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Abstract: We design a non-parity-time-symmetric plasmonic waveguide-
cavity system, consisting of two metal-dielectric-metal stub resonators
side coupled to a metal-dielectric-metal waveguide, to form an exceptional
point, and realize unidirectional reflectionless propagation at the optical
communication wavelength. The contrast ratio between the forward and
backward reflection almost reaches unity. We show that the presence of
material loss in the metal is critical for the realization of the unidirectional
reflectionlessness in this plasmonic system. We investigate the realized ex-
ceptional point, as well as the associated physical effects of level repulsion,
crossing and phase transition. We also show that, by periodically cascading
the unidirectional reflectionless plasmonic waveguide-cavity system, we
can design a wavelength-scale unidirectional plasmonic waveguide perfect
absorber. Our results could be potentially important for developing a new
generation of highly compact unidirectional integrated nanoplasmonic
devices.
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1. Introduction

In the past few years, parity-time (PT ) symmetric optical systems have attracted considerable
attention because they provide a route to study the physics of non-Hermitian Hamiltonians.
The constructed PT -symmetric optical structures can lead to a range of extraordinary phenom-
ena, including novel beam refraction [1], power oscillation [2, 3], loss-induced transparency
[4], nonreciprocal light transmission [3, 5], perfect absorption [6–8], optical isolation [9], and
various other novel nonlinear effects [10, 11]. Exceptional points, which are branch point singu-
larities of the spectrum, associated with the coalescence of both eigenvalues and corresponding
eigenstates, lead to interesting phenomena such as level repulsion and crossing, bifurcation,
chaos, and phase transitions in open quantum systems described by non-Hermitian Hamilto-
nians [12–15]. Recently, there has been significant progress in using PT -symmetric periodic
optical structures with balanced gain and loss to attain unidirectional light reflectionlessness.
In such structures the reflection is zero when measured from one end of the structure at ex-
ceptional points, and nonzero when measured from the other end [16–18]. In addition, Gear
et al. demonstrated unidirectional reflectionlessness in a PT -symmetric optical structure with
alternating purely dielectric and purely magnetic slabs [19]. Unidirectional light reflectionless-
ness can also be attained in non-PT -symmetric structures [20–23]. In particular, Feng et al.
and Wu et al. achieved unidirectional light reflection in easier to fabricate structures without
gain media [20, 21]. This is due to the fact that exceptional points exist in a larger family of
non-Hermitian Hamiltonians [24]. Thus, asymmetric light propagation can be observed in both
PT -synthetic materials possessing active (gain) media, as well as in passive (lossy) systems, in
which the optical PT symmetry is therefore broken. Most recently, Feng et al. demonstrated
unidirectional reflectionless light transport at the exceptional point in a conventional large-size
non-periodic multilayer structure consisting of lossy and lossless dielectrics [25]. Finally, Shen
et al. showed theoretically that such a unidirectional phenomenon can be realized in a similar
two-layer non-PT -symmetric slab structure [26].

Plasmonic waveguides have shown the potential to guide and manipulate light at deep sub-
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wavelength scales [27]. Among different plasmonic waveguiding structures, metal-dielectric-
metal (MDM) plasmonic waveguides, which are the optical analogue of microwave two-
conductor transmission lines [28], are of particular interest [28–35], because they support
modes with deep subwavelength scale over a very wide range of frequencies extending from
DC to visible [36], and are relatively easy to fabricate [37, 38]. Achieving unidirectional reflec-
tionless propagation in a MDM plasmonic waveguide system could be potentially important for
developing a new generation of highly compact unidirectional integrated nanophotonic devices
such as chip-scale optical network analyzers [17, 20].

In this paper, we introduce a non-PT -symmetric plasmonic waveguide-cavity system consist-
ing of two MDM stub resonators side coupled to a MDM waveguide. In several previous studies
periodic modulation of the refractive index profile, which requires careful tuning of the con-
stituent materials, was used for synthesizing PT -symmetric optical structures [16-21]. Here, we
instead tune the geometric parameters of the structure to obtain an exceptional point, and realize
unidirectional reflectionlessness at the optical communication wavelength. The contrast ratio
between the forward and backward reflection almost reaches unity. We show that the presence
of material loss plays a crucial role on the realization of such a unidirectional phenomenon in
the proposed plasmonic system. We investigate the properties of the realized exceptional point
of the system, as well as the associated physical effects of level repulsion, crossing and phase
transition. We also show that by properly cascading the plasmonic waveguide-cavity structures
we can design a wavelength-scale unidirectional plasmonic waveguide perfect absorber.

