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We introduce a plasmonic waveguide system, based on a plasmonic analogue of

electromagnetically induced transparency, which supports a subwavelength slow-light mode, and

exhibits a small group velocity dispersion. The system consists of a periodic array of two

metal-dielectric-metal (MDM) stub resonators side-coupled to a MDM waveguide. Decreasing the

frequency spacing between the two resonances increases the slowdown factor and decreases the

bandwidth of the slow-light band. We also show that there is a trade-off between the slowdown

factor and the propagation length of the slow-light mode. VC 2011 American Institute of Physics.

[doi:10.1063/1.3647951]

Plasmonic waveguides have shown the potential to

guide and manipulate light at deep subwavelength scales.1

Slowing down light in plasmonic waveguides leads to

enhanced light-matter interaction and could therefore

enhance the performance of nanoscale plasmonic devices

such as switches and sensors.2–8 Among the different plas-

monic waveguiding structures, metal-dielectric-metal

(MDM) plasmonic waveguides are of particular interest

because they support modes with deep subwavelength scale

over a very wide range of frequencies extending from DC to

visible.9 We recently introduced a MDM plasmonic wave-

guide system, based on a plasmonic analogue of periodically

loaded transmission lines, which supports a guided subwave-

length slow-light mode.8

In this letter, we introduce an alternative MDM plas-

monic waveguide system, based on a plasmonic analogue of

electromagnetically induced transparency (EIT), which also

supports a guided subwavelength slow-light mode. EIT is a

coherent process observed in three-level atomic media,

which allows a narrow transparency window in the spectrum

of an otherwise opaque medium and can slow down light

pulses by several orders of magnitude.10 Since the EIT spec-

trum results from the interference of resonant pathways,10,11

it has been recognized that similar interference effects can

also occur in classical systems, such as optical waveguides

coupled to resonators and metamaterials.10,12–14 In addition,

it has been demonstrated that periodic optical waveguides,

resulting from cascading structures with EIT-like response,

can slow down and even stop light.11,15,16

Our proposed structure consists of a periodic array of

two MDM stub resonators side-coupled to a MDM wave-

guide. Side-coupled-cavity structures have been previously

proposed as compact filters, reflectors, switches, and imped-

ance matching elements for plasmonic waveguides.17–20

Here, we show that the proposed structure supports a band

diagram similar to that of EIT systems, with three photonic

bands in the vicinity of the two stub resonances. The middle

band corresponds to a mode with slow group velocity and

zero group velocity dispersion near the middle of this band.

We find that decreasing the frequency spacing between the

resonances increases the slowdown factor and decreases the

bandwidth of the middle band. We also show that there is a

trade-off between the slowdown factor and the propagation

length of the supported optical mode in such slow-light plas-

monic waveguide systems.

We use a finite-difference frequency-domain (FDFD)

method to investigate the properties of the structure.8 This

method allows us to directly use experimental data for the

frequency-dependent dielectric constant of metals such as

silver,21 including both the real and imaginary parts, with no

approximation. Perfectly matched layer (PML) absorbing

boundary conditions are used at all boundaries of the simula-

tion domain. When simulating the periodic waveguiding

structure, we place several periods of the structure within the

PML layer to drastically reduce spurious reflections at PML

interfaces.8

We first consider a plasmonic MDM waveguide side-

coupled to two MDM stub resonators (Fig. 1(a)). The resonant

frequencies of the cavities can be tuned by adjusting the cavity

lengths L1 and L2. This system is a plasmonic analogue of

EIT.22,23 The MDM waveguide and MDM stub resonators

have deep subwavelength widths ðw� kÞ, so that only the

fundamental TM mode is propagating. Thus, we can use

single-mode scattering matrix theory to account for the behav-

ior of the system.24 The complex magnetic field reflection

coefficient r1 and transmission coefficients t1, t2¼ t3 for the

fundamental propagating TM mode at a MDM waveguide

crossing (Fig. 1(b)) as well as the reflection coefficient r2 at

the boundary of a short-circuited MDM waveguide (Fig. 1(c))

are numerically extracted using FDFD.24 The power transmis-

sion spectra T(x) of the two-cavity system (Fig. 1(a)) can then

be calculated using scattering matrix theory as

T ¼ jt1 � Cj2; (1)a)Electronic mail: gveronis@lsu.edu.
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which is in excellent agreement with the exact results

obtained using FDFD (Fig. 1(d)). Here, C ¼ t2
2
ð2t1�2r1þs1þs2Þ

t2
1
�ðr1�s1Þðr1�s2Þ,

si ¼ r�1
2 expð2cMDMLiÞ, i¼ 1, 2, and cMDM¼ aMDMþ ibMDM

is the complex wave vector of the fundamental propagating

TM mode in a MDM waveguide of width w.

