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Abstract. Automated detection of orbital angular momentum (OAM) can tremendously con-
tribute to quantum optical experiments. We develop convolutional neural networks to identify
and classify noisy images of Laguerre–Gaussian (LG) modes collected from two different exper-
imental set ups. We investigate the classification performance measures of the predictive clas-
sification models for experimental conditions. The results demonstrate accuracy and specificity
above 90% in classifying 16 LG modes for both experimental set ups. However, the F-score,
sensitivity, and precision of the classification range from 57% to 92%, depending on the number
of imperfections in the images obtained from the experiments. This research could enhance the
application of OAM light in telecommunications, sensing, and high-resolution imaging systems.
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1 Introduction

Orbital angular momentum (OAM)1,2 arises from the helical phase front of a light beam. It is the
component of angular momentum of the light beam that depends on the spatial field distribution
and not on the polarization. The use of an OAM beams allows the development of improved
sensing and imaging technologies, such as increased information transfer rate and data trans-
mission capacity in optical communications,3 automated microscopic detector arrays in high-
resolution biological imaging systems,4 improved photon detection in extended astronomical
objects,5 and increased alphabets in quantum cryptography.6

The helical phase structure of light results in the light possessing quantized values of OAM.7

Examples of paraxial beams that possess OAM include Laguerre–Gaussian (LG),8 Hermite–
Gaussian,9 Bessel–Gaussian,10 Mathieu–Gaussian,11 and Ince–Gaussian12 beams. LG modes
are the higher-order solutions to the paraxial wave equation in cylindrical coordinates with
circular symmetry.13 They are directly related to the quantized OAM of photons14,15 resulting
in various applications for OAM transfer, such as in light–matter interactions.16,17 However, the
coherent detection of LG modes generated by spatial light modulators (SLMs) is challenging.
These modes are prone to mode loss and mode crosstalk13,18 and contain imperfections due to
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various sources of noise (i.e., turbulence) that mix information between adjacent modes and
degrade the optical signal.19,20

To classify OAM modes, conventional sorting methods such as conjugate-mode sorters and
scale factors are typically used. However, these methods require a complicated optical alignment
process because the presence of turbulence causes the mixing of information between adjacent
modes, which makes these techniques inaccurate.21 For instance, the high sensitivity of OAM
light to atmospheric turbulence13 makes error-free OAM mode detection in free-space commu-
nications challenging, particularly when a large number of OAM modes are used.22,23 The iden-
tification of the mode information for signals that carry more than a specific amount of noise
using the centroid and radius of the beam profile captured by a CCD or CMOS camera24 is
challenging. As such, it is crucial to have an accurate method to classify the OAM beam detected
at the receiving end of an optical communication platform.

Machine learning (ML) has a transformative impact on many underlying fields of basic
research.25,26 It is beginning to play an important role in automated analysis and adaptive control
of atomic, molecular, and optical experiments. Recently, convolutional neural networks (CNNs)
27 and the transfer learning approach28 have been shown to remarkably improve automated image
interpretation with near-human accuracy.29,30 ML techniques have been applied to the related
task of detecting the OAM mode1,21,31 with accuracies far better than those of the conjugate-
mode sorting method.3 Krenn et al.32 used an artificial neural network (ANN) to distinguish
between the transmitted OAM modes of light that have significant distortions after transmission
over a distance of 143 km. Lohani et al.1 demonstrated the ability of deep neural networks to
classify LG modes when the training and test datasets are generated using computer simulations.
However, the strength of the model needs to be evaluated for generalizing and adapting to differ-
ent experimental conditions when the amount of noise varies depending on the optical arrange-
ments. The influence of strong noise sources can cause offset in the background counts and even
saturate the camera. This makes the identification of OAM modes using conventional denoising
and averaging techniques seriously restricted in both speed and accuracy.33 In free-space optical
communication systems, the OAM shift-keying techniques require high-speed OAM identifica-
tion methods. One of the main benefits of CNN-based techniques is that, after training, the mode
recognition and classification can be applied extremely quickly. It has been demonstrated34 that
CNN-based OAM mode identification methods have a certain antiturbulence immunity leading
to a high recognition accuracy and fast recognition time compared to other mode recognition
techniques using aperture diffraction35,36 and cylindrical lens detection methods.37,38

Doster and Watnik21 used the Alexnet architecture for the CNN model to demultiplex the
OAM-carrying beams by capturing an image of the unique multiplexing intensity pattern with
the simulated atmospheric turbulence in a laboratory setting. However, pretrained models, such
as GoogLeNet (Inception),39 reduce the number of computations and storage costs for the net-
work weights and have proven to outperform the classification accuracy obtained by the Alexnet
architecture. Hofer et al.9 used CNN to classify the 21 lowest unique Hermite Gaussian modes of
a laser beam with an accuracy of 99%, whose experimental dataset was acquired from one
optical set up utilizing an SLM. In addition to high accuracy, a sound classifier must also
demonstrate high performance for other measures such as specificity, F-score, sensitivity, and
precision.

