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Abstract: We investigate the exceptional points in a two-layer cylindrical waveguide structure
consisting of absorbing and non-absorbing dielectrics. We show that, by tuning the core to total
radius ratio and the refractive index of the core layer in such a structure, the complex effective
indices of two waveguide modes can coalesce so that an exceptional point is formed. We show that
the sensitivity of the effective index of the waveguide mode to variations of the refractive index of
the material filling the shell layer is enhanced at the exceptional point. In addition, we show that
larger sensitivity enhancement is obtained for smaller perturbations. Our results could potentially
contribute to the development of a new generation of chip-scale exceptional-point-enhanced
optical waveguide devices for modulation, switching, and sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Exceptional points (EPs), associated with the coalescence of both the eigenvalues and the
corresponding eigenstates of open quantum systems described by non-Hermitian Hamiltonians,
have attracted a lot of attention in recent years [1–5]. EPs have been investigated in ultrasonic
cavities [6], mechanics [7], electronic circuits [8], and molecular systems [9]. EPs in non-
Hermitian optical systems can lead to numerous interesting phenomena such as power oscillation
[10,11], optical isolation [12], unidirectional light reflection [13–15], perfect absorption [16–18],
enhanced sensing [19–22], directional lasing [23,24], neuromorphic photonics [25], slow light
[26], topological waveguiding [27], and others [28–35]. In optical waveguide systems, EPs
have been observed in coupled waveguide structures with parity-time (PT) symmetry. In such
structures one of two parallel waveguides experiences gain, while the other one experiences
an equal amount of loss [11,36]. Recently, Alaeian et al. reported observing EPs in a single
three-layer cylindrical coaxial waveguide consisting of a dielectric layer sandwiched between two
silver layers after introducing balanced gain and loss azimuthally within the dielectric layer [37].
However, these PT-symmetric optical systems are hard to implement in practice, because the
required periodic modulation of the refractive index profile necessitates careful tuning of both the
real and imaginary parts of the refractive indices of the constituent materials. EPs have also been
observed in non-PT-symmetric structures with unbalanced gain and loss [29,38–41]. In particular,
Doppler et al. and Ke et al. showed that EPs exist in coupled waveguide structures without
gain media [29,38]. This is due to the fact that EPs exist in a larger family of non-Hermitian
Hamiltonians, since PT-symmetry is not a necessary condition for the existence of EPs [40,41].
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Designing single non-PT-symmetric waveguides to exhibit EPs could be essential for developing
compact and easy-to-implement exceptional-point-enhanced optical devices.

In this paper, we investigate the EPs in a two-layer cylindrical waveguide structure consisting
of absorbing and non-absorbing dielectrics. The effective indices of the propagating waveguide
modes are the eigenvalues of the non-Hermitian system, and the corresponding propagating
waveguide modes are the system eigenfunctions. We show that, by tuning the core to total radius
ratio and the refractive index of the core layer, the complex effective indices of two waveguide
modes can coalesce so that an EP is formed. We investigate the properties of the realized EP of
the structure, as well as the associated physical effects of level repulsion and crossing. We show
that the sensitivity of the effective index of the waveguide mode to variations of the refractive
index of the material filling the shell layer is enhanced at the EP. In addition, we show that larger
sensitivity enhancement is obtained for smaller perturbations. We also find that, as the loss in the
shell layer increases, the sensitivity increases. Our results could potentially contribute to the
development of a new generation of chip-scale exceptional-point-enhanced optical waveguide
devices for modulation, switching, and sensing.

The remainder of the paper is organized as follows. In Section 2, we review the transfer matrix
method which can account for the behavior of the proposed two-layer cylindrical waveguide
structure. In Subsection 3.1 we use this theory to show that the two-layer cylindrical waveguide
structure when properly designed exhibits an EP. The realized EP of the structure and its
topological properties are then investigated in Subsection 3.2. In Subsection 3.3 we investigate
the sensitivity of the effective index of the waveguide mode of the structure to variations of
the refractive index of the material filling the shell layer at the EP. Finally, our conclusions are
summarized in Section 4.

