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Abstract-An exact analysis is presented for investigating parallel
plate-fed slot antennas loaded by a dielectric cylinder. The primary
excitation is taken to be either a TM incident mode of the parallel-
plate waveguide or an incident H-polarized plane wave. The analysis
combines singular integral equations with separation of variables tech-
niques. The resulting integral equations are discretized using quasi-
analytical methods, which lead to computationally efficient expressions
for all matrix elements. This, in conjunction with the small matrix
sizes required, leads to very accurate results with low computational
cost. The numerical results presented reveal the effect of the load on
the characteristics of the antennas.

1. INTRODUCTION

Dielectrically loaded waveguide radiators are widely used either in
flush-mounted antennas or as radiating elements in phased arrays [1].
In this context, the parallel plate-fed slot antenna radiating into a
dielectric half-space has been treated in [2] for the case of dominant
(TEM) mode excitation of the formed symmetric iris. This same struc-
ture loaded by a dielectric semicylinder has been recently studied in
[3] both for TM and for TE incident mode excitations.

In this work we study parallel plate-fed slot antennas loaded by a
circular dielectric cylinder. The primary excitation is either a TM inci-
dent mode of the parallel-plate waveguide or an incident H-polarized
plane wave. It should be noted that the formulation technique, followed
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in (3] for the case of a semicylindrical dielectric load which resides right
on the ground plane, is no longer applicable here.

The analysis conducted in section 2 leads to singular integral equa-
tions of the first kind. Discretization of these integral equations with
the help of quasi-analytical techniques, yields for all matrix elements
either closed form or rapidly converging series expressions. Because of
this and the small matrix sizes required, very accurate results are ob-
tained with low computational cost. The validation of the algorithms
is carried out in section 3 followed by typical numerical results for sev-
eral practical quantities of the structure. These results reveal how,
by properly selecting the geometrical and physical parameters of the
load, both the radiation and receiving efficiency of the antenna can be
radically improved.

2. FORMULATION

The geometry of the problem is shown in Fig. 1. The slot of width 2w
may be off-centered (i.e., 0 < ¢ < a@). The position of the cylinder
of radius R is specified via the quantities (D,®). Regions a (z <
0), 1 (p < R) and 0 (z > 0,p > R), where p is measured from
the center of the cylinder as in Fig. 2, are characterized by the scalars
(Eis Hiy ki = w‘\/st_"l"l-)(z =a, 130) %

The case of an incident TM-mode will be first treated in section
2.A. Latter on (section 2.B) we will consider an incident H-polarized
plane wave excitation. In both cases, all electromagnetic fields involved
in the analysis (for instance: incident field, excitation field, scattered
field, total field; see below) have the form (E = #E,+2E,, H = §Hy),
and are derivable from the single scalar H, via relations of the form

1 0H, 1 8H,

jwe 0z’ 7 jwe Oz

T =

(1)

In (1), e is the permittivity at the observation point. The exp(+jwt)
time dependence, assumed for all field quantities, is suppressed
throughout the analysis that follows.
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Figure 2. Equivalent problems for 2 > 0 and z < 0.
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2.A Incident TM-mode Primary Excitation

Let the TMy;, mode be incident from below. The magnetic field of
this mode is given by

Hir(z,2) = Hopp(z)e "*/*, p(z) = cos (LTFI i C) ;
@ (2)

) ™
1= [(Lm)* = (hae)’]"*, 0<arg(y) < 5
Excitation Field : The field (B, H"* = §H*) excited by the
incident TM-mode when the slot is absent (short-circuited ) will be
termed “ezcitation field’. Its magnetic field is given by

HE™(z, 2) = 2Ho cosh(y2/a)() (2 <0), 0(>0)  (3)
Scattered field : The scattered field will be defined as the differ-

4=eIC FFeIC

ence (F, F) = (Em,ﬁm) - (E o ) between the total and the
excitation field.

