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We introduce a plasmonic waveguide system, which supports a subwavelength broadband slow-light guided mode
with a tunable slowdown factor at a given wavelength. The system consists of a metal–dielectric–metal (MDM)
waveguide side-coupled to a periodic array of MDM stub resonators. The slowdown factor at a given wavelength
can be tuned by adjusting the geometrical parameters of the system. In addition, there is a trade-off between the
slowdown factor and the propagation length of the supported optical mode. Finally, we show that light can be
coupled efficiently from a conventional MDM waveguide to the plasmonic waveguide system. © 2010 Optical
Society of America
OCIS codes: 240.6680, 230.7370, 130.2790.

Plasmonic waveguides, based on surface plasmons pro-
pagating at metal–dielectric interfaces, have shown the
potential to guide and manipulate light at deep subwave-
length scales, and could provide an interface between
conventional optics and subwavelength electronic and
optoelectronic devices [1,2]. In addition, slowing down
light in plasmonic waveguides leads to enhanced light–
matter interaction, and could, therefore, enhance the
performance of nanoscale plasmonic devices, such as
switches and sensors [3–8]. Several different nanoscale
plasmonic waveguiding structures have been recently
proposed, such as metallic nanowires, metallic nanopar-
ticle arrays, V-shaped grooves, and metal–dielectric–
metal (MDM) waveguides [9]. Among these, MDM
plasmonic waveguides, which are the optical analogue
of microwave two-conductor transmission lines [10],
are of particular interest because they support modes
with deep subwavelength scale over a very wide range
of frequencies extending from DC to visible [11]. How-
ever, in conventional MDM plasmonic waveguides, once
the operating wavelength and modal size are fixed, the
group velocity of light is not tunable.
In this Letter, we introduce a plasmonic waveguide sys-

tem, which supports a subwavelength broadband slow-
light guided mode with a tunable slowdown factor at a
given wavelength. The structure is a plasmonic analog
of the periodically loaded transmission lines used in mi-
crowave engineering [10]. We show that the principle
of operation of such a system can be explained using a
characteristic impedance model and transmission line
theory. We find that the slowdown factor at a given
wavelength can be tuned by adjusting the geometrical
parameters of the system. We also find that there is a
trade-off between the slowdown factor and the propaga-
tion length of the supported optical mode. Finally, we
show that light can be coupled efficiently from a conven-
tional MDM waveguide to the plasmonic waveguide sys-
tem. Such slow-light plasmonic waveguide systems could
be potentially used in nonlinear, switching, and sensing
applications.
The structure consists of an MDM waveguide side-

coupled to a periodic array of MDM stub resonators

[Fig. 1(a)]. Side-coupled-cavity structures have been pre-
viously proposed as compact filters, reflectors, switches,
and impedance matching elements for plasmonic wave-
guides [12–15]. Both the MDM waveguide and MDM stub
resonators have deep subwavelength widths (w0,w ≪ λ).
The periodicity d is also subwavelength (d ≪ λ), so that
the operating wavelength is far from the Bragg wave-
length of the waveguide [16] (λ ≫ λBragg). In addition, the
distance between adjacent side-coupled cavities d–w is
chosen large enough so that direct coupling between
the cavities has a negligible effect on the dispersion re-
lation of the system. This sets a lower limit on the peri-
odicity dmin of the plasmonic waveguide structure. For
w ¼ 50 nm, we found that dmin ≃ 80 nm.

We use a finite-difference frequency-domain (FDFD)
method [17] to investigate the properties of the structure.
This method allows us to directly use experimental data
for the frequency-dependent dielectric constant of me-
tals, such as silver [18], including both the real and ima-
ginary parts, with no approximation. Perfectly matched
layer (PML) absorbing boundary conditions are used
at all boundaries of the simulation domain [19]. To dras-
tically reduce spurious reflections at PML interfaces, we
place ∼20 periods of the waveguiding structure within
the PML layer [20].