2. Theory

Our proposed two-layer cylindrical waveguide structure consists of absorbing and non-absorbing
dielectrics (Fig. 1). The general solution for the modal fields of a circularly symmetric cylindrical
waveguide can be written in the following form [42]

F(r, φ, z) = f(r)ej(mφ+βz), (1)

where f = (e,h) is a six-component electromagnetic field vector that only depends on r, β is the
complex wavevector of the waveguide mode, and m is the azimuthal mode number. By expanding
the fields in terms of cylindrical wave functions [42–45], the electromagnetic fields in each region
can be expressed as follows: The fields in the core layer (r<a1) with refractive index n1 are given
by 
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2, k0 is the wavenumber in free space, µ0 is the magnetic permeability of free
space, and ε1 = n21. Jm and Nm are the m-th order Bessel functions of the first and second
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kind, respectively. The complex effective index neff and wavevector β of the waveguide mode
are related through β = k0neff. Ae1, Be1, Ah1, and Bh1 are field coefficients [42]. Note that
Be1 = Bh1 = 0, which is due to the fact that the field components have to converge at the origin of
coordinates. Similarly, the fields in the shell (a1<r<a2) with refractive index n2 (Fig. 1) can be
written as 
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U2
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2, and ε2 = n22. Ae2, Be2, Ah2, and Bh2 are field coefficients. The fields outside the
cylindrical waveguide structure (r>a2) are expressed as

eφ

ez

hφ

hz


= M3



Ae3

Be3

Ah3

Bh3


, (6)

where

M3 =



mβIm(Wr)
W2r

mβKm(Wr)
W2r

jωµ0I′m(Wr)
U1

jωµ0K′m(Wr)
W

Im(Wr) Km(Wr) 0 0
−jωε3I′m(Wr)

W
−jωε3K′m(Wr)

W
mβIm(Wr)

W2r
mβKm(Wr)

W2r

0 0 Im(Wr) Km(Wr)


, (7)

W2 = β2 − n23k
2
0, and n3 = 1 is the refractive index of free space. Im and Km are the m-th order

modified Bessel functions of the first and second kind, respectively. Ae3, Be3, Ah3, and Bh3 are
field coefficients. Note that Ae3 = Ah3 = 0, which is due to the fact that the electromagnetic fields
of the waveguide mode have to fulfill an outgoing wave boundary condition at infinity [42]. By
enforcing the boundary conditions for the electromagnetic field components at each interface
r = ai, i = 1, 2 and using the transfer matrix method [42,46], we derive the following equation
which relates the field coefficients in the core and air regions
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where M12 = M−12
��
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, and M23 = M−13
��
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. The above equation can be further
reduced to 
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We can therefore obtain the effective index neff of the propagating modes by solving the following
nonlinear equation������ m1,1 m1,3

m3,1 m3,3

������ = m1,1(neff)m3,3(neff) − m1,3(neff)m3,1(neff) = 0. (10)

Fig. 1. Schematics of a two-layer core-shell cylindrical waveguide structure.

3. Results

We optimize the core to total radius ratio χ = a1
a2 (Fig. 1), and the refractive index of the core

layer n1, to obtain a core-shell cylindrical waveguide structure as in Fig. 1 which exhibits an EP.
Equation (10) is numerically solved using Newton’s method [47] to calculate the effective index
neff of the propagating modes. Since various classes of materials such as semiconductors and
oxides have high refractive indices up to 3.4 [48], the refractive index of the core layer in our
structure n1 is optimized within the range from 2 to 3.4. The shell layer is filled with an active
material with refractive index n2 = 2.02 + jκ, corresponding to silicon dioxide doped with CdSe
quantum dots [49–51]. The imaginary part κ of the refractive index can be modified with an
external control beam [49,51]. In addition, we choose k0a2 = 10, so that the proposed waveguide
structure supports multiple propagating modes.

