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Abstract—We investigate the properties of the modes that are
supported by 3-D subwavelength plasmonic slot waveguides. We
first show that the fundamental mode that is supported by a
symmetric plasmonic slot waveguide, which is composed of a
subwavelength slot in a thin metallic film embedded in an infinite
homogeneous dielectric, is always a bound mode for any combina-
tion of operating wavelength and waveguide parameters. Its modal
fields are highly confined over a wavelength range extending
from zero frequency to the ultraviolet. We then show that for an
asymmetric plasmonic slot waveguide, in which the surrounding
dielectric media above and below the metal film are different, there
may exist a cutoff slot width and/or a cutoff metal film thickness
above which the mode becomes leaky, and there always exists
a cutoff wavelength above which the mode becomes leaky. We
investigate in detail the effect of variations of the parameters of
the symmetric and asymmetric plasmonic slot waveguides. We also
consider related alternative 3-D plasmonic waveguide geometries,
such as a plasmonic slot waveguide, in which the two metal film
regions that form the slot have a finite width, and a plasmonic
strip waveguide, which is formed between a metallic strip and
a metallic substrate. We show that for a specific modal size, the
fundamental mode of the standard plasmonic slot waveguide has
a larger propagation length compared with the corresponding
modes of these plasmonic waveguides.

Index Terms—Integrated optics, optical waveguides, surface
plasmons.

I. INTRODUCTION

GUIDING electromagnetic waves with a mode at deep
subwavelength scale has been of great interest recently.

In the visible wavelength range, the typical way to create a
subwavelength waveguide involves the use of so-called surface
plasmon polaritons (SPPs). SPPs are bound nonradiative sur-
face modes that propagate at metal–dielectric interfaces with
field components that decay exponentially with distance away
from the interface [1]. The decay length of the fields can be
much smaller than the wavelength near the surface plasmon
frequency. Several different plasmonic waveguiding structures
have been proposed [2]–[8], such as metallic nanowires [3],
[4], metallic nanoparticle arrays [5], [6], and V-shaped grooves
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[7], [8]. However, such geometries are fundamentally limited
by the fact that they support a highly confined mode only near
the surface plasmon frequency. In this regime, the optical mode
typically has low group velocity and short propagation length.

At microwave frequencies, where metals do not have a plas-
monic response, two-conductor waveguides are used to guide
subwavelength modes. Such waveguiding structures always
support a fundamental transverse electromagnetic (TEM) or
quasi-TEM mode, which can have a deep subwavelength size
and a broad guiding bandwidth [9]. In addition, it has been
shown that the guiding wavelength range of subwavelength
modes by such structures extends into the infrared and visible
wavelengths [10]. In the optical wavelength range, however,
metals have a plasmonic response [11]. The properties of the
optical modes that are supported by plasmonic two-conductor
waveguides are, therefore, quite different from those of their
counterparts at microwave frequencies, where metals behave
almost as perfect electric conductors [9]. Several different plas-
monic two-conductor waveguide structures have been proposed
to guide light [12]–[17]. Because of the predicted attractive
properties of the plasmonic two-conductor waveguides, people
have also started to experimentally explore such structures
[18], [19].

Among all the plasmonic two-conductor waveguides, a 3-D
plasmonic waveguide based on a deep subwavelength slot in
a thin metallic film was recently investigated [15]–[17]. The
geometry of such a plasmonic slot waveguide is shown in
Fig. 1(a). It consists of a slot in a thin metal film. The thin metal
film is embedded in dielectric. The supported optical mode is
highly localized in the slot, and its direction of propagation is
parallel to the slot. Fig. 1(b) shows a cross-sectional view of
the waveguide geometry. It was shown that such a plasmonic
slot waveguide supports a fundamental bound mode with size
almost completely dominated by the near field of the slot over
a wide range of frequencies [15]. The size of this mode can
be far smaller than the wavelength, even when its effective
index approaches that of the substrate. In addition, the group
velocity of the mode is close to the speed of light in the
substrate, and its propagation length is tens of micrometers
at the optical communication wavelength (λ0 = 1.55 µm).
Thus, such a plasmonic slot waveguide could be potentially
important in providing an interface between conventional optics
and subwavelength electronic and optoelectronic devices. The
characteristics of the modes that are supported by the plasmonic
slot waveguides at visible wavelengths (λ0 = 632.8 nm) have
also been investigated [16], [17].
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Fig. 1. (a) Geometry of a 3-D plasmonic slot waveguide. The arrow shows the
direction of propagation of the optical mode. (b) Cross-sectional view of the
3-D plasmonic slot waveguide geometry. (c)–(e) Corresponding DMD, MDM,
and truncated metal film structures for the 3-D plasmonic slot wave-
guide of (b).

