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Abstract: We introduce slow-light enhanced subwavelength scale re-
fractive index sensors which consist of a plasmonic metal-dielectric-metal
(MDM) waveguide based slow-light system sandwiched between two
conventional MDM waveguides. We first consider a MDM waveguide
with small width structrue for comparison, and then consider two MDM
waveguide based slow light systems: a MDM waveguide side-coupled to
arrays of stub resonators system and a MDM waveguide side-coupled to
arrays of double-stub resonators system. We find that, as the group velocity
decreases, the sensitivity of the effective index of the waveguide mode to
variations of the refractive index of the fluid filling the sensors as well as the
sensitivities of the reflection and transmission coefficients of the waveguide
mode increase. The sensing characteristics of the slow-light waveguide
based sensor structures are systematically analyzed. We show that the slow-
light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in
the refractive index sensitivity, and therefore in the minimum detectable
refractive index change, but also to 2 and 3 times reductions in the required
sensing length, respectively, compared to a sensor using a MDM waveguide
with small width structure.
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1. Introduction

The unique properties of surface plasmons, which are light waves that propagate along metal
surfaces, enable a wide range of practical applications, including light guiding and manipu-
lation at the nanoscale [1]. In recent years, surface plasmon resonance (SPR) based sensors
have been widely employed and investigated [2–7], especially the refractive index (RI) sens-
ing. Both propagating surface plasmon resonances (PSPRs) and localized surface plasmon reso-
nances (LSPRs) exhibit great potentials for sensing applications due to their susceptibility to the
changes in the RI of the surrounding environment [8]. Among different plasmonic waveguid-
ing structures, metal-dielectric-metal (MDM) plasmonic waveguides are of particular interest
[9–14], because they support modes with deep subwavelength scale over a very wide range
of frequencies extending from DC to visible, and are relatively easy to fabricate [15]. In a
MDM waveguide the modal fields are highly confined in the dielectric region. This characteris-
tic also makes the MDM waveguides very attractive for sensing applications. In addition, slow
light offers the opportunity for compressing the local optical energy density, which enhances
light-matter interactions, and thereby improves the performance of nanoscale plasmonic de-
vices [16–20]. Therefore, it is essential to investigate the sensing characteristics of plasmonic
MDM waveguide based slow-light RI sensors.

In this paper, we investigate RI sensors consisting of a plasmonic slow-light waveguide sand-
wiched between two conventional MDM waveguides. In these structures, light is coupled from
an input MDM plasmonic waveguide to a plasmonic slow-light waveguide system, and then
coupled back to an output MDM plasmonic waveguide. We first consider a MDM waveguide
with small width as the plasmonic waveguide sensing system. We next consider two different
plasmonic slow-light waveguide sensing systems: the MDM waveguide side-coupled to arrays
of MDM stub resonators system [19] and the MDM waveguide side-coupled to arrays of MDM
double-stub resonators system [20]. We find that, decreased group velocity vg in slow-light
systems significantly enhances not only the sensitivity of the effective index of optical mode to
variations of the refractive index of the fluid filling in the sensors, but also the sensitivities of the
transmission and reflection coefficients to variations of the RI of the fluid. The two optimized
slow-light enhanced subwavelength plasmonic RI sensors result in not only 3.9 and 3.5 times
enhancements in the sensitivity, and therefore in the minimum detectable RI change, but also 2
and 3 times reductions in the optimal sensing length, respectively, compared to a sensor using
a MDM waveguide with small width system. Although the two optimized slow-light enhanced
sensors have comparable performance in sensitivity, the double-stub resonator system exhibits
a small group velocity dispersion over a broader wavelength range and has less power loss,
features which are highly desirable for practical sensing applications.

The remainder of the paper is organized as follows. In Section 2, we first define the figure of
merit for a given sensing system and briefly describe the simulation method used for the analy-
sis of the sensors. The results obtained for the conventional MDM waveguide with small width,
MDM waveguide side coupled to stubs and MDM waveguide side coupled to double stubs sys-
tems are presented in Subsections 2.1, 2.2 and 2.3, respectively. Finally, our conclusions are
summarized in Section 3.

2. Results

For application of ultradense chip-scale integration, we consider compact subwavelength scale
RI sensor. In all cases, the total length of the sensing structure is limited to less than 1.1 μm,
which approximately corresponds to one wavelength in water (λw = λ0/nw, where nw =1.332),
when operating at the optical communication wavelength (λ0 =1.55 μm). To characterize the
sensing capability of the proposed sensors, we define the following f igure o f merit (FOM) in
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terms of the relative change in the output power that occurs for a change in the RI

FOM =
1

Pin
|dPout(n)

dn
|= |dT (n)

dn
| (1)

where n is the RI of fluid and T = Pout
Pin

is the power transmission. The input power Pin is given as
a constant. The output power Pout is the only measurable quantity in such a sensor. The changes
in Pout are related to Δn via ΔPout =

dPout (n)
dn Δn [21]. Denoting the smallest measurable change

in output power as ΔPout,min, we obtain following expression for the detection limit Δnmin of the
sensor

|Δnmin|= 1
Pin

|ΔPout,min

FOM
| (2)

It is noted that the detection limit |Δnmin| decreases as the FOM increases.
We use a two-dimensional finite-difference frequency-domain (FDFD) method [22, 23] to

numerically calculate the transmission in the MDM plasmonic waveguide. This method allows
us to directly use experimental data for the frequency-dependent dielectric constant of metals
such as silver [24], including both the real and imaginary parts, with no approximation. Per-
fectly matched layer (PML) absorbing boundary conditions are used at all boundaries of the
simulation domain [25].

