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Guided subwavelength plasmonic mode supported
by a slot in a thin metal film

Georgios Veronis and Shanhui Fan
Department of Electrical Engineering, Stanford University, Stanford, California 94305

Received July 1, 2005; revised manuscript received August 12, 2005; accepted August 23, 2005

We demonstrate the existence of a bound optical mode supported by a slot in a thin metallic film deposited
on a substrate, with slot dimensions much smaller than the wavelength. The modal size is almost completely
dominated by the near field of the slot. Consequently, the size is very small compared with the wavelength,
even when the dispersion relation of the mode approaches the light line of the surrounding media. In addi-
tion, the group velocity of this mode is close to the speed of light in the substrate, and its propagation length
is tens of micrometers at the optical communication wavelength. © 2005 Optical Society of America

OCIS codes: 130.2790, 240.6680, 260.2110.
Waveguide structures that support highly confined
optical modes are important for achieving compact
integrated photonic devices.1,2 In particular, plas-
monic waveguides have shown the potential to guide
subwavelength optical modes. Several different plas-
monic waveguiding structures have been
proposed.1,3–12 However, these structures support a
highly confined mode only near the surface plasmon
frequency. In this regime, the optical mode typically
has low group velocity and a short propagation
length.

In this Letter we investigate the characteristics of
the bound optical mode supported by an air slot in a
thin metallic film deposited on a substrate [inset of
Fig. 1(a)]. This structure is hereafter referred to as a
plasmonic slotline. Of particular interest is the re-
gime where the dimensions of the slot are much
smaller than the wavelength. We show that such a
structure supports a fundamental bound mode with
size almost completely dominated by the near field of
the slot over a wide range of frequencies. The size of
this mode can be far smaller than the wavelength
even when its effective index approaches that of the
substrate. In addition, the group velocity of the mode
is close to the speed of light in the substrate and its
propagation length is tens of micrometers at the op-
tical communication wavelength. Thus, such a wave-
guide could be potentially important in providing an
interface between conventional optics and subwave-
length electronic and optoelectronic devices.

We calculate the eigenmodes of the plasmonic slot-
line at a given wavelength �0 using a full-vectorial
finite-difference frequency-domain (FDFD) mode
solver. For waveguiding structures that are uniform
in the z direction, if an exp�−�z� dependence is as-
sumed for all field components, Maxwell’s equations
reduce to two coupled equations for the transverse
magnetic field components Hx and Hy.

13 These equa-
tions are discretized on a nonuniform orthogonal
grid, resulting in a sparse matrix eigenvalue problem
of the form Ah=�2h, which is solved using iterative
sparse eigenvalue techniques.14 To calculate the
bound eigenmodes of the waveguide, we ensure that

the size of the computational domain is large enough
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that the fields are negligibly small at its
boundaries,15 while for leaky modes we use perfectly
matched layer absorbing boundary conditions.14 An
important feature of this formulation is the absence
of spurious modes.15 In addition, the frequency-
domain mode solver allows us to directly use experi-
mental data for the frequency-dependent dielectric
constant of metals,16 including both the real and the
imaginary parts, with no further approximation.
Here we define the propagation length Lp and the ef-

Fig. 1. (a) Dispersion relation of the fundamental mode of
the plasmonic slotline (solid curve) for w , t=50 nm (see in-
set) and of a PEC slotline (dashed curve). The upper,
middle, and lower thin dotted curves are the light lines of
air and silica and the lowest frequency mode of the silver
film, respectively. (b) Propagation length of the fundamen-
tal mode of the plasmonic slotline as a function of wave-

length for w , t=50 nm.
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fective index neff of a propagating mode through the
equation ��Lp

−1+ i�=Lp
−1+ i2�neff�0

−1.
In Fig. 1(a) we show the dispersion relation of the

fundamental mode of the plasmonic slotline. The
width w and thickness t of the slot are 50 nm, and
the substrate material is silica �ns=1.44�. We observe
that such a structure supports a bound mode in a
wide frequency range. Within this range this mode
has a wave vector larger than all radiation modes in
air and silica, as well as all propagating modes in the
air–silver–silica thin film structure. The cutoff fre-
quency of this mode is �0.005�2�c /w�, where c is the
speed of light in free space. We also found that, if the
slot dimensions are smaller than 100 nm, the optical
communication frequency ��0=1.55 �m� is well above
�cutoff. Since the slot dimensions are much smaller
than the wavelength in the frequency range of inter-
est, the fundamental bound mode is quasi-TEM with
dominant field components Ex and Hy, and this wave-
guide does not support any higher-order bound
modes. Since the fundamental mode is quasi-TEM, it
can be efficiently excited by linearly polarized light.

As a comparison, in Fig. 1(a) we also show the dis-
persion relation when the perfect electric conductor
(PEC) approximation is used for the metallic regions.
We observe that the PEC slotline structure on the
substrate does not support a bound mode at any fre-
quency. When the slot dimensions are far smaller
than the wavelength, the fields are essentially the
same as those of the static case.17 In the PEC case,
the fields do not penetrate into the metal. The field
lines are either in air or in silica. The effective index
of the mode neff therefore satisfies the relation 1
�neff�ns.

