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Abstract

In this paper we describe a flexible approach for con-
structing mosaics of architectural environments from a
sparse set of uncalibrated views. The main contribution
this paper is the use of environment constraints in order in-
crease the efficiency and level of automation of the mosaic
construction process. The observation that in architectural
environments, the majority of lines is aligned with the prin-
cipal orthogonal directions of the world coordinate frame,
will be exploited in different stages of the mosaic construc-
tion pipeline. The automated detection of vanishing direc-
tions will enable us to partially calibrate the camera an es-
timate the relative orientation of the camera with respect to
the scene from a single view. These initial estimates will fa-
cilitate efficient feature matching, computation of displace-
ments between the views as well as alignment of multiple
views.

While the approach described here will be presented
in the context of rotational mosaics, the alignment and
matching techniques are applicable for general displace-
ments, where the constraints of man-made environments are
present and the displacement between the views is large.

Key words: panoramic mosaic construction, vanishing
point estimation, relative orientation, partial calibration us-
ing vanishing points.
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1 Introduction

The problem of construction of visually realistic mod-
els of the surrounding environments is actively being pur-
sued by various researchers in computer vision, computer
graphics and photogrammetry. One of the widely used ap-
proaches for acquisition of such models are so called image
based rendering techniques. The philosophy of image based
rendering techniques is to create realistic models of the en-
vironments from a set of photographs or a video stream,
since these media capture both the geometry and the ap-
pearance of the environment. The popularity of image based
rendering techniques partly lies in a broad dissemination of
digital (still and video) cameras, ease of data acquisition as
well as advances in the understanding of the geometric rela-
tionship between multiple views in an uncalibrated setting
and associated algorithms.

Given multiple views of the scene the approaches typ-
ically vary in the type of models they attempt to capture,
the amount of 3D information represented in the model, the
level of automation in the model acquisition process, model
complexity and capability to create new views. The tech-
niques which strive for the full 3D model acquisition enable
creation of arbitrary novel views [12]. While it is possible to
recover the relative camera displacements and camera cali-
bration information from multiple views, in order to obtain
photorealistic models some level of assistance it is often re-
quired. This is either at the level of choice of the model
(planar surfaces and associated textures maps) or during the
image matching and model instantiation process [11, 3]. Al-
ternative representations, which sample the space of all pos-
sible appearances of the scene often require storage of large
amounts of data [13, 8] and are more applicable for object
level models.

Alternative image-based representations of environ-
ments are so called image mosaics. In case of mosaics the
capabilities of generating novel views of the scene are lim-
ited, the mosaics are however superior when it comes to
ease of their acquisition. Mosaics have been used in a vari-
ety of applications including collection of photographs from
aerial and satellite imagery, for video indexing, virtual real-
ity and were also proposed as means of representing visual
scenes. Comprehensive review as well as motivation and
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associated algorithms can be found in [15].
Most commonly used are so called panoramic or spheri-

cal mosaics, which capture the complete 360o view or a full
spherical view of the surrounding environment. In such case
the images are obtained from cameras mounted on tripods,
where individual views are related by pure rotation. Some
recent recent efforts focus on enriching the type mosaic rep-
resentation to the case of general displacements [16] as well
as improving the level of automation and efficiency of the
existing techniques.

The efficiency and level of automation of the mosaic
construction process is mostly determined by the algorithms
used for matching and alignment of neighboring views as
well as availability of the knowledge of the camera intrin-
sic parameters. It is often assumed that the sequence of
closely separated images (e.g. as acquired by video camera)
is available [15] and that intrinsic parameters of the camera
are partially known. In such case the individual views have
relatively large overlap and are typically aligned using dif-
ferential motion models (e.g. pure translation, affine mod-
els, pure rotation), which are estimated by iterative tech-
niques [16]. In case of large displacements multi-scale
representations are adopted and the iterative alignment and
warping are interleaved across different levels of the pyra-
mid. Once the views are aligned, and the camera inter-
nal parameters are known, the rotations between individ-
ual views can be calculated and are followed by the the
mapping of each pixel into spherical or cylindrical coordi-
nates. As the displacement between individual views be-
comes larger, the alignment techniques based of differential
motion models often exhibit difficulties of converging to lo-
cal minima or require large number of iterations.

