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Abstract—Modeling of waveguide junctions using transmission
lines and lumped circuit elements is common practice in microwave
networks. By the help of the scattering matrix formalism, it is pos-
sible to describe junction effects in a very concise way. Such a rep-
resentation is crucial for the design of complex systems containing
many interacting parts. Using scattering matrices, we characterize
symmetric junctions between 2-D metal–insulator–metal (MIM)
waveguides with optical signals at infrared frequencies (1550 nm)
propagating in them. We verify our characterization by perfectly
matching a wavelength-sized MIM waveguide to a subwavelength-
sized one using a Smith chart. We then map the scattering matrix
description to an equivalent lumped circuit representation and
discuss the physical significance of its elements. We show that the
simplified characteristic impedance model is appropriate for the
deep subwavelength regime. The scattering matrix model for the
MIM junctions leads to simplified analysis that can be integrated
into circuit modeling software packages, such as SPICE.

Index Terms—Equivalent circuits, optical waveguides, parallel
plate waveguides, plasmons, scattering matrices, waveguide dis-
continuities, waveguide junctions.

I. INTRODUCTION

MODELING electromagnetic wave propagation using
transmission lines has been one of the most important

achievements of microwave network theory [1]. The concept
of impedance [2] and understanding the effects of waveguide
discontinuities in terms of lumped circuit elements were crucial
in this respect.

Recent interest in the use of metals to design optical com-
ponents opened up the possibility of guiding light in subwave-
length structures. The optical properties of metals at infrared
and visible wavelengths enable these designs. It is hoped that
the size mismatch between modern electronic components with
critical dimensions on the order of tens of nanometers and the
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micrometer-scaled optical devices will be bridged by the use
of nanometallic structures [3]. Even though the properties of
metals are quite different at optical wavelengths compared to
the microwave, designs that are qualitatively similar to their
low-frequency counterparts have been demonstrated at optical
frequencies [4]. It is intriguing to ask whether methods of mi-
crowave can be applied to this new generation of nanometallic
structures to come up with concise descriptions of components
that can lead to a simplified approach to the design of functional
systems composed of many interacting parts.

Transmission lines and lumped element circuit descriptions
have been shown to be useful concepts for optical compo-
nents [5]–[10]. In this paper, we will focus on the 2-D metal–
insulator–metal (MIM) waveguide (here we will use this term
“MIM” to apply only to waveguides at optical or infrared fre-
quencies, as distinct from “parallel plate” waveguides, which are
mechanically similar structures but used in the microwave or ra-
dio frequency regime). MIM waveguides have been extensively
studied [11]–[13] in the literature. It has also been shown that
the main TM mode of an MIM waveguide continuously changes
to that of the TEM mode of a parallel-plate waveguide with per-
fect electric conductor (PEC) boundaries as the frequency of
operation is decreased [14]. Our study will investigate the sym-
metric junctions of MIM waveguides. It is possible to find exam-
ples of analysis for various junction geometries including MIM
waveguide to free space [15], one MIM waveguide to two MIM
waveguides [16], MIM waveguide bends [5], [17], dielectric slab
waveguide to MIM waveguide [18], PEC parallel-plate waveg-
uide to PEC parallel-plate waveguide [19], surface plasmon to
surface plasmon [20], [21], and MIM waveguide to MIM waveg-
uide [22]. In [23], junctions made by microgratings on metallic
wires are modeled as Brag mirrors. The numerical methods of
analysis for nanometallic structures are reviewed in [24].

In this paper, in Section II, we will characterize the modal
reflection and transmission from MIM junctions using the scat-
tering matrix approach, a commonly used method in microwave
network theory. Then, in Section III, to test our characteriza-
tion, we will design a cascade connection of MIM junctions
to couple the mode of a wavelength-sized MIM waveguide to
that of a subwavelength one with zero reflection. Lastly, in
Section IV, we will represent the scattering matrix of MIM
junctions in terms of an equivalent lumped circuit model and
discuss the physical significance of its elements. Throughout our
analysis, we will compare MIM waveguides to PEC parallel-
plate waveguides and comment on the similarities and the dif-
ferences between the two. We will draw our conclusions in
Section V.
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Fig. 1. Description of the modeling geometry. Dashed lines represent the
location of the left and right ports of the overall scattering matrix S that describes
this junction (schematically shown in the bottom). Gray areas on the left and
right of the ports are the regions in the simulation space used to extract the
reflection coefficients S11 and S22 .

