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Abstract: We show that the space mapping algorithm, originally
developed for microwave circuit optimization, can enable the efficient
design of nanoplasmonic waveguide devices which satisfy a set of desired
specifications. Space mapping utilizes a physics-based coarse model to
approximate a fine model accurately describing a device. Here the fine
model is a full-wave finite-difference frequency-domain (FDFD) simulation
of the device, while the coarse model is based on transmission line theory.
We demonstrate that simply optimizing the transmission line model of the
device is not enough to obtain a device which satisfies all the required
design specifications. On the other hand, when the iterative space mapping
algorithm is used, it converges fast to a design which meets all the specifi-
cations. In addition, full-wave FDFD simulations of only a few candidate
structures are required before the iterative process is terminated. Use of the
space mapping algorithm therefore results in large reductions in the required
computation time when compared to any direct optimization method of the
fine FDFD model.
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1. Introduction

The unique properties of surface plasmons could enable a wide range of applications for plas-
monics, including light guiding and manipulation at the nanoscale [1–6]. The realization of
active and passive nanoplasmonic devices with optimal performance for high-density optical
information processing could have profound implications for computing and communications.
In designing such nanoplasmonic devices, ideally one would like to solve inverse problems
starting from design specifications imposed on the device response. This can be achieved by
combining global optimization algorithms with electromagnetic simulations [7,8]. Such an ap-
proach leads to an extremely powerful design technique which can enable high performance
nanoplasmonic devices. In many cases, the highly efficient device designs coming out of this
approach cannot be obtained with any conventional design method based on analytical tech-
niques [9]. However, integrated nanoplasmonic devices consist of multiple components and
therefore have several design parameters [10, 11]. Thus, the solution of inverse problems by
combining global optimization algorithms with electromagnetic simulations often requires sim-
ulation of hundreds to thousands of candidate structures before a design which satisfies all the
specifications is reached. In most cases, full-wave electromagnetic simulation methods are too
computationally expensive for this purpose. Thus, alternative approaches to solve inverse de-
sign problems for nanoplasmonic devices need to be explored.

In this paper, we show that the space mapping algorithm, originally developed for microwave
circuit optimization, can enable the efficient design of nanoplasmonic devices which satisfy a
set of desired specifications. Space mapping utilizes a physics-based coarse model to approxi-
mate a fine model accurately describing a device. The main concept in the algorithm is to find
a mapping that relates the fine and coarse model design parameters. If such a mapping is estab-
lished, we can then avoid directly optimizing the computationally expensive fine model during
the design process. Instead, we perform optimization of the computationally efficient coarse
model, and then use the mapping to find the corresponding fine model design.

More specifically, in this paper we demonstrate the use of the space mapping algorithm for
the design of metal-dielectric-metal (MDM) plasmonic waveguide devices. Such devices could
be potentially important in providing an interface between conventional optics and subwave-
length electronic and optoelectronic devices [12, 13]. In our case, the fine model is a full-wave
finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is
based on transmission line theory. Through several examples, we demonstrate that simply opti-
mizing the transmission line model of the device is not enough to obtain a device which satisfies
all the required design specifications. On the other hand, we show that, when the iterative space
mapping algorithm is used, it converges fast to a design which meets all the specifications. In
addition, full-wave FDFD simulations of only a few candidate structures are required before the
iterative process is terminated. Use of the space mapping algorithm therefore results in large
reductions in the required computation time when compared to any direct optimization method
of the fine FDFD model.

The remainder of the paper is organized as follows. In Section 2, we describe the space
mapping algorithm used in this paper for the design of nanoplasmonic waveguide devices. In
Section 3, we present several examples of the application of the algorithm for the design of
such devices. Finally, our conclusions are summarized in Section 4.

2. Algorithm

Space mapping utilizes a physics-based coarse model to approximate a fine model which ac-
curately describes a device [14–16]. The coarse and fine model design parameters are denoted
by xc and x f , respectively, while the corresponding responses are denoted by Rc and Rf . In this
work it is assumed that xc and x f have the same dimensionality. In other words, the number
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of design parameters n is the same for both models.The main concept in the space mapping
algorithm is to find a mapping P that relates the fine and coarse model parameters through

xc = P(x f ), (1)

such that
Rc(P(x f ))� Rf (x f ). (2)

We assume that such a one-to-one mapping exists in the region of interest. If such a mapping is
established, we can then avoid using the direct optimization of the computationally expensive
fine model to find the solution x∗f . Instead, we perform optimization of the computationally
efficient coarse model to find its optimal solution x∗c , and then use

x̄ f ≡ P−1(x∗c) (3)

to find an estimate of the fine model solution x∗f .