The flexibility of automatic mosaic construction can be
greatly enhanced by developing techniques which enable
mosaicing from a sparse set of uncalibrated views. In the se-
quel we will describe such approach by combining environ-
ment constraints and single view analysis in order to yield
efficient matching and multi-view alignment of a sparse set
of views. Alternative techniques for matching across widely
separated views using affine invariants associated with tex-
tured regions was proposed in [14].

Paper Outline The goal of this paper is to demonstrate
how the qualitative knowledge of the environment can in-
crease the flexibility and efficiency of the image alignment
process and mosaic acquisition. We will demonstrate how
can the constraints of man-made environments be utilized
for partial camera calibration and image matching across
widely separated views. The main premise of the approach
is the presence of sets of parallel and orthogonal lines and
planes aligned with principal orthogonal directions of the
world coordinate frame. We briefly review an efficient tech-
nique for simultaneous estimation and grouping of the de-

tected lines into dominant vanishing directions and demon-
strate how to use this information for partial calibration and
estimation of camera orientation with respect to the environ-
ment from a single view. The partial calibration and orien-
tation information is then used for guided image matching
between widely separated views and estimation and refine-
ment of planar homographies between adjacent views. In
this paper we will demonstrate applicability of these tech-
niques for construction of panoramic mosaics. The pro-
posed approach can be applied for the alignment of views
related by general displacements.

There is a large body of work related to individual steps
of our approach. We will point out the differences and com-
monalities with our approach along the way.

2 Single View Analysis

Recent efforts in building large city models as well as
basic surveillance and monitoring applications often en-
counter the alignment problem of registering current view
to the model or registering widely separate views. Single
view analysis can be very instrumental in providing some
information about position of the camera and camera intrin-
sic parameters.

The structural regularities of man-made environments,
such as presence of sets of parallel and orthogonal lines and
planes can be exploited towards determining the relative ori-
entation of the camera with respect to the scene using the in-
formation about vanishing points and vanishing lines. The
problem of vanishing point detection and estimation have
been addressed numerous times in the past and comprehen-
sive review can be found in more recent publications on the
topic [1]. The geometric constraints imposed by vanishing
directions on the camera intrinsic parameters and camera
rotation as well as associated estimation techniques are well
understood and have been used previously in the context of
structure and motion recovery problems in the uncalibrated
case [4]. Once the detected line segments are grouped into
common vanishing directions, the MAP estimates of van-
ishing points can be obtained by minimizing the distance of
the line end points from the estimated line segments leading
to a nonlinear optimization problem [4]. An alternative to
the nonlinear minimization is a covariance weighted linear
least squares formulation suggested first in [6], which tries
to minimize the algebraic errors.

Vanishing points detection

The line segments parallel in the 3D world intersect in the
image in the vanishing point. Depending on the line orienta-
tion the vanishing point can be finite or infinite. The group-
ing of the line segments into vanishing directions has been
often considered separately from the geometric estimation
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problems, or it has been studied in the case of calibrated
camera [1]. Consider the perspective camera projection
model, where 3D coordinates of pointsX = [X, Y, Z, 1]T

are related to their image projectionsx = [x, y, 1]T in a
following way:

λx = PgX

whereP = [I3×3, 0] ∈ R3×4 is the projection matrix,g =
(R, T ) ∈ SE(3) is a rigid body transformation represented
by4×4 matrix using homogeneous coordinates andλ is the
unknown scale corresponding to the depthZ of the point
X. Given two image pointsx1 andx2, the line segment
passing through the two endpoints is represented by a plane
normal of a plane passing through the center of projection
and intersecting the retinal plane in a linel, such thatl =
x1 × x2 = x̂1x2

1. The unit vectors corresponding to the
plane normalsli can viewed as points on a unit sphere. The
vectorsli corresponding to the parallel lines in 3D world
all lie in some plane, whose intersection with the Gaussian
sphere forms a great circle. The vanishing directionv then
corresponds to the plane normal where all these lines lie and
in the noise free caselTi v = 0. Given two lines the common
normal is determined byv = l1 × l2 = l̂1l2. Hence given a
set of line segments belonging to the lines parallel in 3D, the
common vanishing directionv can be obtained by solving
the following linear least squares estimation problem:

min
v

n∑
i=1

(lTi v)2

This corresponds tominv ‖Av‖2, where the rows of matrix
A ∈ Rn×3 are the lines segmentsli. This particular least
squares estimation problem has be studied in [2] assuming
the unit vectors on the sphere are distributed according to
Binghman distribution. The optimal solution to this type of
orthogonal least squares problems is also described in [6].