We use a characteristic impedance model and trans-
mission line theory [15,21] to account for the behavior
of the system. Based on transmission line theory, the sys-
tem is equivalent to a transmission line with characteris-
tic impedance Z0 ¼ γ0w0=ðiωεÞ periodically loaded with
short-circuited transmission line stub resonators of
length L and characteristic impedance Z1 ¼ γ1w=ðiωεÞ.
Here, γ0 (γ1) is the complex wave vector of the fundamen-
tal propagating TM mode in a MDM waveguide of width
w0 (w) [Fig. 1(a)]. Using transmission line theory [10], the
dispersion relation between ω and the Bloch wave vector
γ ¼ αþ iβ of the entire system is found to be
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In Fig. 1(b), we show the dispersion relation for the plas-
monic waveguiding structure of Fig. 1(a) calculated using
FDFD, which, similar to surface plasmons propagating at
a single metal–dielectric interface [16], exhibits a reso-
nance. In the lossless metal case, the resonance fre-
quency ωres is the cutoff frequency of the fundamental
mode, and, for ω > ωres, the system has a bandgap, sup-
porting a nonpropagating mode with β ¼ 0. In addition,
we have γ0 ¼ iβ0, γ1 ¼ iβ1, and βðωresÞ ¼ π=d at the band
edge. Using these and Eq. (1), we find that the resonance
frequency ωres is a solution of the following equation:

Z1ðωresÞ tan½β1ðωresÞL� ¼ 2Z0ðωresÞ cot
�
β0ðωresÞ
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Thus, unlike in conventional MDM waveguides, where
ωres is equal to the surface plasmon frequency of the
metal–dielectric interface (ωres ¼ ωsp) and is fixed for
a given metal [16], in such a plasmonic waveguide system
the resonance frequency ωres is tunable through its geo-
metric parameters. In the presence of loss, we have
βðωresÞ < π=d [Fig. 1(b)]. In addition, for ω > ωres the
Bloch wave vector γ has an imaginary component (β ≠ 0),
and the dispersion relation experiences back-bending
[16] with negative group velocity vg ≡ ∂ω

∂β [Fig. 1(b)].
In such a plasmonic waveguide system, light is slowed

down over a very wide frequency range extending from
DC to slightly below the resonance frequency [Fig. 1(c)].
To find the slowdown factor c=vg in the low-frequency
limit, we take the limit of the dispersion relation in
Eq. (1) as ω → 0. We note that, in the limit of ω → 0,
γ0 ≃ γ1 ≃ iω ffiffiffiffiffiffiffiεμ0

p
. Using these, we obtain the low-

frequency (ω → 0) slowdown factor c=vg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wL

w0d

q
.

We confirmed that this analytical result is in excellent
agreement with the result obtained using FDFD. Thus,
the group velocity of the system in the low-frequency
regime is entirely controlled by its geometry. When ω
approaches ωres (ω≲ ωres), the dispersion relation be-
comes flat, and the group velocity vg rapidly decreases
[Fig. 1(c)].

We found that, at frequencies far from the resonance
frequency, the modal energy of the periodic plasmonic
waveguide extends over both the waveguide and the stub
resonators. On the other hand, at frequencies near the
resonance frequency, the field intensity in the resonators
is enhanced, and the modal energy is, therefore, mostly
concentrated in the resonators [Fig. 1(d)]. In both cases,
the modal size is subwavelength.

The slowdown factor in the system at a given wave-
length can be tuned by adjusting the geometric param-
eters of the structure. In Fig. 2(a), we show the slowdown
factor c=vg as a function of the stub length L at
λ0 ¼ 1:55 μm. For L ¼ 0, the structure is a conventional
MDM waveguide and ωres ¼ ωsp. Since the operating fre-
quency ω is far from the resonance frequency of the sys-
tem ωres, the slowdown factor is small [Fig. 1(c)]. As L
increases, ωres decreases [Eq. (2)] and, because the op-
erating frequency approaches the resonance frequency,
the slowdown factor increases [Fig. 2(a)]. Thus, by
adjusting the stub length L, the group velocity of the
mode can be tuned to a desired value at the operating
wavelength.

