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Abstract: A metallic slot waveguide, with a dielectric strip embedded
within, is investigated for the purpose of enhancing the optics-to-THz con-
version efficiency using the difference-frequency generation (DFG) process.
To describe the frequency conversion process in such lossy waveguides, a
fully-vectorial coupled-mode theory is developed. Using the coupled-mode
theory, we outline the basic theoretical requirements for efficient frequency
conversion, which include the needs to achieve large coupling coefficients,
phase matching, and low propagation loss for both the optical and THz
waves. Following these requirements, a metallic waveguide is designed by
considering the trade-off between modal confinement and propagation loss.
Our numerical calculation shows that the conversion efficiency in these
waveguide structures can be more than one order of magnitude larger than
what has been achieved using dielectric waveguides. Based on the distinct
impact of the slot width on the optical and THz modal dispersion, we
propose a two-step method to realize the phase matching for general pump
wavelengths.
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1. Introduction

Many important applications of THz radiation [1] demand coherent THz sources. Among all
techniques to generate coherent THz radiation, the difference frequency generation (DFG) pro-
cess is of importance because it offers the advantages of relative compactness, straightforward
alignment, and room-temperature working environment. In difference frequency generation,
two optical pump beams, with their frequencies separated by a few THz, interact through a χ(2)

process to generate a THz beam. In general, the conversion efficiency of DFG is proportional
to the intensities of the pump beams [2, 3]. Consequently, in bulk crystals, it is desirable to use
a beam with a small radius. On the other hand, an excessively small beam radius can result
in strong diffraction effects. As a result, there exists an optimal beam radius. In a bulk GaSe
nonlinear crystal, for example, when generating 0.914 THz wave from the mixing of two CO2

lasers near 10 μm, the maximum efficiency of 3.9× 10−9 W−1 occurs at an optimal optical
beam radius of 10.59 μm [4].

It has long been recognized that further efficiency gain can be achieved with the use of
waveguide devices. In a waveguide, a tightly confined beam can propagate over long distance
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without suffering from diffraction effect [5, 6, 7, 8, 9, 10, 11, 12, 13]. Indeed, when using the
DFG process for THz generation, the highest efficiency reported to date [11] was accomplished
using a dielectric waveguide geometry. In applying dielectric waveguides to THz generation,
however, a unique challenge is the very large wavelength differences between the optical and
the THz waves. In a dielectric waveguide structure, the strongest confinement of an electromag-
netic wave typically occurs when the waveguide dimension is comparable to the wavelength.
Thus, a micron-scale dielectric waveguide, which is optimal for optical waveguiding, provides
only weak confinement of the THz wave. On the other hand, a single-mode strongly-confining
dielectric guide for THz wave would have a dimension of hundreds of microns. For an optical
wave such a guide is highly multi-moded, and has very limited modal confinement. As a result,
in a dielectric waveguide geometry, as well as in some of the planar waveguide structures utiliz-
ing metal plates (e.g. the geometry in Ref. [14]), the modal overlap of THz and optical modes
are far from ideal for the DFG processes.

To overcome the limitation of such waveguides, in this paper we analyze in detail the use of
metallic slot waveguide for THz generation purposes. The basic geometry, as shown in Fig. 1,
consists of a dielectric strip made of a nonlinear crystal embedded in a metallic slot waveguide.
The dielectric strip, with the cross-section dimension in the micron scale, is designed to provide
single-mode guiding and strong modal confinement of the optical wave. The use of a metallic
slot, on the other hand, allows deep sub-wavelength confinement of the THz wave. As a result,
the modal overlap of optical and THz waves is greatly improved in this geometry, which results
in greatly enhanced conversion efficiency. Our analysis indicates that more than an order of
magnitude improvement in conversion efficiency is achievable compared with state-of-the-art
dielectric waveguide results [11]. We note that although a low-temperature-grown GaAs pho-
tomixer [15] achieved a comparable conversion efficiency to that of our design at < 2 THz,
the photomixer suffers from dramatic efficiency roll-off starting at around 0.5 THz (where ter-
ahertz power scales as the fourth power of the inverse frequency), due to finite carrier lifetime
of GaAs. Hence photomixers could not efficiently produce high power at frequencies > 2 THz,
whereas in our design there is no such limitation. Another advantage of the DFG process is
power scalability: unlike photomixers, nonlinear optical sources do not suffer from saturation
of THz output power and typically show quadratic dependence vs. pump power.
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Fig. 1. (a) Schematic of the metal slot waveguide integrated with an embedded GaAs strip:
The background is quartz, the silver film and the GaAs strip have the same thickness h, and
the width of the slot and the GaAs strip are w1 and w2, respectively. (b) Orientation of the
embedded GaAs.

