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Bends and splitters in metal-dielectric-metal subwavelength
plasmonic waveguides
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We investigate the performance of bends and splitters in metal-dielectric-metal subwavelength
plasmonic waveguides. We show that bends and splitters with no additional loss over a very wide
frequency range can be designed for metal-dielectric-metal waveguides with center layer thickness
small compared to the wavelength. We also introduce the concept of characteristic impedance for
such systems to account for their behavior. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2056594�
Light-guiding structures which allow subwavelength
confinement of the optical mode are important for achieving
compact integrated photonic devices.1–9 The minimum con-
finement of a guided optical mode in dielectric waveguides is
set by the diffraction limit and is of the order of �0 /n, where
�0 is the wavelength in free space and n is the refractive
index. As opposed to dielectric waveguides, plasmonic
waveguides have shown the potential to guide subwave-
length optical modes, the so-called surface plasmon polari-
tons, at metal-dielectric interfaces.

Several different plasmonic waveguiding structures have
been proposed, such as metallic nanowires2–4 and metallic
nanoparticle arrays.5–7 It is known that a metal-dielectric-
metal �MDM� structure supports a subwavelength propagat-
ing mode at a wavelength range extending from dc to
visible.10,11 As an example, a gold-air-gold MDM waveguide
with a center layer thickness d of 100 nm supports a mode at
the optical communication wavelength of 1.55 �m with a
propagation length of �10 �m.12 Thus, such a waveguide
could be potentially important in providing an interface be-
tween conventional optics and subwavelength electronic and
optoelectronic devices.

In this letter, we investigate the performance of bends
and power splitters in two-dimensional MDM plasmonic
waveguides. Waveguide bends and splitters are basic struc-
tures for optical interconnects and therefore essential compo-
nents of optical integrated circuits.8,13 Here, of particular in-
terest is the regime where the dimensions of bends and
splitters are much smaller than the propagation length of the
optical mode. In this regime, the relevant question is whether
these bends and splitters will induce reflection or excess
absorption loss on top of the propagation loss in the
waveguides.

To answer this question, we calculate the transmission
coefficient of bends and splitters and normalize it with re-
spect to the transmission coefficient of a straight waveguide
with the same length. We show that, even though the
waveguides are lossy, bends and splitters with no additional
loss can be designed over a wavelength range that extends
from dc to near infrared, if d is small enough. This range
includes the optical communication wavelength of 1.55 �m.
This remarkable effect is not observed in other light-guiding
structures, such as high-index contrast or photonic-crystal
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waveguides. We account for it with an effective characteris-
tic impedance model based upon the real dispersion relation
of the MDM waveguide structures.

We study the properties of silver-air-silver MDM wave-
guide bends and splitters using a two-dimensional finite-
difference frequency-domain �FDFD� method.14,15 This
method allows us to directly use experimental data for the
frequency-dependent dielectric constant of silver,16 including
both the real and imaginary parts, with no further approxi-
mation. Perfectly matched layer absorbing boundary condi-
tions are used at all boundaries.17 We use a spatial grid size
of 2.5 nm in FDFD which we found to be sufficient for the
convergence of numerical results.

To calculate the transmission coefficient of a 90° sharp
MDM waveguide bend �inset of Fig. 1�, we excite a dipole
point source in the waveguide before the bend,18 and mea-
sure the power flux of the transmitted optical mode after the
bend. We perform a similar simulation in a straight wave-
guide and, by comparing the two cases, we extract the bend-
ing loss. In all cases, d is much smaller than the wavelength
so that only the fundamental transverse magnetic �TM�
waveguide mode �with magnetic field perpendicular to the
direction of propagation� is excited. As an example, for d
=50 nm, the optical mode is fully formed �20 nm away
from the source, the mode travels �200 nm before the bend,
and the bent wave is measured �200 nm after the bend. In