3.1. Location of exceptional points

Here we choose κ = 0.05 for the imaginary part of the refractive index n2 of the material
filling the shell layer (Fig. 1), which is within the range of experimentally achievable values
[50,51]. By solving Eq. (10) using Newton’s method, we find that an EP emerges for n1 = 2.875,
χ = a1

a2 = 0.514, and azimuthal mode number of m = 6. At this EP, the real and imaginary parts
of the effective indices of two waveguide modes coalesce at neff = 1.497 + j0.046.

Similar toPT-symmetric quantum systems, PT-symmetric optical systems possess two different
phases [11,21]. The first phase is the PT-unbroken phase with real eigenvalues. The second
phase is the PT-broken phase characterized by complex conjugate eigenvalues with equal real
parts but opposite imaginary parts. The transition between the two phases takes place at the
EP where the two eigenvalues coalesce. Figure 2(a) shows a particular curve that we found in
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the χ − n1 design parameter space, where either the real parts or the imaginary parts of the
effective indices of the two waveguide modes coincide. We parameterize this parameter curve by
Γ = −sgn(∆χ)

√
(∆χ)2 + (∆n1)2, where ∆χ = (a1 − a1,EP)/a2 = χ − χEP, ∆n1 = n1 − n1,EP, and

sgn is the sign function. In Figs. 2(b) and 2(c) we show the evolution of the real and imaginary
parts, respectively, of the eigenvalues neff of the two waveguide modes along the particular
curve parametrized by Γ in the χ − n1 design parameter space. We observe that for Γ>0, the
two eigenvalues have equal real parts but different imaginary parts, which is analogous to the
PT-symmetric broken regime. When Γ decreases to zero, the two eigenvalues coalesce and the
EP is formed. For Γ<0, the real parts of the eigenvalues bifurcate and their imaginary parts
merge, which actually resembles the PT-symmetric unbroken regime. Note that the imaginary
part of the eigenvalues for Γ<0 is non-zero, and the imaginary parts of the eigenvalues for Γ>0
are not conjugate [Fig. 2(c)]. This is due to the fact that our proposed waveguide structure
(Fig. 1) is a non-Hermitian optical system without gain, which is different from conventional
PT-symmetric non-Hermitian optical systems with balanced gain and loss [11,21].

Fig. 2. (a) A curve in the χ − n1 design parameter space parameterized by Γ =
−sgn(∆χ)

√
(∆χ)2 + (∆n1)2 (blue line), where either the real parts or the imaginary parts

of the effective indices of the two waveguide modes coincide. The exceptional point is
located at (χ, n1) = (0.514, 2.875) (green dot). Results are shown for n2 = 2.02 + j0.05,
k0a2 = 10, and m = 6. (b) and (c) Real and imaginary parts of the effective indices of the
two waveguide modes (black and red lines) along the curve parametrized by Γ [Fig. 2(a)].
All other parameters are as in Fig. 2(a). The green vertical dashed lines indicate the location
of the exceptional point (Γ = 0).

To understand the underlying formation mechanisms of the EPs in our proposed two-layer
cylindrical waveguide system, the transverse field intensity distributions |eφ |2 along the curve Γ
[Fig. 2(a)] are shown in Fig. 3. More specifically, Figs. 3(a) and 3(b) show the field intensity
distributions |eφ |2 for the waveguide modes with effective indices neff = 1.5658 + j0.0373 and
neff = 1.5658 + j0.0552, respectively, for Γ = 0.35 (Fig. 2). We observe that one eigenmode is
mostly localized in the core region [Fig. 3(a)] and will therefore be referred to as the core mode,
while the other eigenmode is mostly localized in the shell layer [Fig. 3(b)] and will therefore
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be referred to as the shell mode. Figure 3(c) shows the field intensity distribution |eφ |2 for the
degenerate mode with effective index neff = 1.497 + j0.046 at the EP (Γ = 0 in Fig. 2). We
observe that for the waveguide mode at the EP the field intensity is strong in both the core and
shell regions. Figures 3(d) and 3(e) show the field intensity distributions |eφ |2 for the waveguide
modes with effective indices neff = 1.3423 + j0.0413 and neff = 1.4133 + j0.0413, respectively,
for Γ = −0.35 (Fig. 2). We observe that hybrid modes are formed due to the strong intermode
interaction between the two eigenmodes as the core to total radius ratio χ further increases along
the curve parametrized by Γ [Fig. 2(a)]. The EP is therefore the point of transition between the
strong intermode interaction phase and the weak intermode interaction phase. Similar kinds of
EPs have been observed in two-dimensional concentric circular cavity structures [6,52].