The transmission spectra T(x) feature two dips

(Fig. 1(d)). We found that the frequencies x1, x2 where these

dips occur are approximately equal to the first resonant fre-

quencies of the two cavities, i.e., /r1
ðxiÞ þ /r2

ðxiÞ
�2bMDMðxiÞLi � �2p, i¼ 1, 2, where /ri

¼ argðriÞ, i¼ 1, 2.

When either one of the cavities is resonant, the field intensity

in that cavity is high, while the field intensity in the other cav-

ity is almost zero, since it is far from resonance (Figs. 1(e)

and 1(f)). In addition, the transmission is almost zero, since

the incoming wave interferes destructively with the decaying

amplitude into the forward direction of the resonant cavity

field. The transmission spectra T(x) also feature a transpar-

ency peak centered at frequency x0. We found that x0 is

approximately equal to the first resonant frequency of the

composite cavity of length L1þL2þw formed by the two

cavities, i.e., 2/r2
ðx0Þ � 2bMDMðx0ÞðL1 þ L2 þ wÞ � �2p.

Thus, the transmission peak frequency x0 is tunable through

the cavity lengths L1, L2. When x¼x0, the field intensity is

high in the entire composite cavity (Fig. 1(g)), and the trans-

mission spectra exhibit a peak due to resonant tunneling of

the incoming wave through the composite cavity. The width

of the peak is highly sensitive to the frequency spacing

between the resonances dx¼x2�x1, which can be tuned

by adjusting the stub lengths difference dL¼L1� L2. As dx
decreases, the width of the peak decreases (Fig. 1(d)). In the

lossless metal case, the center peak can be tuned to be arbitra-

rily narrow with unity peak transmission (Fig. 1(d)). In the

presence of loss, the peak transmission decreases, as the fre-

quency spacing dx decreases (Fig. 1(d)).

We next consider the plasmonic waveguide system (Fig.

2(a)) obtained by periodically cascading the side-coupled-

cavity structure of Fig. 1(a). The periodicity d is subwave-

length ðd � kÞ, so that the operating wavelength is far from

the Bragg wavelength of the waveguide8 ðk� kBraggÞ. In

addition, the distance between adjacent side-coupled cavities

d�w is chosen large enough so that direct coupling between

the cavities has a negligible effect on the dispersion relation

of the system.8 Using single-mode scattering matrix

theory,24 the dispersion relation between the frequency x
and the Bloch wave vector c¼ aþ ib of the entire system is

found to be

coshðcdÞ ¼ A

2
exp½�cMDMðd � wÞ� þ B

2
exp½cMDMðd � wÞ�;

(2)

which is in excellent agreement with the exact results

obtained using FDFD (Fig. 3(a)). Here, A ¼ ðt1 � r1Þ t1þr1�2C
t1�C

and B¼ (t1�C)�1. In Fig. 2(b), we show the dispersion rela-

tion for the plasmonic waveguiding structure of Fig. 2(a). In

the lossless metal case, the system supports three photonic

bands in the vicinity of the cavity resonances. The middle

band corresponds to a mode with slow group velocity

vg � @x
@b and zero group velocity dispersion b2 � @2b

@x2 near the

middle of this band (Fig. 2(b)). In the two band gaps between

the three bands the system supports non-propagating modes

with b¼ 0. Such a band diagram is similar to that of EIT sys-

tems.15 When losses in the metal are included, the band

structure is unaffected in the frequency range of the three

bands except at the band edges (Fig. 2(b)). In addition, in the

frequency range of the two band gaps, the Bloch wave vector

c has an imaginary component (b= 0), and the dispersion

FIG. 1. (Color online) (a) Schematic of a MDM plasmonic waveguide side-

coupled to two MDM stub resonators. (b) Schematic defining the reflection

coefficient r1, and transmission coefficients t1, t2, t3 when the fundamental

TM mode of the MDM waveguide is incident at a waveguide crossing. Note

that t2¼ t3 due to symmetry. (c) Schematic defining the reflection coefficient

r2 of the fundamental TM mode of the MDM waveguide at the boundary of

a short-circuited MDM waveguide. (d) Transmission spectra for the struc-

ture of (a) calculated using FDFD (circles) and scattering matrix theory

(solid line) for a silver-air structure with w¼ 50 nm. Results are shown for

L1¼ 360 nm, L2¼ 160 nm (black line and circles) and L1¼ 295 nm,

L2¼ 220 nm (red line and circles). Also shown are the transmission spectra

calculated using FDFD for L1¼ 295 nm, L2¼ 220 nm, and lossless metal

(blue dashed line). (e)-(g) Magnetic field profiles for the structure of (a) for

L1¼ 360 nm, L2¼ 160 nm, w¼ 50 nm at f¼ 143, 299, 194 THz, when the

fundamental TM mode of the MDM waveguide is incident from the left.

