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We design and optimize highly compact plasmonic switches with high modulation depth and moderate insertion
loss, consisting of a metal-dielectric-metal waveguide coupled to a subwavelength cavity resonator. We consider a
multisection cavity resonator which comprises multiple sections of varying widths. We find that the optimal struc-
ture is a perturbation of the maximum size cavity obtained by reducing the width of the middle section in order to
tune the resonant wavelength of the cavity. In addition, the on-resonance modulation depth of the optimized multi-
section cavity switch is greatly enhanced with respect to a conventional Fabry–Perot cavity switch. We use a single-
mode scattering matrix theory to account for the behavior of these systems. © 2016 Optical Society of America
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1. INTRODUCTION

Plasmonic waveguide devices could provide an interface be-
tween conventional diffraction limited optics and nanoscale
electronic and optoelectronic devices [1–6]. One of the main
challenges in plasmonics is actively controlling the flow of light
in nanoscale plasmonic devices. Active plasmonic devices such
as switches and modulators will be critically important for
on-chip applications of plasmonics [6–19]. Several different
approaches to actively control light in nanoscale plasmonic
devices have been explored, including thermally induced
changes in the refractive index [8,20–22], direct ultrafast opti-
cal excitation of the metal [23], as well as the incorporation of
nonlinear [24–26], electro-optic [10,27], and tunable gain [28]
and absorbing [29–31] media in plasmonic devices.

When designing compact plasmonic switches, one would
like to simultaneously achieve high modulation depth as well
as low insertion loss [7,32]. One of the challenges in the design
is that in many cases there is a trade-off between the modula-
tion depth and the insertion loss [29]. Another challenge is
that for subwavelength active regions the modulation depth is
typically low due to the weak light–matter interaction.

In this paper, we design and optimize highly compact plas-
monic switches with high modulation depth and moderate in-
sertion loss, consisting of a metal-dielectric-metal (MDM)
waveguide coupled to a subwavelength cavity resonator. The
structures are filled with an active material with tunable absorp-
tion coefficient. The geometrical parameters of the switches are

optimized to maximize the modulation depth, subject to the
constraint that the insertion loss is less than 3 dB. Using this
constrained optimization approach, we can achieve high modu-
lation depth, while ensuring that the insertion loss remains
moderate. In order to optimize the cavity shape, we consider
for simplicity a multisection cavity switch in which the cavity
resonator comprises multiple sections of varying widths. We
find that the optimal structure is a perturbation of the maxi-
mum size cavity obtained by reducing the width of the middle
section. In addition, the on-resonance modulation depth of
the optimized multisection cavity switch is greatly enhanced
with respect to a conventional Fabry–Perot cavity switch.

The remainder of the paper is organized as follows. The re-
sults obtained for the conventional Fabry–Perot cavity switch
and the multisection cavity switch structures are presented in
Subsections 2.A and 2.B, respectively. Finally, our conclusions
are summarized in Section 3.

2. RESULTS

We use the finite-difference frequency-domain (FDFD)
method to investigate the properties of the plasmonic switches.
This method allows us to directly use experimental data for the
frequency-dependent dielectric constant of metals such as silver
[33], including both the real and imaginary parts, with no
approximation. Perfectly matched layer absorbing boundary
conditions are used at all boundaries of the simulation domain
[34]. In all cases considered, the widths of the MDM plasmonic
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waveguides are much smaller than the wavelength, so that only
the fundamental TM waveguide mode is propagating.

A. Fabry–Perot Cavity Switch

We first consider a conventional Fabry–Perot cavity switch
consisting of a MDM plasmonic waveguide coupled to a
MDM cavity resonator formed by two MDM stubs [Fig. 1(a)].
The waveguide and resonator are filled with an active material
with refractive index n � 2.02� iκ, corresponding to silicon
dioxide doped with CdSe quantum dots (QDs) [29,31,35].
The imaginary part of the refractive index κ is tunable. The
on state of the switch corresponds to the transparent state of
the active material (κ � 0). When κ is changed to κ � 0.05
in the cavity region (absorbing state of the material), the switch
is turned off.