In this paper, we investigate in detail the characteristics of the
modes that are supported by 3-D plasmonic slot waveguides.
In particular, we illustrate the physics of such a waveguide
by comparing it to a number of simplified geometries shown
in Fig. 1(c)–(e). We first consider a reference symmetric plas-
monic slot waveguide structure, which is composed of a slot in
a thin metallic film that is embedded in an infinite homogeneous
dielectric. We show that the fundamental mode that is sup-
ported by this symmetric plasmonic slot waveguide is always
a bound mode for any combination of operating wavelength
and waveguide parameters. We then consider an asymmetric
plasmonic slot waveguide structure in which the surrounding
dielectric media above and below the metal film are different.
Unlike in the symmetric case, in the asymmetric case, the
fundamental propagating mode is not always bound. We show
that for a specific asymmetric plasmonic slot waveguide, there
may exist a cutoff slot width and/or a cutoff metal film thickness
above which the mode becomes leaky, and there always exists
a cutoff wavelength above which the mode becomes leaky.
We also consider related alternative 3-D plasmonic waveguide
geometries. More specifically, we investigate a plasmonic slot
waveguide, where the two metal film regions that form the slot
have a finite width, and a plasmonic strip waveguide, which is
formed between a metallic strip and a metallic substrate. We
show that for a specific modal size, the fundamental mode of
the reference plasmonic slot waveguide has a larger propaga-
tion length compared with the corresponding modes of these
plasmonic waveguides.

Fig. 2. (a) Absolute values of the real [Re(εr)] and imaginary [Im(εr)]
part of the dielectric constant of silver at optical frequencies. Re(εr) < 0
for frequencies below ∼910 THz. (b) Dielectric constant of silver at selected
wavelengths that are considered in this paper.

II. SIMULATION METHOD

We calculate the eigenmodes of plasmonic waveguides
at a given wavelength λ0 using a full-vectorial finite-
difference frequency-domain (FDFD) mode solver [15], [20].
For waveguiding structures that are uniform in the z direction, if
an exp(−γz) dependence is assumed for all field components,
Maxwell’s equations reduce to two coupled equations for the
transverse magnetic field components Hx and Hy [20], i.e.,
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where H(x, y, z) = h(x, y) exp(−γz), εr = εr(x, y) is the di-
electric function, and k2

0 = ω2ε0µ0. Solving these eigenvalue
equations allows one to define the propagation length Lp and
the effective index neff of a propagating mode through the
equation γ ≡ L−1

p + iβ = L−1
p + i2πneffλ−1

0 . Also, the disper-
sion relation is defined as ω = ω(β). These equations are dis-
cretized on a nonuniform orthogonal grid that results in a sparse
matrix eigenvalue problem of the form Ah = γ2h, which is
solved using iterative sparse eigenvalue techniques [21]. The
discretization scheme is based on Yee’s lattice [20]. To calculate
the bound eigenmodes of the waveguide, we ensure that the size
of the computational domain is large enough so that the fields
are negligibly small at its boundaries [22], whereas for leaky
modes, we use perfectly matched layer absorbing boundary
conditions [21]. An important feature of this formulation is
the absence of spurious modes [22]. In addition, metals have
complicated dispersion properties in the optical wavelength
range. As an example, Fig. 2 shows the real and imaginary parts
of the dielectric constant of silver at optical frequencies [11],
[23]. The frequency-domain mode solver allows us to directly
use experimental data for the frequency-dependent dielectric
constant of metals, including both the real and imaginary parts,
with no approximation.
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Fig. 3. (a) (Solid line) Effective index neff of the high-index mode of a silica–silver–silica DMD structure (see inset) as a function of the width of the central
silver region h. (Dashed line) Refractive index of silica. (b) (Solid line) Effective index neff of the fundamental mode of a silver–silica–silver MDM structure (see
inset) as a function of the width of the central silica region w. (Dashed line) Refractive index of silica. (c) (Solid line) Effective index neff of the fundamental edge
mode of a truncated silver film embedded in silica as a function of the metal film thickness h. (Dashed line) Refractive index of silica. (d) Power density profile of
the edge mode that is supported by a truncated silver film embedded in silica for h = 50 nm at λ0 = 1.55 µm.

III. SIMPLIFIED PLASMONIC STRUCTURES

In order to understand the modal structure of the slot
waveguide that is shown in Fig. 1(a) and (b), we first consider
the modes in the corresponding simplified geometries that
include 2-D dielectric–metal–dielectric [DMD, Fig. 1(c)] and
metal–dielectric–metal [MDM, Fig. 1(d)] plasmonic waveguid-
ing structures, as well as the edge on a truncated metal film
[Fig. 1(e)]. The asymptotic behavior of many properties of 3-D
plasmonic slot waveguides can be explained in terms of the
properties of these simpler plasmonic structures. Below, we
focus only on those modes in these simplified structures that
are directly related to the fundamental modes of the slot.

The corresponding DMD plasmonic structure [Fig. 1(c)] has
the same metal film thickness as the film in the slot waveguide
[Fig. 1(b)]. Such a structure supports two modes below the sur-
face plasmon frequency [10]. Of relevance here is the higher in-
dex mode that has a symmetric charge distribution. In Fig. 3(a),
we show the effective index neff of the high-index mode of a
silica–silver–silica DMD structure as a function of the width
of the central silver region h. As a somewhat unusual feature,
when h decreases, the fraction of the modal power in the metal
increases, and neff , therefore, increases. In the opposite limit,
as h → ∞, the coupling between the surface plasmon modes of
the two metal–dielectric interfaces vanishes, and neff , therefore,
asymptotically approaches the effective index of the surface
plasmon mode of a single metal–dielectric interface.