Uncalibrated camera

In order to be able to determine and adjust along the way
the number of groups present in the image some notion of
a distance between the line and vanishing direction or two
vanishing directions is necessary. In the calibrated setting
the angle between two directions is represented by the in-
ner product between two vectorsuT v with u, v ∈ R3. In
the case of uncalibrated camera the image coordinates un-
dergo an additional transformationK which depends on the

1bx =

2
4 0 −x3 x2

x3 0 −x1

−x2 x1 0

3
5 is a skew symmetric matrix associ-

ated withx = [x1, x2, x3]T .

internal camera parameters:

x′ = Kx with K =


 αx αθ ox

0 αy oy

0 0 1


 =


 f αθ ox

0 kf oy

0 0 1


 .

wheref is the focal length of the camera in pixel units,k
is the aspect ratio and[ox, oy, 1]T is the principal point of
the camera. In the uncalibrated setting the vectors undergo
additional transformationK and we haveu′ = Ku and
v′ = Kv and the inner productuT v becomes:

uT v = u′T K−T K−1v′

where the unknown matrixS = K−T K−1 can be inter-
preted as a metric of the uncalibrated space. In the follow-
ing we will demonstrate that by transforming the measure-
ments by an arbitrary nonsingular transformationA has no
effect on the computation of the vanishing points. In order
to proceed note that the following fact holds: Ifv ∈ R3 and

A ∈ SL(3), thenAT v̂A = Â−1v.
Suppose that the endpoints of two lines arex′

1,x
′
2 and

x′
3,x

′
4, such thatl′1 = x′

1 × x′
2 andl′2 = x′

3 × x′
4, where

the measurementsx′
i = Axi are related to the calibrated

image coordinates by some unknown nonsingular transfor-
mationA. We can to show that the vanishing pointv′ cor-
responding to the plane normal spanned by vectorsl′1 and
l′2; v′ = l′1 × l′2 is related to the actual vanishing direc-
tion in the original space by the unknown transformationA,
namelyv′ = Av. Hence we have:

v′ = l′1 × l′2 = (Âx1Ax2) × (Âx3Ax4)
= (A−T x̂1x2) × (A−T x̂3x4) = (1)

= (A−T l1) × (A−T l2) = Âl1l2 = Av (2)

The above fact demonstrates that in the context of vanishing
point estimation, transforming the image measurements by
an arbitrary nonsingular transformationA and then trans-
forming the result back, does not affect the final estimate.
We will use this fact in the normalization step of the least
squares estimation in the context of EM algorithm.

In the case of man-made environments we will exploit the
fact that the dominant vanishing directions are aligned with
the principal orthogonal axesei, ej , ek of the world refer-
ence frame. Similarly as in [1] we address the grouping
stage and vanishing point estimation stage simultaneously
as a problem of probabilistic inference with an unknown
model. We assume however that the camera is not cali-
brated. In such instances the algorithm of choice is the Ex-
pectation Maximization algorithm (EM), which estimates
the coordinates of vanishing points as well as the probabil-
ities of individual line segments belonging to a particular
vanishing directions. We will demonstrate that with proper
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normalization, the simultaneous grouping and estimation of
the vanishing points using EM can be accomplished in the
case of an uncalibrated camera.

The posterior distribution of the vanishing points given
line segments can be expressed using Bayes rule in terms
of the conditional distribution and prior probability of the
vanishing points:

p(vk | li) =
p(li | vk)p(vk)

p(li)
(3)

wherep(li | vk) is the likelihood of the line segment be-
longing to a particular vanishing directionvk. Hence for
a particular line segment,p(li) can be expressed using the
conditional mixture model representation:

p(li) =
m∑

k=1

p(vk)p(li | vk) (4)

The number of possible vanishing directionsm, will vary
depending on the image. We assume that there are at most
four significant models, three corresponding to the dom-
inant vanishing directions and an additional one model-
ing the outlier process. The choice of the likelihood term
p(li | vk) depends on the form of the objective being mini-
mized as well as the error model. In the noise free case we
havelTi vk = 0. In the case of noisy measurements we as-
sume that the errorξi in lTi vk = ξi is a normally distributed
random variable withN(0, σ2

1). Then the likelihood term is
given as:

p(li | vk) ∝ exp

(−(lTi vk)2

2σ2
1

)
(5)

Given initial estimates of the vanishing pointsvk, the mem-
bership probabilities of a line segmentli belonging to the
k-th vanishing direction are computed in the following way:

p(vk | li) =
p(li | vk)p(vk)∑m

k=1 p(li | vk)p(vk)
(6)