Fig. 3. (a) and (b) Field intensity distributions |eφ |2 of the waveguide modes along the curve
parametrized by Γ [Fig. 2(a)] for the structure of Fig. 1 for Γ = 0.35 (χ = 0.461, n1 = 3.220).
All other parameters are as in Fig. 2(a). (c) Field intensity distribution |eφ |2 of the waveguide
modes along the curve parametrized by Γ [Fig. 2(a)] for the structure of Fig. 1 at the
exceptional point (Γ = 0 corresponding to χ = 0.514, n1 = 2.875). All other parameters
are as in Fig. 2(a). (d) and (e) Field intensity distributions |eφ |2 of the waveguide modes
along the curve parametrized by Γ [Fig. 2(a)] for the structure of Fig. 1 for Γ = −0.35
(χ = 0.588, n1 = 3.530). All other parameters are as in Fig. 2(a). The dashed lines indicate
the interfaces r = ai, i = 1, 2 between different regions of the structure (Fig. 1).

In addition, the occurrence of EPs in our proposed two-layer waveguide structure (Fig. 1),
when the real and imaginary parts of the eigenvalues neff of the two waveguide modes evolve
along the curve parametrized by Γ [Fig. 2(a)], can be illustrated with a two-level model. The
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corresponding non-Hermitian Hamiltonian is given by [5]

H =


nr,eff + jni,eff γ

γ ñr,eff + j̃ni,eff

 , (11)

where the off-diagonal elements, which are equal to γ, are associated with the coupling strength
between the propagating waveguide modes, while the diagonal elements correspond to the
complex refractive indices nr,eff + jni,eff and ñr,eff + j̃ni,eff of the uncoupled propagating waveguide
modes. Here, the two uncoupled modes correspond to the core and shell modes of the waveguide
structure of Fig. 1. Thus, the real parts of the refractive indices nr,eff and ñr,eff are equal [Γ>>0
in Fig. 2(b)]. On the other hand, the imaginary parts of the refractive indices ni,eff and ñi,eff
are associated with loss in the structure and are different (ni,eff>ñi,eff). The eigenvalues of this
Hamiltonian are

n±eff = nr,eff − jn+i,eff ±
√
γ2 − (n−i,eff)2, (12)

where n+i,eff =
ni,eff+ñi,eff

2 and n−i,eff =
ni,eff−ñi,eff

2 . As the core to total radius ratio χ increases, the
coupling strength between the two propagating waveguide modes γ increases. When γ is equal to
n−i,eff, an EP is formed: the two eigenvalues n±eff coalesce into nr,eff− jn+i,eff, and the two eigenmodes
ψ± coalesce into (1, j)T .