II. SCATTERING MATRIX DESCRIPTION OF JUNCTIONS

In this section, we will focus on the geometry as shown in
Fig. 1. We are considering MIM waveguides, consisting of two
layers of metal separated by an insulating dielectric layer. The
metals are presumed to be thick in the vertical (x) direction in
Fig. 1, and to extend arbitrarily far in the directions in and out
of the page. We are considering the modes of propagation in
the horizontal (z) directions. We are particularly interested in
what happens at the symmetric interfaces between two (or more)
such MIM waveguides with different dielectric thicknesses. Fig.
1 shows the interface between two such guides. The variable b
will denote the insulator thickness for the left waveguide and b′

will be used for right waveguide’s insulator thickness. We will
assume that the insulating region is free space with a permittivity
εi = 1. For our simulations, the metal is silver with a permittivity
of εm = −143.497 − i9.517 [25], [26], though similar general
results are expected for other metals such as aluminum or gold.
We will use e+iω t for the time dependence of electromagnetic
fields where ω is the angular frequency. The wavelength of
operation is fixed at λ = 1550 nm, in the L-band of optical
telecommunications. The main mode of the system is an even
TM mode (here, by TM we mean that the magnetic field Hy

is in the direction out of the plane of the paper in Fig. 1). Due
to the symmetry of the junction, only even TM modes can be
excited using an incident wave, which itself is a TM wave that
is an even function with respect to the center of the guide. We
therefore have only three field components: Hy , Ex , and Ez .

Using the dispersion equation for even modes of the MIM
waveguide [13], it can be shown that only a single even prop-
agating mode can exist for b < 0.97λ for our choice of εm , εi ,
and λ. The condition for the PEC parallel-plate waveguide is
similar, where only a single even propagation mode exists for
b < 1.0λ. When there is only one propagating mode, far away
from the waveguide junction, the fields can be written in terms of
that main mode of the system since all higher order modes will

have an exponential decay much faster compared to the main
propagating mode. Under such circumstances, the effects of the
waveguide junction on the propagating modes can be described
using the single-mode scattering matrix (S) formalism [27].
In the terminology of the scattering matrix, the forward and
backward mode amplitudes are considered to scatter from one
“port” to another. Here, we can think of the ports as being the
left and right port planes shown in Fig. 1. These ports are suffi-
ciently far to the left and right of the junction that the fields have
settled down again to being the propagating modes of the guides
(nearer to the interface, there will in general be other field behav-
ior, including various near-field components that decay rapidly
with distance).

If we can deduce the scattering matrix for such a junction,
then we can have a very simple way of modeling the behavior of
structures containing such junctions, as is already well known
in the modeling of microwave guides. The elements of the scat-
tering matrix S11 , S12 , S21 , and S22 are complex numbers that
describe the phase and magnitude of the reflection and transmis-
sion of the main modes. Thus, in general, there are eight inde-
pendent real numbers in S. However, under certain conditions
the number of independent parameters can be reduced. First of
all, if the system is composed of reciprocal media (i.e., sym-
metric permittivity and permeability tensors), then, by using the
Lorentz reciprocity theorem, it can be shown that S12 = S21 .
Note that this equality implies a certain normalization of the
modes [27, eq. (5.11) and (5.40)], specifically

∮
A

EL × HL · dA =
∮

A
ER × HR · dA = 1 (1)

where E{L,R} and H{L,R} denote the electric (E) and mag-
netic (H) components of the main propagating modes on the
left (L) and the right (R) of the waveguide junction. A is the
cross section of the waveguides perpendicular to the direction
of propagation. Also note that for lossless systems, S is a uni-
tary matrix [27] (though in general, in this paper, we will be
considering systems with loss). As a result, using reciprocity it
is possible to describe a lossy junction using six real numbers,
two for each of S11 , S12 , and S22 . When there is no loss, we
only need three real numbers due to the unitarity of S.

The scattering matrix description based on the propagation
of the modes can be mapped to an equivalent transmission line
with propagating voltage and current waves. The voltage V on
the transmission line is defined as proportional to the trans-
verse electric field of the mode and the current I is defined as
proportional to the transverse magnetic field. The first condi-
tion on the proportionality factors is that the average power is
given by Re(V I∗/2) as in a circuit. The second condition on
the proportionality factors is that V/I of an incident wave on
the transmission line should be the characteristic impedance of
the mode [28, p. 532]. We know that no unique definition of
the characteristic impedance can be made for non-TEM modes
as shown in [29, p. 66] and [30, pp. 226–228]. However, the
normalization condition (1) on the modes, which gives us sym-
metric scattering matrices, automatically leads to transmission
lines with characteristic impedance of unity, independent of the
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Fig. 2. Description of the steps taken in extracting S from fields. (a) Calibra-
tion simulations with uniform insulator widths of b and b′, which give the wave
vector k and the values of the incoming fields at the left, H+

L ΨL (x), and right

ports, H+
R ΨR (x). (b) Field impinging from the left side, which leads to S11 . (c)

Field impinging from the right side, which leads to S22 . (d) Simulation domain
is terminated by a perfect electric conductor at the right input port plane. S12 is
extracted from the reflection coefficient R using the previously calculated S11
and S22 .

modal properties. A discussion and proof of this point is given
in [27], [31, pp. 186–188], and [32, p. 171].