The use of metal, in general, induces loss as well as substantial waveguide dispersion at both
THz and optical wavelengths. The design of an optimal waveguide geometry thus involves
a careful consideration of many competing requirements. Our work is therefore substantially
different from a closely related recent paper [13], where THz wavelength conversion using
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a metal waveguide was first discussed. In Ref. [13], the material loss due to metal and the
impact of the waveguide geometry on the dispersive properties are not considered. Our analysis
indicates that these effects, ignored in [13], in fact can be very substantial in metallic waveguide
geometries.

The paper is organized as follows: In Section 2, we outline the basic theoretical requirement
for efficient frequency conversion using coupled-mode theory. In Section 3, we present an ex-
ample of a metallic waveguide structure designed to have a high conversion efficiency when
pumped at about 2 μm wavelength. In Section 4, we discuss in detail many of the considera-
tions that lead to the design in Section 3. Finally, in Section 5, we propose a general method for
designing such waveguides at different pump wavelengths.

2. Theory

We start by outlining the basic theoretical requirement for efficient frequency conversion. For
this purpose, we use a form of coupled-mode theory that is fully vectorial, and is developed
specifically for waveguides with substantial loss.

Consider the DFG process in a waveguide where two optical beams at frequencies ω2 and
ω3 mix to produce a THz beam at ω1 = ω3 −ω2. For each frequency ω j, we assume that the
corresponding electromagnetic fields

{
E j,H j

}
are in a single mode that propagates along the

+z direction, and can be written in the following form:

E j = Aj(z)(e j,t + e j,z)exp(iβ jz)
H j = Aj(z)(h j,t +h j,z)exp(iβ jz).

(1)

Here, β j is the real part of the wave number, Aj is the mode amplitude, and
{

e j,t(z),h j,t(z)
}

are the modal profiles, with the subscripts t and z representing the transverse and longitudinal
components, respectively. The modal profile is normalized such that

∫
dσ ·1

2
(e j,t ×h j,t) = 1, (2)

where the integration occurs over the entire waveguide cross-section, and dσ is a vector
along the z-direction. With such normalization, the e and h in the modal profile have units of
V/(m

√
W) and A/(m

√
W), respectively, and

∣
∣Aj

∣
∣2

has unit of W. We note that such normal-
ization is valid for any reciprocal waveguide structure, including waveguides with substantial
loss. With such normalization, a wave in a single mode with unit amplitude (i.e. Aj(z) = 1)
carries a time-averaged power of c j W, where

c j =
∫

dσ · 1
2

Re{e j,t ×h∗
j,t}. (3)

Notice that for lossless waveguides, one can show that both e j,t and h j,t can be taken to be
real, and hence c j = 1, reproducing the usual normalization condition [16]. Our normalization
relation of Eq. (2), however, is more general, and is necessary for the lossy waveguide cases.

Following the derivation in the Appendix, in terms of the mode amplitudes Aj(z), the
coupled-mode equations that describe the DFG process in the waveguide are:

∂A1
∂ z = −α1

2 A1 + iω1
4 κ1A∗

2A3 exp(iΔβ z)
∂A2
∂ z = −α2

2 A2 + iω2
4 κ2A∗

1A3 exp(iΔβ z)
∂A3
∂ z = −α3

2 A3 + iω3
4 κ3A1A2 exp(−iΔβ z) ,

(4)
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where α j is the power propagation loss coefficient for the j-th mode, Δβ ≡ β3 −β2 −β1, and
the coupling coefficients are

κ1 =
∫

dσ ¯̄χ : e∗2e3 · (e1t − e1z)
κ2 =

∫
dσ ¯̄χ : e∗1e3 · (e2t − e2z)

κ3 =
∫

dσ ¯̄χ : e1e2 · (e3t − e3z).
(5)

We note that the coupling coefficients have unit of s/(m
√

W). For a waveguide with length
L, pumped by two optical beams with amplitudes A2(0) and A3(0) at z = 0, the conversion
efficiency is:

η =
P1(L)