In all cases we consider highly compact subwavelength
structures with the length and width of the active region limited
to less than 250 nm. The cavity length L as well as the stub
length d s are optimized using a genetic global optimization
algorithm in combination with FDFD [36] to maximize the
modulation depth of the switch, defined as the difference
between the transmission in the on and off states normalized
by the transmission in the on state T �κ�0�−T �κ�0.05�

T �κ�0� , at λ0 �
1.55 μm, subject to the constraint that the transmission in
the on state is T �κ � 0� ≥ 0.5. In other words, we maximize
the modulation depth subject to the constraint that the inser-
tion loss, defined as −10 log10�T �κ � 0��, is less than 3 dB.
Using this approach, we find that the optimized parameters

are L � 188 nm and d s � 94 nm, resulting in modulation
depth of 0.24 and transmission in the on state of 0.51. The
transmission spectra in the on state T �κ � 0� for the optimized
switch obtained using this approach are shown in Fig. 1(b). We
observe that the optimized conventional Fabry–Perot cavity
switch exhibits a resonance at the λ0 � 1.55 μm wavelength
at which it was optimized. The on-resonance transmission is
0.51, exceeding the 0.5 threshold. However, the modulation
depth of the optimized switch at λ0 � 1.55 μm is 0.24
[Fig. 1(c)], which is relatively low.

The transmission in the on state and modulation depth for
the switch, if the metal is assumed to be lossless, are also shown
in Figs. 1(b) and 1(c), respectively. We observe that in the ab-
sence of loss in the metal, the resonance occurs approximately
at the same wavelength as in the lossy case [Fig. 1(b)]. If the
metal is lossless, there is no intrinsic loss in the Fabry–Perot
cavity. In addition, since the cavity possesses a mirror reflection
symmetry with respect to a vertical mirror plane which bisects
the middle section of the cavity, the cavity decay rates into the
forward and backward waveguides are equal. These conditions
lead to complete transmission at resonance in the lossless metal
case [37] [Fig. 1(b)]. We also note that in both the lossless
and lossy metal cases, there is no reflection at resonance.
Thus, the insertion loss at resonance in the lossy case is entirely
due to absorption in the cavity. Finally, the modulation depth at
resonance is smaller when the loss in the metal is included
[Fig. 1(c)], because the field enhancement in the cavity at res-
onance is smaller in the lossy case.

B. Multisection Cavity Switch

In an attempt to increase the modulation depth without in-
creasing the insertion loss, we consider a cavity switch as in
Fig. 2(a), in which the resonator has an arbitrary shape. Since
only the fundamental TM mode is propagating in the MDM
waveguide, we can use a single-mode scattering matrix theory
to account for the behavior of this system [38]. The complex

Fig. 1. (a) Schematic of a conventional Fabry–Perot cavity switch
consisting of a MDM plasmonic waveguide coupled to a rectangular
cavity resonator formed by two MDM stubs. The waveguide and res-
onator are filled with an active material with refractive index n �
2.02� iκ, where κ is tunable. The on state of the switch corresponds
to κ � 0. When κ is changed to κ � 0.05 in the L × w cavity region,
the switch is turned off. The arrow indicates the direction of the in-
cident mode. (b) Transmission spectra T �κ � 0� for the optimized
Fabry–Perot cavity switch of (a) in the on state (solid line). Also shown
are the transmission spectra if the metal is lossless (dashed line). Results
are shown for w � 50 nm, d s � 94 nm, G � 50 nm, L � 188 nm.
The metal is silver. (c) Modulation depth as a function of wavelength
for the optimized switch of (a) (solid line). Also shown is the modu-
lation depth as a function of wavelength if the metal is lossless (dashed
line). All other parameters are as in (b).

Fig. 2. (a) Schematic of a plasmonic switch consisting of a cavity
placed between two partially reflecting elements (black lines). The red
arrow indicates the direction of the incident mode. (b) Schematic
defining the reflection coefficient rc , and transmission coefficient tc
when the fundamental TM mode of the MDM waveguide is incident
on the cavity. (c) Schematic defining the reflection coefficient rs , and
transmission coefficient t s when the fundamental TM mode of the
MDM waveguide is incident on the partially reflecting element.
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magnetic field reflection and transmission coefficients for the
cavity (rc and tc) and the partially reflecting mirrors (rs and
t s), when the fundamental waveguide mode is incident on
them, are defined as shown in Figs. 2(b) and 2(c), respectively.
These coefficients can be numerically extracted using FDFD
[38]. The transmission of the switch can then be calculated
using scattering matrix theory as [38,39]

T �
�
�
�
�

t2s t ce−2γG

1 − 2rsrce−2γG � �r2s r2c − r2s t2c �e−4γG
�
�
�
�

2

; (1)

where γ is the complex propagation constant of the fundamen-
tal propagating TM mode in the MDM waveguide, and G
is the length of the gap between the mirrors and the cavity
[Fig. 2(a)]. In the absence of the cavity (tc � 1, rc � 0), Eq. (1)
above reduces to

T �
�
�
�
�

t2s e−2γG

1 − r2s e−4γG

�
�
�
�

2

; (2)

which is the well-known equation for the transmission of a
Fabry–Perot resonator with length 2G [40].