2.1. Aggressive space mapping

More specifically, here we use the aggressive space mapping implementation of the algorithm
[14], which incorporates a quasi-Newton iteration. In this approach we assume that xc is a
nonlinear vector function P of x f [Eq. (1)].

In the first step, we perform optimization of the computationally efficient coarse model and
find its optimal solution x∗c . Eq. (3) can be rewritten as

P(x̄ f )−x∗c = 0. (4)

Thus, the solution of the space mapping algorithm x̄ f can be found by solving the system of
nonlinear equations

g(x f ) = 0, (5)

where
g(x f )≡ P(x f )−x∗c . (6)

We can therefore use a quasi-Newton iterative method to solve this problem. Since the Jacobian
matrix corresponding to Eq. (5)

J(x f ) =

[
∂ T g(x f )

∂x f

]T

(7)

cannot be directly calculated, we use an approximation for the Jacobian matrix based on the
Broyden formula [14, 17].

The initial point for the algorithm is the optimal solution of the coarse model x∗c

x(1)f = x∗c . (8)

If x( j)
f is the jth approximation to the solution of Eq. (5) then x( j+1)

f is found by

x( j+1)
f = x( j)

f +h( j), (9)

where h( j) is the solution of the following linear system

B( j)h( j) =−g( j). (10)
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In the above equation g( j) is obtained by

g( j) ≡ g(x( j)
f ) = P(x( j)

f )−x∗c , (11)

where P(x( j)
f ) is calculated using the parameter extraction procedure described below, while

B( j) is obtained by the Broyden formula [17]

B(1) = I, (12)

B( j) = B( j−1) +
g( j)h( j−1)T

h( j−1)T h( j−1)
. (13)

The iterative procedure is terminated after M iterations when the fine model response Rf (x
(M)
f )

satisfies the set of desired specifications.

2.2. Parameter extraction

At each iteration of the space mapping algorithm we use a parameter extraction procedure to
obtain the mapping xc = P(x f ) which corresponds to the optimum match between the coarse
and fine model responses. More specfically, we use an optimization algorithm in combination
with the coarse model of the structure to minimize the objective function H(xc)

min
xc

H(xc), (14)

where

H(xc) =
n

∑
i=1

ρk(ei(xc)). (15)

Here, ei is the error at frequency ωi, defined as the difference between the responses calculated
with the coarse and fine models

ei(xc)≡ Rc(xc,ωi)−Rf (x f ,ωi), (16)

and ρk(ei) is the Huber norm [18, 19] given by

ρk(ei)≡
{

e2
i /2 , if |ei| ≤ k

k|ei|− k2/2 , if |ei|> k
. (17)

The Huber norm is robust against large errors ei [14]. Here we use k = 0.04.

2.3. Application of the space mapping algorithm to design of nanoplasmonic waveguide de-
vices

In this paper, we demonstrate the use of the space mapping algorithm for the design of nanoplas-
monic waveguide devices. We assume that a set of desired specifications are imposed on the
transmission response of the device. We wish to find the design parameters of the device so that
its transmission response satisfies all the specifications. In our case, the fine model is a full-wave
finite-difference frequency-domain (FDFD) simulation of the device [20, 21]. This method al-
lows us to directly use experimental data for the frequency-dependent dielectric constant of
metals such as silver [22], including both the real and imaginary parts, with no approximation.
Perfectly matched layer (PML) absorbing boundary conditions are used at all boundaries of
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the simulation domain [23, 24]. We use a fine spatial grid size in FDFD to ensure the conver-
gence of the numerical results. Thus the fine FDFD model gives essentially the exact solution
of the Maxwell’s equations for the given device and therefore accurately describes the device.
The coarse model is based on transmission line theory and will heretofore be referred to as the
transmission line model of the device.

In our case the fine model design parameters are a set of geometric dimensions L =
[L1 L2 · · · Ln]

T of the plasmonic device. The coarse transmission line model param-
eters have a one-to-one corespondence to the fine model parameters and are denoted as
LTL = [LTL1 LTL2 · · · LTLn]

T . The fine and coarse model responses are the transmission
of the plasmonic device calculated with FDFD, TFDFD, and the transmission line model, TTL,
respectively.