2.A.1 Representation of the Scattered Magnetic Field in Regions a, 0, 1

Invoking field equivalence principles, the formulation of the bound-
ary value problem will be carried out in the way illustrated in Fig. 2
in terms of the equivalent surface magnetic currents M (z), defined
by

M(z) = B*(,0) x 2 = —Bx(x,0) = §My(x) (4)

and radiating in the presence of a completely opaque ground plane at
z=0:

Region a: Using a Green’s function approach (3] , one obtains for
the scattered magnetic field in region a the expression :

1w
H],(,.a)(% Z)=/ My(2")G(z; z,2")dz’'
(5)

G(z;z,7) = we, [kl

a ¥

o
” ‘ 1 iy
elkaz +2j Z 7_¢n($)"pn($ )e%
n=1 M

from which 'E"(a)(:r:, z) may be derived, if desired, via relations of the
form (1).
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Region 0 : The scattered field (Em),ﬁ(o)) in region 0 may be writ-
ten as superposition of two terms, denoted below by the superscripts

s and c: —0) O\ et e .
(29.727) = @, 7)+ (B ). (6)

These terms may be considered, respectively, as the fields originating
from the slot (surface magnetic current M ) and from the cylinder
(equivalent polarization currents), both acting in the presence of an
infinite ground plane at z =0.

For H; one obtains the expression [4]

Hi(z,2) = —=2 / My (z') H (ko\/(:z:_—m) ' (7)

where H((,2)(.) stands for the zero order Hankel function of the second
kind. On the other hand, separation of variables yields for Hy the
relation

Bz =3 by [HO (kop)e™™ + HP (kop)e 7% (8)

n=—oo

where b, are unknown expansion constants. In (8), (p,¢) and (p, @),
referring to the polar coordinate systems centered at O’ and O" re-

spectively, are defined as in Fig. 2. (O” is the image of O" with respect
to the plane z = 0). The components of the electric field E? are

simple derivatives of Hy (see (1)). [Note: Obviously, Hy is an even
function of 2. This, in view of the first of (1), implies that ES is odd
in z. Therefore, ES vanishes at z =0 as expected.]

Region 1 : The magnetic field in region 1 is given by:
H{V'= Z cndn (k1 p)e?™ 9)
n=—co
where ¢, are unknown expansion constants. In terms of HISI) the
electric field ) may be derived using (1).
2.A.2 Integral Equations of the Problem

We note that, by having +M radiate into region z > 0 and —M
radiate into region a, the continuity of the tangential electric field
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E, at z = 0 is automatically satisfied. The remaining boundary

conditions of the problem: Hy™(z, 0—)+H1(,a)(:r,0) = H,E.D)(:c, 0) (Jz] <

) B = M, EQ = EY (p=R, 0< p < 21) lead with the help
(2)- (9) to the followmg three integral equations:

f M, ( “’E" 220 5 (kolz — 2'|) — G(0; z, :c’)] da’
+2 Z [Hfz) kop) eJW] = H™(2,0-), |eg|<w  (10)
n=-—oo =0
_weo (¥ N (1 — N2 2 '
3 ). M,(=')H, (ko (z—2')2+2 ).0=R dz
+ Y b [H,(f)(kgR)eJ““’—l- Q(R,tp)] — 3 cadulkiR)E™ =0
n=—00 n=—oo
0<p<2r (11)
e (2) — N2 2 /
/ My( (k (x —x') +z)]p=Rd$
dQ(R, p)
= 2 ny y
i~ n_‘;w bn [kDH )(koR)ei™ 4+ =272 —
ki & .
2L cad (kiR)e™ =0, 0<p<2n (12)
2 n=—00

where J,(.) stands for the Bessel function of order n whereas Jj
and H!, denote derivatives with respect to argument. In (11)-(12), Q
stands for the shorthand notation

Q(R,¢) = HP (kop)e ™| _p

oo
= Y HP, (2koDsin ®)Jm(koR)e ™5™ (13)
M=—00
The series expansion (13), based on the addition theorem for Hankel
functions [5], is valid for any choice of the geometrical parameters of
the structure.
In view of the edge condition, the unknown surface magnetic current
M, (z) will be sought in the form:

ZGNTN(t); t=z/w (14)

My(2) = My fa(t)) = T
N=0
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where ay are expansion constants and T denote the Chebyshev
polynomials of the first kind.

