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Optimization of quantum interferometric metrological sensors in the presence of photon loss
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We optimize two-mode entangled number states of light in the presence of loss in order to maximize the
extraction of the available phase information in an interferometer. Our approach optimizes over the entire
available input Hilbert space with no constraints, other than fixed total initial photon number. We optimize to

maximize the Fisher information, which is equivalent to minimizing the phase uncertainty. We find that in the
limit of zero loss, the optimal state is the maximally path-entangled (so-called NOON) state, for small loss, the
optimal state gradually deviates from the NOON state, and in the limit of large loss, the optimal state converges
to a generalized two-mode coherent state, with a finite total number of photons. The results provide a general
protocol for optimizing the performance of a quantum optical interferometer in the presence of photon loss,

with applications to quantum imaging, metrology, sensing, and information processing.
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Quantum states of light play an important role in applica-
tions including metrology, imaging, sensing, and quantum
information processing [1]. In quantum interferometry, en-
tangled states of light, such as the maximally path-entangled
NOON states, replace conventional laser light to achieve a
sensitivity below the shot-noise limit, even reaching the
Heisenberg limit, and a resolution well below the Rayleigh
diffraction limit [2]. For an overview of quantum metrology
applications, see, for example, Ref. [1]. However, for real-
world applications, diffraction, scattering, and absorption of
quantum states of light need to be taken into account. Re-
cently, it has been shown that many quantum-enhanced me-
trology schemes using NOON states perform poorly when a
considerable amount of loss is present [3-5]. However, our
team has also discovered a class of entangled number states,
which are more resilient to loss [6]. These so-called (m,m’)
states still outperform classical light sources under a moder-
ate 3 dB of loss.

In this work, we systematize the numerical search for op-
timal quantum states in a two-mode interferometer in the
presence of loss. We employ the Fisher information to obtain
the phase sensitivity of the interferometer. An exhaustive re-
view and application of the Fisher information concept to the
sensitivity of a Mach-Zehnder interferometer (MZI), particu-
larly in the zero loss case, has been presented in the recent
work by Durkin and Dowling [7]. The chief utility of the
Fisher information approach is that it provides a bound on
the phase sensitivity, even in the absence of a fully specified
detection scheme, and is now widely adopted in studies of
interferometer sensitivity. Such numerical optimization has
been previously carried out in the absence of loss, and with
loss over a restricted class of input states [8,9]. Here, we
provide a completely general optimization scheme that is
applied to the two-mode interferometer, but also has applica-
tion to the optimization of linear optical systems for quantum
linear optical information processing [10,11].

Using this scheme, we first recover the well-known fact
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that NOON states are optimal in the absence of loss [1]. For
large loss, the optimal states belong to a class of two-mode
coherent states with finite total photon number. The optimi-
zation procedure yields the optimal Fisher information—and
hence, the minimal phase uncertainty—for every level of
loss. The validity of our numerical optimization is verified
using several methods, including genetic algorithms and
simulated annealing, and the close agreement among these
methods provides evidence that we are indeed finding the
global optimum.

In quantum optics, photon loss is typically modeled by a
beam splitter that routes photons out of the interferometer
[12]. In implementing this model, we first enlarge the Hilbert
space to include modes representing the scattered photons
and then, after the scattering, trace out these modes. Here, we
extend the beam splitter model for photon loss to two propa-
gating modes that represent the two paths in the optical in-
terferometer (Fig. 1).

For an interferometer with two input ports A and B as
depicted in Fig. 1, an arbitrary pure-state input with N pho-
tons can be written as |()iypu=4oCxlN—k,k)4 5, Where ¢,
are the input amplitudes to be optimized. The ket
IN—k,k)4 p is a basis state in which N—k and k photons are
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FIG. 1. (Color online) Abstract interferometer condensing the
input state plus the first beam splitter into the first box, followed by
two propagating modes with loss modeled by additional beam split-
ters. The box on the right includes a beam splitter and the photon-
number resolving detectors.