P2(0)P3(0)
=

c1

c2c3

∣
∣
∣
∣

A1(L)
A2(0)A3(0)

∣
∣
∣
∣

2

where P1 is the generated THz power and P2 and P3 are the pump powers. Under the approxima-
tion where the pump is not depleted by the nonlinear conversion process, one can solve Eq. (4)
analytically to obtain the conversion efficiency:

η=
c1

c2c3

ω2
1 |κ1|2
16

∣
∣
∣
∣
∣
exp(α1−α2−α3

2 L+ iΔβL)−1
α1−α2−α3

2 + iΔβ

∣
∣
∣
∣
∣

2

exp(−α1L) (6)

Examining Eq. (6), we note several key factors that are important in order to achieve high
conversion efficiency:

(a) Achieving large κ1. To do so, from Eq. (5) we see that with respect to the modal profile,
the orientation of the nonlinear crystal needs to be appropriately chosen. Moreover, since the
amplitude of the electric field in a modal profile in general scales inversely with the modal size,
as can be seen from the normalization relation of Eq. (2), tightly confining both the THz and
the optical waves in the same waveguide structure is of great advantage.

(b) Phase matching. The conversion efficiency is typically maximized when the phase-
matching condition is satisfied, i.e. Δβ = 0. As an illustration, assuming that loss is zero,
the efficiency η [Eq. (6)] is then proportional to L2. Thus, one can achieve high conversion
efficiency simply by increasing the length of the waveguide. Since ω1 = ω3 −ω2, the phase
matching condition can equivalently be described as nTHz = ng, where nTHz = cβ1/ω1 is the

phase index of the THz waves, ng = c β3−β2
ω3−ω2

is approximately the group index of the optical
waves, and c is the speed of light in vacuum.

(c) Reducing propagation losses. Setting Δβ = 0 in Eq. (6) and solving dη/dL = 0, we obtain
the optimal waveguide length which maximizes the conversion efficiency:

Lmax =
2

α1 −α2 −α3
ln

(
α1

α2 +α3

)
(7)

Thus, the presence of propagating losses limits the length of the waveguides that can be used
for conversion purposes, even when phase-matching condition is satisfied.

3. An example of a high-efficiency waveguide device

Based on the theoretical condition presented above, we consider a waveguide geometry as
shown in Fig. 1(a). The background material is quartz, and the silver film and the GaAs strip
have the same thickness of h = 0.3 μm. The width of the slot and the GaAs strip are w1 = 4
μm and w2 = 0.24 μm respectively.

In choosing the background material, it is desirable that: (a) The background material has
low loss in both the optical and THz wavelength; (b) Its index in the THz region is substantially
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higher than in the optical region. Thus, quartz becomes an interesting choice. Other material can
be used as background as well. From a loss perspective alone, an obvious choice of background
material might have been air, provided that a long GaAs air bridge can be made (for an example
of a GaAs air bridge, see [17]). In such a case, however, it turns out to be substantially more
difficult to design the system for phase matching, while maintaining strong optical confinement
in the GaAs region. Quasi-phase matching techniques [18], therefore, may be needed.

The focus of our paper is obviously theoretical with the aim to highlight the basic operating
principles and considerations for this class of structures. Nevertheless, one could imagine a
fabrication process, for the structure shown in Fig. 1, through a combination of wafer bonding
[19, 20] and micro-manipulation techniques [21, 22]. The process consists of three steps: 1) A
GaAs-on-quartz wafer is fabricated by the bonding technique, and then a GaAs strip is defined
by etching the top GaAs layer; 2) Two metal regions and a void slot are fabricated on another
quartz wafer by lithography; 3) The first wafer is mounted face-down on the second by the
micro manipulation techniques.

The structure is designed to operate with two optical pump frequencies at 148.5 and 151.5
THz, respectively (the corresponding wavelengths are 2.02 and 1.98 μm). These two optical
pumps will mix to generate a wave at 3THz. The refractive indices of all materials involved at
these frequencies are summarized in Table 1.

Table 1. Refractive index (n) of materials in the waveguide[23, 24, 25, 26]

Frequency (THz) Ag GaAs Quartz (ordinary
polarization)

3 249.26+ i601.77 3.6+ i2.78×10−3 2.13+ i3.58×10−4

148.5 0.215+ i14.608 3.341 1.522
151.5 0.207+ i14.317

In the nonlinear conversion process, we assume that the two optical pumps have their electric
fields predominantly along the y direction, and the THz wave has its electric field along the x
direction. In order for these waves to interact, the orientation of GaAs is chosen such that a [011]
direction coincides with the y-axis, and a [100] direction coincides with the x-axis [Fig. 1(b)].
As a result, the two optical pump beams can generate a polarization in THz along the x-axis
through the d14 component in the ¯̄χ(2) tensor of GaAs. Here we use d14 = 46.1 pm/V [27].