After that brief introduction to the theory of scattering ma-
trices, now we will describe the method we used to extract the
elements of S from the electromagnetic fields in such waveg-
uide junctions. We solved Maxwell’s equations using the finite-
difference frequency-domain (FDFD) method [5]. In the vicinity
of the waveguide junction, higher order modes will be excited.
We initially chose the left and right ports of our junction suffi-
ciently (5λ) away from the physical junction, where the ampli-
tudes of the higher order modes are negligible. In the following,
we will formulate S in terms of the TM field component Hy . We
will use ΨL (x) to denote the main mode of the left waveguide
and ΨR (x) for the right waveguide.

The scattering matrix relates the amplitudes and phases of
the modes that arrive at the left and right ports, H+

L , H+
R to the

amplitudes and phases of the modes that propagate away from
the ports, H−

L and H−
R . Formally we can write(

H−
L

H−
R

)
=

(
S11 S12

S21 S22

)(
H+

L

H+
R

)
(2)

In order to extract S, we need to know the fields that arrive at the
left and right ports from our numerical sources in the simulation
domain. To do that, we perform two calibration simulations (one
for the left waveguide, another for the right waveguide) without
any discontinuities, as shown in Fig. 2(a), and record the fields.
This gives us the required H+

{L,R}Ψ{L,R}(x) in addition to the
propagation vectors k{L,R} of the two main modes for guides of
insulator thicknesses b and b′, respectively. Then, we perform
two more simulations where we send the mode from the left and
from the right waveguide to the discontinuity, as schematically
shown in Fig. 2(b) and (c). From the results of the simulation in
Fig. 2(b), for the fields to the left of the left port HL (x, z) we

get

HL (x, z) = [H+
L e−ikL z + H−

L e+ikL z ]ΨL (x)

= [H+
L (e−ikL z + S11e

+ikL z )]ΨL (x)

where the location of the left port determines the origin for z and
in (2) we used the fact that H+

R = 0 for the simulation depicted
in Fig. 2(b). Simple algebra gives

S11 =
HL (x, z)
H+

L ΨL (x)
e−ikL z − e−2ikL z (3)

Ideally, S11 should be independent of the coordinates x and z.
However, due to finite reflections from the perfectly matched
layers (PMLs) at the boundaries of our simulation domain, we
do get some small variations in S11 . To mitigate these effects,
we extract the complex valued S11 at various locations in our
simulation domain shown with the gray area on the left of the
junction in Fig. 1, and average the results. Very similarly, we
also extract S22 from the results of the simulation of Fig. 2(c).

In order to extract S12 , we terminate our simulation domain
at the plane of the right port with a perfect electric conductor.
Such a termination results in zero tangential electric fields, and
therefore, gives−1 for the reflection coefficient of the transverse
electric field Ex and +1 for the magnetic field Hy . Thus, at the
right port, we get H−

R = H+
R . Using this equality in (2) gives(

H−
L

H−
R

)
=

(
S11 S12
S21 S22

) (
H+

L

H−
R

)
. (4)

We call the reflection coefficient from the junction in Fig. 2(d),
R. We extract R using the same method as we used in the
extraction of S11 . From the definition

R =
H−

L

H+
L

and using (4) one gets

R = S11 +
S12S21

1 − S22
= S11 +

S2
12

1 − S22
(5)

where, in the last equality, we used the fact that S21 = S12 .
From the knowledge of R, S11 , and S22 one can easily invert
(5) to calculate S12 .

After we calculate S for the ports defined in Fig. 1, we shift
both the left and right reference planes back to the exact location
of the junction using

SJ =
(

eikL �L 0
0 eikR �R

)
S

(
eikL �L 0

0 eikR �R

)
(6)

where �L = �R = 5λ, as defined in Fig. 1, and SJ is the effective
scattering matrix for the case where the left and right ports are
projected back to coincide with the junction plane [27]. For the
sake of notational abbreviation, from this point on, we will use S
to imply SJ . Note that this effective scattering matrix is defined
just for the algebraic convenience of having a scattering matrix
associated directly with the position of the interface. In fact,
the fields near the interface are not describable by these single
main modes because of various near-field effects of higher order
modes.
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Fig. 3. Polar plot of S11 (•, plots heading out to the right half of the diagram) and S22 (•, plots heading out toward the left half of the diagram) on the complex
plane, which is called the Smith chart in the microwave literature. Circles are used for the MIM case, dashed lines are used for the PEC case. Each subplot is for a
fixed left waveguide thickness b with a varying right waveguide thickness b′. In all three subplots, the origin is the zero reflection point that corresponds to b′ = b.
As b′ decreases progressively toward zero, we move progressively along the curves away from the origin. The end points of the dashed curves on the unit circle
correspond to b′ = 0. In all three cases, the wavelength of light is fixed at λ = 1550 nm. (a) b = 0.1λ. (b) b = 0.5λ. (c) b = 0.9λ.