3. Results

In this section, we present several examples of the application of the space mapping algorithm
for the design of nanoplasmonic waveguide devices.

3.1. MDM waveguide side-coupled to two MDM stub resonators

In the first example, the structure considered consists of a plasmonic MDM waveguide
side-coupled to two MDM stub resonators [Fig. 1(a)]. The fundamental TM mode of
the MDM waveguide is incident from the left. This system is a plasmonic analogue of
electromagnetically-induced transparency (EIT) [25].

Using such a waveguide device geometry, we wish to design a structure with a bandpass filter
response. More specifically, the design specifications imposed on the transmission response T
of the structure are

T > 0.75 for 180 THz < f < 200 THz, (18a)

T < 0.2 for 130 THz < f < 160 THz and 240 THz < f < 270 THz, (18b)

where f is the frequency. The specifications are indicated in Figs. 1(c) and 1(d) with solid red
lines. Here the design parameters are the lengths of the stub resonators L1 and L2, while the
width w of all waveguide sections is fixed at w = 50 nm.

Based on transmission line theory, the transmission line model of this structure consists of
two short-circuited transmission line resonators of lengths LTL1 and LTL2, propagation con-
stant γ , and characteristic impedance Z, which are connected in series to a transmission line
with the same propagation constant γ and characteristic impedance Z [26, 27] [Fig. 1(b)]. The
characteristic impedance is given by [12, 27]

Z =
γ

jωε
w, (19)

where ω = 2π f , j =
√−1, and ε is the dielectric permittivity of the dielectric region of the

MDM waveguide. Based on transmission line theory, the transmission line model response
TTL(LTL1,LTL2) of the structure of Fig. 1(a) can be calculated as [26, 28]

TTL(LTL1,LTL2) =

∣∣∣∣∣1+ 1
2

[
tanh(γLTL1)+ tanh(γLTL2)

]∣∣∣∣∣
−2

. (20)

The transmission line model is computationally efficient with a required computation time
which is negligible compared to a full-wave FDFD simulation of the device. However, the
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Fig. 1. (a) Schematic of a MDM plasmonic waveguide side-coupled to two MDM stub res-
onators. (b) Schematic of the transmission line model for the structure of Fig. 1(a). Here
Z(ω) and γ(ω) are the characteristic impedance and complex propagation constant of the
fundamental TM mode of a silver-air-silver plasmonic waveguide with width w. (c) Trans-
mission line model response TTL(L∗

TL1,L
∗
TL2) of the structure of Fig. 1(a) for parameters

L∗
TL1 = 210 nm and L∗

TL2 = 384 nm obtained by optimizing the transmission line model
of Fig. 1(b) (dashed blue line). We also show the transmission response calculated using
FDFD, TFDFD(L1 = L∗

TL1,L2 = L∗
TL2) for the same parameters (solid black line). Results are

shown for w = 50 nm. The red lines are the design specifications imposed on the transmis-
sion response of this structure. (d) Transmission response TFDFD(L̄1, L̄2) of the structure of
Fig. 1(a) calculated with FDFD for the parameters L̄1 = 180 nm and L̄2 = 351 nm obtained
by the space mapping algorithm.

accuracy of this model is limited. The accuracy limitations of the transmission line model for
circuits of MDM plasmonic waveguides have been described in detail elsewhere [29]. As an
example, the transmission line model introduces errors in the phase of the reflection coefficient
at the two interfaces of a side-coupled MDM stub resonator [30, 31].

We use the coarse transmission line model of the structure (without space mapping) in com-
bination with a genetic global optimization algorithm [7, 32] to find the stub lengths LTL1 and
LTL2 such that the transmission line model response TTL(LTL1,LTL2) satisfies the design spec-
ifications. During the optimization process the transmission line model response is calculated
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Fig. 2. Transmission response TFDFD(L
( j)
1 ,L( j)

2 ) of the structure of Fig. 1(a) calculated
with FDFD for parameters obtained after the jth iteration of the space mapping algorithm.

L( j)
1 ,L( j)

2 for j = 1,2,3 are given in Table 1. All other parameters are as in Fig. 1(c).

at a discrete set of frequencies in the passband (180 THz < f < 200 THz) and stopbands
(130 THz < f < 160 THz and 240 THz < f < 270 THz) for each structure. The objective
is to maximize the transmission TTL in the passband, and minimize it in the stopbands. The
optimal transmission line model stub lengths found using this approach are L∗

TL1 = 210 nm and
L∗

TL2 = 384 nm. As shown in Fig. 1(c), the transmission line model response for the optimized
device TTL(L∗

TL1,L
∗
TL2) (dashed blue line) meets all the design specifications [Eq. (18)].

