirectional spectral singularity, as well as a TES
on the right edge at f � 217 THz.

In each compound unit cell, the first stub is filled with
silicon dioxide doped with CdSe quantum dots (ε1 �
4.0804 − j0.0165). This active absorbing material is tunable,
since the imaginary part of its refractive index can be modified
with an external control beam [42,43]. The width and length of
the first stub are w1 � 24 nm and h1 � 90 nm, respectively.
The second and third stubs are both filled with InGaAsP with
InAs quantum dots but have dielectric constants with different
imaginary parts (ε2 � 11.38� j0.346 and ε3 � 11.38�
j0.838). The widths and lengths of these two stubs are
w2 � w3 � 50 nm and h2 � h3 � 60 nm as before. As men-
tioned above, we choose the stub dimensions so that their res-
onance frequencies as well as their decay rates due to power

Fig. 6. (a) Schematic of the compound unit cell of a structure consisting of a finite number of unit cells. The unit cell consists of anMDMwaveguide
side-coupled to three MDM stub resonators which have the same resonance frequency ω0 and the same decay rate due to power escape through the
waveguide 1

τ0
, but different decay (growth) rates due to the internal loss (gain) in the stub resonators 1

τi
, i � 1, 2, 3. (b) Reflection spectra when the

waveguide mode is incident from the left (black solid line) and right (red solid line) onto a three-unit-cell structure with unit cells as in (a) calculated
using the FDFD method. Here, the material loss in silver is included. In each unit cell the first stub is filled with silicon dioxide doped with CdSe
quantum dots (ε1 � 4.0804 − j0.0165). The width and length of the first stub are w1 � 24 nm and h1 � 90 nm, respectively. The second and third
stubs are both filled with InGaAsP with InAs quantum dots (ε2 � 11.38� j0.346 and ε3 � 11.38� j0.838). All other parameters are as in Fig. 2(b).
(c) Amplitude of the transfer matrix elements jD12j, jD21j, and jD22j as a function of frequency for the three-unit-cell structure of (b).
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escape through the waveguide are equal. In addition, taking
into account the material loss of silver, we choose the imaginary
parts of the dielectric constants of the materials filling the three
stubs so as to satisfy the conditions 1

τ1
� 2.21 × 1013 s−1,

1
τ2
� 1.81 × 1011 s−1, and 1

τ3
� −2.86 × 1013 s−1, which, as

mentioned above, were obtained using CMT.
If the overall transfer matrix of the optimized three-unit-cell

structure is D �
�
D11 D12

D21 D22

�
, then the reflection coefficients

for the left and right directions are given by − D21

D22
and D12

D22
, re-

spectively. A unidirectional reflectionless propagating mode for
incidence from one side, as well as a unidirectional lasing mode
for incidence from the other side, is the key signature of a uni-
directional spectral singularity. This exotic response has also
been observed in PT-symmetric coupled cavity systems [12].
In these systems, such a phenomenon is obtained for
D12 → ∞, D21 → 0, and D22 ≠ 0 at the operating frequency
[12]. Figure 6(c) shows the amplitudes of the transfer matrix
elements jD21j, jD12j, and jD22j as a function of frequency for
our optimized three-unit-cell structure. We observe that, in
contrast to the PT-symmetric coupled cavity systems [12],
the unidirectional spectral singularity in our case is obtained
through

D12 ≠ 0, D21 → 0, D22 → 0. (11)

D12 ≠ 0 and D22 → 0 [Fig. 6(c)] lead to diverging reflection
from the right side at f � 217 THz [Fig. 6(b)].D21 approach-
ing zero faster than D22 [Fig. 6(c)] results in vanishing reflec-
tion from the left side at f � 217 THz [Fig. 6(b)].