In this paper, we examine the ability of CNN models to automatically classify the experi-
mental images of LG modes based only on the intensity profile of their unique patterns in the
presence of noise and imperfections in two experimental set ups. The use of the intensity profile
of the detected modes allows for considerable simplification of current measurement schemes
and results in lower error rates than the scale factor techniques. A large number of labeled simu-
lated datasets was generated, and different amounts of noise are added to the simulated datasets
to replicate imperfections of real experimental conditions. The testing data used to examine the
ability of the zero-shot learning approach are real experimental images, while the CNN model is
solely trained with instances of simulated data. This study may enable new applications of OAM
light in telecommunications and high-resolution imaging systems.

The rest of the paper is organized as follows: Sec. 2 presents the two experimental arrange-
ments and the theoretical framework of LG modes that are used to collect the training and testing
datasets. Section 3 discusses the procedure for training and optimizing the performance of the
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CNN model. In Sec. 4, the results for automated identification of LG modes are presented to
assess the strengths and limits of the CNN model in generalizing and adapting to experimental
conditions by studying the five performance measures of the classification. Section 5 discusses
the advantages and performance of the CNNs in recognizing OAM modes, as well as potential
applications. Finally, our conclusions are summarized in Sec. 6.

2 Data Collection for Training Data-Driven Predictive Model

2.1 Generating Experimental Datasets of OAM Modes

The experimental data are generated using two experimental set ups with different noise inten-
sity, spatial dislocation, and nonuniform intensity in LG modes to examine the performance of
the CNN model in generalizing to different experimental conditions. Figure 1(a) shows the first
experimental set up that generates LG modes. A laser beam with a wavelength of 633 nm is
coupled to a single-mode fiber (SMF) before being collimated with a 5-cm lens, which helps
us to clean the beam to a Gaussian beam. The collimated Gaussian beam hits the SLM where the
desired LG modes are encoded holographically.40 The SLM is programmable, and the projected
light to the mask or hologram can be controlled through a computer program. The reflected beam
from the SLM contains many diffraction orders. The parameters are set to make the first dif-
fraction order bright enough for the experiment. An iris placed at the Fourier plane acts as a filter
to select the desired diffraction order. The beam profile thus selected is collimated with the final
25-cm lens. A CCD camera at the image plane records the intensity profiles of the desired LG
modes.31,41

Fig. 1 Experimental arrangements for the (a) first and (b) second quantum optical systems for
generating arbitrary LG beams.20 The CCD camera has a dynamic range of 82 dB with 60 ke-
full well capacity, median read noise of 3.6 e- rms, and peak counts of 200 per 500 ms.
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The second experimental set up for LG modes’ generation is shown in Fig. 1(b). Light from a
795-nm laser is coupled into an SMF and propagated through a telescope formed by two lenses
to increase the size of the laser beam and illuminate as much SLM area as possible. The beam is
passed through an iris for additional mode cleaning. The wave plate and polarization beam split-
ter combo are then used to control the light power to make sure that the camera is not saturated.
The edge mirror reflects the beam to the SLM, then a regular mirror picks up the reflected beam.
The combination of three lenses after the SLM focuses the beam at the iris that cleans up any
higher diffraction orders, shrinks the beam back to small size, and focuses it on the camera. In the
second experimental set up, light travels through more optical elements and lenses. This leads to
more spatial dislocation and nonuniform intensity in the LG modes compared to the first exper-
imental set up. This may also cause the slight ellipticity in the observed intensity patterns that
could possibly be attributed to the presence of other, weaker optical modes,42 or to the pertur-
bation caused by the imperfect alignment of components43 in the second experiment. The labeled
experimental datasets of the LG modes are generated for testing CNNmodels using the set ups of
an SLM and beam profiler.31

2.2 Generating Theoretical Datasets of OAM Modes

The LG modes are represented by the theoretical expression44
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ζðzÞ ¼ arctanðz∕zRÞ is the Gouy phase. Equation (1) is used to generate a theoretical image
dataset of the first 16 LG modes (l and p vary from 0 to 3) for training the CNN model.