The unknown expansion coefficients apy, by, c, will be found from
the integral equations (10)—(12) after inversion as outlined below.

2.A.3 Discretization of the Integral Equations

Equation (10) : Let z = wt, =’ = wt’ (-1 < t,t’ < 1). Inserting
(14) into (10), multiplying both sides by Ta(¢)/v1 — t? and integrat-

ing from ¢t = —1 to t =1 yields the linear algebraic equations:
ZGNAMN-I- Z boAY =D}, M=01,2.. (15
n=-00
where
D}, = nHojMepm (L) (16)
em(L) = [eﬂ’"c/a + (—I)Me”jL“c/O‘] Ju(Lrw/a). (17)

Evaluation of A}},

The matrix elements A}v} N are given by

_ Jwweg

Here

Tw(t) dt TN(t’)
Vv1—1t2 V1
is identified with K MN(kow) = K}, N(kow) 4 KH,, n(kow) of [6] where

Kj,n and K}, assume extremely efficient analytical expressions (see
equations (19)-(20) of [6]). On the other hand

=5 [
Kuw(kow) =5 [ dt s Hy (kowlt 1)) (19)

1
K8y = —it e [k—5M05N0 +gMENFIgn (20a)
a

where dn,, stands for Kronecker delta, whereas

MN = Z Ju(nmw/a)Jy(nrw/a) frun(n) (20b)

nln

_ J (=1)M + cos(2nmc/a), (M + N even)
fun(n) = { jsin(2mrcf/0;), (M+N gd?in). (206)
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S, n » which converges as n~? (i.e., rather slowly), can be accelerated
to any order by several powerful techniques explored in [3]. Using its
accelerated form (see section 3 of [3]), S%,y requires no more than 10-
20 terms in order to achieve an accuracy to within at least 14 significant
figures.

Evaluation of A}2

Tar(t) .
A2 =9 [ 20 |HO)(kp)ed™| gt 21
Mn V-2 [ n (Kkop) . (21)

can be efficiently evaluated in the way outlined below.

a. w < D case : In this case the following expansion

HP (kop) €)= > HY, (kD) Jm(koz)(~1)* =™,
m=—00
(22)
based on the addition theorem for Hankel functions, is valid. Sub-
stituting (22) into (21) and carrying out the integration involved one
obtains:

(o ]
A2, =2 Y HP, (kD)™ 1M, mkgw)  (23a)

m=—0c0
o0
= Z (2 — dmo) [Hm (ko D)el(n=m)(r+2)
m=0
=)™ HR), (ko D)™+ 1A, ms kow)  (23b)
with :
b T(t)

I(p, g, kow) = qu(ko wt')dt'

. { Jng(kgw/Z)Jg%g kow/2), p+ q even

23
0, g3 godd, 20

b. General case : When w > D, expansion (22) is no longer applica-
ble due to well known limitations inherent to the addition theorem for
Hankel functions. An alternative efficient method to evaluate Al2 Xfeics
free of any limitations, is based on Lobatto’s summation formula [5]:
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L) T o (2i — 1)m
[iyemt= a2 i), w2 (2

where the fixed integer m is selected as high as needed to achieve any
prescribed accuracy. Using (24) as well as the relation Ths(cosf) =
cos(M@) one ends up with the result:

=1

_2n m [ (20 — 1)M:rr:|
Lk W BVl
T m

i=1

. Hf) (ko \/wzt? — 2wt; D cos ® + D2) efmeltd)  (25)

where

@(t) = tan~!(=Dsin ®, wt — D cos ®). (26)

The function tan~!(y,z) is implemented by the DATAN2(Y X) rou-
tine of FORTRAN.

Note: Expression (25) is quite general, valid both for w > D and
w < D. In the latter case (w < D) it provides an independent test of
the correctness of (23a-b) (see section 3).