17 The PEC model is commonly used to de-
scribe slotlines at microwave frequencies. While such
structures do not support any bound mode, in prac-
tice they guide waves effectively,17,18 since radiation
loss turns out to be negligible for deep subwavelength
structures. In comparison, the existence of a bound
mode for the plasmonic slotline is entirely due to the
finite negative dielectric constant of metals at optical
frequencies, which results in higher neff for the fun-
damental mode.

In Fig. 1(b) we show the propagation length Lp of
the fundamental mode of the plasmonic slotline as a
function of wavelength. The propagation length de-
creases as the wavelength decreases. This is due to
the fact that the propagation length of surface plas-
mons scales with the wavelength,19 since the fraction
of the modal power in the metal increases at shorter
wavelengths,6 and also due to increased material
losses of metals at shorter wavelengths.16 At the op-
tical communication wavelength of 1.55 �m the
propagation length is �20 �m.

In Fig. 2(a) we show the power density profile of
the fundamental mode of the plasmonic slotline for
�0=1.55 �m. We observe that the mode is confined
mostly in the slot region and slightly extends to the
adjacent silica and air regions. The maximum inten-
sity is observed at the silver–air interfaces in the
slot. This is expected since the mode can be seen as

being formed by the coupling of the surface plasmon–
polaritons at the two silver–air interfaces. In Fig.
2(b) we show the modal size, defined as the square
root of the area in which the mode power density is
larger than 1/e2 of its maximum value, as a function
of frequency. At the optical communication wave-
length of 1.55 �m the modal size is �87 nm, which is
much smaller than the minimum achievable modal
sizes with high-index-contrast dielectric waveguides.
For comparison, the minimum achievable modal size
with square silicon waveguides embedded in silica at
�0=1.55 �m is �400 nm.20 We also note that the
modal size varies only weakly as a function of fre-
quency.

We observe that the modal size remains small even
at low frequencies where the dispersion relation ap-
proaches the silica light line. This behavior is funda-
mentally different from that of conventional dielec-
tric waveguides. In conventional dielectric
waveguides, the fields in the low-index cladding sur-
rounding the high-index core decay exponentially
with a decay constant �=2� /�0�neff

2−nclad
2, where

nclad is the refractive index of the cladding region.21

In these structures, the minimum confinement of a
guided optical mode is ��0 / �2ncore�, where ncore is the
refractive index of the core region.1 If the dimensions
of the core are reduced far below �0 / �2ncore�, the dis-
persion relation of the optical mode approaches the
cladding light line �neff→nclad�, the decay constant �
becomes extremely small, and the modal size be-
comes extremely large.20,21 In contrast, in the case of
the plasmonic slotline, even though the same expo-
nential behavior should still hold in the far field, the

Fig. 2. (a) Power density profile at �0=1.55 �m, and (b)
Modal size as a function of frequency of the fundamental
mode of the plasmonic slotline for w , t=50 nm.
modal size is dominated by the near field of the slot.
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In Fig. 3(a) we show the power density profile of
the fundamental mode of the plasmonic slotline in
a vertical cut at x=0 [Fig. 1(a)] for w , t
=25,50,100 nm and �0=1.55 �m. This profile has
two distinctive characteristics related to the near and
far fields. Far from the slot, the modal power density
decays asymptotically as �exp�−2�	� /	, where �
=Re�−�2− �2�nclad/�0�2�1/2, as expected from Max-
well’s equations. If the slot dimensions w , t increase,
the effective index of the mode neff decreases, and
therefore the decay rate � decreases. Note also that,
since ns=1.44
1, the decay rate is always larger in
air.

In Fig. 3(b) we show the power density profile in
the vicinity of the slot. We observe that the near field
of the slot scales with the slot dimensions w , t and is
independent of w /�0. This is due to the fact that the
slot dimensions are much smaller than the wave-
length. In addition, silver satisfies the condition
��metal���air at �0�1.55 �m.16 Thus, based on the
boundary condition for the normal component of the
electric field Ex at the silver–air interfaces in the slot,
we have �Ex metal� �Ex air�. The modal profile is there-

Fig. 3. (a) Power density profile at �0=1.55 �m of the fun-
damental mode of the plasmonic slotline at x=0 [Fig. 1(a)]
for w , t=25, 50, and 100 nm (dashed–dotted, dashed, and
solid curves, respectively). (b) Power density profile at x
=0 in the vicinity of the slot for w , t=25,50,100 nm. Note

that the horizontal axis is normalized with respect to w.
fore highly confined in the slot region [Fig. 2(a)], and
the modal size is dominated by the near field of the
slot. Thus, even when the dispersion relation of the
mode approaches the silica light line and the far-field
decay rate � decreases, the modal size remains rela-
tively small [Fig. 2(b)]. In addition, since the near
field scales with the slot dimensions, the modal size
of the plasmonic slotline can be further reduced, if
the slot dimensions are reduced. We note that this
comes at the cost of reduced propagation length.22
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