To calculate the conversion efficiency, we use a finite-difference frequency-domain (FDFD)
code to calculate the wave number (β j), the loss coefficient (α j), and the modal profile of all
the relevant modes. To take into account the field penetration into the metal, a variable grid is
used. For the THz wave, we use a computational window size of 200 μm by 200 μm, with a
minimal grid spacing of 10 nm. For the optical wave, we use a computational window size of
20 μm by 20 μm with a minimal grid spacing of 5 nm. After obtaining the modal information,
the nonlinear coupling coefficient κ j is then calculated with Eq. (5). By numerically solving the
nonlinear coupled-mode equations [Eq. (4)] (we assume that the two pumps have equal power),
we obtain the THz output power and hence the conversion efficiency. Such a calculation does
not assume the undepleted-pump approximation.

Figure 2(a) plots the THz output power versus the waveguide length for different pump pow-
ers. The conversion efficiency typically increases as a function of waveguide length, until the
loss of the waveguide becomes substantial. At all pump powers, the maximum THz output oc-
curs when the waveguide length is approximately 10 mm, as compared to Lmax = 10.4 mm
calculated by Eq. (7) under the undepleted-pump approximation. Figure 2(b) shows the THz
output power for a 10 mm long waveguide as a function of the pump power. The conversion
efficiency is 5.66× 10−6 W−1, as compared to η = 5.71× 10−6 W−1 calculated by Eq. (6).
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Fig. 2. (a) THz output power as a function of the waveguide length. Here we assume that the
two optical pumps have equal power. (b) THz output power for the 10 mm long waveguide
as a function of the pump power.

Thus, the full solution of the nonlinear ordinary differential equations of Eq. (4) indicates that
the non-depleted pump approximation is generally valid in this system. The conversion effi-
ciency is more than one order of magnitude larger than the highest previously reported for
conventional dielectric waveguides [11].

4. Discussion of the design requirement

We now discuss some detailed considerations that lead to the design in the previous section.
The efficiency improvement in this geometry arises from the strong confinement of THz wave,
enabled by the use of the metallic structures. However, the use of metallic structures also in-
duces losses for both the optical and the THz waves. The structure shown in Fig. 1 is designed
by considering this trade-off between confinement and propagation loss.

To discuss the design consideration, we first briefly discuss some of the relevant modal prop-
erties of the waveguide. This waveguide supports guided modes at both the THz and the optical
frequency ranges. The corresponding dispersion relations and the modal profiles are shown in
Figs. 3 and 4, respectively.

In the THz frequency range, the waveguide supports a single quasi-TEM mode with its elec-
tric field lines going from one metal region to the other [Fig. 4(a-b)]. Notice that the mode is
mostly confined in the slot region. Thus, the mode has a transverse dimension of approximately
8 μm that is much smaller than the 100 μm free space wavelength of a 3 THz wave. Since the
THz mode is a quasi-TEM mode, its dispersion relation is strongly influenced by the materials
in the slot, which for our geometry is mostly filled with quartz. Our FDFD calculations show a
nTHz � 2.14, as compared to the refractive index of 2.13 for quartz at the same wavelength. In
the THz wavelength range, there is typically substantial material loss due to phonon-polariton
excitations. At 3 THz, the loss coefficient of quartz is approximately 0.6 cm−1. The use of
metal induces additional THz loss due to the finite penetration of fields into the metal. The
penetration depth is approximately 50 nm. The FDFD calculations indicate that the THz mode
has a loss coefficient α1 � 4.59 cm−1. Thus, in this structure the loss at the THz wavelength
range is dominated by metal loss.