In order to optimize the cavity shape, we consider for sim-
plicity a multisection cavity switch in which the resonator cav-
ity comprises multiple sections of varying widths [Fig. 3(a)].
The structure is symmetric with respect to a vertical mirror
plane which bisects the middle section of the cavity, and, as
in the previous case, the total length and width of the active
region are limited to less than 250 nm. As in the conventional
Fabry–Perot cavity switch case, the cavity sections widths
d 1;…; dm, as well as the stub length d s are optimized to maxi-
mize the modulation depth of the switch, subject to the con-
straint that the transmission in the on state is at least 0.5. Using
this approach, we find that the optimized parameters for a mul-
tisection cavity with five sections (m � 3) are d 1 � 250 nm,
d 2 � 250 nm, d 3 � 150 nm, d s � 172 nm. The length of
each of the five sections is 50 nm, so that the total length
of the active region is 250 nm. We observe that the optimized
structure has a relatively simple shape: it can be considered as a
perturbation of the 250 nm×250 nm maximum size cavity
obtained by reducing the width of the middle section d 3

[Fig. 3(b)]. As in the conventional Fabry–Perot cavity switch
case, the optimized multisection cavity switch exhibits a reso-
nance at the 1.55 μm wavelength at which it was optimized,
and the on-resonance transmission of 0.51, exceeds the 0.5
threshold [Fig. 3(c)]. In addition, the on-resonance modulation
depth of the optimized multisection cavity switch is 0.69
[Fig. 3(d)], and is greatly enhanced with respect to the conven-
tional Fabry–Perot cavity switch [Fig. 1(c)].

As in the conventional Fabry–Perot cavity switch case, we
also show the transmission in the on state and the modulation
depth for the multisection cavity switch, if the metal is assumed
to be lossless, in Figs. 3(c) and 3(d), respectively. In the absence
of loss in the metal, the resonance occurs approximately at
the same wavelength as in the lossy case. Similar to the
conventional Fabry–Perot cavity switch, there is complete on-
resonance transmission in the lossless metal case, and there is no
on-resonance reflection in both the lossless and lossy metal
cases, so that the insertion loss at resonance in the lossy case
is entirely due to the absorption in the cavity. In addition, the

on-resonance modulation depth is slightly smaller when the
loss in the metal is included [Fig. 3(d)].

To gain further insight into the properties of the optimized
multisection cavity switch, we calculate the transmission in the
on state and the modulation depth of the switch as a function of
the width d 3 and length L3 of the middle section, and the stub
length d s [Fig. 3(b)].

Figure 4(a) shows that the maximum transmission in the on
state and maximum modulation depth of the multisection cav-
ity switch are both achieved when the width of the middle sec-
tion is optimized (d 3 � 150 nm). We found that the width of
the middle section d 3 is a tuning parameter of the multisection
resonator. More specifically, by changing d 3, the resonant wave-
length of the cavity can be tuned [Fig. 4(b)]. As d 3 decreases,
the resonant wavelength increases. When d 3 � 150 nm, the
resonant wavelength of the cavity coincides with the operating
wavelength of λ0 � 1.55 μm [Fig. 4(b)]. Thus, both the trans-
mission in the on state and the modulation depth are resonantly
enhanced. In Fig. 4(a), in addition to the numerically calculated

Fig. 3. (a) Schematic of a multisection cavity switch consisting of a
MDM plasmonic waveguide coupled to a resonator. The resonator is
formed by a cavity comprising multiple sections of varying widths
sandwiched between two MDM stubs. The arrow indicates the direc-
tion of the incident mode. (b) Schematic of the optimized multisection
cavity switch. It can be considered as a perturbation of the maximum
size cavity obtained by reducing the width of the middle section d 3.
(c) Transmission spectra T �κ � 0� for the optimized multisection
cavity switch of (a) in the on state (solid line). Also shown are the trans-
mission spectra if the metal is lossless (dashed line). Results are shown
for w � 50 nm, d s � 172 nm, G � 50 nm, d 1 � 250 nm, d 2 �
250 nm, d 3 � 150 nm, L1 � L2 � L3 � 50 nm. (d) Modulation
depth as a function of wavelength for the optimized switch of (a) (solid
line). Also shown is the modulation depth as a function of wavelength
if the metal is lossless (dashed line). All other parameters are as in (c).
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transmission in the on state obtained with FDFD, we also show
the transmission calculated using scattering matrix theory
[Eq. (1)]. We observe that there is excellent agreement between
the scattering matrix theory results and the exact results ob-
tained using FDFD, confirming the validity of scattering
matrix theory in describing the properties of the multisection
cavity switches.