We first investigate whether optimizing the transmission line model of the structure is enough
to obtain a device which satisfies all the design specifications. We therefore perform a full-wave
FDFD simulation of the device setting the stub lengths L1, L2 equal to the optimal transmis-
sion line model stub lengths, and obtain the device response TFDFD(L1 = L∗

TL1,L2 = L∗
TL2). We

observe that the transmission response of the device obtained with this approach TFDFD(L1 =
L∗

TL1,L2 = L∗
TL2) (black solid line) is substantially different from the transmission line model

response TTL(L∗
TL1,L

∗
TL2) (dashed blue line), and does not meet all the desired specifications

[Fig. 1(c)]. This is due to the limited accuracy of the transmission line model which was dis-
cussed above. Thus, simply optimizing the transmission line model of the device is not enough
to obtain a device which satisfies all the required design specifications.

To obtain such a device which will satisfy all the design specifications, we now use the
space mapping algorithm, described in Section 2. We found that the space mapping algorithm
converges fast to the design L̄1 = 180 nm and L̄2 = 351 nm with device response TFDFD(L̄1, L̄2),
which meets all the specifications [Fig. 1(d)]. The initial point for the algorithm is the optimal
solution of the coarse transmission line model [Eq. (8)]

[L(1)
1 L(1)

2 ]T = [L∗
TL1 L∗

TL2]
T = [210 nm 384 nm]T. (21)

We then follow the iterative process described in Section 2.1. At each step of the algorithm the
next approximation to the solution is found using Equations (9) and (10). The design parameters

L( j)
1 , L( j)

2 found after the jth iteration of the algorithm are shown in Table 1. Figure 2 shows the

#200639 - $15.00 USD Received 4 Nov 2013; revised 5 Dec 2013; accepted 10 Dec 2013; published 18 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.032160 | OPTICS EXPRESS  32167



130 160 190 220 250
0

0.2

0.4

0.6

0.8

1

Frequency (THz)

T
ra

ns
m

is
si

on

Fig. 3. Transmission response TFDFD(L
(1)
1 ,L(1)

2 ) of the structure of Fig. 1(a) calculated with
FDFD (solid line) for parameters obtained after the first iteration of the space mapping al-

gorithm. We also show the coarse transmission line model response TTL(L
(1)
TL1,L

(1)
TL2) (cir-

cles), where L(1)
TL1, L(1)

TL2 are obtained through the parameter extraction procedure described
in Subsection 2.2 .

transmission response of the device TFDFD(L
( j)
1 ,L( j)

2 ) after the jth iteration calculated with the

fine FDFD model. The device response from the initial step of the algorithm TFDFD(L
(1)
1 ,L(1)

2 ),
which as mentioned above is obtained from the optimal solution of the coarse transmission line
model, does not meet the desired specifications. The device response obtained after the second

iteration TFDFD(L
(2)
1 ,L(2)

2 ) satisfies the specifications in almost the entire frequency range (Fig.

2). Finally, after the third iteration the transmission response of the device TFDFD(L
(3)
1 ,L(3)

2 )
calculated with the fine FDFD model satisfies the specifications in the entire frequency range
(Fig. 2). Thus, in this example the space mapping algorithm results in a device which satisfies
all the design specifications after only 3 iterations. In other words, full-wave FDFD simulations
of only 3 candidate structures are required before the iterative process is terminated. Use of the
space mapping algorithm therefore results in large reductions in the required computation time
when compared to any direct optimization method of the fine FDFD model.