FIG. 1. Transmission spectra of a MDM waveguide bend �shown in the
inset� calculated using FDFD. We also show with dashed line the transmis-
sion spectra of a PEC parallel-plate waveguide bend. Results are shown for
d=50, 100 nm. The vertical dashed line marks the optical communication

wavelength of 1.55 �m.
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all cases, the waveguide lengths in the simulations were cho-
sen large enough to ensure correct calculation of the addi-
tional loss of bends. To validate our method, we used it to
calculate the transmission coefficient of perfect electric con-
ductor �PEC� parallel-plate waveguide bends and splitters
and found excellent agreement with analytical results19,20

over the entire frequency range. In Fig. 1, we show the cal-
culated bend transmission coefficient as a function of wave-
length. We observe that at long wavelengths there is no bend-
ing loss. If the structure is small in comparison with the
wavelength, the quasistatic approximation holds.21 Under the
quasistatic approximation, the bend is equivalent to a junc-
tion between two transmission lines with the same character-
istic impedance, and there is, therefore, no bending loss. The
limiting wavelength �c at which the transmission coefficient
decreases below 99%, is 1.27 �m �0.76 �m� for d
=100 nm �d=50 nm�. The operating wavelength range
widens as d decreases, because for thinner structures the
quasistatic approximation holds over a wider range of
wavelengths.

In Fig. 1, we also show the calculated transmission co-
efficient of the bending structures when the PEC approxima-
tion is used for the metallic regions. In a PEC parallel-plate
waveguide, the transmission coefficient of a 90° bend is only
a function of d /�0, i.e., TPEC=TPEC�d /�0�. If the device is
small compared to the wavelength �d /�0�1�, there is no
bending loss. The transmission coefficient decreases below
99% for d /�0�0.093. Thus, the limiting wavelength �c is
1.08 �m �0.54 �m� for d=100 nm �d=50 nm�. We observe
that the transmission spectra of the PEC parallel-plate wave-
guide bend and of the MDM waveguide bend differ signifi-
cantly. The limiting wavelength �c is lower in the PEC case.

In order to interpret the difference between the PEC and
MDM transmission spectra, we calculated the guide wave-
length �g of the fundamental TM mode in the MDM wave-
guide. The guide wavelength �g, defined as �g�2� /�MDM,
where �MDM is the real part of the mode propagation
constant,21 is calculated using FDFD by exciting the funda-
mental mode in a straight MDM waveguide with a dipole
source. To validate our method, we compared our results
with results obtained by directly solving the dispersion rela-
tion of the MDM waveguide and found excellent
agreement.11 The calculated guide wavelength �g of the fun-
damental TM mode in the MDM waveguide is smaller than
the free-space wavelength �0, which is the guide wavelength
of the transverse electromagnetic �TEM� mode in the PEC
waveguide. Since �g��0, the PEC waveguide structure is
“smaller” �in comparison to the optical mode wavelength�
than the MDM waveguide structure, and this can explain the
lower �c in the PEC case. We actually found that the trans-
mission spectra of the MDM waveguide bend TMDM is well
approximated by the spectra of the PEC waveguide bend
TPEC, if the difference between �g and �0 is taken into ac-
count, i.e., TMDM�TPEC�d /�g�. This approximation typically
holds for ���c, where the bending loss of the MDM wave-
guide is dominated by reflection. At shorter wavelengths, the
bending loss is dominated by excess absorption and therefore
this approximation no longer holds.

We also calculate the transmission spectra of MDM
splitters. The calculation method using FDFD is similar to
the one described above for the 90° bend. In Fig. 2, we show
the calculated transmission coefficient as a function of wave-

length for a MDM T-shaped splitter �inset of Fig. 2�. The
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frequency response of the MDM splitter is quite similar to
the response of the MDM bend. At long wavelengths, the
transmission is equal to 44.4%. Under the quasistatic ap-
proximation, which holds at long wavelengths, the splitter is
equivalent to a junction of three transmission lines with the
same characteristic impedance Z0. The load connected to the
input transmission line at the junction consists of the series
combination of the two output transmission lines. Thus, the
equivalent load impedance is ZL=2Z0 and the reflection co-
efficient is R= ��ZL−Z0� / �ZL+Z0��2=1/9. Because of the
symmetry of the structure, the transmitted optical power is
equally distributed between the two output waveguide
branches, so that the transmission coefficient is T=4/9. As in
the MDM bend, the operating wavelength range widens as d
decreases. At ���c, the splitter loss is dominated by reflec-
tion, while at shorter wavelengths it is dominated by excess
absorption.