The corresponding MDM plasmonic structure [Fig. 1(d)] has
a dielectric film thickness equal to the slot width [Fig. 1(b)].
Such a structure supports a fundamental mode below the sur-
face plasmon frequency with antisymmetric charge distribution
[10]. In Fig. 3(b), we show the effective index neff of the
fundamental mode of a silver–silica–silver MDM structure as

a function of the width of the central silica region w. As
w decreases, the fraction of the modal power in the metal
increases, and neff , therefore, increases. In the opposite limit, as
w → ∞, neff asymptotically approaches the effective index of
the surface plasmon mode of a single metal–dielectric interface,
as in the DMD structure. We also note that for a given width of
the central region, the coupling of the single-interface surface
plasmon modes is substantially stronger in the MDM case com-
pared to the DMD case since in the former, the coupling occurs
through dielectric, whereas in the latter, it occurs through metal.

The corresponding truncated metal film structure [Fig. 1(e)]
has the same metal film thickness as the film in the slot
waveguide [Fig. 1(b)]. Such a structure supports a fundamental
edge mode. In Fig. 3(d), we show the power density (Sz =
(1/2)Re[E × H∗ · ẑ]) profile of the edge mode in a truncated
silver film embedded in silica. Large modal intensity is ob-
served at the silver–silica interface at the edge of the metal
film. More specifically, the modal power density is maximum
at the two edge corners due to the singular behavior of the
electric field near the sharp edges [24]. In Fig. 3(c), we show
the effective index neff of the fundamental edge mode of
a truncated silver film embedded in silica as a function of
the metal film thickness h (solid line). Similar to the DMD
structure, neff increases as h decreases. In the opposite limit,
as h → ∞, neff asymptotically approaches the effective index
of the mode of a single 90◦ corner, which is higher than the
effective index of a single-interface surface plasmon mode [25].

IV. SYMMETRIC PLASMONIC SLOT WAVEGUIDE

We now consider a symmetric plasmonic slot waveguide
structure that is composed of a slot in a thin metallic film
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Fig. 4. (a) Dispersion relation of the fundamental mode of the symmetric plasmonic slot waveguide (shown with solid line) for w, h = 50 nm [see inset of (b)].
The inset shows a schematic of the charge and vector field distribution of the mode. The dash-dotted line is the light line of silica, whereas the dashed curve is
the dispersion relation of the higher index propagating mode in the silica–silver–silica thin film structure. (b) Propagation length of the fundamental mode of the
symmetric plasmonic slot waveguide as a function of wavelength for w, h = 50 nm. (c)–(f) Power density profile of the fundamental mode of the symmetric
plasmonic slot waveguide for w, h = 50 nm at λ0 = 0.6, 1, 1.55, and 10 µm.

embedded in an infinite homogeneous dielectric. We are par-
ticularly interested in the regime where the dimensions of the
slot are much smaller than the wavelength of light. Thus, our
reference structure consists of a slot of width w = 50 nm in a
silver film of thickness h = 50 nm embedded in silica [ns =
1.44; inset of Fig. 4(b)].

In Fig. 4(a), we show the dispersion relation of the fun-
damental mode that is supported by our reference structure.
We observe that the fundamental mode of the plasmonic slot
waveguide has a wavevector that is larger than all the radi-
ation modes in silica as well as all the propagating modes
in the silica–silver–silica DMD thin film structure over the
entire frequency range. The fundamental mode supported by
our reference plasmonic slot waveguide is, therefore, a bound
mode. Since the slot dimensions are much smaller than the
wavelength in the frequency range of interest, this waveguide
does not support any higher order propagating bound modes.

In Fig. 4(b), we show the propagation length Lp of the fun-
damental mode of our reference plasmonic slot waveguide as
a function of wavelength. The propagation length decreases as
the wavelength decreases. This is consistent with the behavior
of plasmonic structures in general [1] since the fraction of the
modal power in the metal increases at shorter wavelengths.

In Fig. 4(c)–(f), we show the power density profile of the
fundamental mode that is supported by our reference structure
at different wavelengths. The fundamental mode is quasi-TEM,
with dominant field components Ex and Hy [15]. The charge
distribution is, therefore, odd for the mirror plane that is normal
to x and even for the mirror plane that is normal to y [inset
of Fig. 4(a)]. We observe that over a wide wavelength range,
the modal fields are highly confined in the slot region and only
slightly extend in the adjacent silica regions above and below
the slot. Thus, the modal size is almost completely dominated
by the near field of the slot [15]. In addition, the size of
this mode is far smaller than the wavelength even when its
dispersion relation approaches the light line of the surrounding
dielectric media [15]. This behavior is fundamentally different
from that of conventional dielectric waveguides in which the
mode significantly extends into the low-index cladding, as
the dispersion relation of the optical mode approaches the
cladding light line [26], [27]. It is also fundamentally dif-
ferent from that of single-metal plasmonic waveguides (e.g.,
V-shaped grooves) in which a deep subwavelength mode is
obtained only in a limited wavelength range, where the modal
dispersion relation is far from the light line of the surrounding
dielectric [28].
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Large modal intensity is observed at the silver–silica inter-
faces in the slot. Similar to the edge mode [Fig. 3(d)], the
modal power density of a plasmonic slot waveguide reaches
the maximum at the corners of the slot due to the singular
behavior of the electric field near sharp edges [24]. However,
we will show below that the characteristics of the mode do not
strongly depend on the sharpness of the slot corners. At visible
wavelengths (λ0 = 600 nm), the modal power is concentrated
at the edges of the two semi-infinite metal film regions that form
the slot, and the power density in the middle of the slot is small
[Fig. 4(c)]. At this wavelength, the dielectric constant of silver
is εr 	 −16 − 2i and has a relatively small magnitude (Fig. 2).
Hence, the field strongly penetrates into the metal region. Also,
since the fraction of the modal power in the metal is high
enough, the edge mode of a truncated metal film [Fig. 1(e)]
is tightly confined, with a decay length in the dielectric smaller
than the slot width. At visible wavelengths, the fundamental
mode of the plasmonic slot waveguide, therefore, is composed
of the weakly coupled edge modes of the two semi-infinite
metal film regions that form the slot [17]. Since the coupling is
weak, the effective index of the fundamental mode is very close
to the effective index of a single edge mode. Due to the large
fraction of the modal power in the metal at λ0 = 600 nm (ω =
0.083 2πc/w), the effective index of the mode neff = 2.45 is
much larger than the index of silica ns [Fig. 4(a)], and its
propagation length Lp = 0.6 µm is very short [Fig. 4(b)].