In order to replicate imperfections of real experimental conditions, substantial amounts of
experimental data are generated and analyzed to estimate the approximate amplitude of the noise.
Gaussian noise, Poisson noise, speckle noise, and camera blur in the first and second experi-
ments are added to the simulated images in MATLAB®. In an optical communication channel,
the intensity noise or modal noise is separated into additive noise and multiplicative noise.45

The unwanted signal modifications at the input and output of an optical communications channel
are modeled by random additive Gaussian noise. The effects of scattering and absorption on the
signal transmitted in an optical communications channel are modeled by speckle and Poisson
noises as random multiplicative noise sources.1,45

In order to extract the best standard deviation of the Gaussian and speckle noises and rep-
licate real noise values seen on the sensors of the first and second experiments, CNN models are
trained by generating the train datasets. These consist of the simulated images of an LG mode
with a standard deviation in each class. The experimental images of the same LG mode are
tested, as shown in Fig. 2. It can be observed in Fig. 2(a) that the average confidence of the
classification for Gaussian noise is maximized around the standard deviation of σ ¼ 0.04 to
0.045 for the second experiment, while the standard deviation estimated by the CNN model
for the first experiment is smaller than σ ¼ 0.005. Figure 2(b) shows the estimated standard
deviations of speckle noise that inherently exists in and degrades the quality of the optical
images. The standard deviation of speckle noise is estimated to be smaller than σ ¼ 0.04

for the first experiment with the maximum confidence in the range of σ ¼ ½0.02; 0.03�, while
the standard deviation of the second experiment is found to be in the range of σ ¼ ½0.08; 0.12�.
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The average signal-to-noise ratios of the LG modes for the first and second experiments are
calculated as ∼11 and ∼3 dB, respectively. Other significant sources of noise can be the imper-
fections in the LG modes, such as the discontinuity of the intensity profile and the elliptical
nature of the beam. These distortions degrade the accuracy of identifying and classifying the
LG modes, especially in the second experiment. The use of experimental test images from two
experiments evaluates the performance of CNN models in identifying and classifying the beams
with two different degrees of noise in the LG modes and varying nodal structure.

Figure 2(c) shows the CNN model’s estimation of the point-spread intensity that is modeled
by the fspecial function in MATLAB to incorporate the effect of camera blur in the experiments
on the simulated data. After the noises and camera blur have been added to the simulated modes,
the images are saved in JPEG format (600 × 600 pixels), and the maximum amplitude and
contrast of the simulated modes are scaled to the experimental data. A training dataset and
a test dataset are generated with 500 and 20 images, respectively, for each of the LG modes,
where p and l range from 0 to 3.

Fig. 2 Extracting the standard deviation of (a) Gaussian noise and (b) speckle noise in the first and
second experiments using the CNN models that are trained over the simulated images of an LG
mode with a range of standard deviation in each class, and tested using the experimental images
of the same LG mode. (c) Estimating the point-spread intensity using the CNN model to incorpo-
rate the effect of camera blur in the experiments on the simulated data.
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3 Training Convolutional Neural Network-Based Predictive Model

Conventional machine-learning techniques are not fully automated so they need learning effec-
tive features and must extract feature vectors from input patterns through a feature extraction
algorithm. The procedure requires human intervention in a training procedure that may affect
the accuracy of the classification algorithm.

To develop a predictive model for automatically identifying the LG modes, the CNN
architecture within a deep learning framework27 solves the shortcomings of the existing ML
approaches. As a particular type of neural network with deep layer architecture, CNN performs
multilayer convolution to extract features and combine the features automatically at the same
time on a single network. CNN extracts spatial features from low-level layers that are then passed
to aggregation layers (convolutional, pooling, etc.) and additional layers of filters for extracting
higher-order features (patterns) that are combined at the top layers. Fully connected layers in the
output part of the network perform image interpretation and classification, as shown in Fig. 3(a).
As feature extraction and classification are simultaneously performed in a neural network,

Fig. 3 (a) The training dataset of the first 16 LG modes (l and p vary from 0 to 3) is passed to the
CNN model that extracts spatial features using aggregation layers (averaging, pooling, etc.), and
additional filter layers that are eventually combined at the top layer to predict and classify the new
image of the LG mode. (b) Evaluation of the learned network using the random test images of
LG modes from the first and second experiments.
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features fit for the classification are automatically carried out and further improve performance.
Figure 3(b) shows the evaluation of the learning network using the random test images of
LG modes from the first and second experiments.