2.1. MDM waveguide with small width structure

Fig. 1. (a) Schematic of the plasmonic RI sensor structure consisting of a MDM waveguide
with small width sandwiched between two MDM waveguides. (b) FOM for the structure
of Fig. 1(a) as a function of the sensing length d calculated using FDFD (black solid line)
and scattering matrix theory (red circles). Results are shown for w = 140 nm and w0 = 50
nm at λ =1.55 μm. The metal is silver and the fluid is water.

We first consider a RI sensor consisting of a MDM waveguide with small width sandwiched
between two conventional MDM waveguides (Fig. 1(a)). The width of the sensing MDM
waveguide is w0 = 50 nm. Since MDM waveguides with width w ∼= 140 nm were used to
guide optical mode in several plasmonic nanocircuits both theoretically and experimentally
[26, 27], here the widths of input and output waveguides are also set to be w = 140 nm. All of
the MDM waveguides in this structure (Fig. 1(a)) have subwavelength widths, so that only the
fundamental TM mode is propagating in them. Thus, we can use single-mode scattering matrix
theory to account for the behavior of the system [28, 29]. We use FDFD to extract the complex
magnetic field reflection coefficient r1 and transmission coefficient t1 of the fundamental mode
of a MDM waveguide at the input interface between the two MDM waveguides with different
width (Fig. 2(a)), as well as the reflection coefficient r2 and transmission coefficient t2 at the
output interface (Fig. 2(b)).

#235327 - $15.00 USD Received 27 Feb 2015; accepted 22 May 2015; published 29 May 2015 
(C) 2015 OSA 1 Jun 2015 | Vol. 23, No. 11 | DOI:10.1364/OE.23.014922 | OPTICS EXPRESS 14925



The FOM of the sensor structure of Fig. 1(a) can then be calculated using scattering matrix
theory as: [28, 29]

FOM = |e−2A[(Cα
dA
dn

+Cβ
dB
dn

)+CT
d|t1t2|2

dn
+(Ca

da
dn

+Cb
db
dn

)]|, (3)

where

Cα =
2|t1t2|2[(a2 +b2)e−4A −1]

η2 , (4)

Cβ =
4e−4A|t1t2|2[bcos(2B)−Asin(2A)]

η2 , (5)

CT =
1
η
, (6)

Ca =
2e−2A|t1t2|2[cos(2B)−be−2A]

η2 , (7)

Cb =
2e−2A|t1t2|2[sin(2B)−ae−2A]

η2 , (8)

and the coefficient η is defined as follow

η = |1− r2
2e−2γd |2 = 1−2ae−2A cos(2B)−2be−2B cos(2B)+(a2 +b2)e−4A, (9)

where γ = α + iβ is the complex wave vector of the fundamental propagating TM mode in a
sensing waveguide, α is the attenuation constant, β is the phase constant, A = αd, B = βd and
a and b are real and imaginary parts of r2

2, respectively. In Eqs. (4)-(8), |t1t2| can be further cal-

culated as |t1t2|=
√

T1T2
Re{γ1ε2}

∫ |φ1|2dx
Re{γ2ε1}

∫ |φ2|2dx
. Here T1 and T2 are the power transmission coefficients

at the input and output interfaces (Fig. 2), respectively, εi(i = 1,2) are complex dielectric con-
stants of the input and output MDM waveguides, respectively, γi and φi(i = 1,2) are complex
wave vectors and field profiles of the fundamental TM modes in the input and output MDM
waveguides, respectively. Due to the symmetry of all RI sensor structures considered in this

paper, we have |t1t2| =
√

T1T2. Denoting e−2A(Cα
dA
dn +Cβ

dB
dn ) = Sγ , e−2ACT

d|t1t2|2
dn = ST and

e−2A(Ca
da
dn +Cb

db
dn ) = SR, the FOM becomes

FOM = |Sγ +ST +SR|. (10)

A and B are related to the effective index of the sensing waveguide, hence Sγ is named as

the index sensitivity coe f f icient. da
dn , db

dn and d|t1t2|2
dn are factors associated with sensitivities of

the reflection and transmission coefficients of the mode at the interfaces between MDM and
sensing waveguides with respect to the RI variations. ST and SR will heretofore be referred to
as the transmission sensitivity coe f f icient and re f lection sensitivity coe f f icient, respectively.
We note that η is a function of the reflection coefficient r2 at sides of the sensing waveguide
and also observe that factor 1

η exhibits a maximum when the Fabry-Perot resonance condition
2arg(r2)− 2βd = −2mπ is satisfied, where m is an integer. Thus, Cα , Cβ , Ca, Cb and CT are
factors associated with the Fabry-Perot resonances of the sensor structure. In addition, since
A is directly related to the attenuation constant of the effective wave vector, the factor e−2A is
associated with the attenuation of the optical power in the sensing waveguide.