Equation (11) : Inserting (14) into (11), multiplying both sides by
e~IM¢ [(27) , and integrating from ¢ = 0 to y = 2w we obtain the
algebraic equations

oo o0 o0
Y anANn+ D Al + ) cadll, =Dy, M =0,%1,%2,...
N=0

n=—co n=-—00
(27)

where

=0 (28)

The matrix elements A22 Ain and Aﬁf}n assume the closed form expres-
sions

A% = HP) (2koDsin ®)Jps (koR)j" M (—1)" + H\y (koR)dnas (29)

A% = —Ju(k1R)dnp- (30)
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Evaluation of A%},

1 /
21 _  Wwep » In(t)
A = 4m /-1dt v1-—1t2
2w 9 )
/ BY (/G- oP 1 2) _eMedp  (31)
0 p=R

will be evaluated as follows.
w < D — R case : In this case the expansion

H(2) (ko (z—2)2+ 22)p=R

oo
S HP (kor)Jm(ko')e™|

=R
m=-00 B

Z T (koz') Z H'?) | (koD)Jy(koR)e eI M=k (32)
m=—00 =—0D0
is valid, leading to the result:

—WWEQ

AMN = ) JM(koR)VMN (33&)
o0
Viw= > I(N,m;kow)HS)  (koD)™=M)®. (33b)
m=—00

General case : When w > D R, (32) is no longer applicable. A
general method to evaluate A3}y , free of any limitations (i.e., valid
for w> D — R as well as for w < D — R), is based on formula (24)
and the expansion:

B (kov/lz =27+ 22)|

Y- H(kod1) Jm(koR)&™ eI ™= (34)

Mm=—00

p=R

where

dy = \/(Dcos® — 2/)% + (Dsin )2
= /22 — 22'D cos  + D? (35a)
0, = tan"'(Dsin®, Dcos® — 2') = 6,(¢') (¥ =2'/w). (35b)
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The sought expression then results in the form

LIJ'A'.UE
Ay = 2 % In(koR)G (36a)

Gapm = —“Z [ (2i — I)NW}

Hg) (kg \/uﬁt? — 2wt;Dcos ® + Dz) FMr=01(t:))  (36D)

with ¢; defined in (24).
Equation (12) : This equation is analogous to (11) and can thus be
treated in the same way, leading to the linear algebraic equations of

oG oo (o o}
Y anAlin+ DY baA¥at+ Y cadll, =Dy, M =0,£1,£2,...
N=0 n=-—00 n=—og

(37)

where
D3}y=10 (38)

In (37) A%, and A3, assume the closed form expressions:

AR, =% [H(” (2hoDsin ®)Jy; (ko R)7™ M (~1)" + H} (ko R)dnt |

n+M
(39)
k
Al = = (k1 R)onns (40)
Finally, A3} takes either the expression
wwk
Ay =201 (koR)Vumn (41a)
with Varn defined in (33b), or the expression
wwk
Ay = 20 g (koR)GuN (41b)

with Gy defined in (36b). Equation (41a) is subject on the restric-
tion w < D — R whereas (41b) has no limitation.

The unknown expansion coefficients are determined from the system
of (15), (27), (37) after truncation and inversion. In terms of these
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coefficients any quantity of practical interest (such as near and far
radiated fields, reflection coefficients etc.) may be found as explained
in section 3.

2.B H-Polarized Plane Wave Excitation
Let us now consider the following H-polarized plane wave
B  gHoeokneT, B = o x
Zg':\/m, kine = —& costh — zsin, T =+ 2z

be incident from region 0. In this case, we will define the “excitation
field” as the field excited by the incident wave, in the absence of the
cylinder, when the slot is short-circuited. Its magnetic field is given by

HE™(, 2) = 2Hoe ¥ %Y cos(kozsiny) (2> 0), 0 (2<0) (43)

(42)

The scattered field in regions a, 0, 1 is again expressible via (5), (6)-
(8), (9).