The patches of labeled datasets of the simulated LG modes that were generated for training
CNNs are fed into a deep CNN that includes three convolutional layers, three pooling layers, two
dropout layers, and two fully connected layers. The size of the training data is optimized for the
composition of hidden layers to reach the optimal overall classification performance. The com-
position of hidden layers relates to the number of convolution and pooling layers, the number of
nodes in a convolution layer, and the kernel size of the pooling and convolution masks. The size
of each training image and the number of training images determine the optimal number of layers
in the CNN. The size of training images and the number of classes affect the mask of layers and
the number of nodes, respectively. The performance and reliability of CNN are directly asso-
ciated with the depth of layers in the neural network and the number of training samples with
new information that mimics the experimental imperfections. For a limited number of sample
images, increasing the depth of the network is not beneficial as such an approach may result in
overfitting that further lowers the reliability of the model. The increase in the image quality (i.e.,
image pixels) allows expanding the depth of the neural network by adding more layers, possibly
improving the CNN performance. However, more layers lead to an exponential increase in the
computing cost, which makes necessary the effective parallelization of the repetitive convolu-
tion-pooling structure to reduce the computing time.

A rectified linear unit (ReLU) nonlinear activation function is used for the input layer and
hidden layers, while a logistic regression (softmax) function is implemented to generate a nor-
malized exponential distribution for the final layer to obtain the final learning probability and
predicted labels.39 A deep CNN has many hidden layers. To learn all the weights in the layers, the
loss function is minimized by the batch gradient descent algorithm that is generally used to train
a neural network to propagate an error by the chain rule. During the training steps, CNN learns
the optimal weights of all layers using forward- and backward-propagation through the neural
network architecture. The CNN architecture is employed by retraining a pretrained model, the
Inception-v3,39 in the TensorFlow platform,46 which was introduced as a deep learning open-
source software by Google to identify and classify images. Transfer learning extracts existing
knowledge learned from one environment to solve new problems. The pretrained CNN takes
advantage of training with a lower amount of data for the new problem and significantly shortens
the training procedure. In addition, the predictive model uses the zero-shot learning approach, as
the model needs to learn how to recognize new categories of instances by providing a high-level
description of the new categories that relate them to categories previously learned by the
machine. Here, the zero-shot learning approach is used to recognize the experimental images
of LG models with noise and imperfections, even though the training datasets have no exper-
imental images, and the semantic information about the LG modes is provided using simulated
data with artificially added noise in the experiments.

In order to test and optimize the performance of the deep CNN model, we conduct systematic
convergence studies concerning the iterations, learning rate, and batch size. The learning rate is
the most critical hyperparameter for the neural network and affects how quickly our predictive
model can converge to the best accuracy. The training and validation accuracies of the predictive
model versus the number of iterations for two different learning rates are shown in Fig. 4. The
training and test accuracies increase by increasing the number of iterations, and higher learning
rates (i.e., α ¼ 0.1) accelerate the convergence of the deep CNN model to higher training and
validation accuracies. While choosing this learning rate increases the accuracy more quickly, a
larger learning rate makes the optimization process unable to settle in the global minimum of the
loss function, lowering the model accuracy. In addition, the fluctuations of the training and val-
idation convergence decrease after ∼100 iterations at the larger learning rate. This demonstrates
that the size of the datasets and the deep CNN model are properly selected, and the model is not
suffering from overfitting. Batch size is another important hyperparameter to tune in modern
deep learning systems. Choosing a small batch size allows the model to start learning before
having to see all the data. However, the model may not converge to the global optima, resulting
in a smaller accuracy. As shown in Fig. 4, decreasing the batch size to 8 decreases the accuracy of
the predictive model, and the model starts to bounce around the global optimum [Fig. 4(d)].
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Increasing the batch size cannot lead to further improvement in the model accuracy or computa-
tional speedups in nonparallel computer systems. In many cases, depending on the size of train-
ing databases, increasing the batch size decreases the model generalization, resulting in lower
model accuracy.