Figure 1(b) shows the FOM for the structure of Fig. 1(a) as a function of the sensing
length d at operating wavelength λ0 =1.55 μm. For the range of length shown, the maximum
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FOM (2.66) is obtained for such a structure at d = 910 nm (Fig. 1(b)). The FOM is com-
puted directly by approximating the differential in Eq. (1) with the finite-difference formula
dTout (n)

dn = Tout (n+Δn)−Tout (n−Δn)
2Δn [21, 30]. This approximation improves in accuracy as Δn → 0.

In the computations, we use Δn = 10−4 << nw [21]. Figure 1(b) also shows the FOM calcu-
lated using scattering matrix theory. It is observed that there is an excellent agreement between
the scattering matrix theory results and the exact results obtained using FDFD. Thus, based
on this analytical model, we can investigate the relative contributions of the three sensitivity
coefficients to the overall RI sensitivity of the sensor (Eq. (10)).

Fig. 2. (a) Schematic defining the reflection coefficient r1, transmission coefficient t1 and
power transmission coefficient T1 when the fundamental TM mode of the input MDM
waveguide is incident at the interface between the input and sensing waveguides. The sens-
ing waveguides are a MDM waveguide, or a stub resonator system, or a double-stub res-
onator system (shown in the inset of Fig. 2(a)). (b) Schematic defining the reflection coef-
ficient r2, transmission coefficient t2 and power transmission T2 when the fundamental TM
mode of the sensing waveguide is incident at the interface between the sensing and output
waveguides.

For the optimized MDM waveguide with small width sensor structure, the index sensitivity
coefficient Sγ is -2.5686 (Table 1). We note the sensitivity dB

dn (5.5068, Table 1) dominates
over the sensitivity dA

dn (0.0459, Table 1), which indicates the change in the phase constant of
the mode induced by a RI variation is important in such a structure. On the other hand, the

sensitivities d|t1t2|2
dn , da

dn and db
dn are -0.0404, 0.0130 and -0.0565 (Table 1), respectively, which

means there are almost no relative changes in the power transmission and reflection of the
sensing mode at the interface between MDM waveguides for a change in the RI of fluid, and
therefore, the transmission sensitivity coefficient ST (-0.0422, Table 1) and reflection sensitivity
coefficient SR (-0.0491, Table 1) are negligible.

2.2. MDM side-coupled to arrays of stub resonators system

To enhance the FOM, we next consider a plasmonic waveguide system consisting of a MDM
waveguide side-coupled to a periodic array of stub resonators (stub-resonator system) [19] with
stub width w1 = 50 nm (Fig. 3(a)). N periods of the structure are included in the sensing region
and the periodicity P is 150 nm. As before, the total length of the sensing structure is limited to
less than 1.1 μm, the widths w and w0 are 140 nm and 50 nm, respectively. The group velocity
of the optical mode in this system at a given wavelength can be tuned by adjusting the stub
length L [19]. Figure 3(b) shows the FOM for the structure of Fig. 3(a) as a function of the
stub length L and the number of periods N. For the range of parameters shown, we observe the
optimized FOM of such a RI sensor structure obtained at L= 150 nm and N = 3 is 10.34, which
is 3.9 times larger than that of the optimized MDM waveguide with small width system (2.66,
Table 1). Figure 3(c) shows the first band of dispersion relation of the stub-resonator system.
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We find such a system supports a slow-light mode for L = 150 nm at the operating wavelength
of λ0 =1.55 μm. To investigate how the enhanced FOM actually depends on the slow light
effect, the FOM can also be expressed as

FOM = |dT (ω)

dn
|= |dT (ω)

dω
dω
dn

|. (11)

where dω is the spectral shift resulting from a small variation dn. Figure 3(d) shows the power
transmissions of the sensing stub resonator system with L = 150 nm for N=3 and 4 obtained by
FDFD. It is clear that there is no transmission when frequency is within the band gap (beyond
200 THz, Fig. 3(c)). In the vicinity of a resonance frequency ω0, the sensing stub resonator
system is analogous to a photonic waveguide-cavity-waveguide system shown in the inset of
Fig. 3(d) approximately [31]. Using coupled-mode theory (CMT) [9, 10, 31, 32], the energy
amplitudes A, S+1 and S−2 for the cavity, input and output waveguides can be described by

−iωA =−iω0A− A
τd

− A
τ1

− A
τ2

+

√
2
τ1

S+1 , (12)

S−2 =

√
2
τ2

A. (13)

Here 1
τd

is the decay rate due to the intrinsic loss, 1
τ1

and 1
τ2

are the decay rates into the input
and output waveguides. Again, τ1 = τ2 by symmetry, and we denote the total decay rate into
the input and output waveguides by 1

τw
= 1

τ1
+ 1

τ2
(with quality factor Qw = ω0τw

2 ) and the total

decay rate by 1
τ = 1

τw
+ 1

τd
(with quality factor Q = ω0τ

2 ). Thus, the transmission spectrum can

be obtained by T (ω) = | S−2
S+1

|2 =
1

4Q2
w

(
ω−ω0

ω0
)2+ 1

4Q2

, and the derivative dT (ω)
dω in Eq. 11 is

dT (ω)

dω
=

ω−ω0
2ω2

0 Q2
w

[(ω−ω0
ω0

)2 + 1
4Q2 ]2

, (14)