The boundary conditions of the problem, H%(,a)(:t:, 0) = H;™(x,0+)
+ HY(z,0)(|zl < w); Hy" + Hy™ = H", B + B = Ep)(p =
R, 0 < ¢ < 27) lead to three integral equations which are iden-
tical with those of (10), (11), (12) respectively with the following
exceptions: (a) the right side term H;**(z,0—) in (10) is now re-
placed by —H*(z,04) given by (43), (b) the right side of (11) is
—Hy™(z,2)|p=r instead of 0, (c) the right side of (12) is —%3‘9—‘0
- Hi™(x, )| p=r -

Discretization of the above integral equations in the way outlined in
the preceding section 2.A leads again to the linear system of equations
(15), (27), (37) where the matrix elements retain their expressions
derived in section 2.A. On the other hand, the excitation (constant)
terms Dh, Di,, D%J are now given by the relations

Dh — —'ZHO?TJMJM(ka COs '?,b), M - Ug 1, 2)  aiw (44)

D%, = —Hoi™ Jpr(koR) Fr, M=0,+1,42,... (45)

D3, = —?HojM Ti(koR)Far, M =0,41,42,... (46)
0

Fir = eikoD cos(®—1) ,—iMY | ojkoD cos(®+9) iMY (47)
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2.C Scattered Fields

The scattered magnetic field inside region a is given by

H(a) (2, 2) ZTTM’ADn(I')G‘Y"z/a (48)
n=0
where
2 _ oo
TIM — Mwwea Z ani¥len(n) (49)
2%n N=0

(en is given by (17)).
In the case of the TMy;, incident mode (section 2.A) the reflection
coefficient of this mode is given by

o =] LY, (50)

The far scattered magnetic field in region 0 in polar coordinates (r, @)
and the per unit length far-scattered power are obtained from the
relations

2 o oo
H(r,0) =y — (- wwso) Y an Z 2 — 8mo)I(N, m) cos(m#)
< N=0 =0
k 2-m/4) 4 o, |
—j(kor—mm/2—m /4) wko'r Z by, Z Jm kOD
S m=—00
_ejm.(1r+<§) COS[ 7, —7 9]6 —j(kor—(n— m)?r/? w/4) (51)
" 1 " 0)|2
Prad =f0 rPrdf = 520/0 r|H® 2df. (52)

3. NUMERICAL RESULTS AND DISCUSSION

Sample numerical results are presented below for the parameter values
Mo = 1 = Mo, Eq = g, ¢/a=0.5, w/a =0.25, Hy=1(A4/m).

3.A Convergence of the Matrix Elements

Table 1 presents values of the leading matrix element A}% as ob-
tained via (23b), using mmax series terms, and from (25) for several
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values of m. The parameter values are D = 0.4\, w = 0.2\, & =
m/2 (A =free-space wavelength). We see, e.g., that using mmayx = 40
series terms in (23b) or m = 12 in (25) suffices to obtain an accuracy
to within 16 significant decimals. The convergence of other matrix
elements is similar.

Mumax Al2 of equation (23b)
10 —0.782764066828540 — 52.93042135312132
20 —0.782764066828540 — 52.93040407431706
25 —0.782764066828540 — 72.93040408036071
30 —0.782764066828540 — 72.93040408066939
35 —0.782764066828540 — 72.93040408066612
40 —0.782764066828540 — 72.93040408066593
45 —0.782764066828540 — 72.93040408066594

Mimax A2 of equation (25)
4 —0.782765501666841 — 72.93042334847546
6 —0.782764066845851 — 72.93040410965371
8 —0.782764066828540 — 72.93040408072615
10 —0.782764066828540 — 72.93040408066608
12 —0.782764066828540 — 72.93040408066594
14 —0.782764066828540 — 72.93040408066594

Table 1. Convergence of A}2 for D = 0.4\, & = 7/2, w=0.2)X.

3.B Convergence and Validation of the Algorithms

The convergence characteristics of the algorithms will be illustrated
in relation with the following truncated form of the linear algebraic
system of equations (15), (27), and (37):

N]_—l N2

12 1
> anAjin+ Y buAR, = Diy,
N=0 =—Ng

M=0,12,...,N; -1
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Ni—1 Na N2z
Z GNAQJ\}N + Z bﬂA?\gﬂ + Z: C,—;A?\;“ = DIQMJ
N=0 =—N3 n=-— Ny

M =0,+1,42,...,+N;
Ni-1 Na N3
S anAlin+ Y baAlL+ D Al =Diy,
N=0 n=—N3 n=—N3

M =0,%1,42,...,+N;

The convergence versus truncation size is illustrated in Table 2 where
the radiation efficiency Prad/Pinc is shown for the TMoo incident
mode when a = 0.4\, D=\, R=0.3\ ® =7n/2, &, = £1/e0 = 2.
As seen, the convergence is rapid and stable.