The posterior probability termsp(vk | li) represent so
called membership probabilities, denoted bywik and cap-
ture the probability of a line segmentli belonging tok-th
vanishing directionvk. Initially we assume that the prior
probabilities of all vanishing directions are equally likely
and hence do not affect the posterior conditional probability.
The prior probabilities of the vanishing directions can be
estimated from the likelihoods and can affect favorably the
convergence process as demonstrated in [1]. In the follow-
ing paragraph we describe the main ingredients of the EM
algorithm for simultaneous grouping and estimation of the
vanishing directions. Prior to the estimation of vanishing
points and grouping of the line segments into common van-
ishing directions, we first transform all the endpoint mea-
surements bỹK−1; x = K̃−1x′. The transformatioñK−1

will make the line segments and the vanishing directions
well separated on the unit sphere (as in the calibrated set-
ting). Given an image of size[dx, dy]T the transformation
K̃ is simply related to the size of the image wheref̃ = dx,
õx = dx/2 andõy = dy/2 and has the following form:

K̃ =


 f̃ 0 õx

0 f̃ õy

0 0 1




The E-step of the EM algorithm amounts to computation of
posterior probabilitiesp(vk | li) given the currently avail-
able vanishing points estimates. The M-step of the algo-
rithm involves maximization of the expected complete log
likelihood with respect to the unknown parametersvk [10].
This step yields a maximization of the following objective
function:

max
vk

n∏
i=1

p(li) =
n∑

i=1

log p(li) (7)

wherep(li | vk) is the likelihood term defined in equa-
tion (5). The above objective function in the case of linear
log likelihood model yields a solution to a weighted least
squares problem; one for each model. Each line has an as-
sociated weightwik determined by posterior probabilities
computed in theE step. In such case the vanishing points
are estimated by solving the following linear least-squares
problem:

J(vk) = min
vk

∑
i

wik(lTi vk)2 = min
vk

‖WAvk)‖2 (8)

WhereW ∈ Rn×n is a diagonal matrix associated with the
weights and rows ofA ∈ R3×n are the detected line seg-
ments. Closed form solution corresponds to the eigenvector
associated with the smallest eigenvalue ofAT WT WA and
yields the new estimate ofvk. EM algorithm is an iterative
technique guaranteed to increase the likelihood of the avail-
able measurements. The iterations of the EM algorithm are
depicted in Figure 1. The initially large number of van-
ishing point estimates, is reduced through the merging pro-
cess to three dominant directions and the process usually
converges in 3-5 iterations. The EM process is efficiently
initialized from orientation histograms of the detected line
segments, with no need for costly computation of the van-
ishing points using Hough Transforms. For more technical
details of the algorithm see [7].

2.1 Partial Calibration from Single View

The constraints among detected vanishing directions can
be used for partial self-calibration. In the uncalibrated case
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Figure 1. The iterations of the EM algorithm
and the detected vanishing points. The lines
aligned with the principal orthogonal direc-
tions are color coded and the final finite esti-
mates of vanishing points are denoted by ’o’.

the relationship between image coordinates of a point and
its 3D counterpart is as follows:

λx = RX + T

Multiplying both sides by calibration matrixK we have:

λx′ = KRX + KT (9)

wherex′ denotes a pixel coordinate ofX. Let’s denote the
unit vectors associated with the world coordinate frame to
be: ei = [1, 0, 0]T , ej = [0, 1, 0]T , ek = [0, 1, 0]T . The
vanishing points corresponding to 3D lines parallel to either
of these directions are:

vi = KRei vj = KRej vk = KRek

and note that the coordinates of vanishing points depend
only on rotation and internal parameters of the camera. The
orthogonality relations betweenei, ej , ek readily provide
constraints on the calibration matrixK. In particular we
have:

eT
i ej = vT

i K−T RRT K−1vj (10)

= vT
i K−T K−1vj = vT

i Svj (11)

whereS is the metric associated with the uncalibrated cam-
era introduced earlier:

S = K−T K−1 =


 s1 s2 s3

s2 s4 s5

s3 s5 s6




When three finite vanishing points are detected, they pro-
vide three independent constraints on matrixS:

vT
i Svj = 0

vT
i Svk = 0

vT
j Svk = 0 (12)