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.80.063803

LEE et al.

in mode-A (detection arm) and mode-B (control arm), re-
spectively. Such a quantum state resides in an N+1-
dimensional Hilbert space. The transformation of the quan-
tum state by any passive lossless optical elements, such as
beam splitters, phase shifters, and mirrors, can then be de-
scribed by an (N+1) X (N+1) unitary matrix.

When the propagation channels suffer from photon loss,
we need to consider the total density matrix that includes all
the scattered photon modes. Then, we obtain the reduced
density matrix for the two interferometer modes by tracing
out these additional modes [13]. This reduced density matrix
is associated with a much larger Hilbert space of dimension
(N+1)(N+2)/2, which includes all states with a total of
N,N-1,...,0 photons in the two interferometer modes.

For the NOON state, combined with its specific detection
scheme, the density-matrix description of photon loss may be
avoided and the state-vector approach can be adopted
[3,4,14]. Previously, we have used the density-matrix ap-
proach to lossy interferometers for particular input states of
light [namely, the (m, m’) states [6]]. Our method here, how-
ever, applies to any input state with a fixed number of pho-
tons. Thus, it allows optimization of the input state in the
presence of an arbitrary amount of propagation loss in the
two arms of an interferometer.

With this scheme, the pure-state input is now described as
an (N+1) X (N+1) density matrix. After passing through the
two beam splitters—representing the two lossy channels in
the two arms of the interferometer—the density matrix for
the two main modes now consists of N+1 different blocks.
Each block represents a given number of photons lost. The
quantum state of light ends up in a mixed state associated
with an N+ 1-L-dimensional Hilbert space, if a total of L
photons are lost.

For the arbitrary input state |1ﬂ)inpu[ presented above, we
find that photon loss can be described by a transformation to
a reduced density matrix whose matrix elements are simply
given by

L
PN.Lij= E Ci+mcj+mAN,L,i,mB;:/,L,j,m’ (1)

m=0
where

ANz =By Lm = NCa it ""\r@t e (2)
Here, ¢, r and ¢’, r’ are transmission and reflection coeffi-
cients for the fictitious beam splitters in the upper path and
the lower path, respectively, and C is the number of combi-
nations, C;=(}). Note that for a given number of photons N,
the L value labels the block of the reduced density matrix,
and i, j specify the matrix element inside that block.

Now we compare a classical interferometer with the opti-
mized quantum state approach. Consider a single-mode co-
herent state |a)=e““|2/222°=0%|k> as the input state to a
Mach-Zehnder interferometer [13]. The first beam splitter
partitions the state between two modes. In the first mode, the
state acquires a phase shift ¢ and undergoes a loss of inten-
sity by a factor of |¢|>. Then, the two beams are redirected to
the second beam splitter, and photons are detected in each
output port. The Fisher information, normalized to the aver-
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age number of photons 7=|al?, is F/i=(4]t]*sin> 6)/(1
+|f|*tan® 6), where 6 describes the angle of o, rotation by the
first beam splitter. This equation provides the Cramer-Rao
asymptotic accuracy of measurement of the unknown phase
shift ¢ using a classical scheme. We single out two cases.
First, we assume that the first beam splitter has a fixed 50-50
ratio. Then, in the limit of large loss t— 0, we have

2|t|2 []—0
T+ |t|2 — 2|t|2. (3)

Fin=

Fisher information can be increased by optimizing the first
beam splitter to compensate for the loss. In this case, we
obtain

4l2 [#}—0
i — 4% (4)

T (1 +]e?