As the wavelength increases, the dielectric constant of metal
increases in magnitude, the fraction of the modal power in
the metal decreases, and, therefore, the effective index of the
mode decreases, and its propagation length increases. For λ0 =
1, 1.55, and 10 µm (ω = 0.05, 0.032, 0.005 2πc/w), the modal
effective indexes are neff = 2.05, 1.91, and 1.72 [Fig. 4(a)],
and the modal propagation length is Lp = 5, 14, and 63 µm
[Fig. 4(b)], respectively. In addition, at infrared wavelengths,
the modal power density in the middle of the slot is significant
[Fig. 4(d)–(f)]. Thus, at longer wavelengths, the mode can
no longer be viewed as being composed of edge modes. In
particular, the effective index of the fundamental mode of the
slot is much larger than the effective index of the edge mode.

In the remainder of this section, we investigate the effect
of variations of the parameters of our reference plasmonic slot
waveguide structure on the modal characteristics. We focus on
the optical communication wavelength (λ0 = 1.55 µm), where
subwavelength plasmonic slot waveguides have propagation
lengths of tens of micrometers [15].

In Fig. 5(a) and (b), we, respectively, show the effective
index neff and the propagation length Lp of the fundamental
mode of the plasmonic slot waveguide as a function of the
slot width w [Fig. 4(b)]. All other parameters are as in our
reference structure (Fig. 4). We observe that as w decreases,
neff increases, and Lp decreases. This is due to the fact that
as w decreases, the fraction of the modal power in the metal
increases. A similar behavior is observed in MDM plasmonic
waveguides [7], [12], [13]. In fact, for w → 0, we observe that
neff(w) is very close to neff(w)|MDM [Fig. 5(a)]. In the limit
of w → ∞, neff(w) asymptotically approaches the effective
index of the edge mode [shown with the dash-dotted line in
Fig. 5(a)], which is slightly higher than the effective index of

Fig. 5. (a) (Solid line) Effective index neff of the fundamental mode of
the symmetric plasmonic slot waveguide as a function of the slot width w
[Fig. 4(b)]. (Dashed line) Effective index of the fundamental mode of the
corresponding MDM structure. (Dashed line) Effective index of the high-index
mode of the corresponding DMD structure. (Dash-dotted line) Effective index
of the edge mode of the corresponding truncated metallic film. (b) Propagation
length Lp of the fundamental mode of the symmetric plasmonic slot waveguide
as a function of the slot width w [Fig. 4(b)]. (c) Modal area of the fundamental
mode of the symmetric plasmonic slot waveguide as a function of the slot area
w × h, as w is varied [Fig. 4(b)]. All other parameters are as in our reference
structure (Fig. 4).

the high-index mode of the corresponding DMD structure [10]
[shown with the dashed line in Fig. 5(a)]. The same asymptotic
behaviors are also observed in the propagation length Lp(w)
for w → 0 and w → ∞. In Fig. 5(c), we show the modal area
(defined as the area in which the mode power density is larger
than 1/e2 of its maximum value) of the fundamental mode of
the plasmonic slot waveguide as a function of the slot area
w × h, as w is varied [Fig. 4(b)]. As expected, for small w, the
modal area increases as w increases. In addition, the coupling
between the edge modes of the two semi-infinite metal film
regions that form the slot decreases as w increases. Therefore,
when w is larger than the decay length of the edge mode in
silica, the modal area decreases as w increases. As w → ∞,
the modal area asymptotically approaches twice the area of the
edge mode.
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Fig. 6. (a) (Solid line) Effective index neff of the fundamental mode of the
symmetric plasmonic slot waveguide as a function of the thickness h of the
metallic film [Fig. 4(b)]. (Dashed line) Effective index of the fundamental
mode of the corresponding MDM structure. (Dashed line) Effective index of
the high-index mode of the corresponding DMD structure. (Dash-dotted line)
Refractive index of the substrate. (b) Propagation length Lp of the fundamental
mode of the symmetric plasmonic slot waveguide as a function of the thickness
h of the metallic film [Fig. 4(b)]. (c) Modal area of the fundamental mode
of the symmetric plasmonic slot waveguide as a function of the slot area
w × h, as h is varied [Fig. 4(b)]. All other parameters are as in our reference
structure (Fig. 4).