4 Results

Figure 5 shows the confusion matrix that guides humans to observe the dominant confusing
classes of the 16 LG modes [see Fig. 3(a)]. The predicted number of observations classified
by the CNN model is shown for 20 test images of the first and second experiments in upper
and lower triangles, respectively. The diagonal represents the correctly predicted number of each
observation, while off diagonals provide information about the misclassification. For instance,
the confusion matrix indicates that the classification model has difficulty in correctly predicting
the neighbor classes with the same p values. It can be noticed that the classification model is
more confused in classifying the images of LG modes from the second experiment compared to
the first experiment because these images generally have more imperfections and are thus dis-
jointed from the training sets consisting of the simulated LG modes. The model demonstrates the
same performance and correctly predicts all the test images of the LG mode l ¼ 0, p ¼ 0 for
both experiments.

Two transforms were used during the training process to examine the zero-shot learning
approach and CNN’s ability to generalize to new data. In the first transform, the training data
are only selected from the theory dataset (zero-shot learning), whereas the second transform
includes both theory and experimental datasets to increase the diversity of CNN’s training data
for the classification problem. Figure 6 shows the prediction confidence of the CNN model on
two LG modes as examples of true and false predictions for the first experimental set up. For the
CNN model that followed the zero-shot learning approach (trained using the simulated modes to
test on experimental modes, as shown in dark red and dark blue bars), the LG mode of l ¼ 1,
p ¼ 3 is correctly predicted in Fig. 6(a) with about a 5% margin. However, the LG mode of
l ¼ 1, p ¼ 1 is incorrectly predicted as l ¼ 1, p ¼ 2 in Fig. 6(b). These prediction confidences
are increased to 97% and 99% for the LG modes of l ¼ 1, p ¼ 3 and l ¼ 1, p ¼ 1, respectively,
when the CNN models are trained using both simulated and experimental data (non-zero-shot

Fig. 4 Training and test accuracies of the deep CNN predictive model versus the number of
iterations for two different learning rates of 0.01 and 0.1 and batch sizes of 8 and 64.
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learning). Similarly, Fig. 6 shows the prediction confidence of two LGmodes as examples of true
and false predictions for the second experimental set up. For the CNN model that is trained using
the simulated images and tested on experimental data [dark red and dark blue in Fig. 6(c)], the
LG mode of l ¼ 0, p ¼ 1 is correctly predicted with a confidence of 88% and margin of ∼85%
from the second and third possible modes (l ¼ 0, p ¼ 2). In Fig. 6(d), however, the LG mode of
l ¼ 3, p ¼ 1 is incorrectly predicted as l ¼ 3, p ¼ 2 with a prediction confidence of 38%. The
performance of the zero-learning approach degrades in classifying the neighbor LG modes with
the same p values, as also indicated in the confusion matrix. The CNN model that was trained
using both the simulated and experimental data predicted all the LG modes correctly with a
confidence larger than 98%. Our results show that increasing the number of layers cannot
improve the accuracy of the CNN model in the first transform. To improve the accuracy, more
diversified training data of the theoretical images have to be added by incorporating other exper-
imental imperfections, such as intensity discontinuities and distortion in mode shape.

In order to evaluate the ability of the predictive model to identify the LG modes and study its
classification performance, five metrics are calculated as follows:

EQ-TARGET;temp:intralink-;sec4;116;184Precision ¼ TP∕ðTPþ FPÞ

EQ-TARGET;temp:intralink-;sec4;116;141Sensitivity ¼ TP∕ðTPþ FNÞ

EQ-TARGET;temp:intralink-;sec4;116;119Specificity ¼ TN∕ðFPþ TNÞ

EQ-TARGET;temp:intralink-;sec4;116;97F-score ¼ 2 × TP∕ð2 × TPþ FPþ FNÞ

EQ-TARGET;temp:intralink-;e002;116;75Accuracy ¼ ðTPþ TNÞ∕ðTPþ FPþ FNþ TNÞ; (2)

Fig. 5 Confusion matrix showing the exact number of correctly classified and misclassified
images in classifying 16 categories of LG modes.
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where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative
numbers of the LG modes being classified for each class, respectively. The precision can be
viewed as a measure of a classifier’s exactness, and the sensitivity (or recall) as a measure
of a classifier’s completeness. Low precision and sensitivity indicate many false positives and
many false negatives, respectively. The specificity measures the proportion of correctly identified
negatives. The F-score considers both precision and recall. The F-score becoming 0 indicates
the worst accuracy, while the best accuracy corresponds to 1.