We fixed the frequency of operation at λ = 1550 nm and
calculated S for various right waveguide thicknesses (b′) while
keeping the width of the left waveguide (b) constant. In Fig. 3,
three sets of results are shown for b = {0.1λ, 0.5λ, 0.9λ}. The
outermost circle in the plots is the unit circle in the complex
plane, and the real and imaginary parts of the reflection coeffi-
cients are plotted for different {b, b′} pairs. We also plotted S11
and S22 as a function of b′ for the PEC case using the well-known
mode-matching technique [33] for the same set of b. We veri-
fied our mode-matching approach by FDFD that gave the same
results. The reason we did mode-matching calculations was to
verify the PEC parallel-plate waveguide results in the literature,
as well as to check our numerical extraction of S in a numeri-
cally independent manner. Making the metals perfect turns the
MIM waveguide into the PEC parallel-plate waveguide. It can
be seen that the shapes of curves for the PEC parallel-plate and
MIM waveguides are qualitatively similar. Also note that the
polar plot of the reflection coefficients is nothing other than the
Smith chart of the microwave theory [34, p. 48], which we will
use in the next section.

III. CASCADE CONNECTION OF JUNCTIONS

Now that we have a methodology to characterize MIM junc-
tions, in this section, we will test the utility of the scattering
matrix description by numerically simulating mode propaga-
tion through a cascade connection of junctions and comparing
the results with the predictions of the scattering matrix formal-
ism. First, let us define the building blocks that will be used
throughout this section.

When different scattering matrices are cascaded, the overall
scattering matrix for the system is not the product of the indi-
vidual scattering matrices. For cascade connections, the transfer
matrix T leads to a much simpler formulation [32, pp. 181–
182]. S has {H+

L , H+
R } and {H−

L , H−
R} as an input–output pair,

whereas T has {H−
R , H+

R } and {H+
L , H−

L }, respectively. Given
one representation, one can easily compute the other through

simple algebraic manipulations.(
H+

L

H−
L

)
=

(
T11 T12

T21 T22

)(
H−

R

H+
R

)

T11 =
1

S21
T12 = −S22

S21
(7)

T21 =
S11

S21
T22 = S12 −

S11S22

S21
.

In order to have H−
L = 0, one should have T21H

−
R +

T22H
+
R = 0, which can be cast in terms of the scattering pa-

rameters using (7) as

S11H
−
R = (S11S22 − S12S21)H+

R . (8)

A. Conditions for Zero Reflection

1) Lossy Case: Let us investigate the case when two junc-
tions characterized by two different scattering matrices, LS
and RS, are separated by a center waveguide of length �, as
shown in Fig. 4(a). Suppose that we adjust our excitation am-
plitude such that the mode that propagates toward the right
junction at its input plane, which is the junction plane, has unit
strength. That choice of normalization leads to H−

C = eikC � and
H+

C = RS11e
−ikC � , where kC is the wave vector of the cen-

ter waveguide. With these definitions, the condition for zero
reflection, (8), for the left junction can be written as

LS11H
−
C = (LS11

LS22 − LS12
LS21)H+

C

LS11e
ikC � = (LS11

LS22 − LS12
LS21)RS11e

−ikC �

e−2ikC � =
LS11/

RS11
LS11

LS22 − LS12
LS21

.

Now, let us simplify this equality. For reciprocal media, S12 =
S21 , we can write

e−2ikC � =
LS11/

RS11
LS11

LS22 − LS2
21

. (9)
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Fig. 4. (a) Schematic diagram of modal propagation. The left and right junc-
tions are shown as boxes with an S matrix description. The center waveguide
is shown as a transmission line of length �. The source that creates the fields is
normalized such that the mode that propagates to the right has a unit magnitude
at the input of the right junction. (b) Graphical solution of (11) and (12) on the
complex plane. Point PL is the location of the left junction on the L S22 curve
where b = 0.9λ and b′ = 0.5λ. Point PR is the location of the right junction
on the R S11 curve where b = 0.5λ and b′ = 0.16λ.

2) Lossless Case: If the system is lossless, then the scat-
tering matrix should be unitary (SS† = 1), which implies the
following three conditions

|S11 |2 = |S22 |2 = 1 − |S12 |2
S12
S∗

21
= −S22

S∗
11

. (10)

Using (9) and (10) after some algebra, the zero reflection
condition becomes

|LS22 | = |RS11 | (magnitude condition) (11)

�LS22 + �RS11 = 2kC � + 2πn (phase condition) (12)

where n is any integer value, superscripts R and L denote right
and left, respectively. “�” is used to represent the argument
of a complex number. What this means is that to match a left
waveguide to a right waveguide, one should choose a center
waveguide width that satisfies the magnitude condition, and

decide on the length of the center waveguide based on the phase
condition.

As a corollary, suppose that the left and right waveguides are
the same and are on the order of a wavelength in dimension.
Further suppose that the center waveguide has a deep subwave-
length size, i.e., it has an insulator width much smaller than the
wavelength and the surrounding left and right waveguides’ insu-
lator widths. Due to the symmetry of the system, the magnitude
condition is automatically satisfied. One only needs to choose a
specific length for the center section to do the matching. Such
a geometry can be interesting for sensing applications, where
interaction with strongly concentrated fields is desired. Similar
observations were made in the language of Fabry–Perot reso-
nances for the limiting case when the right and left waveguides’
insulator thicknesses go to infinity [15].