Moreover, the phase of the output propagating mode at the cavity/waveguide interface Φ(
S−2
S+1

)

is arctan(2Q ω−ω0
ω0

). Thus, the group delay τg experienced by the propagating mode is given by

τg(ω) =
dΦ(ω)

dω
=

2Q
ω0

1+[2Q(ω−ω0
ω0

)]2
, (15)

At the resonance frequency ω0, the group delay is τg = 2Q
ω0

. Substituting Eq. 15 into Eq. 14

gives dT (ω)
dω = 2(ω −ω0)τ2

g (ω) Q2

Q2
w

. In terms of T (ω0) = | Q
Qw

|2, dT (ω)
dω further becomes dT (ω)

dω =

2(ω −ω0)τ2
g (ω)T0, where T0 is T (ω0). In the lossless case, Q = Qw, T (ω0) = 1, and dT (ω)

dω
reduces to 2(ω−ω0)τ2

g (ω). Note that the group velocity vg of the propagating mode is inversely
proportional to the group delay τg. Now, we have the following relationship

dT (ω)

dω
∼ T0

v2
g(ω)

(ω −ω0), (16)

On the other hand, in the vicinity of resonance frequency ω0, the rate of spectral shift dω
dn in

Eq. 11 is the same as the rate of shift of the resonance frequency approximately [33], that is,
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dω
dn � dω0

dn . For the resonance closest to the band gap (slow light resonance, i.e., P1, P2 in Fig.
3(d)), β (ω0)� π

P as shown in Fig. 3(c) [19]. Thus, we have

dω
dn

� dω0

dn
� ω0

n
, (17)

where n is the effective index of sensing waveguide. The derivative dω0
dn only depends on mate-

rial parameters [33]. Combining Eqs. (16) and (17), Eq. (11) becomes

FOM = |dT (ω)

dω
dω
dn

| ∼ | T0ω0

nv2
g(ω)

(ω −ω0)|. (18)

It is shown that the FOM is inversely proportional to the square of the group velocity vg. That
is, for a given frequency ω , the FOM increases as the group velocity vg of the optical mode
decreases due to the enhanced light-matter interactions.
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Fig. 3. (a) Schematic of the plasmonic RI sensor structure consisting of a stub resonator
system sandwiched between two MDM waveguides. (b) FOM for the structure of Fig. 3(a)
as a function of the stub length L and the number of periods N of the sensing system.
Results are shown for λ0 =1.55 μm, P = 150 nm, w0 = w1 = 50 nm and w = 140 nm. (c)
Dispersion relations of the stub resonator system for stub length L = 150 nm, 160 nm and
170 nm. All other parameters are as in Fig. 3(b). (d) Equivalent photonic waveguide-cavity-
waveguide CMT model (shown in the inset of Fig. 3(d)) and power transmissions for the
stub resonator system with L = 150 nm for N=3 and 4. All other parameters are as in Fig.
3(c).

In Fig. 3(d), we observe that the overlap between two adjacent resonance peaks due to a
strong cavity-waveguide coupling leads that the lineshape of a peak (particularly, a peak with
a resonance frequency far from the band gap) to some extent departs from a Lorenzian. Note
that the key assumption for the CMT is weak coupling. In practice, it is typically found that the
CMT is to be nearly exact for Q ≥ 30 (i.e., the quality factors of slow light resonance peaks P1

and P2 (Fig. 3(d)), but also often qualitatively accurate for smaller Q [31]. Figure 3(d) shows
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that the on resonance transmission coefficient is unity when the metallic loss is not included, as
predicted from the CMT. A slow light resonance (high τg) results in light being ”trapped” in the
cavity for a longer duration which results in a weaker cavity-waveguide coupling and a higher
Q (narrower spectral width of resonance, Fig. 3(d)) and thus higher light-matter interactions.
This is consistent with the equation τg(ω0) =

2Q
ω0

obtained by the CMT as well. In addition,
although the metal loss causes a power penalty relative to lossless case, the basic dependence
in T0

v2
g

(Eq. 18) still holds. Thus, the enhancement in FOM of the stub-resonator system here is

an outcome of the slow-light effect. Based on scattering matrix theory, we next investigate how

the slow-light effect affects the sensitivities ( dA
dn , dB

dn , d|t1t2|2
dn , da

dn , db
dn ), attenuation factor e−2A, and

therefore the FOM of such sensor system by adjusting stub length L.
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Fig. 4. (a) Sensitivities dα
dn (black line) and dβ

dn (red line) of the stub-resonator system in
structure of Fig. 3(a) as a function of the stub length L. All parameters are as in Fig. 3(b).
(b) Sensitivities da

dn (black line) and db
dn (red line) of the stub-resonator system in structure of

Fig. 3(a) as a function of the stub length L. All parameters are as in Fig. 4(a). (c) Sensitivity
d|t1t2|2

dn (black line) and factor e−2A (red line) of the stub-resonator system in structure of
Fig. 3(a) as a function of the stub length L. All parameters are as in Fig. 4(a). (d) FOM for
the structure of Fig. 3(a) as a function of the stub length L and the width w of the input and
output MDM waveguides. All other parameters are as in Fig. 4(a).