In Fig. 5 we show the transmission in the on state and the
modulation depth of the switch as a function of the width d 3

and length L3 of the middle section. We observe that both the
transmission and the modulation depth are highly sensitive to

the width d 3 of the middle section. This is due to the fact that,
as mentioned above, the width of the middle section tunes the
resonant wavelength of the cavity. In contrast, the transmission
and the modulation depth are not particularly sensitive to the
length L3 of the middle section (Fig. 5). The dependence of the
transmission and modulation depth of the switch on the width
and length of the middle section of the cavity are reminiscent of
the dependence of the modal properties of a plasmonic slot
waveguide on the width and length of its slot [41]. The modal
properties are largely determined by the slot width, while they
are essentially insensitive to the slot length for sufficiently large
length [41].

As mentioned above, when the switch is turned off, the
imaginary part κ of the refractive index n � 2.02� iκ of the
active material filling the cavity region is changed from κ � 0
to κ � 0.05. As a result, when the switch is turned off, the
imaginary part of the dielectric constant of the active material
changes, while the change in its real part is very small. Thus, the
modulation depth of the switches is mostly associated with
the sensitivity of their transmission to the imaginary part of the
dielectric constant of the active material εri [42–45]. To con-
firm this, we calculate the sensitivity of the transmission of the
multisection cavity switch to the imaginary part of the dielectric
constant of the active material [Fig. 6(a)]. We indeed observe
that, when the structure is on resonance, the normalized sen-
sitivity of the transmission to the imaginary part of the dielec-
tric constant of the active material, T −1 ∂T

∂εri
, and therefore the

modulation depth are resonantly enhanced [Fig. 6(a)].

Fig. 4. (a) Transmission in the on state (black curve) and modula-
tion depth (red curve) of the optimized multisection cavity switch
[shown in the inset of (b)] at λ0 � 1.55 μm as a function of the width
of the middle section d 3. All other parameters are as in Fig. 3(c). The
transmission calculated using scattering matrix theory [Eq. (1)] is also
shown (blue dots). (b) Resonant wavelength of the multisection cavity
as a function of the width of the middle section d 3. All other param-
eters are as in Fig. 3(c).

Fig. 5. (a) Transmission in the on state and (b) modulation depth of
the multisection cavity switch as a function of the width d 3 and length
L3 of the middle section of the cavity at λ0 � 1.55 μm. All other
parameters are as in Fig. 3(c).

Fig. 6. (a) Normalized sensitivity of the transmission of the multi-
section cavity switch to the imaginary part of the dielectric constant of
the active material, T −1 ∂T

∂εri
, at λ0 � 1.55 μm as a function of the

width of the middle section d 3. All other parameters are as in
Fig. 3(c). (b) Profile of the electric field amplitude for the optimized
switch of Fig. 3(b) at λ0 � 1.55 μm, normalized with respect to the
maximum field amplitude of the incident MDM waveguide mode. All
other parameters are as in Fig. 3(c).
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The sensitivity of the transmission to the imaginary part of
the dielectric constant of the active material is in turn directly
related to the electric field intensity in the cavity region
[42–45]. More specifically, we found that the sensitivity of the
optimized multisection cavity switch [Fig. 3(a)] is greatly en-
hanced compared to the optimized conventional Fabry–Perot
cavity switch [Fig. 1(a)] due to the great enhancement of the
electric field intensity in the cavity region. The profile of the
electric field amplitude for the optimized multisection cavity
switch is shown in Fig. 6(b). The maximum electric field in-
tensity in the cavity filled with the active material is around
the tips of its middle section. The enhanced field intensity
in the cavity increases the interaction of light with matter, and
the absorption in the off state is therefore enhanced.