The remainder of the paper is organized as follows. In Section 2, we employ single-mode
scattering matrix theory to account for the behavior of the proposed plasmonic waveguide-
cavity system. In Subsection 3.1 we use this theory to design a plasmonic waveguide system
with unidirectional reflectionless propagation. The realized exceptional point of the system, as
well as the associated physical effects of level repulsion, crossing and phase transition are then
investigated in Subsection 3.2. In Subsection 3.3 we design a wavelength-scale unidirectional
plasmonic waveguide perfect absorber by periodically cascading the unidirectional reflection-
less structure which was designed in Subsection 3.1. Finally, our conclusions are summarized
in Section 4.

2. Theory and design method

Fig. 1. (a) Schematic of a MDM plasmonic waveguide side coupled to two MDM stub
resonators. (b) Scattering matrix S of the entire two-port plasmonic waveguide system of
Fig. 1(a). H+

L , and H+
R are the complex magnetic field amplitudes of the incoming modes

at the left and right ports, respectively. Similarly, H−
L , and H−

R are the complex magnetic
field amplitudes of the outgoing modes from the left and right ports, respectively.

Our proposed structure consists of two MDM stub resonators side coupled to a MDM waveg-
uide [Fig. 1(a)]. Side-coupled-resonator structures have been previously proposed as compact
filters, slow-light waveguides, switches and sensors for plasmonic waveguides [28, 29, 31–35].
The optical properties of our proposed system can be described by the scattering matrix S de-
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fined by the following equation(
H−

R
H−

L

)
= S

(
H+

L
H+

R

)
=

(
t rb

r f t

)(
H+

L
H+

R

)
, (1)

where H+
L , and H+

R are the complex magnetic field amplitudes of the incoming modes at the left
and right ports, respectively. Similarly, H−

L , and H−
R are the complex magnetic field amplitudes

of the outgoing modes from the left and right ports, respectively [Fig. 1(b)]. In addition, t is
the complex transmission coefficient, while r f , rb are the complex reflection coefficients for
light incident from the left (forward direction) and from the right (backward direction), respec-
tively. In general, the matrix S is non-Hermitian, and its corresponding complex eigenvalues are

λ±
s = t ±√

r f rb. Its eigenstates, which are ψ± = (1,±
√

r f
rb
)T for rb �= 0, are not orthogonal. It

has been recognized that there is a close analogy between the Hamiltonian matrix in quantum
mechanics and this optical scattering matrix [7, 16, 17, 25]. By engineering the Hamiltonian
matrix in PT -symmetric quantum mechanical systems, its eigenvalue branches merge and PT
symmetry breaks down with the appearance of exceptional points [3, 17, 39]. Similarly, in our
proposed two-port plasmonic system (Fig. 1), by manipulating the elements of the scattering
matrix, the two eigenvalues can be coalesced and form exceptional points. This leads to uni-
directional reflectionless propagation in either the forward (r f = 0,rb �= 0) or the backward
direction (rb = 0,r f �= 0).

Fig. 2. (a) Schematic defining the reflection coefficient r1i, and transmission coefficients
t1i, t2i, when the fundamental TM mode of a MDM waveguide with width w is incident
at a junction with a MDM waveguide with width wi. (b) Schematic defining the reflection
coefficient r2i, and transmission coefficient t3i when the fundamental TM mode of a MDM
waveguide with width wi is incident at a junction with a MDM waveguide with width
w. (c) Schematic defining the reflection coefficient rsi of the fundamental TM mode of a
MDM waveguide with width wi at the boundary of a short-circuited MDM waveguide. (d)
Schematic defining the reflection coefficient r3i when the fundamental TM mode of a MDM
waveguide with width wi is incident at a junction with a MDM waveguide with width w
which is terminated by perfect electric conductor (PEC) boundary conditions.