In addition, we can observe both the TES and the unidirec-
tional spectral singularity in the normalized magnetic field
distributions for the optimized structure of Fig. 6(a) at
f � 217 THz [Figs. 7(a) and 7(b)]. When the waveguide
mode is incident from the left, there is hardly any reflection,
as seen in Fig. 7(a) and its inset. When the waveguide mode is
incident from the right, the reflected wave is enhanced by 3
orders of magnitude [Fig. 7(b)]. In addition, the significantly
enhanced field at the right edge of the structure verifies the
existence of the edge state. In the previously reported PT-
symmetric coupled cavity system [12], the main mechanism
to create a unidirectional spectral singularity was based on
Fano resonance trapping in the system. Light reflected from the

gain side is strongly confined in the gain cavity and amplified,
while light reflected from the lossy side is trapped in the lossy
cavity and absorbed [12]. In our case, the right lasing is caused
by the topologically protected edge mode localization on the
gain side (right side). However, due to the chirality of TESs
in our system, there is no edge state on the lossy side (left side).
The left reflectionlessness of our structure is originating from
destructive interference rather than from light trapping. Thus,
we observe that the field profiles in Figs. 7(a) and 7(b) are very
similar except that the field enhancement is much larger for
waveguide modes incident from the right. It is worth noting
that in this case the zero reflection in the left direction is
not the signature of a TES on the left side, since the optimized
structure includes a gain stub with 1

τ < 0. The zero reflection
from the left side is associated with destructive interference
rather than with light trapping at the left edge of the structure.

Very recently, high-sensitivity sensors based on EPs with
topological edge states in non-Hermitian chains have been pro-
posed and experimentally demonstrated [44,45]. The
extremely sharp line shape of the reflection from the left side
[Fig. 6(b)] provides an opportunity to design an extremely sen-
sitive active structure at the unidirectional spectral singularity.
To characterize the sensitivity of the optimized three-unit-cell
structure with unit cells as in Fig. 6(a), we define the figure of
merit (FOM) as the absolute value of the derivative of the re-
flection from the left R3l with respect to the imaginary part κ of
the refractive index of the active absorbing material filling the
first stub of each unit cell [Fig. 6(a)] divided by R3l :

FOM �
���� dR3l

R3ldκ

����, (12)

where R3l � jr3l j2. High sensitivity with respect to the imagi-
nary part of the refractive index could have applications in op-
tical switches and modulators [46]. The FOM can be calculated
using the following finite-difference approximation: dR3l

dκ ≃
R3l �κ�Δκ�−R3l �κ−Δκ�

2Δκ . In our calculations, we use Δκ �
0.25 × 10−4 ≪ κ [47]. Figure 8 shows the calculated FOM
as a function of frequency. The maximum value of the
FOM is ∼160,000 at the unidirectional spectral singularity
(f � 217 THz), which is more than 2 orders of magnitude
larger than the FOM in plasmonic sensors based on the
Fano resonance [48]. We found that the unidirectional spectral

Fig. 7. (a), (b) Profile of the magnetic field amplitude in the middle of the MDMwaveguide, normalized with respect to the field amplitude of the
incident waveguide mode in the middle of the waveguide, when the mode is incident from the left and right, respectively, onto the three-unit-cell
structure of Fig. 6(b) at f � 217 THz. The vertical dashed lines indicate the boundaries between the three-unit-cell structure and the MDM
waveguide. The inset in (a) shows the normalized field profile for 0.1 μm ≤ X ≤ 0.9 μm, when the waveguide mode is incident from the left.
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singularity also leads to extremely high sensitivity to variations
of the real part of the refractive index. We also found that, as
the number of unit cells increases, the FOM increases.

We note that our choice for the imaginary part of the
refractive index of the active absorbing material (κ �
4.08 × 10−3) is within the range of experimentally achievable
values [42,43,46]. In addition, the imaginary parts of the di-
electric constant of the gain material filling the second and third
stubs of each unit cell in the optimized structure [Fig. 6(a)] are
0.346 and 0.838, respectively, which correspond to gain coef-
ficients of g ≈ 4666 cm−1 and g ≈ 11,250 cm−1, respectively
[49]. These can be realized with ultra-high-density quantum
dot structures [50,51].