3.2. Topological properties of the exceptional points

In this subsection, to gain deeper insight into the exceptional point of the structure, we investigate
the associated phenomena of level repulsion and crossing, as well as the cross conversion of the
eigenvalues by encircling the EP.
It is well known that non-Hermitian quantum systems can experience a transition from level

repulsion to level crossing or vice versa by the slipping of EPs over the parameter space [1–3,9].
To provide further evidence of the occurrence of an EP in the waveguide structure of Fig. 1,
we calculate the real and imaginary parts of the effective indices of the propagating waveguide
modes below (n1 = 2.865) and above (n1 = 2.885) the critical refractive index of the core layer
(n1 = 2.875) as a function of the core to total radius ratio χ (Fig. 4). We observe that the effective
indices show level repulsion in the real parts and level crossing in the imaginary parts when the
refractive index of core layer is below (n1 = 2.865) the critical value of the EP. In contrast, the
effective indices show level crossing in the real parts and level repulsion in the imaginary parts
when the refractive index of core layer is above (n1 = 2.885) the critical value of the EP.

Fig. 4. (a) Real and imaginary parts of the effective indices of the propagating waveguide
modes as a function of the core to total radius ratio χ for n1 = 2.865. All other parameters
are as in Fig. 2(a). (b) Same as in (a) except that n1 = 2.885.

Another unique topological property of EPs is that, when encircling an EP in parameter space,
the eigenvalues will switch their positions after a closed loop of 2π because of the square root
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behavior of the singularity [1,4,29,30,46,53]. In our cylindrical optical waveguide structure
(Fig. 1), we consider the parameter space of the refractive index of the core layer n1 and the core
to total radius ratio χ. The EP is encircled by a circular loop with a radius of ρ in the n1 − χ
plane and is located at the center of this circle (n1 = 2.875, χ = 0.514) [Fig. 5(a)]. We choose
the radius ρ to be 0.01 to ensure that only the EP that we obtained by optimizing the structure is
embedded inside this circle. We vary the refractive index of the core layer n1 and the core to total
radius ratio χ in the counterclockwise direction along the circular loop from the initial position
A with n1 = 2.885, χ = 0.514 [Fig. 5(a)]. That is, we vary the refractive index of the core layer
n1 and the core to total radius ratio χ so that

n1 = n1,EP + ρcosθ, χ = χEP + ρsinθ, (13)

where θ is adiabatically varied from θ = 0 to θ = 2π.

Fig. 5. (a) A circular loop in the parameter space of the refractive index of the core layer n1
and the core to total radius ratio χ. The circle is centered at the exceptional point (red dot with
n1 = 2.875, χ = 0.514), and its radius ρ is set to be 0.01. The blue dot represents the starting
position of the loop (point A with n1 = 2.885, χ = 0.514). (b) and (c) The trajectories of the
real and imaginary parts of the effective indices of the propagating waveguide modes for the
structure of Fig. 1, as the path of the refractive index of the core layer n1 and the core to total
radius ratio χ traces the circular loop of Fig. 5(a) in the counterclockwise orientation. All
other parameters are as in Fig. 2(a).

Figures 5(b) and 5(c) show the trajectories of the real and imaginary parts of the effective
indices of the waveguide modes for the structure of Fig. 1, as the path of the refractive index
of the core layer n1 and the core to total radius ratio χ traces the circular loop of Fig. 5(a). We
indeed observe that the two complex effective indices switch their values after one loop of 2π
in the n1 − χ plane. The cross conversion of the two eigenvalues shown in Figs. 5(b) and 5(c)
further confirms the existence of the EP in our proposed two-layer cylindrical optical waveguide
of Fig. 1. In contrast, if there is no EP in the closed loop, the eigenvalues will return to their initial
values at the end of the loop [1]. Note that the cross conversion of the two eigenvalues implies
the existence of an EP inside the loop. Taking advantage of this unique topological property of
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EPs, the cross conversion of the two eigenvalues indicates the existence of the EP inside the loop
without the need to locate the exact parameters at which the EP occurs [1]. Practical realization
of the two-parameter control in our structure in order to encircle the EP, can be achieved by
adiabatically varying the two parameters (refractive index of the core layer n1 and core to total
radius ratio χ) along the direction of propagation z [38]. More specifically, by setting θ = 2πz/L
in Eq. (13), we obtain n1 = n1,EP + ρcos(2πz/L), χ = χEP + ρsin(2πz/L). The length parameter
L should be large, so that the variation along the direction of propagation z is slow [38].

