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Abstract

This paper evaluates the performance of several popular corner detectors using two newly defined criteria. The majority of authors of
published corner detectors have not used theoretical criteria to measure the consistency and accuracy of their algorithms. They usually
only illustrate their results on a few test images and may compare the results visually to the results of other corner detectors. Some
authors have proposed various criteria for performance evaluation of corner detection algorithms but those criteria have a number
of shortcomings. We propose two new criteria to evaluate the performance of corner detectors. Our proposed criteria are consistency
and accuracy. These criteria were measured using several test images and experiments such as rotation, uniform scaling, non-uniform
scaling and affine transforms. To measure accuracy, we created ground truth based on majority human judgement. The results show that

the enhanced CSS corner detector performs better according to these criteria.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Interest in corner detection is based on its use in match-
ing, tracking, and motion estimation. A corner detector
can be successfully used for these tasks if it has good
consistency and accuracy. As there is no standard proce-
dure to evaluate the performance of corner detectors, we
have proposed two new criteria to evaluate the perfor-
mance of corner detectors. These criteria are referred to
as consistency and accuracy. We have also carried out a
number of experiments to compare the consistency and
accuracy of the enhanced CSS corner detector to four
popular and frequently used corner detectors. Kitchen
and Rosenfeld [28], Plessey [23], Susan [55], and curvature
scale space (CSS)' corner detector [38] were chosen as our
test corner detectors. Note that the CSS corner detector is a
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contour-based detector whereas the other detectors are
neighborhood-based detectors. We believe ultimately it is
irrelevant whether a specific corner detector is classified
as one type or the other. When a corner detector is
designed, the designer is free to make use of any technique
or methodology which he/she considers advantageous. For
the sake of performance evaluation, all corner detectors are
subjected to the same evaluation criteria. What matters is
how a corner detector performs according to the criteria,
not which methods are employed in the design of that
detector.

It should be pointed out that we are specifically interested
in performance evaluation of corner detectors, and not the
more general feature point detectors or interest point detec-
tors. An advantage of corners is that they correspond to
human intuition regarding visually distinguishable feature
points. This property can be exploited to define ground truth
which is essential in the measurement of accuracy. Essential-
ly, a corner is an image point where 2D change can be
observed in the image, or where the boundary of a distin-
guishable region in the image undergoes a sharp change in
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direction. On the other hand, feature points or interest
points do not necessarily correspond to visually significant
points, and therefore it may be very difficult to assess the per-
formance of a feature point detector or an interest point
detector.

The first set of experiments were concerned with measur-
ing the consistency of test corner detectors. A number of
corners were extracted from a test image using the test cor-
ner detectors. The test image was then subjected to a num-
ber of transformations including rotation, scaling, and
affine transforms. The test corner detectors were then
applied to the transformed images to recover the corre-
sponding corners. The corners obtained from these experi-
ments were used to compute values for the consistency
criterion.

The second set of experiments were concerned with mea-
suring the accuracy of test corner detectors. We have pro-
posed a new approach for the creation of ground-truth
which is crucial in the computation of accuracy.

The following is the organisation of the remainder of
this paper. Section 2 presents an overview of a number of
corner detection algorithms as well as previously proposed
criteria for performance evaluation of corner detectors.
Section 3 briefly describes the CSS method, followed by a
review of the original CSS corner detector in Section 4.
The shortcomings of the original CSS method are
explained in Section 4.1. Section 5 briefly describes the
extended CSS corner detector, ECSS. The theory underly-
ing our criteria is explained in Section 6. In Section 7, the
results of experiments to determine the consistency and
accuracy of several popular corner detectors are illustrated.
The conclusions are presented in Section 8.

2. Literature survey

This section presents a review of the existing literature
on corner detection algorithms followed by a survey of pre-
vious criteria proposed for measuring performance evalua-
tion of corner detectors.