Figure 7 shows five measures that are computed for the performance analysis of the predic-
tive classification model for each LG mode and two experimental setups. It can be noticed from
Fig. 7(a) that the accuracies of all 16 classes of LG modes are above 97% and 90% for the first
and second experiments, respectively. The accuracy refers to the true predictions among the total
validation. The classification model has a worse performance in classifying the LG modes from
the second experiment compared to the first experiment because they are more disjointed
from the training sets consisting of the simulated LG modes. For the LG mode l ¼ 0,
p ¼ 0 whose profile is a simple filled circle, the accuracy of predictive models reaches the maxi-
mum values of 100% and 98.7% for the first and second experiments, respectively. The model
demonstrates the same performance in the confusion matrix and correctly predicts all test
images. However, the model falsely misclassifies four additional LG modes to this LG mode
(false positive). This degrades the maximum accuracy (classifier’s exactness) for the second
experiment. Similarly, the specificity measures [Fig. 7(b)] of all 16 classes of LG modes are

Fig. 6 Prediction confidence on two LG modes from the first experimental set up for (a) l ¼ 1, p ¼
3 and (b) l ¼ 1, p ¼ 1 as examples of true and false predictions, respectively. The dark red and
dark blue indicate the results of the CNNmodels trained using the simulated images, while the light
red and light blue indicate the results of the CNN models trained using both the simulated and
experimental images. Prediction confidence on two LG modes from the second experimental set
up for (c) l ¼ 0, p ¼ 1 and (d) l ¼ 3, p ¼ 1 as examples of true and false predictions, respectively.
The dark red and dark blue indicate the results of the CNN models trained using the simulated
images, while the light red and light blue indicate the results of the CNN models trained using both
the simulated and experimental images.
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above 98% and 95% for the first and second experiments, respectively, demonstrating the
classifier’s completeness and exceeding the performance of conventional conjugate methods.21

In addition to high accuracy or high specificity, however, a sound classifier must also dem-
onstrate high performance for the other measures. In Figs. 7(c)–7(e), the F-score, sensitivity, and
precision of the predictive model for the two experiments are shown. It can be noticed that the
F-score of the second experiment can be as low as 35% with an average of 57%, demonstrating
the model prediction of many false positives and many false negatives in classifying the 16 LG
modes. However, the minimum F-score of the first experiment is about 80% with an average of
92% in classifying the 16 LG modes. Similar results can be seen for the sensitivity and precision
of the first and second experimental set ups. In summary, considering all five classification mea-
sures, the CNN model that is trained using the theory dataset (zero-shot learning) performs well
for the first experiment. However, the CNN demonstrates degraded performance in classifying
the 16 LG modes for the second experiment due to more noise and the existence of other
experimental imperfections such as intensity discontinuities and distortion in mode shape
(i.e., deviations from perfect roundedness).

5 Discussion

In this paper, we employed a CNN model that reaches accuracies of ∼99% and ∼94% in rec-
ognizing LG modes for the first and second experiments, respectively. CNNs outperform other
ML models such as K-nearest neighbor (KNN) algorithms and ANNs, especially under strong
turbulence. KNN algorithms have high computational complexity and high sample imbalance,
while ANNs require manual extraction of the features of original images.47 Li et al.47 demon-
strated that CNN-based adaptive demodulators of the OAM shift-keying (OAM-SK) system
have lower error rates than KNN-based and ANN-based devices. The developed CNN model

Fig. 7 Analysis of five statistical metrics: (a) accuracy, (b) specificity, (c) F -score, (d) sensitivity,
and (e) precision for the model prediction in assigning the test images of the first and second
experiments to 16 classes of LG modes trained by the simulated data and tested by the exper-
imental data.
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in this paper includes three convolutional layers, three pooling layers, two dropout layers, and
two fully connected layers. Larger numbers of CNN layers potentially improve the recognition
accuracy.21 However, a trade-off exists between the efficiency of recognition and the complexity
of CNN models. Multihidden layer networks require longer computation time, more training
parameters, and a more sophisticated training algorithm that cannot be handled by the central
processing unit. They require a graphics processing unit that is capable of handling large-scale
parallel computing. In addition, in the case of zero-shot learning in which the CNN observes
OAM from classes that were not observed during training, the lower accuracy could be attributed
to the lack of sufficient similar and diversified training data. Following the zero-shot learning
approach, further improvement could be possibly achieved by diversifying the training data of
the theoretical images through incorporating other experimental imperfections, such as intensity
discontinuities and distortion in the modal shape. Figure 6 shows that incorporating both theo-
retical and experimental datasets to increase the diversity of CNN’s training data about the clas-
sification problem leads to 100% correct prediction of the modes (with confidence larger than
98%) for the second transform with the same number of layers in the neural network. In addition,
the choice of OAM modes and mode spacing for the training data of the CNN model can also
impact its final accuracy, since the intensity pattern of some modes is less sensitive to noise
such as turbulence, so that the classification of these modes by the CNN is relatively simpler.
For instance, symmetrical OAM modes with the same absolute value but opposite signs can
be multiplexed to form petal-like intensity patterns that are less sensitive to the effects of
turbulence.32,47–49