Once a matching left, center, and right waveguide triplet is
found, the procedure can be recursively repeated to cascade
more junctions without getting any reflection at the leftmost
waveguide.

B. Mode Converter Design

Now that we have the conditions (9), (11), and (12) for zero
reflection, we can test their validity. Condition (9) is more gen-
eral and is applicable to the lossy case. We did a series of
simulations in which we extracted S for a hypothetical lossless
metal with a real, negative permittivity εm = −143.497. The
results were very similar to the case in Fig. 3 where the loss
was included. That led us to suspect that the conditions for the
lossless reciprocal junctions (11) and (12) would be essentially
sufficient in the design of a mode converter that converts the
mode of a wavelength-sized MIM waveguide (b = 0.9λ) to that
of a subwavelength one with no reflection.

In our design, we choose the left waveguide width to be 0.9λ

and the center waveguide width to be 0.5λ, as shown in the inset
in Fig. 4(b). The parameters that we need are the insulator width
of the right waveguide w and the length of the center waveguide
�.

The width of the right waveguide can be chosen by satisfying
(11). In Fig. 4(b), PL is the location of the b = 0.9λ to b′ =
0.5λ junction on the LS22 curve. To satisfy (11), we need to
have |LS22 | = |RS11 |. The solution can be graphically found by
drawing a circle in the complex plane with a radius |PL | centered
at the origin and finding its intersection with the RS11 curve. The
intersection point is denoted by PR . PR corresponds to a right
waveguide thickness of 0.16λ. The phase condition (12) is then
easily calculated from the phases of the scattering coefficients,
�PL and �PR . After some simplification through the use of
the numerical value for kC , one gets �/λ = 0.1377 + 0.4861n,
where n is any positive integer.

To check our design, we numerically simulated the structure
shown in the inset of Fig. 5 using FDFD and looked at the amount
of power reflected back as a function of the center waveguide
length �. We also calculated the power reflection coefficient
through the use of the transfer matrix formalism in which we
multiplied the transfer matrices for the right junction TR , a
center waveguide of length �, TC , and the left junction TL ,
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Fig. 5. Test of the scattering matrix description. Horizontal axis is the length
of the center waveguide normalized to λ.Vertical axis is the power reflec-
tion coefficient. FDFD simulation results (•), transfer matrix calculations us-
ing lossy junctions (solid line) and lossless junctions (dashed line) are also
plotted. Transfer matrix calculations do take into account the loss in the cen-
ter waveguide for both cases. As the junctions get very close to each other
(< 0.1λ), transfer matrix model begins to break down due to higher order modal
interactions.

to get the overall transfer matrix T = TLTC TR , and plotted
|T21/T11 |2 of T as a function of �/λ. We did the calculations
for two different sets of {TR ,TL}: one in which we used the
scattering matrices for the lossy junctions and another for the
lossless junctions. The center waveguide of length � had loss in
both cases, i.e., kC = (1.03 − i9.45 × 10−4)2π/λ.

Fig. 5 verifies that lossless junction models are quite effective
at modeling the waveguide discontinuities and the prediction
of the length of the center guide for zero reflection reached
by their use, �/λ = 0.1377 + 0.4861n is very accurate. The
lossy junction model on the other hand gives results essen-
tially indistinguishable from the simulation results as long as
the two junctions are not very close to each other (< 0.1λ).
When the junctions get very close, the coupling of higher or-
der nonpropagating modes becomes important, and the single-
mode modeling we employed in the construction of scattering
matrices breaks down. For such closely spaced junctions, the
whole structure should be treated as a single unit and its char-
acteristics should be extracted by the techniques described in
Section II.

Last, (11) and (12) reproduce the well-known quarter wave
(λ/4) impedance matching formula used at RF [32, Sec. 5.6]
where one uses

−LS11 = LS22 = (Z0C − Z0L )
(Z0C + Z0L )

−RS11 = RS22 = (Z0R − Z0C )
(Z0R + Z0C )

. (13)

In this equation, Z0{L,C,R} denotes the characteristic impedance
of the left, center, and right RF transmission line. Solution of (11)
and (12) with (13) and either the condition Z0R > Z0C > Z0L

or Z0R < Z0C < Z0L gives

Z0C =
√

Z0LZ0R and � =
λ

4
+ n

λ

2
(14)

where n is any positive integer. Recently, a power transmission
of 86% for a waveguide converter designed using (14) was
demonstrated [22].

IV. CIRCUIT MODEL FOR THE WAVEGUIDE JUNCTION

So far, we have characterized the MIM junctions, and with
that characterization, designed a waveguide matching section
by the use of the scattering matrices. Another important ap-
proach in microwave waveguide modeling is the use of equiv-
alent circuit models, which can give an intuitive picture of the
system as well as allowing the use of circuit simulators for
design.

Here, we relate the scattering matrix and circuit models, and
show simplified circuit models that can characterize the MIM
waveguide interfaces. Since we only have single propagating
modes in the guides we consider, we can also use equivalent
transmission lines to describe the propagation between inter-
faces. Taking these circuit and transmission line approaches
together, we can then model a broad range of MIM systems in
circuit models.