Ny = Ny Prad/ Pine
5 0.7835181052573
10 0.7835183144093
20 0.7835183144092

Table 2. Convergence of Prqq/Pinc for the TMgo incident mode at
a=04)\, D=X, R=03) ®=7/2, e, =2.

In the case of a TM incident mode, a validity test that has been
extensively used was based on energy conservation principle: Pin. =
Prefi+ Prad - In the case of an incident plane wave primary excitation,
the correctness of the algorithm was tested by verifying the validity of
the relation Héo)(r,ﬂ = ;% = o) = H;D)(T,B = ;¢ = 6p) , based
on the reciprocity theorem. In all numerous cases that have been
considered both these relations were ascertained to within at least 13
significant decimals.

3.C Further Numerical Results

For the case of TMy incident mode, Fig. 3 shows the radiation
efficiency (Prad/Pine) versus D/X, R/, &, and a/\. For the sake
of comparisons, the case & = 1\R = 0 (unloaded antenna) is also
included. We observe that, for the parameter values selected, the un-
loaded antenna is a poor radiator over the entire frequency range. In
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contrast, by properly selecting the geometrical and physical parame-
ters of the load a very high efficiency is attainable. For instance, the
choice a/A =0.8, R/A=0.3, D/A\=0.4, ¢, =6 leads to an almost
perfect matching (Prqq/Pine > 997/1000). This radical improvement
in the radiation efficiency may be attributed to strong multiple reflec-
tions introduced by the loading. This resonance behaviour, suggested
by the periodicity in all pertinent curves in Fig. 3a, is also exhibited
by the normalized admittance ¥ = G+ jB = (1+ REM) / (1 — REM)
as shown in Fig. 4 for R = 3a/8, &, = 6, and for several values of D .

1.0
P EO.P
50 508
2 &
= So7
g Sos
e pe)
E 205
a e =0, a —— D/A=0.4,2,=8
o —_— R/A 0,2 B o cemeeen unloaded antenna
------ unloaded antenna
—r 0.3 T -
0'20.3 0.9 1.5 2.1 0.0 0.1 0.2 0.3 0.4
D/A R/A
(a) (b)
1.0 1.0
> >
n o
g .gﬂ.ﬂ 1
'50.8 i
£ g
w “a.6
g g
e - - ‘I
20.8 - El n-_:;a/a
5 LR I 8
& o D=a/2 E
(. unl:-dad antsnna
04 i 7 0 03 05 07 009
£ a/A
(c) (d)

Figure 3. Radiation efficiency (%:f:) versus (a) D/A, (b) R/A, (c)
er, (d) a/A.
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Figure 4. Normalized admittance Y = G 4 jB versus a/)\ for R =
3a/8, &, = 6, and for several values of D. (a) G, (b) B.
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940 Tsalamengas and Veronis

The receiving characteristics of the structure are illustrated in Fig. 5
in case of an incident plane wave for f =10GHz, ¥ = 7/2, a = 0.4\
(the other parameter values are shown in the insets). In this figure we
show the per unit length receiving cross section (og) as a function of
D, R, e, and ®. The receiving cross section is defined by

Power received by the antenna Pree
OR = — . =
incident power densit 1
p Y il ZU' H0|2
2
where
Nprop

_ TM |2 |¥al
Prec = ;} |7 o

with T&;M given by (49) and Ny, denoting the number of propa-
gating waveguide modes. From these curves, where the case of the
unloaded antenna is also included for comparison (dotted lines), we
conclude again that by properly selecting the values of the geomet-
rical parameters of the load the receiving efficiency may be radically
improved.

4. CONCLUSION

Analytical methods have been used to analyze the parallel plate-fed
slot antenna loaded with a dielectric cylinder. These techniques yield
either closed form or rapidly converging series expressions for all matrix
elements. Proper choice of the geometrical and physical parameters of
the load results in a radical improvement in both the radiation and
receiving efficiency of the antenna.
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