In Fig. 6(a) and (b), we, respectively, show the effective index
neff and the propagation length Lp of the fundamental mode
of the plasmonic slot waveguide as a function of the thickness
h of the metallic film [Fig. 4(b)]. All other parameters are as
in our reference structure (Fig. 4). As h → ∞, the effective
index of the mode asymptotically approaches the effective
index of the fundamental mode of the corresponding MDM
plasmonic waveguide [limh→∞ neff(h) = neff |MDM], and the
same asymptotic behavior is observed in the propagation length
Lp(h). In Fig. 6(c), we show the modal area of the fundamental
mode of the plasmonic slot waveguide as a function of the slot
area w × h, as h is varied [Fig. 4(b)]. The modal area increases
as h increases, and for large h, the increase is linear.

Fig. 7. (a) Power density profile of the fundamental mode of the symmetric
plasmonic slot waveguide for w = 50 nm, and h = 60 nm at λ0 = 1.55 µm.
(b) Same as in (a), except h = 10 nm.

We also observe that as h → 0, neff(h) increases, and Lp(h)
decreases. We found that this behavior is related to the fringing
fields of the mode rather than the fields in the slot region. The
dominant components of the fringing fields are Ey and Hx, and
they are maximum at the four lateral silver–silica interfaces at
y = ±h/2, x > w/2, or x < −w/2 [inset of Fig. 4(b)]. As the
film thickness h decreases, the fraction of the modal power
in the metal at these interfaces increases, and this results in
an increasing effective index neff and a decreasing propaga-
tion length Lp. The same trend is also observed at visible
wavelengths [17]. In Fig. 7(a) and (b), we show the power
density profile of the fundamental mode of the plasmonic slot
waveguide for h = 60 nm and h = 10 nm, respectively. All
other parameters are as in our reference structure (Fig. 4). We
observe that as the film thickness h decreases, the modal profile
evolves into two weakly coupled edge modes. This is consistent
with the increase of the effective index neff , which translates
into smaller field decay length in dielectric, and also confirms
that the effective index increase is related to the fringing fields
of the mode at the semi-infinite metal film regions. We also
observe that in the limit of h → 0, the modal area approaches
an asymptotic nonzero value [Fig. 6(c)], unlike the w → 0 case.
In other words, there is a minimum modal size as the film thick-
ness approaches zero due to the fringing fields of the mode.

We also investigated the effect of varying the dielectric
constant of the medium in which the metallic film with the slot
is embedded. We found that as the permittivity of the dielectric
is increased, the effective index neff of the fundamental mode
increases, and its propagation length Lp decreases. As in the
case of a single-interface surface plasmon mode [1], this is
due in part to increased fraction of the modal power in the
metal, as the permittivity of the dielectric increases, as well
as decreased group velocity. Finally, we note that in the case
of the symmetric plasmonic slot waveguide, the wavevector of
the fundamental mode is larger than all the radiation modes in
the surrounding dielectric as well as all the propagating modes
in the corresponding DMD thin film structure [Fig. 1(c)],
for any combination of operating wavelength and waveguide
parameters. In other words, in the symmetric plasmonic slot
waveguide, there always exists a fundamental propagating
bound mode, and there is no associated cutoff.

V. ASYMMETRIC PLASMONIC SLOT WAVEGUIDE

We now consider an asymmetric plasmonic slot waveguide
structure in which the surrounding dielectric media above
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Fig. 8. (a) (Solid line) Effective index neff of the fundamental mode of
the asymmetric plasmonic slot waveguide as a function of the slot width
w (see inset). (Dashed line) Effective index of the high-index mode of the
corresponding asymmetric DMD structure. (Dash-dotted line) Refractive index
of the substrate. (b) Propagation length Lp of the fundamental mode of
the asymmetric plasmonic slot waveguide as a function of the slot width
w [Fig. 8(a)]. (c) Modal area of the fundamental mode of the asymmet-
ric plasmonic slot waveguide as a function of the slot area w × h, as w
is varied [Fig. 8(a)]. All other parameters are as in our reference struc-
ture (Fig. 4).

and below the metal film are different. More specifically, we
consider a waveguide that consists of an air slot of width w
in a metallic film of thickness h deposited on silica [inset of
Fig. 8(a)].

In Fig. 8(a) and (b), we, respectively, show the effective index
neff and the propagation length Lp of the fundamental mode of
the asymmetric plasmonic slot waveguide as a function of the
slot width w [inset of Fig. 8(a)]. All other parameters are as in
our reference structure (Fig. 4). In Fig. 8(c), we show the modal
area of the fundamental mode of the asymmetric plasmonic
slot waveguide as a function of the slot area w × h, as w
is varied. We observe that, in general, the effect of variation
of the slot width w on the characteristics of the fundamental
mode that is supported by the plasmonic slot waveguide is very
similar in both the symmetric (Fig. 5) and asymmetric (Fig. 8)