There is no unique way to describe S using lumped-circuit
elements [35, p. 316]. To choose one circuit out of the infinite
possible set that could correspond to the same S, we will first
look at the well-studied PEC case. After reproducing the PEC
results, we will then add another term to the PEC parallel-plate
waveguide model to account for the properties of metals at op-
tical frequencies. We will compare the lumped-circuit represen-
tation with the characteristic impedance models in the literature.
At the end of the section, we will justify our choice of the addi-
tional circuit element, while we give a physical explanation for
the circuit.

A. Exact Model

We will begin our analysis with the PEC case. The solution to
the scattering problem for the junction of two PEC parallel-plate
waveguides was developed and experimentally verified [36]. It
consists of a capacitor with susceptance B and a transformer
with a turns ratio of n : 1. The susceptance and the turns ratio
are described in terms of the geometry of the junction. The
susceptance value is given by

B =
2b

λ

{
log

[(
1 − α2

4α

)(
1 + α

1 − α

)[α+(1/α)]/2
]

+
(

2
A + A′ + 2C

AA′ − C2

)

+
(

b

4λ

)2 (
1 − α

1 + α

)4α (
5α2 − 1
1 − α2 +

4
3

α2C

A

)2
}

(15)
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Fig. 6. Circuit description of the lossless (εm = −143.497) waveguide junction for b = 0.1λ (�), b = 0.5λ (�), b = 0.9λ (•). (a) Square of the turns ratio n2 ,
which is equivalent to the impedance ratio at the terminals of the transformer. Dashed line is the PEC result described by (16). Inset shows the circuit diagram. (b)
Susceptance B for the MIM (�, �, •) and the PEC (�, �, ©) case. B for the PEC case plotted by the use of (15). (c) Reactance X of the MIM waveguide. X = 0
for the PEC parallel plate waveguide. (d) Error in S11 defined as |(S11 − S ′

11 )/S11 | where S11 is the exact solution, −S ′
11 = (Z0R − Z0L )/(Z0R + Z0L ) is

the characteristic impedance model approximation. The inset shows the implication of the characteristic impedance model on the Smith chart where S11 (solid
line in the inset) and S22 (dashed line in the inset) have a π phase shift. Compare with Fig. 3. The error is around 5 percent for b = 0.1λ where the π phase shift
condition is approximately satisfied. As the dimensions increase, so does the error.

where α = b′/b and

A =
(

1 + α

1 − α

)2α 1 +
√

1 − (b/λ)2

1 −
√

1 − (b/λ)2
− 1 + 3α2

1 − α2

A′ =
(

1 + α

1 − α

)2/α 1 +
√

1 − (b′/λ)2

1 −
√

1 − (b′/λ)2
+

3 + α2

1 − α2

C =
(

4α

1 − α2

)2

.

The square of the turns ratio of the transformer is equal to

n2 =
b′

b
. (16)

It is worthwhile remembering that the primary–secondary turns
ratio of the transformer, n : 1, is also the ratio of the voltages
at its terminals. From the conservation of power, currents have
the inverse ratio, and as a result, the impedance ratio at the
transformer terminals is n2 : 1.

The derivation of the circuit elements for the PEC case can
be found in [31], [37], and [38]. The technique used is to find
an approximate analytic solution to the static limit of the scat-
tering problem, and then, to use the approximate solution as

a basis for further calculations with the variational principle
[37, p. 107].

Note that for the PEC case, only two parameters B and n
are sufficient to describe the junction even though in general
three parameters are required for a lossless reciprocal system.
The nondispersive nature of the main mode of PEC parallel-
plate waveguides leads to a further symmetry in the junction
that reduces the number of circuit parameters required.1

At optical frequencies where the modes are strongly disper-
sive, a third circuit element is needed in order to be able to fit
the elements of S exactly. For that reason, we have an inductor
term with a reactance X . A schematic of the circuit diagram is
shown in the inset of Fig. 6(a). The PEC parallel-plate waveguide
circuit is the same, with X = 0. The normalization that we de-
fined in (1) leads to transmission lines with a unit characteristic
impedance on both sides of the junction. From transmission line
theory we get the following equalities in terms of the equivalent

1One way to check this is by observing the failure of [37, p. 103, eq. (14)]
for modes with k values that depend on b, which implies that more than two
parameters are required. Conversely, numerically calculating the determinant of
the impedance matrix [27, p. 216] Z as suggested in [36, Ch. 3, p. 119] shows
that indeed only two parameters are sufficient for the PEC case. We also verified
using FDFD that (15) and (16) very precisely represent the PEC junction.