Figure 4(a) shows the sensitivities dα
dn and dβ

dn of the stub resonator system in structure of Fig.
3(a) as a function of the stub length L for optimized N=3. We find as L increases, both sensitiv-
ities dα

dn and dβ
dn first increase, and then decrease after a specific length L. More specifically, the

sensitivity dβ
dn achieves the maximum for L = 155 nm, and then decreases to zero. To explain

this, in Fig. 3(c), we also display the first band of dispersion relations of the stub-resonator
system for L = 160 nm and 170 nm, which exhibit band edge frequencies at 187 THz and 180
THz, respectively. As L increases, the band edge frequency of such system decreases, and as
the operating frequency approaches the band edge frequency, the group velocity vg decreases
[19]. Thus, at the beginning, by increasing the stub length L from 0 to 155 nm, the sensitivity
dβ
dn increases due to the slow-light enhanced light-matter interaction. However, as L further in-
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creases, the group velocity begins to increase at λ0 =1.55 μm (Fig. 3(c)), so the sensitivity dβ
dn

decreases. When L = 170 nm, the sensitivity dβ
dn even becomes negative because the dispersion

relation experiences back-bending with negative group velocity at λ0 =1.55 μm (Fig. 3(c)).

Table 1. Attenuation factor e−2A, effective index sensitivities dA
dn , dB

dn , transmission sensi-

tivity d|t1t2|2
dn , reflection sensitivities da

dn , db
dn , Fabry-Perot factors Cα , Cβ , Ca, Cb, CT , index

sensitivity coefficient Sγ , transmission sensitivity coefficient ST , reflection sensitivity co-
efficient SR and figure of merit FOM of sensors calculated using scattering matrix theory.
Results are shown for the optimized systems of Figs. 1(a), 3(a), and 5(a), respectively.

MDM stub resonator double-stub resonator
e−2A 0.9017 0.4699 0.5194
dα
dn ,

dA
dn 5.0485∗104 , 0.0459 1.6570∗107 , 7.4567 −1.0263∗107 , -3.0789

Cα -1.7371 -1.3627 -1.4956
dβ
dn ,

dB
dn 6.0515∗106 , 5.5068 6.4604∗107 , 29.0718 9.7606∗107 , 29.2818

Cβ -0.5028 -0.1073 0.1736
Sγ -2.5686 -6.2406 5.0320

d|t1t2|2
dn -0.0404 -6.5733 6.9367
CT 1.1589 0.9381 0.9864
ST -0.0422 -2.8976 3.5539
da
dn 0.0130 3.8833 -4.0082
Ca 0.9221 -0.4053 -0.0798
db
dn -0.0565 -1.8689 -0.8233
Cb 1.1764 0.5244 -0.7808
SR -0.0491 -1.2001 0.5000

FOM 2.6599 10.3383 9.0859

Figure 4(b) shows the sensitivities da
dn and db

dn of the stub-resonator system in structure of
Fig. 3(a) as a function of the stub length L for optimized N=3. Recall that a and b are real and
imaginary parts of r2

2, that is, a = r2
p − r2

a and b = 2rpra. Here r2 = rp + ira is the complex
reflection coefficient of the fundamental sensing mode of the stub-resonator system at the out-
put interface (Fig. 2(b)). The real and imaginal parts of this reflection coefficient rp and ra are
associated with the phase change and attenuation of the reflected sensing mode at the output
interface (Fig. 2(b)), respectively [36]. In Fig. 4(b), we find that the sensitivities da

dn and db
dn expe-

rience significant changes in the slow-light region. The reflection coefficient sensitivities da
dn and

db
dn are directly related to the attenuation sensitivity dα

dn and phase sensitivity dβ
dn , respectively.

When L ≤ 150 nm, as the group velocity decreases, the slow light effect leads to an enhance-
ment in both sensitivities db

dn and da
dn . Moreover, since the difference dβ

dn − dα
dn is maximized at

L = 150 nm, so the maximum sensitivity da
dn =

dr2
p

dn − dr2
a

dn is also obtained at L = 150 nm. When
150 nm < L ≤155 nm, as L increases db

dn keeps increasing as a result of the group velocity

decreasing (Fig. 4(a)). However, the difference dβ
dn − dα

dn becomes smaller as L increases at this
length range, so that da

dn begins to decrease. Finally, when L increases beyond 155 nm, the group

velocity begins to increase, so | db
dn | rapidly decreases. In addition, dβ

dn − dα
dn < 0 leads to negative

sensitivity da
dn , and as L increases, the difference dβ

dn − dα
dn increases (Fig. 4(a)), therefore | da

dn |
increases as well.