3.3. Applications of EPs in two-layer cylindrical optical waveguides

It has been demonstrated both theoretically and experimentally that EPs can enhance the sensing
of nanoparticles [19,21]. More specifically, the frequency splitting at an EP is proportional to the
square root of the external perturbation, whereas the response to the external perturbation at a
conventional diabolic point is linear [3,19,21]. In addition, the performance of optical absorption
switches is strongly dependent on the sensitivity of the imaginary part of the effective index
of the waveguide mode to variations of the imaginary part of the refractive index of the active
absorbing material [51]. In this subsection, we show that for our proposed two-layer cylindrical
waveguide structure of Fig. 1 the sensitivity of the imaginary part of the effective index of the
waveguide mode to variations of the imaginary part of the refractive index of the active absorbing
material is enhanced at the EP.
When a variation of ∆κ is introduced into the imaginary part κ of the refractive index of the

active absorbing material filling the shell layer of the waveguide (Fig. 1), the waveguide mode
at the EP is perturbed and split into two modes. We define the effective index splitting ∆neff
as the difference between the effective indices of these two waveguide modes divided by two.
Figure 6(a) shows the imaginary part of ∆neff as a function of the variation ∆κ at the EP for
k0a2 = 10, n1 = 2.875, n2 = 2.02 + j0.05, χ = 0.514, and m = 6. Similar to nanoparticle sensors
in PT-symmetric optical systems based on second order EPs [21,22], we observe a square-root
dependence of the effective index splitting on the variation ∆κ. As shown in the log-log plot
of Fig. 6(b), a fitting straight line (red line) with a linear slope of ∼ 1

2 confirms the square-root
dependence of the imaginary part of the effective index splitting Im(∆neff) on the refractive index
variation ∆κ.

To characterize the sensing capability of the proposed two-layer cylindrical waveguides at EPs,
we define the sensitivity Im(∆neff)

∆κ . In addition, we consider as a reference waveguide a single-layer
cylindrical waveguide with its core filled with the same active absorbing material as the one
filling the shell of the waveguide in Fig. 1. We then define the sensitivity enhancement as

η =

���� Im(∆neff)/∆κ
Im(∆neff,single)/∆κ

���� = ���� Im(∆neff)
Im(∆neff,single)

����, (14)

where ∆neff,single is the variation in the effective index of the waveguide mode of the reference
single-layer cylindrical waveguide induced by a variation∆κ in the imaginary part of the refractive
index of the material filling the core of the waveguide. Figure 6(c) shows the imaginary part of
∆neff,single as a function of the variation ∆κ for the waveguide mode of the reference single-layer
cylindrical waveguide with k0asingle = 10 and m = 6. Here asingle is the radius of the core of the
reference single-layer cylindrical waveguide. We observe that the imaginary part of ∆neff,single
is linearly proportional to the perturbation ∆κ. Figure 6(d) shows the sensitivity enhancement
η [Eq. (14)] as a function of the variation in the imaginary part of the refractive index of the
absorbing material ∆κ. We observe that the sensitivity enhancement significantly increases as
the refractive index variation ∆κ decreases, due to the square root dependence of the effective
index splitting on the refractive index variation at EPs [21,22]. In other words, larger sensitivity
enhancement is obtained for smaller perturbations [22].
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Fig. 6. (a) Imaginary part of the effective index splitting ∆neff as a function of the variation
∆κ in the imaginary part of the refractive index of the active absorbing material filling the
shell layer of the waveguide of Fig. 1 at the exceptional point. All other parameters are as in
Fig. 2(a). (b) Log-log plot corresponding to (a). We show the results obtained by solving
Eq. (10) numerically using Newton’s method (squares), as well as a fitting straight line (red
line). (c) Imaginary part of the variation ∆neff,single in the effective index of the waveguide
mode of the reference single-layer cylindrical waveguide as a function of the variation ∆κ in
the imaginary part of the refractive index of the material filling the core of the waveguide.
Results are shown for k0asingle = 10 and m = 6, where asingle is the radius of the core of the
reference single-layer cylindrical waveguide. All other parameters are as in Fig. 2(a). (d)
Sensitivity enhancement η [Eq. (14)] as a function of the variation ∆κ in the imaginary part
of the refractive index of the absorbing material. All other parameters are as in Fig. 2(a).