2.1. Survey of corner detectors

A substantial number of corner detectors have been pro-
posed by vision researchers. These methods can be divided
into two main classes: contour based and intensity based.
Contour based methods first recover image contours and
then search for curvature maxima or inflection points along
those contours. Intensity based methods estimate a mea-
sure which is intended to indicate the presence of a corner
directly from the image greyvalues. In the following sec-
tions, we present corner detection methods for each of
those categories.

2.1.1. Contour based methods

Asada and Brady [5] extracted corner points for 2D
objects from planar curves. Changes in the curvature func-
tions of those contours are classified into several categories

such as cranks, corners, endings, joins, and dents. Quddus
and Fahmy [45] presented a wavelet-based scheme for
detection of corners on 2D planar curves. Arrebola et al.
[3] introduced different corner detectors based on local
and circular [4] histogram of contour chain code. Zhang
and Zhao [63] considered a parallel algorithm for detecting
dominant points on multiple digital curves. Gallo et al. [22]
detected, localized, and classified corners in digital closed
curves based on correct estimation of support regions for
each point. They computed multiscale curvature to detect
and localize corners. As a further step, they classified cor-
ners into seven distinct types using a set of rules, which
describe corners according to preset semantic patterns.
Peng et al. [43] introduced a boundary-based corner detec-
tion method using wavelet transform for its ability for
detecting sharp variations. Pikaz and Dinstein [44] pro-
posed a method based on a decomposition of noisy digital
curves into a minimal number of convex and concave seg-
ments. The detection of corners is then based on properties
of pairs of sections determined in an adaptive way. Cooper
et al. [15] presented a detector which tests the similarity of
image patches along the contour direction to detect turns in
the image contour. The CSS [38] and ECSS [36] corner
detectors also belong to the category of contour based
methods. These methods have been reviewed in Sections
4 and 5, respectively.

2.1.2. Intensity based methods

Kitchen and Rosenfeld [28] computed a cornerness mea-
sure based on the change of gradient direction along an
edge contour multiplied by the local gradient magnitude
as follows:

Lol = 210, L, + 1,1
L+ ‘

Ckr(x,y) = (1)
The local maximum of this measure isolated corners using
a non-maximum suppression method applied to the gradi-
ent magnitude before its multiplication with the curvature.
This detector is sensitive to noise and shows poor localisa-
tion. Plessey [23] cornerness measure is

{3 + (1)

Cr(x,y) :W’

2)
where I, and I, were found using the (n x n) first-difference
approximations to the partial derivatives and calculated 72,
Ii, and 1./, then applied Gaussian smoothing, and com-
puted the sampled means (I7), (I}), and (I.I,) using the
(n x n) neighbouring point samples. This algorithm does
not show good localization in the case of large Gaussian
convolutions. Furthermore, the application of constant-
variable false corner response suppression causes it to be
unstable. Baumberg [9] used Plessey corners at a set of
scales and ordered those corners based on a scale normal-
ized corner strength.