In the case of unidirectional reflectionless propagation in the forward direction (r f = 0,rb �=
0), the scattering matrix S eigenvalues λ±

s coalesce into λc = t, and the eigenstates ψ± co-
alesce into the only eigenstate ψc = (1,0)T . Since the scattering matrix eigenstates coalesce
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into the only eigenstate ψc = (1,0)T , they no longer form a complete basis [21]. We note that
the eigenstate ψc corresponds, through Eq. (1), to a well defined physical scattering state with
(H+

L ,H+
R )T = ψc = (1,0)T and (H−

R ,H−
L )T = λcψc = (t,0)T . In other words the eigenstate cor-

responds to a state with unidirectional reflectionless propagation for light incident from the left
[21]. A similar discussion holds for the case of unidirectional reflectionless propagation in the
backward direction (rb = 0,r f �= 0).

Since the MDM waveguide and MDM stub resonators have deep subwavelength widths
(w,w1,w2 � λ ), only the fundamental TM mode is propagating. Thus, we can use single-
mode scattering matrix theory to account for the behavior of the proposed system of Fig. 1(a)
[32, 35]. The complex magnetic field reflection coefficients r1i,r2i and transmission coefficients
t1i, t2i, t3i for the fundamental propagating TM mode at a MDM waveguide junction are defined
in Figs. 2(a) and 2(b), while the reflection coefficient at the boundary of a short-circuited MDM
waveguide rsi is defined in Fig. 2(c). Alternatively, the transmission and reflection properties of
our proposed system can also be described by the transfer matrix T

(
H−

R
H+

R

)
= T

(
H+

L
H−

L

)
. (2)

The transfer matrix for light propagating across the structure section containing stub resonator
i can be calculated as

Mi =

(
b2

i −a2
i

bi

ai
bi

− ai
bi

1
bi

)
, (3)

where ai = r1i +
t2it3i

gi−r2i
,bi = t1i +

t2it3i
gi−r2i

,gi =
e2γiLi

rsi
, Li is the length of the ith MDM stub [Fig.

1(a)], and γi = αi + jβi is the complex wave vector of the fundamental propagating TM mode
in the ith MDM stub. Therefore, the transfer matrix T of the entire system of the two MDM
stubs coupled to the MDM waveguide [Fig. 1(a)] can be obtained by multiplying the transfer
matrices of the individual components

T = M1

(
e−γL 0

0 eγL

)
M2. (4)

Here γ is the complex wave vector of the fundamental propagating TM mode in the MDM
waveguide, and L is the distance between the two MDM stub resonators [Fig. 1(a)]. The cor-
responding transmission and reflection coefficients of the entire system can then be calculated
as

t =
H−

R

H+
L

∣∣∣
H+

R =0
=

H−
L

H+
R

∣∣∣
H+

L =0
=

b1b2

−a1a2e−γL + eγL , (5)

r f =
H−

L

H+
L

∣∣∣
H+

R =0
=

a2(b2
1 −a2

1)e
−γL +a1eγL

−a1a2e−γL + eγL , (6)

and

rb =
H−

R

H+
R

∣∣∣
H+

L =0
=

a1(b2
2 −a2

2)e
−γL +a2eγL

−a1a2e−γL + eγL . (7)

Note that the transmission coefficients for light incident in the forward and backward direc-
tions are the same due to reciprocity, whereas the reflection coefficients in the forward (r f ) and
backward (rb) directions are in general different. An exceptional point occurs when the eigen-
values λ±

s and the corresponding eigenstates ψ± coalesce. This in turn happens in the plasmonic
system of Fig. 1(a) when the reflection in either the forward or the backward direction is zero.
Based on Eqs. (6) and (7), the reflection coefficients in forward and backward directions are
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directly dependent on the lengths of the two MDM stubs L1 and L2 [ai and bi both depend on
the stub lengths based on Eq. (3)] and the distance L between the two MDM stubs. Thus, by
properly tuning these geometric parameters, it is possible to obtain an exceptional point which
offers an opportunity to control the unidirectional reflection of light in our plasmonic system.

3. Results

In several previous studies, periodic modulation of the refractive index profile, which requires
careful tuning of the constituent materials, was used for synthesizing PT symmetric optical
structures [16–21]. Here, we instead tune the geometric parameters of the proposed structure
(Fig. 1) to realize the exceptional point and obtain unidirectional reflectionlessness. The tuning
parameters of our proposed structure (Fig. 1) include the lengths of the two MDM stubs L1, L2,
and the distance L between the two MDM stubs. The width of the MDM waveguide is chosen
to be w = 50 nm, while the widths of the two MDM stubs are chosen to be w1 = 20 nm and
w2 = 100 nm. The metal is chosen to be silver, and the core material of MDM waveguides is
air.