At each iteration of the space mapping algorithm, we use the parameter extraction procedure
described in Subsection 2.2 to obtain the mapping which corresponds to the optimum match
between the coarse transmission line and fine FDFD model responses. The objective function
H to be minimized during the parameter extraction [Eq. (15)] is based on the model responses
at 15 frequency points from 130 THz to 270 THz with a step of 10 THz. In Fig. 3 we show the

device response from the initial step of the algorithm TFDFD(L
(1)
1 ,L(1)

2 ) (solid line). Using the

parameter extraction procedure, we obtain the mapping [L(1)
TL1 L(1)

TL2]
T = P([L(1)

1 L(1)
2 ]T ) =

[238 nm 419 nm]T . In Fig. 3 we also show the corresponding coarse transmission line model

response TTL(L
(1)
TL1,L

(1)
TL2) (circles). We observe that there is very good agreement between the

device response TFDFD(L
(1)
1 ,L(1)

2 ) and the transmission line model response TTL(L
(1)
TL1,L

(1)
TL2) ob-
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tained through the parameter extraction procedure in the entire frequency range. This demon-
strates that a mapping P that relates the fine FDFD and the coarse transmission line model
parameters through LTL = P(L) can indeed be established such that TTL(P(L))� TFDFD(L) in
the frequency range of interest. It is the existence of such a one-to-one mapping that enables the
space mapping algorithm to converge to a desired design after a few iterations. If a one-to-one
mapping between the fine and coarse models cannot be established, the algorithm may fail to
converge [15].

Table 1. The design parameters L( j)
1 , L( j)

2 found after jth iteration of the space mapping
algorithm for the structure of Fig. 1(a).

j = 1 j = 2 j = 3

L( j)
1 (nm) 210 182 180

L( j)
2 (nm) 384 349 351

3.2. MDM waveguide side-coupled to two arrays of MDM stub resonators

We next consider an example in which space mapping is applied to the design of a multicom-
ponent nanoplasmonic device. The structure consists of a MDM plasmonic waveguide side-
coupled to two arrays of MDM stub resonators [33] [Fig. 4(a)]. The fundamental TM mode of
the MDM waveguide is incident from the left. As in the previous example, we wish to design
a structure with a bandpass filter response. In the waveguide device geometry of Fig. 4(a) the
use of multiple stubs can reduce the transmission in the stopbands. In addition, the use of two
stub arrays with different stub lengths can result in narrower bandwidth of the passband [33].
In this case, the design specifications imposed on the transmission response T of the structure
[indicated in Figs. 4(c) and 4(d) with solid red lines] are

T > 0.5 for 190 THz < f < 200 THz, (22a)

T < 0.03 for 110 THz < f < 160 THz and 230 THz < f < 290 THz. (22b)

Here the design parameters are the lengths of the stub resonators in the two arrays L1 and L2,
as well as the distance L3 between two adjacent stubs. The width w of all waveguide sections is
fixed at w = 50 nm. The first and second array consist of 3 and 4 stubs, respectively.

Based on transmission line theory, the transmission line model of this structure consists of
a transmission line with propagation constant γ and characteristic impedance Z loaded with
two arrays of short-circuited transmission line stub resonators of lengths LTL1 and LTL2 with
the same propagation constant γ and characteristic impedance Z [Fig. 4(b)]. The distance be-
tween two adjacent transmission line stub resonators is LTL3. The characteristic impedance
Z is given by Eq. (19). To obtain the transmission line model response of the structure
TTL(LTL1,LTL2,LTL3), each of the MDM waveguide sections of the multicomponent device
is modeled using a 2× 2 transfer matrix [29, 34]. The overall transfer matrix is obtained by
multiplying the transfer matrices of the individual components [29].

As in the previous example, the transmission line model of this structure is computationally
efficient but its accuracy is limited. We use the coarse transmission line model of the structure
(without space mapping) in combination with the genetic global optimization algorithm to find
the transmission line model parameters LTL1, LTL2, and LTL3 such that the transmission line
model response TTL(LTL1,LTL2,LTL3) satisfies the design specifications. The optimal transmis-
sion line model parameters found using this approach are L∗

TL1 = 183 nm, L∗
TL2 = 466 nm, and
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Fig. 4. (a) Schematic of a MDM plasmonic waveguide side-coupled to two arrays of MDM
stub resonators. (b) Schematic of the transmission line model for the structure of Fig. 4(a).
Here Z(ω) and γ(ω) are the characteristic impedance and complex propagation constant
of the fundamental TM mode of a silver-air-silver plasmonic waveguide with width w. (c)
Transmission line model response TTL(L∗

TL1,L
∗
TL2,L

∗
TL3) of the structure of Fig. 4(a) for

parameters L∗
TL1 = 183 nm, L∗

TL2 = 466 nm, and L∗
TL3 = 229 nm obtained by optimizing

the transmission line model of Fig. 4(b) (dashed blue line). We also show the transmission
response calculated using FDFD, TFDFD(L1 = L∗

TL1,L2 = L∗
TL2,L3 = L∗

TL3) for the same
parameters (solid black line). Results are shown for w = 50 nm. The red lines are the de-
sign specifications imposed on the transmission response of this structure. (d) Transmission
response TFDFD(L̄1, L̄2, L̄3) of the structure of Fig. 4(a) calculated with FDFD for the pa-
rameters L̄1 = 159 nm, L̄2 = 439 nm, and L̄3 = 196 nm obtained by the space mapping
algorithm.