In Fig. 2(a), we also show the slowdown factor c=vg
calculated by transmission line theory. We observe that
there is very good agreement between the transmission
line theory results and the exact results obtained using
FDFD. We note that the small difference between the
transmission line theory and FDFD results is due to
the error introduced by the transmission line model in
the phase of the reflection coefficient at the two inter-
faces of the side-coupled cavity of length L. Such limita-
tions of the characteristic impedance model for circuits
of MDM plasmonic waveguides have been described in
detail elsewhere [22].

Fig. 1. (Color online) (a) Schematic of a plasmonic waveguide
system consisting of a MDM waveguide side-coupled to a per-
iodic array of MDM stub resonators. (b) Dispersion relation of
the plasmonic waveguide system of Fig. 1(a) calculated using
FDFD (black solid curve). Results are shown for a silver–air
structure with d ¼ 100nm, L ¼ 220nm, and w0 ¼ w ¼ 50nm.
Also shown is the dispersion relation for lossless metal (red
dashed–dotted line), and the resonance frequency ωres (black
dashed line) (ωres ≃ 0:067 · 2πc=d corresponding to λres≃
1:5 μm). (c) Reciprocal of the group velocity vg of light in the
plasmonic waveguide system as a function of frequency. All
parameters are as in Fig. 1(b). (d) Magnetic field profile of
the supported optical mode in the system at λ0 ¼ 1:55 μm. All
other parameters are as in Fig. 1(b).

Fig. 2. (Color online) (a) Reciprocal of vg as a function of L for
the plasmonic waveguide system of Fig. 1(a) at λ0 ¼ 1:55 μm
calculated using FDFD (left black curve) and transmission line
theory (right red curve). All other parameters are as in Fig. 1(b).
(b) Reciprocal of vg versus propagation length Lp for the plas-
monic waveguide system of Fig. 1(a) at λ0 ¼ 1:55 μm calculated
using FDFD. Results are shown for d ¼ 100 nm (upper blue
curve) and d ¼ 200nm (lower red curve) as L is varied. All
other parameters are as in Fig. 1(b). We also show c=vg versus
Lp for a conventional MDM waveguide at λ0 ¼ 1:55 μm (dashed
curve) as the width of its dielectric region is varied.
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In addition, due to the absorption loss in the metal,
there is a trade-off between the slowdown factor c=vg
and the propagation length Lp of the supported optical
mode in such slow-light plasmonic waveguide systems
[Fig. 2(b)]. For a given slowdown factor, the mode of
the plasmonic waveguide system has a significantly lar-
ger propagation length when compared to a conventional
MDM plasmonic waveguide [Fig. 2(b)]. This is because,
in a conventional MDM waveguide, the slowdown factor
can be increased by decreasing the dielectric layer width.
This, however, also results in increase of the fraction of
the modal power in the metal.
We finally consider the coupling between the plasmo-

nic waveguide system [Fig. 1(a)] and a conventional
MDM waveguide. To achieve high transmission effici-
ency, the characteristic impedance of the input MDM
waveguide must be matched to the characteristic impe-
dance of the system [21]. We note that the characteristic
impedance of an MDMwaveguide can be tuned by adjust-
ing its width [21]. Thus, by simply placing the MDM
waveguide terminated flat at the entrance of the plas-
monic waveguide system and adjusting its width w1
[Fig. 3(a)], we can achieve almost perfect impedance
matching between the two waveguiding structures, and,
therefore, very high transmission efficiency [Fig. 3(b)].
We also note that the transmission can be even further
improved by using a single intermediate MDMwaveguide
section between the two structures. Thus, no adiabatic

tapering structures are required to couple light efficiently
into the plasmonic waveguide system. This enables the
use of the system in highly compact plasmonic devices
for enhanced light-matter interaction.
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Fig. 3. (Color online) (a) Schematic of a coupler between a
conventional MDM waveguide and the plasmonic waveguide
system of Fig. 1(a). (b) Transmission for the coupler of
Fig. 3(a) as a function of w1 for L ¼ 190nm (upper red curve),
and for L ¼ 220nm (lower black curve) calculated using FDFD.
All other parameters are as in Fig. 1(b).
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