We use a two-dimensional finite-difference frequency-domain (FDFD) method [40] to nu-
merically calculate the transmission and reflection coefficients in the MDM plasmonic waveg-
uide structure. This method allows us to directly use experimental data for the frequency-
dependent dielectric constant of metals such as silver [41], including both the real and imagi-
nary parts, with no approximation. Perfectly matched layer (PML) absorbing boundary condi-
tions are used at all boundaries of the simulation domain [42].

3.1. Unidirectional reflectionlessness

As mentioned in the previous section, when the two eigenvalues of the scattering matrix S
[Eq. (1)] are coalesced, the system exhibits an exceptional point, which leads to asymmetric
reflection: either the reflection coefficient in the forward direction r f or the reflection coeffi-
cient in the backward direction rb is zero. If such an asymmetric reflection of light is observed,
it reveals the existence of an exceptional point in the optical system. Therefore, here we first
design a plasmonic waveguide system with unidirectional reflectionless propagation. The real-
ized exceptional point of the system, as well as the associated physical effects of level repulsion,
crossing and phase transition are then investigated in the next Subsection (Subsection 3.2).

To obtain unidirectional reflectionless propagation, we use the scattering matrix theory [Eq.
(6)] described in Section 2. More specifically, we optimize the MDM stub lengths L1, L2, as well
as the distance between the stubs L [Fig. 1(a)], to minimize the amplitude of the reflection coef-
ficient in the forward direction |r f | at the optical communication wavelength of λ0 = 1.55μm.
The maximum lengths L1, L2 and distance L considered in the optimization parameter space
are long enough to support at least the second order resonance in each resonator. All com-
plex transmission and reflection coefficients in the scattering matrix equations are numerically
extracted using FDFD [35, 43, 44]. Since the MDM waveguide and MDM stubs modes have
different field profiles, to extract the product t2it3i [Figs. 2(a) and 2(b)] we terminate the simu-
lation domain at the plane of both output ports with perfect electric conductor (PEC) boundary
conditions [Fig. 2(d)]. Using this approach gives [43, 44]

t2it3i =
r3i − r2i

2e−2γd 1−r1ie−2γd+t3ie−2γd

(1−r1ie−2γd)
2−(t1ie−2γd)2

, (8)

where r3i is the complex reflection coefficient when the fundamental TM mode of a MDM
waveguide with width wi is incident at a junction with a MDM waveguide with width w which
is terminated by PEC boundary conditions, and d is the distance from the junction to the PEC
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boundary [Fig. 2(d)]. The scattering matrix model (Section 2) of the structure of Fig. 1(a) is
computationally efficient, and thus we are able to use an exhaustive search in the optimization
parameter space to minimize the reflection in the forward direction. Using this approach, we
find that, the reflection in the forward direction is almost zero (Rf = |r f |2 � 8.18× 10−9) for
L1 = 175 nm, L2 = 365 nm, and L = 561 nm at λ0 = 1.55μm. In addition, the reflection in the
backward direction for this structure is nonzero (Rb = |rb|2 � 0.619). Thus, we may conclude
that the plasmonic waveguide system of Fig. 1(a) is unidirectional reflectionless, and exhibits
an exceptional point for L1 = 175 nm, L2 = 365 nm, and L = 561 nm.

 Max

Min

(c)

(d)