The optimal quantum input state is now obtained numeri-
cally. First, a forward problem solver is developed using a
density-matrix approach. An input state is written as a den-
sity matrix. Phase shifts during photon propagation are taken
into account by operating with ¥4 on this density
matrix. Next, photon losses are applied using Egs. (1) and
(2), producing a reduced density matrix of dimension
(N+2)(N+1)/2. In the last step of the forward problem
solver, the minimum detectable phase sensitivity d¢ is com-
puted from the final density matrix. The phase detection is
modeled by a final 50-50 beam splitter followed by two
number resolving photodetectors. The joint probability of si-
multaneously detecting m; photons at the first photodetector
and m, photons at the second photodetector is computed as

P,=3 l(zzvrz)(N+ /2 Ubsm ,-E ]<_1:v;t2) (N+1)/2 ﬁout,-,,- OILst where the label

m represents a pair of numbers (m,,m,). Here, Uy, is a uni-
tary transformation representing a 50-50 beam splitter and
Pout 18 the final density matrix obtained after loss. Then,
phase sensitivities are estimated from the Fisher information,
F, for a single measurement, 5¢=1/\e’7?, where
F=3XM2DW+D2p (510 P, /3¢)? [8]. We note that, in all of
our calculations, we assume a large flux of entangled states is
to be used, and we normalize our results by this flux.

We optimize the system to find the minimum detectable
phase sensitivity, given fixed losses in the detection and con-
trol arms. For this, a genetic global optimization algorithm is
applied to the forward problem solver. The parameters to be
optimized are the complex coefficients c;; the optimal sensi-
tivity is necessarily ¢-independent since a change in ¢ can
be absorbed into the relative phases of ¢,. During the numeri-
cal computation of F, we observe that the landscape of F in
the optimization parameter space possesses several local

maxima contrary to the convex F, o used by Dorner et al. [9].

The results of numerical optimization of ¢ are presented
in Fig. 2. We denote the losses in dB in the detection and
control arms as R, and Ry, respectively. First, in Fig. 2(a) we
investigate the overall influence of loss in the control arm.
One set of simulations is conducted with equal losses in the
detection and control arms (R,=Ry). We also consider fixed
10 dB loss and fixed 0 dB loss in the control arm (Ry
=10 dB, Ryz=0 dB) as loss in the detection arm is varied.
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FIG. 2. (Color online) Minimum detectable phase sensitivities calculated from the normalized Fisher information: (a) as a function of
detector arm loss (R,) with three different losses in the control arm (Rp) for N=6. (b) As a function of R, for Rz=0 in log scale. (c) As a
function of input photon-number N for Rz=0 with fixed R,. Lines represent the results of curve-fitting using a functional form 1/N*. In the
absence of loss, the Heisenberg limit, x=1, is obtained. For high loss, x tends toward 0.5, approaching the shot-noise scaling.

In all cases, N=6 is assumed. We consistently find that an
increase in Ry results in higher d¢. Thus, one can expect the
best phase sensitivity to be achieved with the smallest pos-
sible loss in the control arm.

In Fig. 2(b), the numerically optimized phase sensitivity is
presented as a function of R, for N=1, 3, 6, 10, and 20. The
classical (coherent light) baseline of Eq. (3) is also shown.
To compare the quantum results for different N with each
other and with the classical case, we rescale the phase sen-
sitivity of the pure quantum state by normalizing the Fisher
information similarly to Eqgs. (3) and (4): 8¢p=1/\F/N
= 5¢\W. Since 8¢ is obtained from the Fisher information
per single photon, it is also the measure of the synergically
enhanced phase sensitivity per single photon with N photons
acting together. For pure quantum states, Fig. 2(b) shows that
larger N produces smaller 8¢ for any given amount of loss.

The N-dependence of 8¢ is greatest at R,=0 dB, and weak-
est in the limit of extremely high loss, where the lines merge
together. Coherent light does not show enhancement with N
at any level of loss, and at every level of loss, coherent light
exhibits worse performance in phase sensitivity compared to
entangled quantum states.