cases. However, there is an important difference between the
two cases with regard to the asymptotic behavior for w → ∞.
Unlike in the symmetric case, in the asymmetric case, the
fundamental propagating mode is not always bound. If all other
waveguide parameters are fixed, there is a slot width cutoff
wcutoff , and for w > wcutoff , the mode is leaky. More specif-
ically, we observe that if w is gradually increased to be wcutoff ,
the modal power starts to leak into the propagating modes of the
DMD air–silver–silica thin film structure, and if w is further
increased so that w > wcutoff, substrate, the modal power also
leaks into the radiation modes in the silica substrate [Fig. 8(a)].
In general, as w → ∞, neff(w) asymptotically approaches the
effective index of the edge mode of a truncated metal film that is
deposited on the substrate. For the structure shown in the inset
of Fig. 8(a), the effective index of the edge mode is smaller than
the effective index of the high-index mode of the asymmetric
DMD (air–silver–silica) structure. Hence, there exists a cutoff
width wcutoff . In addition, the effective index of the edge mode
is also smaller than the refractive index of the substrate (silica in
Fig. 8). Hence, there also exists a cutoff width wcutoff, substrate.
We also observe that the propagation length Lp of the fun-
damental mode of the asymmetric plasmonic slot waveguide
increases with w, even when the mode becomes leaky. This
indicates that the dominant loss mechanism is the material loss
in the metal. As w increases, the mode becomes less confined,
and the power loss in the metal decreases. Thus, although
the radiation power loss increases with w, the overall power
loss decreases. In fact, for w > wcutoff in the asymmetric case
[Fig. 8(b)], the propagation length Lp increases more rapidly
with w compared to the symmetric case [Fig. 5(b)] because
leakage further reduces the mode confinement and, therefore,
the power loss in the metal.

In Fig. 9(a) and (b), we, respectively, show the effective index
neff and the propagation length Lp of the fundamental mode
of the asymmetric plasmonic slot waveguide as a function of
the metallic film thickness h [inset of Fig. 8(a)]. All other
parameters are as in our reference structure (Fig. 4). In Fig. 9(c),
we show the modal area of the fundamental mode of the
asymmetric plasmonic slot waveguide as a function of the slot
area w × h, as h is varied. As in the case of slot width w
variation (Figs. 5 and 8), we observe that, in general, the effect
of metallic film thickness h variation on the characteristics
of the fundamental mode that is supported by the plasmonic
slot waveguide is very similar in both the symmetric (Fig. 6)
and asymmetric (Fig. 9) cases. The most important difference
between the two cases is related to the asymptotic behavior for
h → ∞. In the asymmetric case, as h → ∞, the effective index
of the fundamental mode neff(h) asymptotically approaches the
effective index of the mode of the MDM plasmonic waveguide,
with dielectric core corresponding to the dielectric media in
the slot. Since for the structure shown in Fig. 8 the effective
index of the mode that is supported by this MDM structure
(silver–air–silver in Fig. 8) is smaller than the effective index
of the high-index mode of the asymmetric DMD structure
(air–silver–silica in Fig. 8), there exists a cutoff film thick-
ness hcutoff . For h > hcutoff , there is no longer a fundamental
guided mode. In addition, for this structure, since the effective
index of the MDM mode (silver–air–silver in Fig. 8) is smaller
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Fig. 9. (a) (Solid line) Effective index neff of the fundamental mode of the
asymmetric plasmonic slot waveguide as a function of the thickness h of the
metallic film [Fig. 8(a)]. (Dashed line) Effective index of the high-index mode
of the corresponding asymmetric DMD structure. (Dash-dotted line) Refractive
index of the substrate. (b) Propagation length Lp of the fundamental mode
of the asymmetric plasmonic slot waveguide as a function of the thickness
h of the metallic film [Fig. 8(a)]. (c) Modal area of the fundamental mode
of the asymmetric plasmonic slot waveguide as a function of the slot area
w × h, as h is varied [Fig. 8(a)]. All other parameters are as in our reference
structure (Fig. 4).

than the refractive index of the substrate (silica in Fig. 8),
there also exists a cutoff film thickness due to the substrate
hcutoff, substrate above which the fundamental mode leaks into
the substrate. We also observe that the propagation length Lp

of the fundamental mode of the asymmetric plasmonic slot
waveguide increases with h, even when the mode becomes
leaky [Fig. 9(b)], for similar reasons as those mentioned above
for the case of increasing w.

As mentioned above, the cutoff slot width depends on the
effective index of the corresponding edge mode. Similarly,
the cutoff film thickness depends on the effective index of the
mode of the corresponding MDM plasmonic waveguide with
dielectric core corresponding to the dielectric media in the slot.
Therefore, the structure will not have a cutoff slot width or film
thickness for the fundamental mode if the slot is filled with

the same dielectric as the substrate. We note, however, that for
any asymmetric plasmonic slot waveguide, there always exists a
cutoff wavelength above which the mode becomes leaky. This is
due to the fact that in the long wavelength limit, metals behave
as perfect electric conductors so that the modal fields do not
penetrate into the metal. Since some of the field lines are in the
upper and some are in the lower dielectric media, the effective
index of the mode always lies between the refractive indexes of
the upper and lower dielectric media, and the mode is, therefore,
always leaky [15]. Finally, we note that as the structure becomes
more asymmetric, the cutoff slot width, cutoff film thickness,
and cutoff wavelength decrease.