Smith and Brady [55] introduced the Susan algorithm as
follows: consider an arbitrary image pixel and the
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corresponding circular mask around it (the centre pixel
shall be called the nucleus). Provided image is a compact
region within the mask whose pixels have similar bright-
ness to the nucleus, this area will be called USAN, an acro-
nym standing for ‘““univalue segment assimilating nucleus.”
To find corners, they computed the area and the centre of
gravity of the USAN, and developed a corner detector
based on these parameters. Chabat et al. [13] introduced
an operator for detection of corners based on a single
derivative scheme introduced in [62] by Yang et al. In
[64], Zheng et al., proposed a gradient-direction corner
detector that was developed from the Plessey corner detec-
tor. Moravec [39] observed that the difference between the
adjacent pixels of an edge or a uniform part of the image is
small but at the corner the difference is significantly high in
all directions. Beaudet [10] proposed a determinant opera-
tor which has significant values only near corners. Dresch-
ler and Nagel [18] used Beaudet’s concepts in their detector.
Lai and Wu [30] considered edge-corner detection for
defective images. Tsai [59] proposed a method for bound-
ary-based corner detection using neural networks. Fidrich
and Thirion [21] extracted corners as the intersection of
two iso-surfaces. To extract corners they used an algo-
rithm, based on iso-surface techniques, which finds the cor-
responding singularities in scale space automatically. Ji and
Haralick [26] presented a technique for corner detection
with covariance propagation. Lee and Bien [31] applied
fuzzy logic to corner detection. Chen and Rockett [14]
utilized Bayesian labelling of corners using a grey-level
corner image model in. Kohlmann [29] proposed corner
detection in natural images based on the 2D Hilbert trans-
form. Nobel [41] proposed a solution to finding T, X, and
L junctions which have a local 2D structure. Wu and
Rosenfeld [60] proposed a technique which examines the
slope discontinuities of the x and y projections of an image
to find the possible corner candidates. Paler et al. [42] pro-
posed a technique based on features extracted from the
local distribution of grey level values. Rangarajan et al.
[47] proposed a detector which tries to find an analytical
expression for an optimal function whose convolution with
the windows of an image has significant values at corner
points. Shilat et al. [52] worked on ridge corner detection
and correspondence. Nassif et al. [40] considered corner
location measurement. Sohn et al. [56] proposed a mean
field annealing approach to corner detection. Davies [16]
applied the generalised Hough transform to corner
detection. Trajkovic and Hedley [58] described a corner
detection algorithm based on the property of corners that
the change of image intensity should be high in all direc-
tions. Consequently, the corner response function was
computed as a minimum change of intensity over all possi-
ble directions. In [20], the slit rotational edge-feature detec-
tor (SRED) method was modified using weighted and
interpolated SRED which is more independent on the edge
directions. Bankman and Rogala [8] presented a non-linear
corner detection algorithm that does not require prior
image information or any threshold setting. In [19], Elias

and Laganiere presented an approach to detect corners
and determined their orientations through a data structure
similar to pyramids but with circular levels. They referred
to the data structure as a cone and the operation started
at the top level where only one node exists. If the node is
inhomogeneous, it will be split into two nodes forming
the next lower level of the cone. Splitting continues until
all nodes become homogeneous. At the base and according
to a threshold, similar nodes are grouped together to shape
the orientation of the corner. In [6] two oriented cross oper-
ators called Crosses as Oriented Pair were used to detect
corners, which provided useful information to extract
low-level features due to its characteristics, preference for
edge with different direction, and simple direction determi-
nation. Quddus and Gabbouj [46] presented a technique
for wavelet-based corner detection using singular value
decompusition (SVD). In their method, SVD facilitated
the selection of global natural scale in discrete wavelet
transform and the natural scale was defined as the level
associated with the most prominent eigenvalue. The eigen-
vector corresponding to the dominant eignvalue was con-
sidered the optimal scale. The corners were detected at
the locations corresponding to modulus maxima. Zuniga
and Haralick [66] proposed a corner detector based on
the facet model. Ando [2,1] constructed a covariance
matrix of the gradient vector and applied the canonical
correlation analysis to it.

2.2. Previous criteria for performance evaluation

The majority of authors of published corner detectors
have not used properly defined criteria for performance
evaluation of their corner detectors. They have only dem-
onstrated their detectors on a few images. Occasionally
their results appear next to results from other corner detec-
tors, but this is not always the case.

Some published results on corner detection include stud-
ies on the effects of noise and parameter variation on the
proposed corner detectors. These parameters include
Gaussian scale ¢ [64,55,45], thresholds [58,57], signal-to-
noise ratio [13], cross-correlation matching [58], cost func-
tion [61], and the width of the gray level transitions in
original image [48].

Only a relatively small number of authors have pro-
posed criteria for evaluation of edge or corner detectors.
The existing methods can be grouped into six categories
as following.