One interesting observation is that 8¢ in the extremely
high-loss region (R4,> ~16 dB) becomes N-independent
even when using optimally entangled quantum states. In

other words, the optimal phase sensitivity d¢ given by the
optimal quantum state becomes proportional to N~ in this
high-loss regime, i.e., its scaling with N in this regime is the
same as for coherent light governed by the shot-noise limit.
However, despite the same scaling with N, the phase sensi-
tivity d¢ is still better with entangled quantum states than
with coherent light. This can be explained by the optimal
preparation of the initial state. As we will see later, the prob-
ability amplitudes c; are distributed asymmetrically to gen-
erate the smallest possible d¢ for nonzero loss, while coher-
ent light always enters the system through a 50-50 beam
splitter, i.e., it is symmetrical between the control and detec-
tion arms, Eq. (3). With coherent light, a similar improve-
ment can be achieved by adjusting (or optimizing) the first

beam splitter, resulting in Eq. (4). In the latter case, ¢ of
coherent light becomes identical to that of the pure quantum
state with N=1. However, we emphasize that, when losses
are not too high, the phase sensitivity of N>1 pure quantum
states is always better than that of coherent light, even with
an optimized first beam splitter.

Figure 2(c) shows the optimal phase sensitivity as a func-
tion of photon-number N for given fixed R, values, with
Rp=0. Here d¢ is shown for each N, with circles indicating
N=1, 3, 4, 6, 10, and 20. The lines are drawn by curve-fitting
to a power law, d¢p~ 1/N*. From this, we find that 8¢ is well
represented by 1/N, 1/N%8, 1/N%317 and 1/N%3 for R,=0,
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FIG. 3. (Color online) (a) Projection of the optimal state on
NOON, (m,m’), and GPCS as a function of Ry, for N=4. (b) The
optimal input state composition. The vertical axis shows coeffi-
cients |c;/> of the optimally entangled input state. Both figures
clearly demonstrate that the optimal state changes from NOON-type
to GPCS-type as loss increases, with the crossover occurring at
approximately 5 dB loss.

2.88, 10.02, and 21.86 dB, respectively. This result provides
an overall view of how the phase sensitivity changes
from the Heisenberg limit to the shot-noise limit with
increased loss, i.e., it follows a power law with 1/N* where
1/2=x=1.

To characterize the optimal state, we use three classes of
well-defined states: NOON, (m,m’), and a two-mode SU(2)
coherent state, often called the Generalized Perelomov Co-
herent State (GPCS). GPCS is defined as |GPCS)
=(N!)""2[ale® cos a—dale P sin a]"|0), where @] and @] are
creation operators in the two modes, and « and S are two
real parameters [ 15]. In particular, (m,m’) is the first class of
path-entangled states shown analytically to have robustness
to photon loss. It is interesting to see how the true optimal
state may differ from the (m,m’) state in lossy environ-
ments. Characteristics of the optimal state are presented in
Fig. 3 for a fixed Rz=0 dB. The similarity of the optimal
states with each of these three benchmark states is measured
by the squared overlap between the optimal state and the
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benchmark state. The results show that the optimal state is
closest to the NOON state for low loss. As loss increases, the
NOON state portion gradually decreases and the optimal state
becomes closer to GPCS than to NOON at around 5 dB of
loss. The degree of similarity between the optimal state and
the (m, m’) state is rather low for loss smaller than 6 dB. For
every value of loss, GPCS is higher than (m,m’). Figure
3(b) shows how the input amplitudes of the optimal state are
arranged for different loss levels. In the lossless case, we
have the NOON state. As loss increases, the optimal state is
reshuffled and acquires an asymmetric shape. This serves as
critical information for achieving a highly sensitive interfero-
metric system. Based on the results shown, it is obvious that
generating such optimal input states should be the first con-
sideration in the development of an interferometric sensor
using entangled photons.

In summary, we have performed unconstrained optimiza-
tion of a lossy two-mode interferometer. We conclude that
input NOON states are optimal for nearly zero loss [1], and
that finite-photon number two mode coherent states are
optimal—with shot-noise sensitivity—for large loss. Our re-
sults suggest that, if sensitivity is the only metric of success,
ordinary coherent input state interferometry is best for high
loss. This leaves open supersensitive schemes employing
squeezed light at the detector [16] or super-resolving
schemes employing photon-number resolving detectors [17].
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