L∗
TL3 = 229 nm. As shown in Fig. 4(c), the transmission line model response for the optimized

device TTL(L∗
TL1,L

∗
TL2,L

∗
TL3) (dashed blue line) meets all the design specifications [Eq. (22)].
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As in the previous example, we investigate whether optimizing the transmission line model
of the structure is enough to obtain a device which satisfies all the design specifications. We
therefore perform a full-wave FDFD simulation of the device setting the design parameters L1,
L2, L3 equal to the optimal transmission line model parameters, and obtain the device response
TFDFD(L1 = L∗

TL1,L2 = L∗
TL2,L3 = L∗

TL3). We observe that the transmission response of the
device obtained with this approach TFDFD(L1 = L∗

TL1,L2 = L∗
TL2,L3 = L∗

TL3) (black solid line) is
substantially different from the transmission line model response TTL(L∗

TL1,L
∗
TL2,L

∗
TL3) (dashed

blue line), and does not meet all the desired specifications [Fig. 4(c)]. This is due to the limited
accuracy of the transmission line model which was discussed above. Thus, as in the previous
example, simply optimizing the transmission line model of the device is not enough to obtain a
device which satisfies all the required design specifications.

We therefore then use the space mapping algorithm (Section 2), to obtain a device which
will satisfy all the design specifications. The objective function H to be minimized during
the parameter extraction [Eq. (15)] is based on the coarse transmission line and fine FDFD
model responses at 21 frequency points from 100 THz to 300 THz with a step of 10 THz.

The design parameters L( j)
1 , L( j)

2 , L( j)
3 found after the jth iteration of the algorithm are shown

in Table 2. In this example the space mapping algorithm results in the design L̄1 = 159 nm,
L̄2 = 439 nm, L̄3 = 196 nm, which satisfies all the design specifications [Fig. 4(d)], after only
3 iterations. Thus, as in the previous example, the use of the space mapping algorithm results
in large reductions in the required computation time when compared to any direct optimization
method of the fine FDFD model.

Table 2. The design parameters L( j)
1 , L( j)

2 , and L( j)
3 found after jth iteration of the space

mapping algorithm for the structure of Fig. 4(a).

j = 1 j = 2 j = 3

L( j)
1 (nm) 183 156 159

L( j)
2 (nm) 466 439 439

L( j)
3 (nm) 229 196 196

3.3. Two nanorods juxtaposed in parallel in a waveguide

We finally consider an example where space mapping is applied to the design of a nanoplas-
monic device which includes deep subwavelength dielectric and metallic structures. Due to
their deep subwavelength dimensions, these structures are modeled as lumped circuit elements
rather than as transmission lines. In this example, the plasmonic device consists of a silicon
(εr = 14.15) and a silver nanorod juxtaposed in parallel in a waveguide [35,36] [Fig. 5(a)]. The
parallel-plate waveguide is bounded on top and bottom by perfect electric conductors (PEC),
which represent an impenetrable metal with sufficiently negative permittivity in the frequency
range of interest [36]. The nanorods are connected to a PEC protrusion attached to the bottom
of the waveguide [Fig. 5(a)]. The fundamental TEM mode of the parallel-plate waveguide is
incident from the left.

Here we wish to use the plasmonic waveguide device of Fig. 5(a), which is based on two
optical lumped nanocircuit elements, to design a structure with a bandpass filter response. More
specifically, the design specifications imposed on the transmission response T of the structure
are
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T > 0.36 for 330 THz < f < 360 THz, (23a)

T < 0.18 for 120 THz < f < 270 THz and 420 THz < f < 630 THz. (23b)

Fig. 5. (a) Schematic of a nanoplasmonic waveguide device consisting of a silicon and a sil-
ver nanorod juxtaposed in parallel in a waveguide. The parallel-plate waveguide is bounded
on top and bottom by perfect electric conductors (PEC). The nanorods are connected to a
PEC protrusion attached to the bottom of the waveguide. (b) Schematic of the transmission
line model for the structure of Fig. 5(a). Here Z0 is the characteristic impedance of the PEC
parallel-plate waveguide. The shunt impedance Zt consists of the parallel combination of a
capacitor, a resistor, and an inductor. (c) Transmission line model response TTL(L∗