The optical modes of this structure are largely guided by the GaAs strip and the modal pro-
files decay exponentially in quartz away from the GaAs strip [Fig. 4(c-d)]. In principle, to
maximally confine an optical wave, one typically would choose the width of the strip to be
about half a wavelength in the core material. However, maximizing the optical modal confine-
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Fig. 3. Dispersion relation of the slot waveguide shown in Fig. 1. All frequencies are nor-
malized with respect to a length scale of a = 1μm. (a) In the optical frequency range
0.3 ∼ 0.55 (c/a) (i.e. 90 ∼ 165 THz), the waveguide supports two modes: The electric
fields of these two modes are polarized predominantly along the y or x-axis. The dispersion
relations of these two modes correspond to the solid and dashed line, respectively. The dot-
ted line is the light line of quartz. (b) Dispersion relation of the slot waveguide in the THz
range.

ment in GaAs also implies that the modal index is comparable to that of GaAs. On the other
hand, to satisfy the phase matching condition the group index of the optical modes needs to be
comparable to the THz refractive index of quartz. Thus, we have instead chosen the width and
the thickness of GaAs strip to be w2 = 0.24 and h = 0.3 μm such that the optical mode sub-
stantially extends into quartz, which lowers the group index to ng = 2.14, satisfying the phase
matching constraint.

In the optical wavelength range, the linear loss of the dielectric material is typically negligi-
ble. The intrinsic loss mechanism in the dielectric is instead due mainly to two-photon absorp-
tion. With a choice of optical wavelength of 2μm, the optical photon energy is below half of
the band gap of GaAs [28], and the nonlinear loss can be ignored. As a result, the dielectrics
can be treated as essentially lossless. In the optical frequency range, the modal loss is entirely
due to the presence of metal. For the slot waveguide, increasing the width of the slot, such
that eventually the optical modes do not extend into the metal region, is therefore effective in
reducing the optical loss. Figure 5 shows the propagation loss at ω2 as a function of slot width.
As the slot width increases beyond 4 μm, the loss of the optical modes drops below 1cm−1.
For the slot width w1 = 4 μm, the loss coefficients for the two pumps are α2 = 0.36 cm−1 and
α3 = 0.20 cm−1.

We note that, while increasing the slot width reduces the optical loss, it also reduces the
modal overlap, and hence the nonlinear coupling coefficient κ . Figures 6(a-b) show the coupling
coefficient and the maximum conversion efficiency, respectively, as a function of slot width.
Without considering the phase mismatching induced by the slot width variation, i.e. by setting
Δβ = 0 in the calculation, the conversion efficiency has a maximum value of 7.1×10−6 W−1

at w1 = 6 μm. The use of a narrower slot leads to higher optical propagation loss, whereas
the use of a wider slot reduces the coupling coefficient. Figure 6(b) also shows that the phase
mismatching further reduces the conversion efficiency.
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Fig. 4. (a) Power density profile and (b) the real part of Ex of the guided mode at the
frequency f = 0.01(c/a)= 3 THz in Fig. 3(b). (c) Power density profile and (d) the real part
of Ey of the second waveguide mode [solid line in Fig. 3(a)] at f = 0.495(c/a)= 148.5 THz.
The white lines give the outline of the waveguide structure.

5. Design procedure for general pump wavelengths

The example presented above is for a specific set of pump wavelengths. Here we point out a
design procedure for general pump wavelengths. An important feature, from the discussions
above, is that the metal region needs to be placed sufficiently far away from the GaAs strip in
order to reduce optical loss. Here, we show that this feature allows near-independent design of
optical and THz modes for phase-matching purposes. As a result, we present a two-step process
that allows design of slot waveguides for THz conversion process at general pump wavelengths.
Because the method is based on the dispersion relation of guided modes, rather than the material
dispersion, it can be applied to other material systems.

Let’s first consider the optical mode. The optical modal fields exponentially decay along the
transverse directions in the surrounding quartz region. Thus, when the slot is wide enough,
the impact of the metallic structure on the optical mode dispersion relation is negligible. For
example, the dispersion relation in a waveguide with a slot width w1 = 3 μm almost coincides
with that in a GaAs strip waveguide without the metal, as seen in Fig. 7. Thus, to design a
waveguide with the correct optical mode index, it is sufficient to consider only the GaAs strip
waveguide, which greatly reduces the dimensions of the parameter space and hence simplifies
the design process.