When a small variation of ∆κ>0 is introduced into the imaginary part κ of the refractive
index of the material filling the shell layer (Fig. 1), nr,eff, n+i,eff, and n−i,eff in Eq. (12) change to
nr,eff + ∆nr,eff, n+i,eff + ∆n+i,eff, and n−i,eff + ∆n−i,eff, where ∆nr,eff, ∆n+i,eff, and ∆n−i,eff are also small.
The eigenvalues of the Hamiltonian corresponding to the two-level model [Eq. (11)] then change
to

n±eff ' nr,eff + ∆nr,eff − j(n+i,eff + ∆n+i,eff) ±
√
γ2 − (n−i,eff + ∆n−i,eff)2. (15)

As mentioned above, for this two-level model an EP is formed when γ is equal to n−i,eff. When the
small variation of ∆κ is introduced, the waveguide mode at the EP is perturbed and split into two
modes. The difference between the effective index of each of these waveguide modes and the
effective index of the mode at the EP is given by

∆n±eff ' ∆nr,eff − j∆n+i,eff ± j
√
2n−i,eff∆n−i,eff + (∆n−i,eff)2. (16)

Since the variation of ∆κ is small, the square root term in Eq. (16) dominates, so that
∆n±eff ' ±j

√
2n−i,eff∆n−i,eff + (∆n−i,eff)2. Neglecting the second-order term (∆n−i,eff)

2, we obtain

∆n±eff ' ±j
√
2n−i,eff∆n−i,eff = ±j

√
(ni,eff − ñi,eff)∆n−i,eff. (17)
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Thus, we showed that the difference ∆n±eff between the effective index of the perturbed waveguide
modes and the effective index of the mode at the EP is proportional to the square root of the
difference ni,eff − ñi,eff between the imaginary parts of the effective indices of the two uncoupled
waveguide modes.

In Fig. 7(a) we show the evolution of the imaginary part of the effective indices neff of the two
waveguide modes along the particular curve parametrized by Γ in the χ − n1 design parameter
space, where either the real parts or the imaginary parts of the effective indices of the two
waveguide modes coincide. We show results for different values of the imaginary part κ of the
refractive index of the active material filling the shell layer (Fig. 1). We found that for κ = 0.03,
κ = 0.05, and κ = 0.07 the EPs, corresponding to Γ = 0, are located at (n1 = 2.928, χ = 0.505),
(n1 = 2.875, χ = 0.514), and (n1 = 2.829, χ = 0.523), respectively, in the χ − n1 plane. We
observe that, as the loss in the shell layer increases, the difference between the imaginary parts of
the effective indices of the two waveguide modes for Γ>0 increases. This result can indicate
two points. Firstly, the variation ∆n−i,eff is positive when the variation of ∆κ>0 is introduced into
the shell layer. Since the factor n−i,eff is also positive, thus the effective index splitting is mostly
contributed by its imaginary component when the variation of ∆κ is sufficiently small [Eq. (17)].
Secondly, the imaginary part of the effective index splitting can be enhanced by increasing the
loss in the shell layer based on Eq. (17). Thus, based on Eq. (17) we expect that, as the loss
in the shell layer increases, the sensitivity of the structure will increase. Figure 7(b) shows the
sensitivity Im(∆neff)

∆κ at the EP as a function of the imaginary part κ of the refractive index of the
active material filling the shell layer of the waveguide (Fig. 1). In all cases, the variation in the
imaginary part of the refractive index of the material filling the shell layeris ∆κ = 5 × 10−4. As
expected, we observe that the sensitivity increases as the loss in the material filling the shell layer
increases.