TL1,L
∗
TL2)

of the structure of Fig. 5(a) for parameters L∗
TL1 = 20 nm and L∗

TL2 = 7 nm obtained by
optimizing the transmission line model of Fig. 5(b) (dashed blue line). We also show the
transmission response calculated using FDFD, TFDFD(L1 = L∗

TL1,L2 = L∗
TL2) for the same

parameters (solid black line). Results are shown for w = 50 nm and t = 10 nm. The red
lines are the design specifications imposed on the transmission response of this structure.
(d) Transmission response TFDFD(L̄1, L̄2) of the structure of Fig. 5(a) calculated with FDFD
for the parameters L̄1 = 20 nm and L̄2 = 9 nm obtained by the space mapping algorithm.

The specifications are indicated in Figs. 5(c) and 5(d) with solid red lines. Here the design
parameters are the lengths of the silicon and silver nanorods L1 and L2, while the width w of
the waveguide and t of the nanorods are fixed at w = 50 nm and t = 10 nm, respectively.
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As mentioned above, the nanorods can be modeled as lumped circuit elements [36]. More
specifically, since the dielectric constant of silicon is real and positive, the silicon nanorod is
modeled as a lumped capacitor with a capacitance per unit length given by [36]

C = ε0εr
L1

t
. (24)

In addition, since the real part of the dielectric constant of silver is negative in the frequency
range of interest, the silver nanorod is modeled as a lumped inductor in parallel to a lumped
resistor. Here the resistor accounts for the material losses in the silver nanorod. The inductance
and resistance per unit length are associated with the real and imaginary parts of the dielectric
constant of silver, respectively, and are given by [36]

L =− t
ω2Re(εm)L2

, (25)

R =
t

ωIm(εm)L2
, (26)

where εm is the dielectric permittivity of silver. Thus, overall the silicon and silver nanorods are
equivalent to the parallel combination of a resistor, an inductor, and a capacitor. The transmis-
sion line model of the waveguide device of Fig. 5(a) therefore consists of a shunt impedance Zt

coupled in parallel to a transmission line with characteristic impedance Z0 [Fig. 5(b)]. Here the
shunt impedance is given by

Zt = (Z−1
C +R−1 +Z−1

L )−1 = [ jωC+R−1 +( jωL)−1]−1, (27)

while the characteristic impedance of the PEC parallel-plate waveguide is [26]

Z0 =

√
μ0

ε0
w. (28)

Based on transmission line theory, the transmission line model response TTL(LTL1,LTL2) of
the structure of Fig. 5(a) can be calculated as [26]

TTL =

∣∣∣∣ 2Zt

2Zt +Z0

∣∣∣∣
2

. (29)

As in the previous examples, we first use the coarse transmission line model of the struc-
ture (without space mapping) in combination with the genetic global optimization algo-
rithm to find the nanorod lengths LTL1 and LTL2 such that the transmission line model re-
sponse TTL(LTL1,LTL2) satisfies the design specifications. The optimal transmission line model
nanorod lengths found using this approach are L∗

TL1 = 20 nm and L∗
TL2 = 7 nm. As shown

in Fig. 5(c), the transmission line model response for the optimized device TTL(L∗
TL1,L

∗
TL2)

(dashed blue line) meets all the design specifications [Eq. (23)]. As in previous examples, we
then investigate whether optimizing the transmission line model of the structure is enough to
obtain a device which satisfies all the design specifications. We therefore perform a full-wave
FDFD simulation of the device setting the nanorod lengths L1, L2 equal to the optimal trans-
mission line model nanorod lengths, and obtain the device response TFDFD(L1 = L∗

TL1,L2 =
L∗

TL2). We observe that the transmission response of the device obtained with this approach
TFDFD(L1 = L∗

TL1,L2 = L∗
TL2) (black solid line) is different from the transmission line model

response TTL(L∗
TL1,L

∗
TL2) (dashed blue line), and does not meet all the desired specifications

[Fig. 5(c)]. This is due to the limited accuracy of the transmission line model. Thus, similarly
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to the previous examples, simply optimizing the transmission line model of the device is not
enough to obtain a device which satisfies all the required design specifications.