Based on the above discussion, in order to improve the
transmission coefficient of the MDM splitter, we can adjust
the characteristic impedance of the input waveguide Zin so
that Zin�ZL=2Z0. The input impedance Zin can be adjusted
by varying the thickness din of the input waveguide. In Fig.
3, we show the calculated reflection coefficient R of the
MDM T-shaped splitter at �0=1.55 �m as a function of
din /dout, where dout=50 nm is the thickness of the two output
waveguide branches �inset of Fig. 3�. We note that at �0
=1.55 �m, the propagation length of the fundamental MDM
mode is much larger than the splitter dimensions so that the

FIG. 2. Calculated transmission spectra of a MDM T-shaped splitter �shown
in the inset�. Results are shown for d=50, 100 nm.

FIG. 3. Reflection coefficient R of a MDM T-shaped splitter �shown in the
inset� as a function of din /dout at �0=1.55 �m calculated using FDFD. We
also show with dashed line the reflection coefficient R calculated based on
the characteristic impedance ZMDM and transmission-line theory. Results are

shown for dout=50 nm.
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contribution of excess absorption to the splitter loss is neg-
ligible. We observe that the reflection coefficient is below
1% for 1.8�din /dout�2.8 and is minimized for din /dout
�2.25. We also found that the limiting wavelength �c of the
optimized splitter is almost the same as the limiting wave-
length �c of the symmetric splitter of Fig. 2.

The characteristic impedance of the fundamental TEM
mode in a PEC parallel-plate waveguide is uniquely defined
as the ratio of voltage V to surface current density I and is
equal to21

ZTEM �
V

I
=

Exd

Hy
=

�TEM

	
0
d =	�0


0
d ,

where Ex ,Hy are the transverse components of the electric
and magnetic field, respectively, and we assumed a unit-
length waveguide in the y direction. For non-TEM modes,
such as the fundamental MDM mode, voltage and current are
not uniquely defined. However, metals like silver satisfy the
condition �
metal��
diel at the optical communication wave-
length of 1.55 �m.16 Thus, �Ex metal�� �Ex diel� so that the in-
tegral of the electric field in the transverse direction can be
approximated by Ex dield, and we may therefore define the
characteristic impedance of the fundamental MDM mode as

ZMDM�d� �
Ex dield

Hy diel
=

�MDM�d�
	
0

d ,

where �MDM�d�=2� /�g�d�, and the guide wavelength �g is
calculated as mentioned above. In Fig. 3, we show the re-
flection coefficient of the MDM T-shaped splitter calculated
based on ZMDM as

R̄ = 
ZL − Z0

ZL + Z0

2

= 
2ZMDM�dout� − ZMDM�din�
2ZMDM�dout� + ZMDM�din�


2

.

We observe that there is very good agreement between R̄ and
the exact reflection coefficient R calculated using FDFD.
This agreement suggests that the concept of characteristic
impedance for MDM waveguides is indeed valid and useful.

The deviation between R̄ and R at large values of din /dout is
due to the fact that din is not very small compared to the
wavelength and the quasistatic approximation therefore
breaks down. We found that similar deviations are observed
for PEC parallel-plate waveguides. Such deviations decrease
at longer wavelengths in both the PEC and MDM waveguide
cases.
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As final remarks, we note that the two-dimensional
model that we used should accurately describe the case of a
subwavelength slit in a thick metal film. We also expect that
the impedance concept can be generalized to three-
dimensional MDM waveguides when the dielectric layer
thickness is much smaller than the wavelength. Finally we
note that, even though the choice of metal affects the propa-
gation length of MDM waveguides,12 our conclusions on
bends and splitters are valid regardless of the choice of
metal.
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