2.2.1. Ground truth verification

Ground truth is generated by human judges, and can be
used to determine the undetected features (false negatives)
and the false positives. Bowyer et al. [11] used human gen-
erated ground truth to evaluate edge detectors. Their eval-
uation criterion is the number of false positives with respect
to the number of unmatched edges which is measured for
varying input parameters. Structured outdoor scenes such
as airports and buildings were used in their experiments.
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However, as far as we are aware, no work has been carried
out on ground truth verification of corner detectors prior
to this paper.

2.2.2. Visual inspection

Methods employing visual inspection rely directly on
humans evaluating the results, so they can be very subjec-
tive. Heath et al. [24] evaluated edge detectors by making
use of a visual rating score which indicates the perceived
quality of the edges for identifying an object. Lopez et al.
[34] defined a set of visual criteria to evaluate a number
of ridge and valley detectors in the context of medical
images.

2.2.3. Localization accuracy

This criterion measures whether a corner point is
accurately located at a specific 2D location [54]. Evalua-
tion often requires the knowledge of precise 3D proper-
ties, which limits the evaluation to simple scenes. In
fact, localization accuracy is often measured by verifying
that a set of 2D image points matches with the known
set of corresponding 3D scene points. For example, Hey-
den and Rohr [25] extracted sets of points from images
of polyhedral objects, and used projective invariants to
compute a manifold of constraints on those points. Bak-
er and Nayar [7] proposed a number of global criteria
each of which corresponded to a specific very simple
scene, and is measured using the extracted edgels. Kakar-
ala and Hero [27] used statistical parameter estimation
techniques to derive bounds on achievable accuracy in
edge localization.

2.2.4. Repeatability under various transformations

In this approach, corner detectors are evaluated to
determine how repeatable the results are under transforma-
tions (similarity or affine) of the image or the scene. For
example, Trajkovic and Hedley [58] used a measure of

where N, and N, denoted the number of corner matches
(between the original image and the transformed image),
and the number of corners in the original image, respective-
ly. A corner detector was considered better if k is higher.
Schmid et al. [51] applied the criterion of the ratio of total
matches to the number of points extracted. An important
shortcoming of both approaches is that if we have an algo-
rithm which marked all of the pixels in one image as cor-
ners then k& would become 100%. In other words,
algorithms with more false corners tend to have a larger
number of matched corners.

2.2.5. Theoretical analysis

Methods using this approach study the behavior of fea-
ture detectors using theoretical feature models. However,
such methods are limited since they are applicable only
to very specific features. Examples follow: Deriche and

Giraudon [17] studied the behavior of three corner detec-
tors using an L-corner model. Their study allows them to
estimate the localization bias. Rohr [49,50] also carried
out a similar analysis for L-corners with aperture angles
in the range [0°-180°].

2.2.6. Evaluation based on specific tasks

Edge detectors have occasionally been evaluated
through specific tasks. The reasoning is that feature detec-
tion is not the end goal but only the input for further pro-
cessing. Hence, the best performance measure is the quality
of the input it prepares for the next stage. While this argu-
ment is correct to some extent, evaluations based on a spe-
cific task and a specific system are difficult to generalize and
therefore of limited value. An example of this approach is
that of Shin et al. [53] in which a number of edge detectors
were compared using an object recognition algorithm. Test
images show cars under different lighting conditions and
against varying backgrounds.

3. The curvature scale space technique

The CSS technique is suitable for extraction of curva-
ture features such as curvature extrema or zero-crossing
points from an input contour at multiple scales. The curve
I' is first parametrized by the arc length parameter u:

I'(u) = (x(u), y(u)). 3)
An evolved version I', of T' is then computed. I',, is defined
by [37]:

I',=(%u,0),%u,oa)), (4)
where

A, 0) =x(u) @ gu,0)  Y(u,0) =y(u) ®gu,0).