We now consider the THz modes. In Fig. 8, we plot the effective index and the propaga-
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Fig. 5. Optical propagation loss at ω2 as a function of slot width. Here the dimensions of
the GaAs strip and the thickness of the metal film are fixed at w2 = 0.24 μm and h = 0.3
μm.
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Fig. 6. (a) Coupling coefficient as a function of slot width. (b) Maximum conversion effi-
ciency as a function of slot width. The other geometry parameters are fixed at w2 = 0.24
μm and h = 0.3 μm, and the pump power is 0.5 W. The solid (dashed) line denotes the case
without (with) considering the phase mismatching induced by the slot width variation.

tion loss for the mode at 3 THz as a function of the slot width. Both the effective index and
the propagation loss decrease with the slot width. Because the quasi-TEM modes are strongly
concentrated near the edges of the metal, the fraction of the modal power in the GaAs strip de-
creases as the slot width increases. Consequently, for slots with width wider than 4 μm , which
is the regime of interest due to the consideration of losses in the optical modes, the index of the
THz mode is essentially that of quartz.

Based on the discussions above on the properties of optical and THz modes, here we propose
a two-step method to realize phase matching for general pump wavelengths. We first design a
GaAs strip. We choose the width and the height of the strip, i.e. w2 and h, such that the group
index at the pump wavelength n′g is approximately equal but slightly larger than the refractive
index of quartz nb at the THz wavelength range. We then consider a slot waveguide with such
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Fig. 7. Dispersion relations for two waveguides: (i) a waveguide as in Fig. 1 with slot width
w1 = 3 μm (solid line); (ii) a GaAs strip waveguide without metal slot structure (circles).
In both cases, the dimensions of the GaAs strip are w2 = 0.24μm and h = 0.3 μm.

GaAs strip embedded in it. For simplicity, the thickness of the metal layer is chosen to be the
same as that of the GaAs strip. Thus, we will be aiming to determine the width w1 of the slot. To
do so, we first search for an initial value of w1, such that the corresponding optical propagation
loss is low, and the group index of the pumps n′′g and the effect index of the THz mode n′′THz
are subject to n′′g ≈ n′g and n′′THz > n′g; then we gradually increase the slot width until the phase
matching condition n′′THz = n′′g is satisfied. This process allows to always find a width w1 since
with increasing w1, n′′g is still roughly equal to n′g while n′′THz monotonically decreases and
approaches to nb that is less than n′g.
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Fig. 8. (a) Effective index and (b) propagation loss for 3 THz guided modes as a function
of w1, where the other geometry parameters are fixed at w2 = 0.4 μm and h = 0.3 μm.
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6. Conclusion

In conclusion, we have investigated in detail a metallic slot waveguide, for the purpose of en-
hancing optics-to-THz conversion efficiency. To exactly describe the frequency conversion pro-
cess in lossy waveguides, a coupled-mode theory with fully vectorial form is developed. Using
the coupled-mode theory, we outline the basic theoretical requirements for efficient frequency
conversion, which include the needs to achieve large coupling coefficients, phase matching,
and low propagation loss for both the optical and THz waves. Following these requirements, a
metallic waveguide is designed by considering the trade-off between modal confinement and
propagation loss. Our numerical calculation shows that the conversion efficiency is more than
one order of magnitude higher than what has been achieved using dielectric waveguides. Based
on different behaviors of the optical and THz modal dispersion as a function of slot width, we
propose a two-step method to realize the phase matching for general pump wavelengths.

This work is supported by AFOSR (Grant No. FA9550-1-04-0437).

Appendix: Derivation of the coupled-mode equations for difference frequency generation
in a lossy waveguide under nonlinear interaction

Here we derive the coupled-mode equations to describe nonlinear interaction of co-propagating
waves in a waveguide. The derivation is based on the reciprocity theorem, which gives rise to
an orthogonality theorem of guided modes. As a starting point, we briefly review these two
theorems. Their detailed derivations can be found in Ref. [29].

Reciprocity theorem for waveguides - Consider two guided waves {Ei,Hi} (i = 1,2) in a z-
invariant waveguide, each excited by a current density Ji, respectively. From Maxwell’s equa-
tions:

∇×E1 = iωμH1

∇×H1 = −iωεE1 +J1

∇×E2 = iωμH2

∇×H2 = −iωεE2 +J2,

(8)

and by further assuming that the current densities Ji are continuously varying along z, we obtain
the reciprocity theorem:

∫

s
dσ · ∂

∂ z
(E1 ×H2 −E2 ×H1) =

∫

s
dσ (J1 ·E2 −J2 ·E1) (9)

where S is any slice of the waveguide normal to z. Importantly, this theorem is valid for both
lossless and lossy media, i.e. it applies to the case where ε is complex.