4. CONCLUSIONS

In this paper, we focused on non-Hermitian nano-optic sys-
tems, and first investigated the connection between TESs
and EPs in such systems. We also explored the connection be-
tween TESs and other types of singular points, such as SSs and
unidirectional spectral singularities, in nano-optic systems. We
finally explored the potential of nano-optic structures which
exhibit both TESs and singular points in sensing.

More specifically, we designed non-Hermitian periodic plas-
monic waveguide-cavity structures based on the AAH model to
realize both a TES and a singular point at the same frequency.
We used the transfer matrix method and CMT to account for
the behavior of the proposed structures. We first showed that
we can realize both an TES and an EP at the same frequency
when a proper amount of loss is introduced into the plasmonic
structure. We also showed that the structure can exhibit both a
TES and an SS at the same frequency when a proper amount of
gain is introduced into the structure. Thus, the system acts as a
topological laser. Unlike previous works that used two-
dimensional photonic structures to realize topological lasers
[52–54], we used a one-dimensional structure based on the
AAH model. In addition, we showed that we can realize both
unidirectional spectral singularities and TESs when a proper
amount of loss and gain are introduced into the plasmonic
structure. The optimized structure supports unidirectional re-
flectionless propagation for incidence from one side, as well as a
unidirectional lasing for incidence from the other side. The
underlying physical mechanism of the unidirectional lasing

is the topologically protected edge mode localization on the
gain side, while the unidirectional reflectionlessness is originat-
ing from destructive interference. Finally, we found that for
such a structure the sensitivity of the reflection to variations of
the refractive index of the active material, when the waveguide
mode is incident from the side which supports unidirectional
reflectionlessness, is significantly enhanced at the unidirectional
spectral singularity. Thus, the optimized structure operating at
the unidirectional spectral singularity can lead to extremely sen-
sitive active photonic devices such as modulators and switches.

As final remarks, we expect the singular points associated
with TESs to be robust in the presence of disorder, as long
as the disorder is not strong enough to close the bandgaps
[Fig. 3(a)]. To test this hypothesis, we randomly varied the dis-
tances between adjacent stubs in our proposed three-unit-cell
structure with variations which are uniformly distributed over
the interval (−40 nm, 40 nm). We first considered the robust-
ness of structures exhibiting both EPs and TESs at the same
frequency. We confirmed that in such structures both the
EPs and the TESs are robust in the presence of disorder.
We also considered the robustness of structures exhibiting both
SSs and TESs at the same frequency. We again confirmed that
in such structures both the SSs and the TESs are robust in the
presence of disorder. We also note that singular points such as
EPs, SSs, and unidirectional spectral singularities can also be
achieved in single-unit-cell structures [6,17]. Unlike the singu-
lar points in single-unit-cell structures, the singular points as-
sociated with TESs in our proposed structures are robust in the
presence of disorder.

We note that the AAH model can also be realized in two-
dimensional photonic crystal structures [55]. We also note that
the one-dimensional AAH model exhibits phenomena associ-
ated with the two-dimensional integer quantum Hall effect.
The same concept could be generalized to two-dimensional
quasicrystals and be used to realize an analog of the four-
dimensional integer quantum Hall effect [56,57]. The two-
dimensional quasicrystal system could support topological
corner states to realize topologically protected singular points.

Our results demonstrate the connection between topologi-
cally protected edge states and different types of singular points
and could potentially contribute to the development of a new
generation of singularity-based plasmonic devices with en-
hanced performance. The concept of combining gain and loss
to realize both TESs and singular points at the same frequency
could also be applied in other photonic and acoustic systems. In
addition, we note that TESs at singular points could be realized
in three-dimensional plasmonic waveguide-cavity systems
based on plasmonic coaxial waveguides [58,59].
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Fig. 8. FOM [Eq. (12)] for the optimized three-unit-cell structure
with unit cells as in Fig. 6(a) as a function of frequency. All other
parameters are as in Fig. 6(b).
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