Fig. 7. (a) Imaginary parts of the effective indices neff of the two waveguide modes along
the particular curve parametrized by Γ in the χ − n1 design parameter space for different
values of the imaginary part κ of the refractive index of the active material filling the shell
layer (Fig. 1). Results are shown for κ = 0.03, 0.05, and 0.07. All other parameters are as in
Fig. 2(a). (b) Sensitivity Im(∆neff)

∆κ at the exceptional point as a function of the imaginary part
κ of the refractive index of the active material filling the shell layer of the waveguide (Fig. 1).
In all cases, the variation in the imaginary part of the refractive index of the material filling
the shell layer is ∆κ = 5 × 10−4. All other parameters are as in Fig. 2(a).

In practice, our proposed two-layer cylindrical waveguide structure can be realized using
oxides such as Cu2O for the material filling the core of the waveguide (Fig. 1). Cu2O is lossless
and has a refractive index very close to 2.875 at the wavelength of λ0 = 610 nm [54,55]. In
addition, as mentioned above, our choice for the imaginary part of the refractive index n2 of the
material filling the shell layer (κ = 0.05) is within the range of experimentally achievable values
[50,51].
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4. Conclusions

In this paper, we investigated the EP of a two-layer cylindrical waveguide structure consisting
of absorbing and non-absorbing dielectrics. We used the transfer matrix method to account for
the behavior of the structure. The effective indices of the propagating waveguide modes are
the eigenvalues of the non-Hermitian system, and the corresponding propagating waveguide
modes are the system eigenfunctions. We showed that, by tuning the core to total radius ratio
and the refractive index of the core layer, the complex effective indices of two waveguide modes
can coalesce so that an EP is formed. The underlying formation mechanism of the EP in our
proposed two-layer cylindrical waveguide structure is associated with the interaction between two
propagating modes supported by the waveguide. We found that the interaction between the two
modes undergoes a transition from weak intermode interaction to strong intermode interaction,
which resembles the phase transition from the PT-symmetric phase to the PT-broken phase in
optical PT-symmetric systems.

We then investigated the realized EP of the structure, as well as the associated physical effects
of level repulsion and crossing. We found that the level repulsion to level crossing transition
in the real parts of the effective indices, and the level crossing to level repulsion transition in
the imaginary parts of the effective indices occur when the refractive index of the core layer is
crossing over the EP. In addition, we found that, when encircling the EP in the parametric space,
the eigenvalues switch their positions after a closed loop of 2π.

Finally, we found that the sensitivity of the effective index of the waveguide mode to variations
of the refractive index of the material filling the shell layer is enhanced at the EP. In addition, we
showed that larger sensitivity enhancement is obtained for smaller perturbations. We also found
that, as the loss in the shell layer increases, the sensitivity increases.

As final remarks, we note that the proposed two-layer cylindrical structures can be fabricated by
combining chemical vapor deposition and atomic layer deposition [56–58]. Even though here we
investigated EPs for azimuthal mode number m = 6, EPs exist for other azimuthal mode numbers
as well. As an example, an EP exists for n1 = 2.450, χ = 0.462 when m = 7. Selective excitation
of the individual modes of a multimode waveguide can be realized using fiber Binary phase spatial
light modulators [59]. In addition, here we investigated the sensitivity of the effective index of
the waveguide mode to variations of the refractive index of the material filling the shell layer,
and showed that the sensitivity is enhanced at the EP. Similarly, we expect that the sensitivity to
variations of the refractive index of the material surrounding the two-layer cylindrical structure
will also be enhanced at the EP. Thus, our results could potentially contribute to the development
of a new generation of chip-scale exceptional-point-enhanced optical waveguide devices for
modulation, switching, and sensing.
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