Authorized licensed use limited to: Louisiana State University. Downloaded on February 4, 2009 at 17:25 from IEEE Xplore.  Restrictions apply.
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impedance looking from the left side of the circuit, Z1 , and the
equivalent admittance looking from the right side Y2

−S11 =
Z1 − 1
Z1 + 1

and − S22 =
1 − Y2

1 + Y2
(17)

where

Z1 = iX + 1
iB + 1/n2

Y2 =
(

1
1 + iX + iB

)
n2

. (18)

The reason why we have negative signs in front of S11 and S22 in
(17) is because we defined S based on the TM component of the
main mode Hy . However, the norm in circuit parametrization is
to use the voltage reflection and transmission coefficients, which
correspond to a scattering matrix description for the transverse
electric component Ex . Just as in transmission line theory where
the reflection coefficient for voltage is the negative of that of the
current, the same relationship also holds exactly between the
reflection coefficients of Ex and Hy .

We can calculate Z1 and Y2 from S via (17)

Z1 =
1 − S11

1 + S11
, Y2 =

1 + S22

1 − S22
. (19)

Rewriting (18) in terms of its real and imaginary parts gives

Z1 = 1/n2

B2 + 1/n4 + i

(
X − B

B2 + 1/n4

)

Y2 = n2

1 + X2 + i

(
n2B − n2X

1 + X2

) . (20)

Now, let the real and imaginary parts of Z1 and Y2 be de-
noted as ZR = Re(Z1), ZI = Im(Z1), YR = Re(Y2), and YI =
Im(Y2). Using (20) we get

Z1 = ZR + iZI = ZR + i
(
X − Bn2ZR

)
Y2 = YR + iYI = YR + i

(
Bn2 − XYR

)
and we therefore have

ZI = X − Bn2ZR

YI = Bn2 − XYR

. (21)

Inverting (21) gives

Bn2 =
YI + YRZI

1 − YRZR
and X =

ZI + ZRYI

1 − YRZR
.

(22)

Once we know Bn2 and X , we can calculate n2 using (20) as

n2 = YR (1 + X2) = ZR

[
1 + (Bn2)2] . (23)

Using (19), (22), and (23), one can calculate the circuit pa-
rameters from S11 and S22 . In Fig. 6(a)–(c), we plotted n2 , B,
and X as a function of b′/b for the three different fixed b val-
ues of 0.1λ, 0.5λ, and 0.9λ. Due to the negligible effect of loss
on junction characteristics, Figs. 3 and 6(a)–(c) carry the same
information, shown in different formats. It can be seen that the
PEC circuit description and the MIM circuit description lead to
parameters that qualitatively have similar behaviors.

B. Simplified Model

Until now, the specific normalization we imposed on the
modes (1) mapped the modal propagation of waves into equiva-
lent transmission lines of unit characteristic impedance. In this
section, we will investigate the applicability of another charac-
teristic impedance definition for the MIM junctions. The defini-
tion we use for the characteristic impedance of an MIM waveg-
uide of insulator thickness b is [5]

Z0 = b
k

ωεi
. (24)

Note that this new definition is a mere rescaling of what we
mean by voltage and current of the equivalent transmission line,
and such a redefinition does not change S11 and S22 but breaks
the symmetry of S, and therefore, S12 �= S21 [32, pp. 199–200,
prb. 4.15].

From the transmission line theory, one can calculate the cur-
rent reflection coefficients of the junction of two transmission
lines with different characteristic impedances on the right Z0R ,
and on the left Z0L , as

−S11 = S22 =
Z0R − Z0L

Z0R + Z0L
. (25)

The simplified characteristic impedance model based on (24)
and (25) implies a π phase shift between S11 and S22 . We
schematically plotted (25) on the Smith chart as an inset in
Fig. 6(d). A comparison of the inset and Fig. 3 shows that the π
phase shift condition is more and more satisfied as the waveg-
uide dimensions are decreased to subwavelength dimensions.
Fig. 6(d) also supports this observation; error in the approx-
imate reflection coefficients of (25) decreases as the waveg-
uide dimensions become deep subwavelength. The characteris-
tic impedance model is valid and useful when the structure is
small in comparison with the wavelength, so that the quasi-static
approximation holds.

C. Interpretation of Circuit Models

In the PEC limit where there is no dispersion in the main
modes, the ratio of characteristic impedances Z0R/Z0L , as de-
fined in (24), limits to n2 (16). Therefore, the transformer in the
exact model can be associated with the different characteristic
impedances on the two sides of the junction.

As the dimensions of the PEC parallel plate junction are
scaled up, the importance of the susceptance term B increases.
This is a sign of the increased influence of the higher order
modes on the junction characteristics. B signifies the effect of
the higher order nonpropagating modes, excited in the vicinity
of the junction, on the main propagating modes. B for MIM
waveguide is higher than that of PEC parallel-plate waveguide
with the same insulator dimensions. We observed that using
bs = αb, and b′s = αb′ as the left and right waveguide insu-
lator thickness in (15) for α = {1.08, 1.2, 1.4} corresponding
to the b = {0.9λ, 0.5λ, 0.1λ} cases gave good fits to the MIM
waveguide solutions plotted in Fig. 6(b). The dispersive nature
of the MIM waveguide mode and the finite penetration of fields
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Fig. 7. Circuit models in the limit where the right waveguide width (b′) goes
to zero. For the PEC parallel-plate waveguide, the reflection coefficient for
currents is unity. For the MIM waveguide, the reflection coefficient has a small
negative phase, as is evident from Fig. 3(c). Surface reactance of metals at
optical frequencies has an inductive character. Investigation of the limit b′ → 0
leads us to associate the inductor in our circuit model with the normalized
surface reactance of the vertical metal surfaces at the MIM junction of total
length b − b′, as shown in Fig. 1.

into the metal regions, which leads to a larger effective insulator
thickness, can explain the differences in B for the MIM case [5].