Figure 4(c) shows the sensitivity d|t1t2|2
dn of the stub-resonator system in structure of Fig. 3(a)
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as a function of the stub length L for optimized N=3. We observe that sensitivity d|t1t2|2
dn also

experiences a significant enhancement as group velocity tuned by the stub length L. Note that
t1 � t2 due to reciprocity [36]. Thus, we obtain|t1t2|2 � |t2

2 |2. Since |t2
2 | is approximated as

1−|r2
2| at the output interface (Fig. 2(b)), we have d|t1t2|2

dn � d|t22 |2
dn � d(1−|r2

2 |)2
dn . With the help of

r2
2 = a+ ib, the sensitivity d|t1t2|2

dn can be expressed as

d|t1t2|2
dn

�−2
1−|r2

2|
|r2

2|
(a

da
dn

+b
db
dn

). (19)

It is noted that the sensitivity d|t1t2|2
dn is opposite but proportional to the sum of sensitivities

da
dn and db

dn as shown in Fig. 4(c). Figure 4(c) also shows the attenuation factor e−2A of the
stub-resonator system in structure of Fig. 3(a) as a function of the stub length L for optimized
N=3. As the stub length L increases, the operating frequency (λ0 =1.55μm) approaches the
band edge frequency, the field intensity in the stub resonators is enhanced, the real part of the
wave vector increases, and therefore the attenuation of the sensing mode increases [19]. For
large L, the decrease in the attenuation factor even dominates the increase in the slow-light
enhanced sensitivity, so the mode with an extremely low group velocity may not always be the
one that yields a high FOM. This is also consistent with Eq. (18) obtained by CMT. The FOM
is not only inversely proportional to the square of the group velocity vg, but also proportional
to the resonance transmission T0. According to Eq. (3), the overall maximized FOM is thereby
obtained for L = 150 nm.

We find that for the optimized stub-resonator system the attenuation factor e−2A is 0.47 (Table
1) which is 1.9 times smaller compared to that of the MDM waveguide with small width sys-
tem 0.90 (Table 1). However, the absolute value of the sensitivities of the former system | dA

dn |,
| dB

dn |, | d|t1t2|2
dn |, | da

dn | and | db
dn | are 7.46, 29.07, 6.5733, 3.8833 and 1.8689 (Table 1), which are

162.5, 5.3, 162.7, 298.7 and 33.1 times larger compared to those of the latter one (0.046, 5.51,
0.04, 0.013 and 0.057), respectively. Thus, the slow-light enhanced transmission sensitivity co-
efficient ST (-2.9, Table 1), reflection sensitivity coefficient SR (-1.2, Table 1) and attenuation
sensitivity dA

dn (-6.24, Table 1) cannot be neglected here. It is noted that the absolute value of
factors Cα , Cβ , CT , Ca and Cb of the optimized stub-resonator system are all smaller than those
of the MDM waveguide with small width system (Table 1), which indicates that the enhanced
sensitivity coefficients of former system are not due to a better Fabry-Perot resonance condi-
tion matching. In addition, we observe that all factors Cα , Cβ , CT , Ca and Cb are functions of
the attenuation factor e−2A, therefore, the decrease in them is partly because of the increase in
attenuation of the slow-light mode. Overall, the optimized slow-light enhanced stub resonator
system (Fig. 3(a)) results in 3.9 times larger FOM compared to the optimized MDM waveguide
with small width system (Fig. 1(a)). It is worth noting that dT (n)

dn (Eq. (1)) can be positive or
negative, which corresponds to increased or decreased power transmission, respectively, for a
change in the RI. A good design for a sensing structure is to maximize such a variation in the

power transmission. If all terms in Eq. (3), Cα
dA
dn , Cβ

dB
dn , CT

d|t1t2|2
dn , Ca

da
dn and Cb

db
dn have the

same sign, a high FOM is achieved. Otherwise, they may cancel each other, and slow light
enhanced sensitivities may decrease instead of increasing the overall FOM.

Since the MDM waveguides with different widths are used in various optical nanocircuits
[26, 27, 34, 35], we also show the FOM for the structure of Fig. 3(a) as a function of the stub
length L and width w of the input and output MDM waveguides for the optimized N = 3 (Fig.
4(d)). We note that the optimized stub length L is around 150 nm for any width, which suggests
that the Fabry-Perot resonance effect here is less important than the slow-light effect. Due to the
same reason, in Fig. 3(b), we observe that for different number of periods N, the corresponding
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maximum FOM is always obtained around L = 150 nm as well.

2.3. MDM side-coupled to arrays of double-stub resonators system
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Fig. 5. (a) Schematic of the plasmonic RI sensor structure consisting of a double-stub res-
onator system sandwiched between two MDM waveguides. (b) FOM for the structure of
Fig. 5(a) as a function of the stub length L1 and the number of periods N of the sensing
waveguide. All parameters are as in Fig. 3(b). (c) Dispersion relations of the slow-light
waveguide based on a double-stub resonator system for stub length L1 = 145 nm, 165 nm
and 172.5 nm. All other parameters are as in Fig. 3(b). (d) FOM for the structure of Fig.
5(a) as a function of the stub length L1 and the width w of the input and output MDM
waveguides. All other parameters are as in Fig. 3(b).