Forward

Backward

200nm

Fig. 3. (a) Reflection spectra for the structure of Fig. 1(a) calculated for both forward and
backward directions using FDFD (solid lines) and scattering matrix theory (circles). Results
are shown for w = 50 nm, w1 = 20 nm, w2 = 100 nm, L1 = 175 nm, L2 = 365 nm, and
L= 561 nm. Also shown are the reflection spectra calculated using FDFD for lossless metal
(blue solid line). (b) Contrast ratio spectra for the structure of Fig. 1(a). All parameters are
as in Fig. 3(a). (c) and (d) Magnetic field amplitude profiles for the structure of Fig. 1(a) at
f = 193.4 THz (λ0 = 1.55μm), when the fundamental TM mode of the MDM waveguide is
incident from the left and right, respectively. All parameters are as in Fig. 3(a). (e) and (f)
Magnetic field amplitude in the middle of the MDM waveguide, normalized with respect to
the field amplitude of the incident fundamental TM waveguide mode in the middle of the
waveguide, when the mode is incident from the left and right, respectively. The two vertical
dashed lines indicate the left boundary of the left stub, and the right boundary of the right
stub. All parameters are as in Fig. 3(a).
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Figure 3(a) shows the reflection spectra for the structure of Fig. 1(a) calculated for both for-
ward and backward directions using scattering matrix theory (circles) for w = 50 nm, w1 = 20
nm, w2 = 100 nm, L1 = 175 nm, L2 = 365 nm, and L = 561 nm. Figure 3(a) also shows the
reflection spectra calculated using full-wave FDFD simulations (solid lines). We observe that
there is very good agreement between the scattering matrix theory results and the exact results
obtained using FDFD. We note that the small off-resonance difference between the scattering
matrix theory results and the FDFD results is due to coupling of higher order nonpropagating
modes of the waveguides [44]. The effect of the higher order modes is not negligible due to
the subwavelength dimensions of the structure. The FDFD results confirm that the optimized
structure of Fig. 1(a) is unidirectional reflectionless at f = 193.4 THz (λ0 = 1.55μm). In ad-
dition, the contrast ratio between the forward and backward reflection, defined as η = |Rf −Rb

R f +Rb
|

[20], as a function of frequency is shown in Fig. 3(b). At the wavelength of λ0 = 1.55μm, the
contrast ratio almost reaches unity (η �0.9999). The unidirectional reflectionless propagation
can be observed in the magnetic field distributions at the exceptional point with L1 = 175 nm,
L2 = 365 nm, and L = 561 nm [Figs. 3(c)-3(f)]. When the waveguide mode is incident from the
right (backward direction), the incident and reflected fields form a strong interference pattern
[Figs. 3(d) and 3(f)]. On the other hand, when the waveguide mode is incident from the left
(forward direction), there is hardly any reflection [Figs. 3(c) and 3(e)].

We observe that the reflection coefficient in the forward direction r f becomes zero when
a2(b2

1−a2
1)e

−γL+a1eγL = 0 [Eq. (6)], while the reflection coefficient in the backward direction
rb becomes zero when a1(b2

2−a2
2)e

−γL+a2eγL = 0. The asymmetric reflection in the plasmonic
waveguide system is clearly associated with the different geometrical dimensions of the two
stubs, which determine the coefficients a1, b1, a2, and b2. We also note that, since the reflection
in the structure is asymmetric, while the transmission coefficients in the forward and backward
directions are the same, the absorption in the structure is also asymmetric. As mentioned above,
the width of the left stub w1 is chosen to be smaller than the width of the right stub w2, so that
the propagation loss per unit length is larger in the left stub. Thus, when the structure of Fig.
1(a) is properly optimized, it is highly absorbing for light incident from the left, while the
absorption is low for light incident from the right. We also note that, for light incident from the
left, the total reflected wave results from the interference of the wave directly reflected from the
left stub, and the decaying amplitude into the backward direction of the resonant cavity fields of
the left stub resonator, as well as of the resonator formed between the two stubs. At f = 193.4
THz (λ0 = 1.55μm), these three components interfere destructively, so that the reflection in the
forward direction becomes zero.

In most optical devices, the material loss negatively affects the device performance, and as a
result the use of lossless transparent dielectric materials is preferred. However, it is worth noting
that the unidirectional reflectionless propagation would not be realized in the plasmonic waveg-
uide system of Fig. 1(a), if the material loss in the metal were not present. As mentioned above,
the transmission coefficients in the forward and backward directions are always identical due
to reciprocity. Thus, in the lossless case the reflection coefficients in the forward and backward
directions are also identical, since there is no absorption. When metallic loss is included in the
system of Fig. 1(a), the forward reflection is smaller than the one in the lossless case, whereas
the backward reflection is larger than the one in the lossless case at f = 193.4 THz [Fig. 3(a)].
In the presence of metallic loss, the plasmonic system is analogous to open quantum systems
which are subjected to dissipation and characterized by complex non-Hermitian Hamiltonians
[39]. The existence of exceptional points in the system of Fig. 1(a), which is associated with
both the eigenvalues and the eigenstates of the scattering matrix coalescing, and which is dif-
ferent from the lossless case, provides an opportunity to control the unidirectional reflection of
light. The presence of material loss in turn plays a crucial role on the realization of such a unidi-
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rectional phenomenon in the proposed plasmonic system. This is different from other classical
optical analogues of quantum systems, such as the plasmonic analogue of electromagnetically
induced transparency [35], which can be realized in both lossless and lossy optical systems.