The MIM junction, with its predominantly negative εm at in-
frared frequencies, requires an additional circuit term, an induc-
tor with reactance X , to fully describe the junction scattering
characteristics (S) using circuit terminology. We can qualita-
tively justify the existence of X by investigating the properties
of S11 in the limit b′ → 0. We see that for the PEC case, S11
limits to +1 as highlighted in Fig. 3(c). This is in line with the
fact that B → ∞ and n → 0 as b′ → 0 that leaves us with a
short circuit for the PEC case (see Fig. 7) . On the other hand,
for the MIM case, S11 limits to a value with magnitude close
to unity, but with a nonzero phase in the fourth quadrant of the
complex plane. In order to have this behavior, the limit of X
should be nonzero since both the MIM and PEC cases have the
same limits for B and n. From Fig. 6(c), we can see that indeed
X limits to a nonzero value as b′ → 0.

It is possible to associate an effective surface reactance
Xs = iωLe with planar metal surfaces where Le is the kinetic
electronic inductance that electrons experience according to the
Drude model [39].2

In Fig. 7 we schematically describe the b′ → 0 limit for the
PEC and MIM junctions. From the circuit model, we see that

PECS11 =
1 − 0
1 + 0

= 1

MIMS11 =
1 − iX ′

s

1 + iX ′
s

∼= 1 − i2X ′
s

where X ′
s 	 1 represents the surface reactance term nor-

malized with respect to the left waveguide’s characteristic
impedance. In order to have a consistent description of the
junction, we should have X = X ′

s when b′ = 0. This limiting
behavior allows us to associate X with the effective normal-
ized surface reactance of the perpendicular metal section of
height b − b′ at the junction. A back-of-the-envelope calcula-
tion with Xs ≈ b

√
µo/εm and Z0L as defined in (24) gives3

2Note that [39] uses the e−iω t convention that leads to Xs = −iωLe .
3
√

µo /εm (where µ0 is the permeability of free space) is the surface
impedance of a metallic half space which is also equal to the intrinsic impedance
of the metallic medium [40].

X ′
s ≈ Xs/Z0L ≈ {0.082, 0.081, 0.074} for the b′ → 0 limit of

b = {0.9λ, 0.5λ, 0.1λ} cases. Comparing these values to the
corresponding X values in Fig. 6(c) shows that this calculation
correctly predicts the order of magnitude of X ′

s .
Our association of the circuit elements of the junction with

physically more familiar concepts does not necessarily make
any of the calculations easier. One still needs to do full-wave
simulations to extract the highly coupled B,X , and n2 param-
eters. Furthermore, our analysis was based on a variation of the
geometry while keeping the frequency of operation fixed. Due
to the highly dispersive nature of the refractive index of metals at
optical frequencies, we expect that a frequency-based analysis
near the resonance points of material dispersion characteristics
will lead to the observation of interesting phenomena at junc-
tion geometries. Such studies can be the subject matter of future
investigations. Nevertheless, we believe that the lumped circuit
model at 1550 nm is valuable in developing a more intuitive un-
derstanding of modal scattering at MIM junctions, and it allows
a circuit-based analysis of complex systems of guides.

V. CONCLUSION

In this paper, we investigated the properties of infrared light
propagation in MIM waveguides at 1550 nm by concentrating
on the symmetric junctions between waveguides of different di-
mensions. We applied techniques widely used in the microwave
literature to characterize the MIM junctions. We used a nu-
merical method to extract the scattering matrices of junctions
of different geometries from full field solutions. We validated
our characterization by designing a mode converter that con-
centrates light from an MIM waveguide of wavelength-sized
dimension to one of subwavelength dimension with zero reflec-
tion.

We parametrized the scattering matrix of the MIM junction
in terms of lumped-circuit elements to come up with a more
physical picture of the junction properties. The circuit represen-
tation of the junction helps us associate the effects of geometry,
material properties, and wave propagation in terms of a simple
network of a capacitor, inductor, and a transformer. The scatter-
ing matrix description of junctions can be used to design optical
circuitry with complex functionality using tools of circuit anal-
ysis [41], [42]. It is conceivable to build a library of junction
geometries associated with their scattering matrices for differ-
ent waveguides including 3-D nanometallic ones [43]. Such a
library, indexed according to modal scattering and propagation
properties, would be invaluable in the design of integrated opti-
cal circuits composed of many interacting components.
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