In general symmetric matrixS3×3 has six degrees of free-
dom and can be recovered up to a scale, so without addi-
tional constraints we can recover theS only up to two pa-
rameter family. Other commonly assumed assumption of
zero skew and known aspect ratio can also be expressed
in terms of constraints on the metricS as proposed earlier
in [9]. The zero skew constraint expresses the fact that the
image axes are orthogonal can be written as:

[1, 0, 0]S[0, 1, 0]T = 0

In the presence of zero skew assumption, the known aspect
ratio constraint can be expressed ass1 = s4. With these
two additional constraints we have a sufficient number of
constraints and the solution fors = [s1, s2, s3, s4, s5, s6]T

can be obtained by solving a linear least squares estimation
problem. Writing the individual constraints asbT

j s = 0
and stacking them into matrixB, s can be obtained by min-
imizing ‖Bs‖2 and corresponds to the eigenvector associ-
ated with the smallest eigenvalue ofBT B. The calibration
matrixK−1 can be obtained fromS by Cholesky decompo-
sition. In the case one of the vanishing directions lies close
to infinity one of the constraints becomes degenerate and
recoveredS fails to be positive definite. This situation can
be also noticed by checking the condition number ofB. In
such case we assume that the principal point lies in the cen-
ter of the image and henceS is parameterized by the focal
length only as:

S =


 1/f2 0 0

0 1/f2 0
0 0 1




In such case the focal length can be recovered in a closed
form [5] from the remaining constraintvT

j Svk = 0. The
recovered calibration matrices for the examples outlined in
Figure 1 are below:

Kbuilding =


 409.33 −0.0000 177.46

0 409.33 165.75
0 0 1


 (13)

Kroom =


 361.133 −0.0000 263.99

0 361.133 129.038
0 0 1


 (14)

Note that in the above examples the difference in the focal
length is due to the difference in the image size. While the
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subsampling affects also the position of the principal point,
the above statement assumes that the focal length of the sub-
sampled images is related to the original focal length by the
subsampling factor. The quality of the estimates depends
on the accuracy of the estimated vanishing points. As the
vanishing points approach infinity their estimates become
less accurate. This affects in particular the estimate of the
principal point, which in case one of the vanishing points is
at infinity cannot be uniquely determined unless additional
constraints are introduced [9]. In such case we assume that
the principal point of the camera lies in the center of the
image and estimate the focal length in the closed form, us-
ing a single orthogonality constraint between vanishing di-
rections. The estimate of the focal length obtained in this
manner is less accurate then if all the constraints are used
simultaneously (if available) and the principal point is esti-
mated as well.

Relative orientation

Once the vanishing points have been detected and the un-
known camera parameters determined by the above proce-
dure, the relative orientation of the camera with respect to
the scene can be computed. Note first that since the vanish-
ing directions are projections of the vectors associated with
three orthogonal directionsi, j, k and depend on rotation
only. In particular we can write that:

K−1vi = Rei K−1vj = Rej K−1vk = Rek

with each vanishing direction being proportional to the col-
umn of the rotation matrixR = [r1, r2, r3]. Choosing
the two best vanishing directions and properly normalizing
them, the third row can be obtained by enforcing the orthog-
onality constraints asr3 = r̂1r2. There is a four way ambi-
guity in R due to the sign ambiguity inr1 andr2. Spurious
solutions can be eliminated by considering relative orienta-
tion or structure constraints.

2.2 Image alignment

The techniques described in the previous paragraph were
limited to the single view analysis and enabled us to recover
partial calibration of the camera as well as orientation of the
camera with respect to the scene. In the case of two uncali-
brated views related by rotation only, the image coordinates
of corresponding points in two views satisfy:

xj ∝ Hxi (15)

whereH = KRK−1 ∈ R3×3 is so called homography
with the plane at infinity sometimes denoted asH∞ and
xi = [xi, yi, 1]T andxj = [xj , yj , 1]T are the image coor-
dinates of the corresponding points. When the orientation

Figure 2. Original set of correspondences,
with putative matches found by from homog-
raphy computed from relative orientations of
two single views Ĥij .