3.2. Level repulsion, crossing, and phase transition

In this subsection, to gain deeper insight into the exceptional point of the system, we investigate
the associated phenomena of level repulsion, crossing and phase transition.

10
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Fig. 4. (a) and (b) Real and imaginary parts of the eigenvalues of the scattering matrix S as
a function of the distance L between the two MDM stub resonators [Fig. 1(a)]. The black
and red lines correspond to eigenvalues λ+

s = t+
√

r f rb and λ−
s = t−√

r f rb, respectively.
All other parameters are as in Fig. 3(a). (c), (d), and (e) Reflection in the forward direction
Rf = |r f |2 as a function of the real and imaginary parts of L at f = 192.4 THz, 194.4
THz, and 193.4 THz, respectively. All other parameters are as in Fig. 3(a). The white circle
indicates the location of the exceptional point, and the white vertical line indicates the real
L-axis.

In Figs. 4(a) and 4(b) we show the real and imaginary parts, respectively, of the eigenvalues
λ±

s of the scattering matrix S [Eq. (1)] as a function of the distance L between the two MDM
stub resonators [Fig. 1(a)], calculated using Eqs. (4)-(8) for the optimized plasmonic waveguide
structure (Fig. 3). We observe that the real and imaginary parts of the two eigenvalues indeed
collapse for L = 561 nm. As discussed above, this is the optimal distance between the two stubs,
which minimizes the reflection in the forward direction. Moreover, in open quantum systems, a
repulsion (crossing) for the real part of the energy and a crossing (repulsion) for the imaginary
part of the energy in the two-dimensional complex energy plane is required around exceptional
points [12, 13]. In Figs. 4(a) and 4(b), we indeed observe the level repulsion in the real parts of
the eigenvalues, as well as the level crossing in their imaginary parts, which resembles a system
consisting of two coupled damped oscillators also described by a non-Hermitian Hamiltonian
matrix [12]. Unlike the Hermitian case, the levels approach each other in the form of a cusp
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rather than a smooth approach, because of the plain square root behavior of the singularity [Fig.
4(a)] [12].

To gain further insight into the properties of the exceptional point for the system of Fig. 1(a),
we consider the location of the exceptional point, as the distance L between the two MDM stub
resonators [Fig. 1(a)] and the frequency f are varied. As we saw above, for f = 193.4 THz
(λ0 = 1.55μm) the exceptional point is located at L = 561 nm [Figs. 4(a) and 4(b)]. We now
consider the properties of the system at a slightly lower ( f = 192.4 THz), and a slightly higher
( f = 194.4 THz) frequency. To locate the exceptional point, we calculate the reflection in the
forward direction Rf = |r f |2 as a function of L. All other geometric parameters of the structure
(w, w1, w2, L1, L2) are fixed as in Fig. 3(a). In this scenario, we find that, if the frequency is
varied, no exceptional point occurs if L is purely real. Even though the distance L is a real
parameter, here we will allow it to be complex to shed light on the properties of the exceptional
point. If the frequency is slightly decreased ( f = 192.4 THz), the exceptional point occurs for
L = 567− j2.1 nm (the reflection is Rf = 8.1×10−7 � 0), which is on the left side of the real
L-axis [Fig. 4(c)]. If instead the frequency is slightly increased ( f = 194.4 THz), the exceptional
point occurs for L= 555+ j2.1 nm (the reflection is Rf = 4.4×10−7 � 0), which is on the right
side of the real L-axis [Fig. 4(d)]. This suggests that, for a frequency in the interval from 192.4
THz to 194.4 THz, the exceptional point will occur right on the real L-axis. As we have seen
before [Figs. 4(a) and 4(b)], at f = 193.4 THz, the exceptional point occurs for L = 561 nm,
which is indeed purely real [Fig. 4(e)].

Fig. 5. (a) Spectra of the generalized power T +
√

Rf Rb (black), and of the differential
generalized power (red), defined as the derivative of the generalized power with respect to
frequency d[T +

√
Rf Rb]/d f , calculated using FDFD. All parameters are as in Fig. 3(a).

(b) Phase spectra of the reflection coefficients in the forward (r f , black) and backward (rb,
red) directions. All parameters are as in Fig. 3(a).