Note that ® is the convolution operator and g(u,0) denotes
a Gaussian of width ¢. The process of generating evolved
versions of I" as ¢ increases is referred to as the evolution
of I'. To find curvature zero-crossings or extrema from
evolved versions of the input curve, one needs to compute
curvature accurately and directly on an evolved version I',.
Curvature k on I, is given by [37]:

X(u,0)% 0 (u,0) — X(u,0)%,(u,0)
K(u,0) = ; 2, 2\15
(%u(u, O-) + {yu(u,a) )
where the first and second derivatives of 2 and % can be

computed from the following:

Zu(u,0) = x(u) @ g,(u; 0)

, (5)

28”““(”7 O-) = x(u) ® guu(”? 0-)7

?y”(u’ 6) = y(u) & gu(uv U) qyuu(”? O-) = y(u) ® guu(ua G)"

4. Overview of the original CSS corner detector

The following is a summary of the algorithm used by
Mokhtarian and Suomela [38] to detect corners in an
image:
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e Apply the Canny edge detector [12] to the gray level
image and obtain a binary edge image.

e Extract image edge contours from the output of the
Canny edge detector, fill the gaps and find T-junctions.

e Compute curvature at a high/coarse scale, opign, for each
edge contour.

e Consider those local maxima as initial corners whose
absolute curvature are above threshold ¢ and twice as
much as one of the neighboring local minima.

e Track the corners to the lowest/finest scale to improve
localisation.

e Compare the T-junctions to other corners and remove
one of the two corners which are very close.

In this algorithm, the first step is to extract edges from
the original image using the Canny edge detector. The edge
detector may produce gaps in some edges. To achieve the
best performance of the CSS detector, these gaps should
be filled at this stage. When the edge-extraction method
arrives at the endpoint of a contour, it performs two
checks:

e If the endpoint is nearly connected to another endpoint,
fill the gap and continue the extraction.

e If the endpoint is nearly connected to an edge contour,
but not to another endpoint, mark this point as a
T-junction corner.

The next step is to smooth edge contours by a Gaussian
function and compute curvature at each point of the
smooth contours. The width of the Gaussian function indi-
cates the scale of the smoothing and must be large enough
to remove noise and small enough to retain the real cor-
ners. The third step is to determine corner candidates on
smoothed contours, which are normally the local maxima
of absolute curvature. The fifth step is localization. As a
result of smoothing, the edge contours shrink. The loca-
tions of corners on the shrunk contours differ from the
locations of actual corners on the original contour. For
each smoothed contour, the level of smoothing is reduced
gradually and the corners are tracked down to the original
contour. The final step is intended to ensure that any
T-junctions missed by the Canny detector are added to
the final set without any duplications.

4.1. Shortcomings of the CSS corner detector

The second step of the CSS algorithm is to smooth edge
contours by Gaussian function and compute curvature at
each point of the smooth contours. The width of the
Gaussian function indicates the scale of the smoothing
and must be large enough to remove noise and small
enough to retain the real corners. We found that this scale
should not be the same for all edge contours of the image.
While for long contours, a large scale may be suitable;
short contours need smaller scale of smoothing. The reme-
dy to this shortcoming is to choose different scale of

smoothing for contours with different lengths as described
in the next section. The third stage of the CSS algorithm is
to determine corner candidates on smoothed contours,
which are normally the local maxima of absolute curva-
ture. However, we noticed that for long contours, the abso-
lute curvature function must be smoothed prior to initial
corner selection. Furthermore, performance of the CSS
detector depends on the selection of threshold value, ¢.
The proper value of ¢ may change from one image to
another. It is also subject to change for a particular image
which transforms under rotation or scaling. The ECSS cor-
ner detector mainly tackles these problems. It is described
in more detail in the following section.