Figure 3. The matched correspondences (left)
and detected outliers (right) after RANSAC it-
erations. Outliers are denoted in red.

and partial calibration information are estimated from a sin-
gle view, as described in previous section, the homography
between two views can be computed and becomes:

Ĥij = KRiR
T
j K−1

Together with the knowledge of the camera calibration ma-
trix Kbuilding from equation 13 the rotation angle and the
axis can be recovered from the rotation matrixRiR

T
j , yield-

ing in this case a rotation ofφij = 14.7o aroundy axis. The
quality ofHij estimate is often not satisfactory for accurate
alignment of the views. However the estimate ofHij can
serve as a good starting point for guided feature matching
and re-estimation of the homography. Note that in order to
estimateH in equation 15 at least 4 corresponding points
in two views are needed each providing two constraints on
H . In the first step of the refinement we detect additional
features from each view using Harris corner detector with
the results in Figure 2. Traditional robust techniques for
estimation ofH require at least 4 corresponding points, in
order to bootstrap the robust matching algorithm, such as
RANSAC. In the case of large displacements the initializa-
tion step however can be quite expensive. Without any prior
knowledge about the motion potentially large regions in the
image have to be searched for possible matches. Given that
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Figure 4. Image alignment using the refined
homography estimates.

we can approximately estimate the homography based on
single view analysis, we can select candidate feature points
in one view and usêHij to predict their location in another
view. The predicted location of the feature then limits the
neighborhood search to few pixels around the predicted lo-
cation. The displacement was over 300 pixels in the hori-
zontal direction which would make the search for putative
correspondences very consuming and the differential tech-
niques would require a large number of iterations in this
case. Examples of the initial and refined estimates of the
homographies between two views are:

Hij =


 1.1799 0.0945 −43.1874

0 1.252 −356.39
0 0.004 1




H =


 1.1425 0.0881 −34.1227

0.0071 1.2142 −265.0491
0 0.003 1


 (16)

If we assumeH is the reference homography then the error
between the two estimates‖H−Hij‖

‖H‖ × 100 is 34%.
Applying the homography refinement and matching

techniques to all views we can obtain refined homography
estimates, which will enable us the to align all the views
to the common reference plane 4. The above alignment
can be also achieved without any knowledge of the intrin-
sic parameters of the camera, using computationally more
expensive image matching techniques. Once the homogra-
phies between the reference view and additional views have
been computed the intrinsic parameters of the camera can
be reestimated. In the case of panoramic mosaics, where
the views are related by the rotation around single indepen-
dent axis the matrixS can be determined only up to two
parameter family and hence all the intrinsic parameters of
the camera cannot be estimated. In the case of panoramic
mosaics we assume that the skew is zero, the aspect ratio of
the camera is one (known) and the principal point is in the
image center. In such case the only unknown is the focal

Figure 5. Final mosaic obtained with the re-
fined estimate of the focal length yield correct
mapping to the cylindrical coordinates.

lengthf , which can be computed in closed form exploiting
properties of rotation matrices.

H =


 h0 h1 h2

h3 h4 h5

h6 h7 1


 ∝


 r11 r12 r13/f

r21 r22 r23/f
r31 r32 r33/f


 (17)

The fact the any two rows (or columns) of the scaled ro-
tation matrix must have the same norm and be orthogonal
gives us constraints for computingf . In order to obtain
accurate estimates of rotation and camera intrinsic param-
eters, spherical mosaics are favorable, since they are com-
posed from multiple views related by rotations of around
more then two independent axis. In such case the complete
intrinsic parameters can be determined and associated rota-
tion matrices computed [17]. For the mosaic construction
accurate focal length parameters are necessary in order to
establish the mapping between image coordinates[x, y, 1]T

and cylindrical coordinates:

θ = tan−1(
X

Z
) = tan−1(

x

f
) (18)

v =
Y√

X2 + Z2
=

y√
x2 + f2

(19)

where the radius of the cylinder is the focal lenght. The final
mosaic obtained from the estimates of homographies and
global refinement of the focal length is depicted in figure 5.

3 Conclusions

We presented an efficient, completely automated ap-
proach for construction of rotational mosaics from an un-
calibrated sparse set of views. Along the way the assump-
tions about the structure of man-made environments, were
used towards efficient initialization and grouping of line
segments into dominant vanishing directions aligned with
the axes of the world coordinate frame. The estimation
and grouping problems for vanishing point estimation were
addressed simultaneously using the Expectation Maximiza-
tion algorithm. The single view analysis was instrumental
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for obtaining initial estimates of homographies as well as
intrinsic parameters of the camera. These initial estimates
enabled us to do efficient matching and final homography
computation and view alignment for the case of largely sep-
arated views. The presented approach extends currently
available techniques for mosaic construction and demon-
strates how the constraints of architectural environments
can be used efficiently towards this task.
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