VI. EFFECT OF THE SHARPNESS OF THE SLOT CORNERS

In Fig. 10, we consider the effect of the sharpness of the slot
corners on the characteristics of the fundamental mode that is
supported by the plasmonic slot waveguide. More specifically,
we consider the structure of (a), in which the corners of the two
semi-infinite metal film regions are rounded with a radius 0 <
rs < h/2. All other parameters are as in our reference structure
(Fig. 4). We found that as rs increases, the modal power
density profile is modified, with the areas of high power density
around the corners of the slot spreading out. In Fig. 10(b),
we show the power density profile for the extreme case of
rs = h/2. In this case, we observe that unlike our reference slot
structure, which has high power density areas around the upper
and lower corners of the semi-infinite metal film regions, the
mode exhibits high-density areas with maxima in the middle
of the rounded edge of each of the metal film regions. In
Fig. 10(c) and (d), we, respectively, show the effective index
neff and the propagation length Lp of the fundamental mode
of the plasmonic slot waveguide as a function of the radius
rs [Fig. 10(a)]. We observe that, despite the significant effect
that rs has on the modal power density profile, both neff and
Lp are weakly dependent on rs. Although the modal profile
significantly changes, the fraction of the modal power in the
metal does not change much. Thus, the basic characteristics
of the fundamental mode that is supported by the plasmonic
slot waveguide are not dependent on the sharpness of the slot
corners. This observation implies that the performance of the
slot waveguide is robust, in spite of the fact that the detailed
shape of the sharp edges is difficult to control in the fabrication
process.

VII. RELATED ALTERNATIVE PLASMONIC WAVEGUIDES

We now consider related alternative 3-D plasmonic wave-
guides. In Fig. 11(a), we show a plasmonic slot waveguide in
which the metal film regions that form the slot have a finite
width wstrip. As above, we are interested in the regime where
the dimensions of the slot w and h, as well as the strip width
wstrip, are much smaller than the wavelength of light. For
wstrip → ∞, the modes that are supported by the waveguide
of Fig. 11(a) asymptotically approach those of our reference
plasmonic slot waveguide with semi-infinite metal film regions
[Fig. 4(b)]. In order to understand the effect of a finite strip
width, first, consider a single metal strip of width wstrip and
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Fig. 10. (a) Schematic of a symmetric plasmonic slot waveguide, in which the corners of the two semi-infinite metal film regions are rounded with a radius
0 < rs < h/2. (b) Power density profile of the fundamental mode of the plasmonic slot waveguide of (a) for rs = h/2. (c) Effective index neff of the fundamental
mode of the plasmonic slot waveguide of (a) as a function of the radius rs. (d) Propagation length Lp of the fundamental mode of the plasmonic slot waveguide
of (a) as a function of the radius rs. All other parameters are as in our reference structure (Fig. 4).

Fig. 11. (a) Schematic of a plasmonic slot waveguide, in which the two metal film regions that form the slot have a finite width wstrip. (b) Effective index neff

of the (solid line) antisymmetric and (dash-dotted line) symmetric high-index modes of the plasmonic slot waveguide of (a) as a function of the metal strip width
wstrip. (Dashed line) Effective index of the fundamental mode of our reference plasmonic slot waveguide [Fig. 4(b)]. (c) Propagation length Lp of the (solid line)
antisymmetric and (dash-dotted line) symmetric high-index modes of the plasmonic slot waveguide of (a) as a function of the metal strip width wstrip. (Dashed
line) Propagation length of the fundamental mode of our reference plasmonic slot waveguide [Fig. 4(b)]. All other parameters are as in our reference structure
(Fig. 4). (d) Power density profile of the antisymmetric high-index mode of the plasmonic slot waveguide of (a) for wstrip = 200 nm. (e) Power density profile
of the symmetric high-index mode of the plasmonic slot waveguide of (a) for wstrip = 200 nm. All other parameters are as in our reference structure (Fig. 4).

metal film thickness h embedded in an infinite homogeneous
dielectric. When the metal strip dimensions are much smaller
than the wavelength, the strip supports two distinct bound
propagating modes. The first is a highly confined mode with
maximum modal power density at the corners of the metal strip
[29]. The second is a long-range surface plasmon mode [29],
with effective index that is very close to the refractive index of

the surrounding dielectric and a very large modal area. When
two such metal strips are brought in close proximity as in
Fig. 11(a), their highly confined modes couple. The structure of
Fig. 11(a), therefore, supports two bound propagating modes,
which can be considered to result from the coupling of the
highly confined single-strip modes. These two modes have their
electric field distribution either symmetric or antisymmetric
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with respect to the y axis. Note that an antisymmetric electric
field distribution also implies an antisymmetric charge distribu-
tion [see, for example, the inset in Fig. 4(a)]. The power density
profiles of the antisymmetric and symmetric modes are shown
in Fig. 11(d) and (e), respectively. We observe that the modal
profile of the antisymmetric mode [Fig. 11(d)] is very similar
to the profile of the fundamental mode that is supported by
our reference structure [Fig. 4(e)] with its modal fields highly
confined in the slot region.