We finally consider a slow-light plasmonic waveguide system consisting of a MDM waveg-
uide side-coupled to arrays of double-stub resonators (double-resonator system) based on our
previous work (Fig. 5(a)) [20], which was also implemented experimentally in a recent work
[27]. Unlike the proposed MDM waveguide side-coupled to arrays of stub resonators system
(Subsection 2.2), such a system can exhibit a small group velocity dispersion over a broad
wavelength range, feature which is highly desirable for practical applications of slow-light de-
vices [19, 20]. As before, the total length of the structure is limited to less than 1.1 μm. The
transmission spectra of such a double-stub resonator structure features a transparency peak
centered at a frequency which is tunable through the length of the composite cavity formed
by the two stub resonators L1 + L2 +w0 [20]. Here we choose L1 + L2 +w0 = 420 nm and
w0 = 50 nm, so that the transparency peak is centered at the operating frequency of f =194 THz
(λ0 =1.55 μm) approximately. Figure 5(b) shows the FOM for the structure of Fig. 5(a) as a
function of the stub length L1 and the number of periods N of the sensing waveguide system.
For the range of parameters shown, the maximum FOM for such a RI sensor structure obtained
at L1 = 145 nm and N = 2 is 9.09, which is 3.5 times larger than that of the optimized MDM
waveguide with small width system (2.66, Table 1). We also observe that increasing the number
of periods N in the sensing region decreases the optimized stub length L1 of the sensor. For a
double-stub resonator system, as L1 decreases, L2 increases, since L1 +L2 +w0 is fixed. Thus,
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the stub length difference ΔL = L2 − L1 increases, hence the frequency spacing between the
stub resonances Δω increases. As a result, the group velocity of the mode increases, and the
corresponding propagation length and attenuation factor e−2A increase as well [20]. When the
number of periods N increases, the optimized stub length L1 has to decrease to match this in-
crease in the length of sensing region. Figure 5(c) shows the second band of dispersion relation
of such sensing waveguide system, and we find the sensing waveguide supports a slow light
mode for L1 = 145 nm at λ0 =1.55 μm. As we discussed above, the 3.5 times enhancement is
an outcome of the slow light effect. Figure 5(d) also shows the FOM for the structure of Fig.
5(a) as a function of the stub length L1 and width w of the input and output MDM waveguides
for optimized N = 2. Like the stub resonator system (Fig. 4(a), we observe that for different
width w, the corresponding maximum FOM is always obtained around L1 = 145 nm as well.
Again, we use single-mode scattering matrix theory to account for the behavior of the system.

Fig. 6. (a) Sensitivities dα
dn (black line) and dβ

dn (red line) of the double-stub resonator system
in structure of Fig. 5(a) as a function of the stub length L1. All parameters are as in Fig.
5(b). (b) Sensitivities da

dn (black line) and db
dn (red line) of the double-stub resonator system

in structure of Fig. 5(a) as a function of the stub length L1. All parameters are as in Fig. 6(a).

(c) Sensitivity d|t1t2|2
dn (black line) and factor e−2A (red line) of the double-stub resonator

system in structure of Fig. 5(a) as a function of the stub length L1. All parameters are as in
Fig. 6(a). (d) Real part of the wave vector (attenuation constant) of the sensing mode α for
the optimized stub resonator and double-stub resonator systems.

Figure 6(a) shows the sensitivities dα
dn and dβ

dn of the double-stub resonator system in structure
of Fig. 5(a) as a function of the stub length L1 for optimized N=2. A similar trend is seen:
both | dα

dn | and | dβ
dn | first increase, and then decrease as L1 further increases. The sensitivity dβ

dn
is maximized when L1 = 165 nm and then decreases to zero. To explain this, in Fig. 5(c) we
display the second band of dispersion relations of the double-stub resonator system for L1 = 165
nm and 172.5 nm. The stub length difference ΔL = L2 −L1 decreases, the frequency spacing
between the stub resonances Δω decreases, hence the group velocity of the mode decreases
[20]. As the stub length L1 increases from 0 nm to 165 nm, the sensitivity dβ

dn increases due to
the slow-light effect, As L1 further increases to L1 = 172.5 nm, the group velocity begins to
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increase at λ0 =1.55 μm (Fig. 5(c)), so the sensitivity dβ
dn decreases.

Figures 6(b) and 6(c) show the sensitivities da
dn , db

dn , d|t1t2|2
dn and the attenuation factor e−2A of

the double-stub resonator system in structure of Fig. 5(a) as a function of the stub length L1 for
optimized N=2. The effect of slow-light on the performance of such a sensing system can be
explained as in the case of the single-stub resonator system (Subsection 2.2).

We find that for the optimized double-stub resonator system the attenuation factor e−2A is
0.52 (Table 1) which is 1.7 times smaller compared to that of the MDM waveguide with small
width system (0.90, Table 1). However, like previously investigated stub resonator system, the

absolute of sensitivities of the double-stub resonator system | dA
dn |, | dB

dn |, | d|t1t2|2
dn |, | da

dn | and | db
dn |

(3.0789, 29.2818, 6.9367, 4.0082 and 0.8233, Table 1) are enhanced by the slow-light effect.
The corresponding enhancements with respect to those of the MDM waveguide with small
width system are 66.9, 5.3, 171.7, 308.3 and 14.4, respectively. We note that the absolute values
of factors Cα , Cβ , CT , Ca and Cb of such a double-stub resonator system are not as large as those
of the MDM waveguide with small width system, so the enhanced sensitivity coefficients ST ,
SR and Sγ (3.5539, 0.5000 and 5.0320, Table 1) of the double-stub resonator system are a result
of the enhanced slow-light effect rather than of a Fabry-Perot resonance enhancement. We also
observe that the FOM of the double-stub resonator system is slightly smaller than that of the
stub resonator system just due to a smaller factor Ca (-0.0798, Table1). Since the attenuation
factors e−2A of these two systems are comparable, so the sensitivity da

dn of the double-stub
resonator system has a worse Fabry-Perot resonance condition matching.