FIG. 2. (Color online) (a) Schematic of a plasmonic waveguide system

consisting of a periodic array of two MDM stub resonators side-coupled to a

MDM waveguide. (b) Dispersion relation of the plasmonic waveguide

system of (a) calculated using FDFD (red dashed line). Results are shown

for a silver-air structure with d¼ 300 nm, L1¼ 360 nm, L2¼ 160 nm, and

w¼ 50 nm. Also shown is the dispersion relation for lossless metal (black

solid line).
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relation experiences back-bending8 with negative group

velocity.

In addition, the width of the middle band and the slow-

down factor c/vg strongly depend on the frequency spacing

between the resonances dx¼x2�x1. By decreasing the

stub lengths difference dL, dx decreases, and this leads to

decreased bandwidth of the middle band (Fig. 3(a)). In Figs.

3(b) and 3(c), we show the slowdown factor c/vg, and propa-

gation length Lp for the plasmonic waveguide system of

Fig. 2(a) as a function of frequency for two different values

of dL. In both cases, we show the frequency range corre-

sponding to the middle band of the system. For a given dL,

the propagation length Lp of the supported optical mode is

maximized at a frequency very close to the frequency where

the group velocity dispersion is zero. As dL and therefore dx
decrease, the slowdown factor c/vg increases, while the prop-

agation length Lp decreases at the frequency of zero group ve-

locity dispersion. Thus, there is a trade-off between the

slowdown factor c/vg and the propagation length Lp of the

supported optical mode in such slow-light plasmonic wave-

guide systems.8 For dL¼ 200 nm (dL¼ 75 nm), we have

c=vg ’ 6 ðc=vg ’ 30Þ at the frequency where the group ve-

locity dispersion is zero (Figs. 3(b) and 3(c)). We found that

even larger slowdown factors can be obtained by further

decreasing dL at the cost of reduced propagation length. We

also note that the propagation length of the system for a given

slowdown factor can be increased by incorporating gain

media in the structure.25

We also consider the effect of the periodicity d (Fig.

2(a)) on the dispersion relation of the system (Fig. 3(d)). For

large d, the distance d�w between adjacent two-cavity

structures in the periodic waveguide is large, so that their

coupling through the MDM waveguide is weak. In this re-

gime, the frequency range of the middle band of the periodic

waveguide system of Fig. 2(a) approximately corresponds to

the frequency range of the transparency peak of the two-

cavity structure of Fig. 1(a). As d decreases, the coupling

between adjacent two-cavity structures increases. As a result,

the slow-light middle band shifts to higher frequencies, while

its width slightly broadens (Fig. 3(d)). Thus, the periodicity

provides us an additional degree of freedom to tune the dis-

persion relation of the periodic waveguide system.

In conclusion, we introduced subwavelength slow-light

waveguides for enhanced light-matter interaction, based on a

plasmonic analogue of EIT. Unlike previously proposed

structures,8 such waveguides exhibit a small group velocity

dispersion and a large slowdown factor over a broad wave-

length range, features which are highly desirable for practi-

cal applications of slow-light devices.26 In addition, if these

waveguides are combined with gain and tunable refractive

index materials, they could enable stopping and storing light

in a subwavelength volume.11
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FIG. 3. (Color online) (a) Dispersion relation of the plasmonic waveguide

system of Fig. 2(a) calculated using FDFD (circles) and scattering matrix

theory (solid line). Results are shown for L1¼ 360 nm, L2¼ 160 nm (black

line and circles), and L1¼ 295 nm, L2¼ 220 nm (red line and circles). All

other parameters are as in Fig. 2(b). In both cases, only a portion of the band

structure is shown, corresponding to the frequency range of the middle band.

(b)-(c) Reciprocal of the group velocity vg and propagation length Lp for the

plasmonic waveguide system of Fig. 2(a) as a function of frequency calcu-

lated using FDFD. Results are shown for L1¼ 360 nm, L2¼ 160 nm, and

L1¼ 295 nm, L2¼ 220 nm. All other parameters are as in Fig. 2(b). (d) Dis-

persion relation of the plasmonic waveguide system of Fig. 2(a) calculated

using FDFD. Results are shown for d¼ 100 nm (black line), d¼ 200 nm

(red line), and d¼ 300 nm (green line). All other parameters are as in Fig.

2(b). In all cases, only a portion of the band structure is shown, correspond-

ing to the frequency range of the middle band.
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