In Fig. 11(d) and (c), we, respectively, show the effective
index neff and the propagation length Lp of the antisymmetric
[Fig. 11(d)] and symmetric [Fig. 11(e)] modes of the plasmonic
slot waveguide of Fig. 11(a) as a function of the metal strip
width wstrip. All other parameters are as in our reference struc-
ture (Fig. 4). We also show with dashed line the effective index
and the propagation length of the fundamental mode that is sup-
ported by our reference structure. We observe that the antisym-
metric mode of the finite-width-film plasmonic slot waveguide
[Fig. 11(a)], which is highly confined in the slot region, has a
larger effective index and smaller propagation length than the
fundamental mode of our reference plasmonic slot waveguide
structure [inset of Fig. 4(b)]. As above, this is due to the fact
that the fraction of the modal power in the metal is larger for
the mode of Fig. 11(d) compared with the mode of Fig. 4(e).
Similar behavior is also observed in 2-D plasmonic waveguides;
the mode of a 2-D dielectric–metal–dielectric–metal–dielectric
structure, which is highly confined in the central dielectric
region, has a larger effective index and a smaller propagation
length than the corresponding mode of an MDM structure with
the same central dielectric region width [10]. We also observe
that as wstrip → ∞, the effective index of the antisymmet-
ric mode of the finite-width-film plasmonic slot waveguide
[Fig. 11(a)] asymptotically approaches the effective index of the
fundamental mode of our reference plasmonic slot waveguide
[inset of Fig. 4(b)], and the same asymptotic behavior is ob-
served in the propagation length Lp(wstrip). Finally, we note
that, in addition to the modes of Fig. 11, the finite-width-
film plasmonic slot waveguide [Fig. 11(a)] supports long-range
surface plasmon modes with effective indexes that are very
close to the refractive index of the surrounding dielectric and,
thus, smaller than those of the modes of Fig. 11.

We also considered a 3-D plasmonic strip waveguide
[Fig. 12(a)], which is analogous to the microstrip waveguide
used at microwave frequencies [9]. We found that the structure
of Fig. 12(a) supports a highly confined mode in the region
between the metal strip and the metallic substrate [Fig. 12(b)],
with behavior very similar to that of the highly confined mode
of the plasmonic slot waveguide with a finite film region
[Fig. 11(a)]. In both cases, as wstrip decreases [Figs. 11(a) and
12(a)], the fraction of the modal power in the metal increases.
Thus, for a specific modal size, the fundamental mode of the
plasmonic strip waveguide [Fig. 12(a)] has a smaller propaga-
tion length compared to the fundamental mode of our reference
plasmonic slot waveguide [inset of Fig. 4(b)]. We also found
that the plasmonic strip waveguide [Fig. 12(a)] achieves similar
performance to that of the plasmonic slot waveguide [inset of
Fig. 4(b)] in terms of propagation length for a given modal size,
only in the limit of wstrip → ∞.

Fig. 12. (a) Schematic of a plasmonic strip waveguide, which is formed
between a metallic strip and a metallic substrate. (b) Power density profile
of the fundamental mode of the plasmonic strip waveguide for w = 50 nm,
h = 50 nm, and wstrip = 100 nm at λ0 = 1.55 µm.

VIII. SUMMARY

We investigated in detail the characteristics of the modes
that are supported by 3-D subwavelength plasmonic slot
waveguides. We calculated the eigenmodes of plasmonic
waveguides at a given wavelength using a full-vectorial FDFD
mode solver.

We first considered a reference symmetric plasmonic slot
waveguide structure. The fundamental mode of this waveguide
is always a bound mode for any combination of operating
wavelength and waveguide parameters. Unlike single-metal
plasmonic waveguides, its modal fields are highly confined over
a wavelength range that extends from zero frequency to the
ultraviolet.

We also investigated the effect of variations of the parameters
of the symmetric slot waveguide on the characteristics of the
supported modes. We found that, as the metallic film thickness
approaches zero, the effective index of the fundamental mode
increases, its propagation length decreases, and its modal area
approaches an asymptotic nonzero value. This behavior is re-
lated to the fringing fields of the mode. We also found that the
basic characteristics of the fundamental mode that is supported
by the plasmonic slot waveguide are quite tolerant to variations
on the sharpness of the slot corners that are associated with the
fabrication process.

We then considered an asymmetric plasmonic slot waveguide
structure in which the surrounding dielectric media above and
below the metal film are different. Unlike in the symmetric case,
in the asymmetric case, the fundamental propagating mode is
not always bound. For a specific asymmetric plasmonic slot
waveguide, there may exist a cutoff slot width and/or a cutoff
metal film thickness above which the mode becomes leaky,
and there always exists a cutoff wavelength above which the
mode becomes leaky. We also found that when the fundamental
mode of the asymmetric plasmonic waveguide becomes leaky,
its propagation length is larger than the one of the symmetric
plasmonic waveguide because leakage reduces the modal con-
finement and, therefore, the power loss in the metal.
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We also considered related alternative 3-D plasmonic
waveguide geometries. More specifically, we investigated the
characteristics of the modes that are supported by a plasmonic
slot waveguide, in which the two metal film regions that form
the slot have a finite width, and by a plasmonic strip waveguide,
which is formed between a metallic strip and a metallic sub-
strate. We found that for a specific modal size, the fundamental
mode of the reference plasmonic slot waveguide has a larger
propagation length compared with the corresponding modes of
these plasmonic waveguides.
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