The developed CNN model can also be employed for other types of OAM carrying beams
such as vortex beams (VBs)50–55 in which the azimuthal phase dependence of OAM is coupled
with a helicoidal transverse polarization pattern. Decoding the information stored in VBs is
highly desirable for applications such as quantum information processing.56,57 However, the use
of conventional approaches to decode the information stored in VBs is challenging because they
require interferometry58,59 or spatial filtering.60,61 The effects of loss and noise62 on the state
tomography make these techniques unreliable for characterization and classification of VBs.50

For instance, the interferometric methods are susceptible to collimation accuracy and environ-
mental perturbations, because slight misalignment or vibrations destroy the interference patterns
and decrease the identification accuracy. In addition, interferometry and diffraction methods
have low speed and limited information extraction capability.63 For instance, Fickler et al.64

showed that sorting the radial index of LG modes is possible using a random scattering process
that reshapes the phase structure of the incident light. However, this approach has low efficiency
due to the strong multimode nature of the scattering process. Similarly, a mode sorter was
designed65 based on the fractional Fourier transform that decomposes the optical field and
thereby separates individual radial modes that were indexed by the value of their radial quantum
number. This approach has also low efficiency due to its complexity.

In this paper, we used CNN models for LG modes that can be similarly employed to extract
the OAM mode signal from distorted VBs. ML methods have significant advantages for rec-
ognizing and classifying specific polarization patterns of VBs,66 resulting in the accurate con-
struction and characterization50 of high-dimensional resources for quantum protocols. ML can
recognize unconjugated OAM modes1,47,66 in which the feature parameters are created by inter-
fering the VB with its mirror image in interferometry. To identify conjugated OAM modes, new
designs such as two-dimensional fork gratings63 can be used to produce diffraction patterns of
VBs with different feature parameters for training ML models. The CNN-based OAM recog-
nition system provides a promising approach to efficiently recognize and extract the properties of
high-dimensional photonic VB systems.50 CNNs eliminate the need for additional interferometry
stabilization and spatial filtering in decoding information stored in VBs and thereby provide a
robust technique to manage higher-dimensional quantum systems.67 Bekerman et al.68 used neu-
ral networks to develop a general framework of the optical mode sorter based on both the OAM
value69,70 and the radial index,65,71 demonstrating that ML can be used to distinguish between
OAM beams. More specifically, different beams that possess OAM can be distinguished without
interferometry according to a different set of radial quantum numbers that correspond to the
effective phase velocity as a key property of the VB modes. However, further studies are required
to examine ML’s ability to classify other types of OAM beams, such as beams with a Gaussian
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intensity profile before the beam propagates.52,53 In general, the CNN-based OAM recognition
system promotes the application of VBs in classical and quantum optics,72 including optical
microscopy and imaging,73,74 quantum information,75 optical storage,76 particle trapping,74 and
free-space communications.75

Generating, transmitting, and sorting states of light with different OAM values greatly
increase the transfer rate of free-space optical communications to the Tb/s range.3,22,77 To pro-
duce the constant frequency and spatial mode78 for this application, the temperature, current, and
grating position of the laser must be carefully tuned. However, under some external influence in
optical experiments, mode hops can make a laser simultaneously oscillate in many modes, mak-
ing the correct detection of the actual OAM mode challenging. The CNN-based OAM recog-
nition model is promising for self-tuning of the laser through feedback to improve the instability
in the laser output or subsequent beam delivery optics. CNNs contain the relevant feature extrac-
tion that can be used to enable self-tuning mode-locked lasers (MLL).79 CNN-based recognition
of beam translation and rotation can improve the performance of MLL fabrication resulting in
higher precision and reproducibility. CNNs have the capability of detecting multiple laser
machining parameters from the camera simultaneously that can be used to adjust the laser param-
eters (e.g., laser power) concurrently.80 Xie et al.81 developed a real-time closed-loop feedback
system, demonstrating that CNNs are efficient for detecting unintentional laser beam translations
and rotations82 and identifying laser machining parameters simultaneously. CNN-based OAM
recognition techniques can be used to optimize experiments because CNNs can be trained by
experimental data without requiring understanding of the physical properties of the laser. ML
techniques prove to be useful for many experimental tasks related to structured light in quantum
technologies, especially for detecting and demultiplexing OAM in the context of classical
and quantum communications. Demultiplexing of two modes has been experimentally
demonstrated68 and the number of modes could be extended to 12.83