In quantum mechanics, the phase transition due to a non-Hermitian degeneracy is another
phenomenon associated with exceptional points [45, 46]. The generalized power representation
T +

√
Rf Rb, where T = |t|2 is the transmission, and Rf = |r f |2 and Rb = |rb|2 are the reflection

in the forward and backward directions, respectively, relates all the elements in the scattering
matrix S, and is essentially the power summation of superpositions of the two eigenstates [Eq.
(1)] [18, 25]. When the reflection in the forward and backward directions are equal, we obtain
T +

√
Rf Rb = T +R= 1, which is the power conservation relation for an optical system without

gain or loss. In Fig. 5(a), we show the calculated spectra of the generalized power T +
√

Rf Rb

for the structure of Fig. 1(a). Similar to other classical optical systems that have exceptional
points [25], we observe that a generalized power decreasing phase, and a generalized power
increasing phase are divided by the exceptional point at f = 193.4 THz (λ0 = 1.55μm). In
addition, an abrupt phase change in the differential generalized power spectrum is observed at
the exceptional point as well [Fig. 5(a)]. These results are due to the fact that the reflection
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coefficient in the forward direction r f approaches to zero at the exceptional point. We further
investigate the phase spectra of the reflection coefficients in the forward (r f ) and backward (rb)
directions [Fig. 5(b)]. We observe that the phase of the reflection coefficient in the forward di-
rection undergoes an abrupt π jump, when the frequency is crossing over the exceptional point,
which actually resembles the phase transition from the PT symmetric phase to the PT broken
phase in the optical PT -symmetric systems [3, 16-18, 20, 25]. Such an abrupt π phase jump
in the reflection coefficient in the forward direction confirms the existence of the exceptional
point in the plasmonic system of Fig. 1(a) again, and that the unidirectional reflectionlessness
in this system (Subsection 3.1) is directly associated with this exceptional point. In addition,
since the refection in the forward direction is zero at the exceptional point, both its real and
imaginary parts are zero. This implies that the phase of the reflection coefficient in the forward
direction has a singular point, and thus a large phase change around the exceptional point must
take place based on the residue theorem [47]. In contrast, the phase of the reflection coefficient
in the backward direction does not undergo an abrupt jump, and varies smoothly with frequency
[Fig. 5(b)].

3.3. Unidirectional perfect plasmonic waveguide absorber

Perfect waveguide absorbers show great promise for switching and interferometric applications
in optical circuits [6-8, 28, 48]. Unidirectional perfect absorption may also lead to asymmetric
transmission in photonic lattices [49]. Plasmonic slow-light waveguides could be used to realize
compact waveguide absorbers, due to the enhanced light-matter interaction in such waveguides,
and the decrease of the propagation length of the supported optical mode as the slowdown factor
increases [29, 32]. For such applications impedance matching between the input waveguide and
the plasmonic slow-light waveguide is required [29].

Fig. 6. (a) Schematic of a plasmonic waveguide system consisting of an array of two MDM
stub resonators side-coupled to a MDM waveguide. The system is obtained by cascading
the side-coupled resonator structure of Fig. 1(a). (b) Absorption spectra for the structure of
Fig. 6(a) calculated for both forward (black curves) and backward (red curves) directions
using FDFD. Results are shown for h = 520 nm for single (dots), double (solid line), and
triple (open circles) unit cell structures. All other parameters are as in Fig. 3(a). (c) Reflec-
tion in the backward direction as a function of the distance h between two adjacent unit
cells for the structure of Fig. 6(a) at f = 193.4 THz (λ0 = 1.55μm). All other parameters
are as in Fig. 3(a). Results are shown for the double unit cell structure.
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Achieving zero reflection when light is incident on a structure is a crucial requirement for
the realization of total absorption [50]. Here, we design a wavelength-scale unidirectional plas-
monic waveguide perfect absorber with complete absorption in the forward direction and almost
perfect reflection in the backward direction by periodically cascading [Fig. 6(a)] the unidirec-
tional reflectionless structure of Fig. 1(a). In Fig. 6(b), we show the absorption spectra of the
structure of Fig. 6(a) for both forward and backward directions for the single-unit cell struc-
ture. The absorption in the forward and backward directions at f = 193.4 THz (λ0 = 1.55μm)
are ∼77.2% and ∼15.5%, respectively. To realize a unidirectional absorber, we wish to simul-
taneously increase the absorption in the forward direction, as well as decrease the absorption
in the backward direction. This will lead to an increase of the contrast ratio between the for-
ward and backward absorption defined as ηA = |Af −Ab

A f +Ab
|, where Af and Ab are the absorption in

the forward and backward directions, respectively. Since the transmission in the forward and
backward directions are always identical due to reciprocity, in order to maximize the absorp-
tion contrast ratio ηA of the waveguide absorber, we need to minimize the transmission. In
other words, the ideal structure should exhibit complete absorption in the forward direction and
complete reflection in the backward direction.