Orthogonality theorem of guided modes - We consider a source-free waveguide. Suppose
{Ei,Hi} (i = 1,2) are two guided modes satisfying Eq. (8) with J1 = J2 = 0. Splitting each of
these two modes into the transverse {ei,t ,hi,t} and longitudinal parts {ei,z,hi,z}, we obtain

E1 = (e1t + e1z)exp(iq1z)
H1 = (h1t +h1z)exp(iq1z)
E2 = (e2t + e2z)exp(iq2z)
H2 = (h2t +h2z)exp(iq2z)

(10)

where qi are the corresponding propagation constants that in general can be complex. The
orthogonality theorem states that, when q1 	= q2, the transversal parts of the two modes satisfy
the following condition [29]: ∫

s
dσ ·(e1t ×h2t) = 0. (11)
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Coupled-mode equations for the nonlinear interaction in waveguides - We now consider a
waveguide with a source current density J1 = −iωPNL

1 that arises from the nonlinear inter-
action. Such a source generates a guided wave {E1,H1} propagating along the +z direction,
which can be expanded in terms of all guided modes at the same frequency:

E1 = ∑
l

Ãl(z)
(
el,t + el,z

)
exp(iqlz)

H1 = ∑
l

Ãl(z)
(
hl,t +hl,z

)
exp(iqlz),

(12)

where
{

el,t(z),hl,t(z)
}

is the transverse (longitudinal) component of each guided mode propa-
gating along +z in the source-free case, and l is the index for each mode. For the L-th mode,
applying the mirror symmetry operation of the waveguide about the plane normal to z, one can
show that

E2 = (eL,t − eL,z)exp(−iqLz)
H2 = (−hL,t +hL,z)exp(−iqLz) (13)

is also a guided mode that propagates along −z.
By substituting J1 = −iωPNL

1 ,J2 = 0, and Eqs. (12) and (13) into Eq. (9), we observe that
on the left hand of Eq. (9), only the el,t ×hL,t +eL,t ×hl,t term is along the z-direction, the other
terms are perpendicular to z, and therefore it is the only non-vanishing term once the surface
integral along z is performed. By further applying the orthogonality condition [Eq. (11)], we
obtain

∂ ÃL(z)
∂ z

=
iω
2

∫
s dσ

(
P(NL)

1 · (eL,t − eL,z)
)

∫
s dσ ·eL,t ×hL,t

exp(−iqLz) (14)

We now specifically consider the DFG process in the present waveguide where two opti-
cal waves at frequencies ω2 and ω3, mix to produce a THz beam at ω1 = ω3 −ω2. For each
frequency ω j, the guided wave

{
E j,H j

}
propagating along +z, has the following form:

E j = Ã j(z)(e j,t + e j,z)exp(iq jz)
H j = Ã j(z)(h j,t +h j,z)exp(iq jz).

(15)

Here q j = β j + i
α j
2 is the complex propagating constant, α j and β j, which are both real and

positive, are the power propagation loss coefficient and the wave number, respectively. The
modal profile

{
e j,t(z),h j,t(z)

}
satisfies the orthonormal relation of Eq. (2). Comparing Eq. (15)

with Eq. (1), we have

Aj(z) = Ã j(z)exp(−α j

2
z). (16)

Also, the THz nonlinear polarization PNL
1 = ¯̄χ : E∗

2E3 at the frequency ω1 can be written as

PNL
1 = Ã∗

2Ã3 exp(−α3 +α2

2
z)exp(i(β3 −β2)z) ¯̄χ : e∗2e3 (17)

where ¯̄χ is the second-order susceptibility tensor. By substituting Eqs. (2), (15), and (17) into
Eq. (14), we have

∂ Ã1

∂ z
=

iω1

4
κ1Ã∗

2Ã3 exp(−α3 +α2

2
z+

α1

2
z)exp(iΔβ z). (18)

Here Δβ = β3 −β2 −β1, and κ1 is the coupling coefficient

κ1 =
∫

S
dσ ¯̄χ : e∗2e3 · (e1t − e1z). (19)
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By substituting Eq. (16) into Eq. (18), we finally obtain the coupled-mode equation for the
amplitude of the THz wave

∂A1

∂ z
= −α1

2
A1 +

iω1

4
κ1A∗

2A3 exp(iΔβ z) (20)

The coupled mode equations for the optical wave can be derived similarly.
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