We therefore use the space mapping algorithm (Section 2), to obtain a device which will
satisfy all the design specifications. As in the previous examples, the space mapping algorithm
converges fast to the design L̄1 = 20 nm and L̄2 = 9 nm, which meets all the specifications
[Fig. 5(d)]. In this case, the objective function H to be minimized during the parameter ex-
traction [Eq. (15)] is based on the coarse transmission line and fine FDFD model responses at
18 frequency points from 120 THz to 630 THz with a frequency step of 30 THz. The design

parameters L( j)
1 and L( j)

2 found after the jth iteration of the algorithm are shown in Table 3. In
this case, only 2 iterations were required for the algorithm to converge to a design satisfying
all the specifications. Thus, as in the previous examples, the use of the space mapping algo-
rithm results in large reductions in the required computation time when compared to any direct
optimization method of the fine FDFD model.

Table 3. The design parameters L( j)
1 , L( j)

2 found after jth iteration of the space mapping
algorithm for the structure of Fig. 5(a).

j = 1 j = 2

L( j)
1 (nm) 20 20

L( j)
2 (nm) 7 9

4. Conclusions

In this paper, we showed that the space mapping algorithm, originally developed for microwave
circuit optimization, can enable the efficient design of nanoplasmonic devices which satisfy a
set of desired specifications. Space mapping utilizes a physics-based coarse model to approxi-
mate a fine model accurately describing a device.

More specifically, we demonstrated the use of the space mapping algorithm for the design
of MDM plasmonic waveguide devices. A set of desired specifications are imposed on the
transmission response of the device. The goal is to find the design parameters of the device so
that its transmission response satisfies all the specifications. In our case, the fine model was a
full-wave FDFD simulation of the device, while the coarse model was based on transmission
line theory. We used the aggressive space mapping implementation of the algorithm, which
incorporates a quasi-Newton iteration. At each iteration of the space mapping algorithm we
used a parameter extraction procedure to obtain the mapping which corresponds to the optimum
match between the coarse and fine model responses. The iterative procedure was terminated
when the fine model response satisfied the set of desired specifications.

We considered several examples of the application of the space mapping algorithm for the
design of nanoplasmonic waveguide devices. In the first example, we considered a plasmonic
MDM waveguide side-coupled to two MDM stub resonators. The transmission line model of
this structure consists of two short-circuited transmission line resonators, which are connected
in series to a transmission line. In the second example, space mapping was applied to the de-
sign of a multicomponent nanoplasmonic device consisting of a MDM plasmonic waveguide
side-coupled to two arrays of MDM stub resonators. The transmission line model in this case
consists of a transmission line loaded with two arrays of short-circuited transmission line stub
resonators. The model was implemented using the transfer matrix of each waveguide section.
Finally, in the third example, space mapping was applied to the design of a nanoplasmonic
waveguide device consisting of deep subwavelength dielectric and metallic structures. These
structures were modeled as lumped circuit elements rather than as transmission lines.
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Through these three examples, we showed that simply optimizing the transmission line
model of the device is not enough to obtain a device which satisfies all the required design
specifications. On the other hand, we found that, when the iterative space mapping algorithm
was used, it converged fast to a design which met all the specifications. In addition, full-wave
FDFD simulations of only a few candidate structures were required before the iterative process
was terminated. Use of the space mapping algorithm therefore resulted in large reductions in
the required computation time when compared to any direct optimization method of the fine
FDFD model.

As final remarks, the use of more detailed transmission line models for nanoplasmonic
waveguides [37, 38] in the space mapping algorithm could potentially further reduce the re-
quired number of full-wave simulations during the design process. While here we consid-
ered examples where space mapping is applied to the design of bandpass filters, the algo-
rithm performs equally well when applied to the design of bandstop, lowpass, or highpass
filters [15,16,39]. In addition, we note that the space mapping algorithm can also be applied to
design three-dimensional nanoplasmonic waveguide devices, using as coarse models the trans-
mission line models which have been developed for such waveguides [40]. The algorithm has
already been successfully applied to design a variety of three-dimensional microwave waveg-
uide devices [15, 16]. Finally, space mapping could also be employed to design a variety of
other nanoplasmonic structures and devices, such as arrays of holes in metallic films, metallic
gratings, and metallic nanoparticle arrays, using the analytical or quasi-analytical physics-based
models which have been developed for such structures.
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