To increase the absorption contrast ratio ηA, we consider cascading the unidirectional reflec-
tionless structure of Fig. 1(a). Figure 6(c) shows the reflection in the backward direction as
a function of the distance h between two adjacent unit cells for the double unit cell structure
[Fig. 6(a)]. The maximum backward reflection is obtained for h = 520 nm, and is significantly
larger than the backward reflection of the single unit cell structure [Fig. 3(a)]. The absorption in
the forward and backward directions for the double unit cell structure [Fig. 6(a)] with h = 520
nm become ∼94.0% and ∼7.2%, respectively, at f = 193.4 THz (λ0 = 1.55μm) [Fig. 6(b)].
The absorption in the forward direction further increases to ∼99.0%, while the absorption in
the backward direction further decreases to ∼5.5% for the triple unit cell structure [Fig. 6(b)].
In this case, the absorption contrast ratio ηA reaches ∼0.9. In addition, the total length of the
triple unit cell structure is ∼3.1 μm. In comparison, the required length for a straight MDM
waveguide (with width of 50 nm as the structure in Fig. 3) to achieve absorption of ∼99.0% is
∼55 μm. Thus, the system obtained by cascading the side-coupled resonator structure of Fig.
1(a) is a highly compact unidirectional plasmonic waveguide absorber.

4. Conclusions

In this paper, we designed a non-PT -symmetric plasmonic waveguide-cavity system, consist-
ing of two MDM stub resonators side coupled to a MDM waveguide, to form an exceptional
point, and realize unidirectional reflectionlessness at the optical communication wavelength of
λ0 = 1.55μm. The optical properties of the system are described by its scattering matrix which
is non-Hermitian. By manipulating the elements of the scattering matrix, its two eigenvalues
can be coalesced and form an exceptional point. This leads to unidirectional reflectionless prop-
agation in either the forward or the backward direction.

We used single-mode scattering matrix theory to account for the behavior of the system.
To obtain unidirectional reflectionless propagation, we used the scattering matrix model, and
optimized the geometric parameters of the structure, to minimize the reflection in the forward
direction at the optical communication wavelength. Using this approach, we found that for the
optimized structure the reflection in the forward direction is almost zero, while the reflection in
the backward direction is nonzero. Thus, such a plasmonic waveguide system is unidirectional
reflectionless, as also confirmed by full-wave FDFD simulations. In addition, the contrast ratio
between the forward and backward reflection almost reaches unity. We found that the presence
of material loss in the metal is critical for the realization of the unidirectional reflectionlessness
in this plasmonic system.
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We then investigated the realized exceptional point of the system, as well as the associated
physical effects of level repulsion, crossing and phase transition. We found that the real and
imaginary parts of the two eigenvalues of the system collapse for the optimized parameters.
We also observed level repulsion in the real parts of the eigenvalues, as well as level crossing
in their imaginary parts, which resembles open quantum systems. In addition, we observed
that the phase of the reflection coefficient in the forward direction undergoes an abrupt π jump,
when the frequency is crossing over the exceptional point, which resembles the phase transition
from the PT -symmetric phase to the PT -broken phase in optical PT -symmetric systems.

Finally, we designed a wavelength-scale unidirectional plasmonic waveguide perfect ab-
sorber with complete absorption in the forward direction and almost perfect reflection in
the backward direction by periodically cascading the unidirectional reflectionless plasmonic
waveguide-cavity system. Our results could be potentially important for developing a new gen-
eration of highly compact unidirectional integrated nanoplasmonic devices.

As final remarks, we note that the formation of an exceptional point and the resulting unidi-
rectional reflectionlessness can also be realized in similar plasmonic waveguide-cavity systems
based on other plasmonic two-conductor waveguides, such as three-dimensional plasmonic
coaxial waveguides [51, 52].
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