In Fig. 7 we show the transmission in the on state and the
modulation depth of the switch as a function of the stub length
d s. We observe that there is a trade-off between the transmis-
sion and the modulation depth when the stub length d s is vary-
ing. We found that, as d s increases, the stub transmittance
increases, while the stub reflectance decreases. As a result, as the
stub length d s increases, the transmission in the on state of the
switch increases (Fig. 7). On the other hand, the optimum
light–matter interaction in the cavity, and therefore the opti-
mum modulation depth, occur when the energy density in
the cavity is maximized [7]. In addition, to maximize the energy
density in the cavity, high stub reflectance is required [7]. Thus,
since, as the stub length d s increases, the stub reflectance de-
creases, the modulation depth of the switch also decreases
(Fig. 7). As mentioned above, the optimized stub length was
found to be d s � 172 nm. As can be seen in Fig. 7, the choice
of this parameter is dictated by the optimization constraint that
the transmission in the on state must be at least 0.5. Reducing
the stub length d s would result in increased modulation depth.
This, however, would be at the cost of decreased transmission
in the on state (Fig. 7).

3. CONCLUSIONS

In this paper, we introduced compact absorption switches
consisting of a plasmonic MDM waveguide coupled to a multi-
section cavity. We considered highly compact structures with

subwavelength active region. The structures are filled with an
active material with tunable absorption coefficient. The geo-
metrical parameters of the switches were optimized to maxi-
mize the modulation depth, subject to the constraint that the
insertion loss is less than 3 dB.

We first considered a conventional Fabry–Perot cavity
switch consisting of a MDM plasmonic waveguide coupled to
a MDM cavity resonator formed by two MDM stubs. We
found that the optimized conventional Fabry–Perot cavity
switch exhibits a resonance at the wavelength at which it was
optimized. However, the modulation depth of the optimized
switch is relatively low.

In an attempt to increase the modulation depth without in-
creasing the insertion loss, we then considered a cavity switch
in which the resonator has an arbitrary shape. We used a single-
mode scattering matrix theory to account for the behavior of
this system. In order to optimize the cavity shape, we consid-
ered for simplicity a multisection cavity switch in which the
resonator cavity comprises multiple sections of varying
widths. In this case, we found that the optimized structure
is a perturbation of the maximum size cavity obtained by
reducing the width of the middle section. In addition, the on-
resonance modulation depth of the optimized multisection
cavity switch is greatly enhanced with respect to the conven-
tional Fabry–Perot cavity switch.

We found that the width of the middle section can be used
to tune the resonant wavelength of the multisection resonator.
For the optimized structure the resonant wavelength of the
cavity coincides with the operating wavelength, so that both
the transmission in the on state and the modulation depth
are resonantly enhanced. In addition, the modulation depth
of the switches is directly associated with the sensitivity of their
transmission to the imaginary part of the dielectric constant
of the active material, which is in turn directly related to
the electric field intensity in the cavity region. We found that
the sensitivity of the optimized multisection cavity switch is
greatly enhanced compared to the optimized conventional
Fabry–Perot cavity switch due to the great enhancement of
the electric field intensity in the cavity region. We also found
that there is a trade-off between the transmission in the on state
and the modulation depth when the length of the stubs is vary-
ing. The choice of the stub length is dictated by the optimi-
zation constraint that the insertion loss must be less than 3 dB.

As final remarks, we note that similar highly compact plas-
monic switches based on subwavelength cavity resonators could
also be implemented using other plasmonic two-conductor
waveguides, such as three-dimensional plasmonic coaxial wave-
guides [46,47]. We also note that there are some analogies be-
tween the enhancement of modulation depth in the proposed
plasmonic switches based on subwavelength cavity resonators,
and the enhancement of transmission through C-shaped
nanoapertures. In C-shaped apertures the modification of the
aperture shape increases the cutoff wavelength of the relevant
waveguide mode leading to increased transmission [48,49].
Similarly, in the subwavelength cavity resonators considered
here, reducing the width of the middle section increases the
resonant wavelength of the cavity leading to resonant enhance-
ment of the modulation depth.

Fig. 7. Transmission in the on state (black curve) and modulation
depth (red curve) of the optimized multisection cavity switch (shown
in the inset) as a function of the length of the MDM stubs d s at
λ0 � 1.55 μm. All other parameters are as in Fig. 3(c).
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Finally, we note that the switching time of the active
material considered in this paper (QD-doped silicon dioxide)
is limited by the QD-exciton recombination lifetime, which is
of the order of 40 ns [31,35]. In addition to QD-doped silicon
dioxide, several other materials with tunable absorption coef-
ficient can be used, such as photochromic molecules [30],
multiple quantum well structures [50,51], and heavily doped
silicon [52]. The use of heavily doped silicon could lead to
switching times of less than 1 ps [52].

Funding. National Science Foundation (NSF) (1102301,
1254934).
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