Table 2 summarizes the optimized design for each structure at operating wavelength
λ0 =1.55 μm. The detection limit Δnmin is computed using Eq. (2) assuming input power of
Pin = 1 mW and smallest measurable change in output power of ΔPout,min = 10 nW [21]. Based
on the same equations (Eqs. (1) and (2)) and conditions (Pin = 1 mW and ΔPout,min = 10 nW),
Berini investigated the sensing performance of a generic Mach-Zehnder interferometer (MZI)
implemented with plasmonic waveguides, such as metal-dielectric single interface waveguide,
thin DMD waveguide (width of 20 nm) and thin MDM waveguide (width of 20 nm), at the
operating wavelength λ0 =1.31 μm [21]. The metal was gold and the dielectric also was wa-
ter. The detection limits of these structures were 3.6× 10−7, 1.5× 10−8 and 6.6× 10−6 with
optimal sensing lengths de = 82.9 μm, 2039 μm and 2.5 μm, respectively. For a comparison,
although the detection limits of the first two MZI based structures are 2.7 and 64.7 times smaller
than that of the slow light enhanced stub resonator structure (9.7×10−7, Table 2), the required
sensing lengths of these two MZI based structures are 184.2 and 4531.1 times larger than that
of the slow light enhanced stub resonator structure (450 nm, Table 2), respectively. In other
words, these two structures are not suitable for ultradense chip-scale integration. In Table 2, we
also observe that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhance-
ments in the detection limit, but also to 2 and 3 times reductions in the required sensing length,
respectively, compared to the sensor using a MDM waveguide with small width structure. It
is due to the fact that the slow light enhanced light-matter interactions can not only enhance
the sensitivity, but can also greatly reduce the required sensing length, thereby enabling the
realization of miniature sensors [37].

Finally, the power loss is of practical importance for application of plasmonic sensors. In
Table 1, we observe that the attenuation factor e−2A of optimized double-stub resonator system
(0.5194) is higher than that of stub resonator system (0.4699) at λ0 =1.55 μm. In Table 2, it
is also observed that the transmission of the former optimized system (0.363) is higher than
that of the latter one (0.349). In Fig. 6(d), we show the real part of the wave vector (attenuation
constant) as a function of frequency of the optical mode α for the optimized stub resonator
and double-stub resonator systems. In the stub resonator system, the attenuation constant α
greatly increases as the frequency approaches the band edge frequency. On the other hand, in the
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double-stub resonator system the attenuation constant α is relatively small in the corresponding
slow light frequency range (186 THz to 210 THz, Fig. 5(c)). Figure 6(d) demonstrates that the
attenuation constant α in the double-stub resonator system is smaller than that in the single stub
resonator system at the operating wavelength of λ0 =1.55 μm, in other words, the double-stub
resonator system is less lossy. This is due to the fact that the composite cavity formed by two
stubs in the double-stub resonator system has a weak resonance at a slow light wavelength such
as λ0 =1.55 μm.

Table 2. Summary of waveguide designs and operating parameters at λ0 =1.55 μm. The
optimal sensing lengths de, power transmission coefficients and detection limits Δnmin of
sensors are shown for the optimized systems of Figs. 1(a), 3(a), and 5(a), respectively.

de Transmission Δnmin

MDM 910nm 0.663 3.8×10−6

stub resonator 450nm 0.349 9.7×10−7

double-stub resonator 300nm 0.363 1.1×10−6

3. Conclusions

In this paper, we investigated subwavelength scale slow-light enhanced RI sensors structures. In
all cases, the total length of the structure was limited to less than 1.1 μm, which approximately
corresponds to one wavelength in water λs = λ0/nw, when operating at λ0 =1.55 μm. We first
considered a structure consisting of a plasmonic MDM waveguide with small width sensing
system sandwiched between two conventional MDM waveguides. To enhance the sensor per-
formance, we next consider two other MDM waveguide based slow-light sensing systems: a
MDM waveguide side-coupled to arrays of stub resonators (stub resonator) system and a MDM
waveguide side-coupled to arrays of double-stub resonators (double-stub resonator) system. We
found that, as the group velocity decreases, the sensitivity of the effective index of the mode to
variations of the RI of the fluid increases and the sensitivities of the reflection and transmission
coefficients of the mode to variations of the RI of the fluid at the interface between the MDM
and sensing waveguides increase as well. The optimized slow-light enhanced sensors lead to
not only 3.9 and 3.5 times enhancements in the RI sensitivity, and therefore in the minimum
detectable RI change, but also 2 and 3 times reductions in the required sensing length, respec-
tively, compared to the sensor using a MDM waveguide with small width system. Although
the stub resonator system exhibits a slightly larger enhancement, the double-stub resonator sys-
tem exhibits a small group velocity dispersion over a broader wavelength range, and its power
loss is smaller. In addition, high power attenuation limits the performance of the slow-light en-
hanced plasmonic sensors. If gain and tunable RI materials are combined with these slow-light
waveguides based sensors to compensate for the metallic loss [9, 20], they could enable stop-
ping and storing light in a subwavelength volume, and could further lead to at least an order of
magnitude enhancement in the RI sensitivity.
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