The CNN-based OAM recognition model has a promising application for the OAM-SK sys-
tem in free-space optical communications in which the system requires rapid encoding of OAM
modes to digital signals. Currently, the benefit of OAM-SK is limited due to the lack of effective
detection methods to adapt the rapidly switched modes. ML techniques can be used for high-
speed and accurate detection of OAM modes. He et al.63 demonstrated that the OAM modes of
VBs ranging from −25 to þ25 could be quickly identified, and that the classification accuracy
reaches 99.55% after training with images influenced by the propagation distance, beam waist,
and atmospheric turbulence. Krenn et al.32 used an ANN to distinguish between the transmitted
OAMmodes of light that have significant distortion after propagation over a distance of 143 km.
The algorithm reaches an accuracy of more than 80% and decodes the transmitted message with
an error rate of 8.33%. Similarly, Li et al.47 demonstrated that CNNs consisting of five-layers
(two convolution layers, two pooling layers, and one fully connected layer) can detect
16-ary OAM with a recognition accuracy of ∼84% after propagating over 2 km under strong
turbulence.

Conventional mode recognition techniques such as the correlation filter method (CFM)84

reach a mode detection rate up to 30 Hz by utilizing a set of transmission functions encoded
in a computer-generated hologram.85 While the speed of CFM depends on the alignment and
calibration of the optical systems, methods based on the CNN model only need a CCD camera to
capture the beam intensity profile and recognize the optical modes. Although the spatially and
spectrally (S2) resolved method86 requires no prior detailed knowledge of the optical systems,
this technique requires longer measurement time and is thus unsuitable for real-time modal rec-
ognition. Other methods such as the stochastic parallel gradient descent algorithm include an
iterative search process that limits the rate of mode recognition to 9 Hz.87 OAM mode sorting
based on unitary transformations88 can convert the azimuthal phase profile of an OAMmode to a
set of truncated plane waves and then separate them by a single lens. While in theory a power
transmission efficiency of unity can be achieved, the diffraction due to the finite size of the
unwrapped modes limits the degree of separation of two adjunct OAM modes, diminishing the
efficiency of this mode sorting approach.89

Deep neural networks have been used for many tasks of real-time image recognition, includ-
ing autonomous driving,90 facial expression,91 texture synthesis,92 medical imaging,93 and
optical communications.94 An et al.95 used CNNs for real-time mode decomposition to identify
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the intrinsic mode properties of multimode fibers. The decomposition rate of CNNs can reach
∼200 Hz when testing on the simulated beam profiles and ∼30 Hz when testing on the exper-
imental beam profiles due to the restriction imposed by the maximum frame rate of the CCD
camera.95 The real-time mode recognition and decomposition capability of deep CNNs can be
improved using a camera with a higher frame rate.

6 Conclusions

Theoretical simulations coupled with measured experimental data and assisted by ML are begin-
ning to play an integral role in automated analysis and adaptive control of optical experiments.
In this paper, we apply an ML model to automatically detect and classify the LG modes. This
research will enable the full potential and applications of OAM of light by developing improved
sensing and imaging technologies. We train CNNs with the zero-shot learning approach by gen-
erating the experimental and simulated datasets of the lowest 16 LG modes that rely only on the
intensity images of their unique patterns. The predictive model is optimized to reach high overall
classification performance by conducting systematic convergence studies with respect to the
epochs, learning rate, and batch size. The experimental test data are generated using two exper-
imental set ups with different noise intensity, spatial dislocation, and nonuniform intensity in LG
modes in order to examine the performance of the CNN model under different experimental
conditions. Five performance measures of the predictive classification model are computed for
each LG mode. The model demonstrates both accuracy and specificity above 90% in classifying
the 16 LG modes for both experimental set ups. The F-score, sensitivity, and precision of the
second experiment are 35% for some LG modes with an average of 57%, due to larger exper-
imental imperfections such as intensity discontinuities and distortion in mode shape. However,
those of the first experiment are above 80% with an average of 92%. In conclusion, the CNN
model that is trained using the theory dataset (zero-shot learning) performs well for the first
experiment, while its performance in classifying the LG modes decreases for the second
experiment.
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