5. Review of ECSS

ECSS is a new corner detection method which is an
improvement of the original CSS detector. The outline of
ECSS [36] corner detector is as following:

e Extract edges from the original image.

o Extract image edge contours, filling the gaps and finding
T-junctions.

o Use different scales of the CSS to smooth contours with
different lengths.

e Compute the absolute curvature on the smoothed
contours.

e Smooth the absolute curvature function for long
contours.

e Detect initial local maxima of the absolute curvature for
short contours.

e Detect initial local maxima of the smoothed absolute
curvature functions for long contours.

e Consider those local maxima as initial corners that are
more than twice as much as one of the neighbouring
local minima.

e Track the corners to the lowest scale for each contour to
improve localisation.

e Compare the T-junction corners to the corners found
using the curvature procedure to unify close corners.

The new steps are described in detail in the remainder of
this section.

5.1. Using different scales of CSS

Based on the number of points on each image edge con-
tour, ECSS categorises all the image edge contours into
three categories: long, medium, and short. Through many
experiments, we defined contours which consist of less than
200 points as short, contours which consist of 200-600
points as medium and contours with more than 600 points
as long. Note that these values did not change in the pro-
gram for different test images. Note that the classification
of contours may depend on the size of the image, so for
example, a contour considered medium in an image may
be considered long when that image is scaled up. However,



86 F. Mokhtarian, F. Mohanna | Computer Vision and Image Understanding 102 (2006) 81-94

we found through many experiments that these definitions
worked well, and produced high-quality corner detection
output, even with scaling of input images. We believe the
explanation is that as contours grow longer (through scal-
ing or otherwise), more smoothing should be applied to
them to control the number of corners recovered from
them. Furthermore, we consider ohig, as 4, 3, and 2 for
long, medium, and short contours, respectively. These val-
ues have also been selected through many experiments.
Evaluations carried out for the ECSS corner detector in
Section 7 shows that these selections perform well for a
large number of images. As a result, short contours are
not smoothed too far which might remove their corners
and long contours are sufficiently smoothed. In Fig. 1,
one of the test images and its edge contours with two
marked contours, short C1 and long C2 have been illustrat-
ed. The effect of selecting different scales in computation of
absolute curvature for long and short contours can be seen
in Fig. 2.

In Fig. 2A, the absolute curvature of C2 with ohjgn = 4
has fewer false maxima due to noise in comparison to
Fig. 2B. Fig. 2B shows the computation of absolute curva-
ture of C2 with ay;en = 2. Also Fig. 2C illustrates the com-
putation of absolute curvature of C1 with ohign = 4. If we
use the local maxima of this absolute curvature function
for corner detection, only two corners are detected. There-
fore, using high/coarse scale for smoothing short contours
removes some local maxima of absolute curvature of these
contours that correspond to real corners. Fig. 2D shows
the absolute curvature of C1 with op;gn = 2. It can be seen
that four corners can be recovered from this figure. Note
that the issue of automatic selection of detection scales
has also been addressed in [32] and [33].

5.2. Smoothing the absolute curvature of long contours

In this stage, after smoothing edge contours for compu-
tation of absolute curvature, some false maxima due to

PRy

Fig. 1. Two marked contours in edge contours of test image, Cl1, short contour and C2, long contour. (A) Test image. (B) Edge contours of (A).

i

s

Fig. 2. Computation of absolute curvature. (A) C2, ohigh = 4. (B) C2, ohigh = 2. (C) Cl, 0pigh = 4. (D) C1, ohigh = 2.
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noise can still be seen (see Fig. 2A). The simplest solution is
to compute the absolute curvature of contour C2 using
higher ¢ such as 8. But as mentioned in Section 4, if a high-
er value of ¢ is chosen not only false corners but also many
real corners are removed as well. Therefore, the solution
employed at this stage is to smooth the absolute curvature
function of long contours using ¢ = 4. This has been illus-
trated in Fig. 3A. Comparing Fig. 3A to Fig. 2A, after
smoothing, many false maxima of absolute curvature are
removed. In this step, if the curvature function of short
contours is smoothed, as seen in Fig. 3B, a number of real
corners are lost. This can be seen in Fig. 3B where only two
local maxima remain that indicate two corners on ClI,
whereas C1 is the window of airplane with four corners.
The final criterion for removing false corners, after initial-
ising local maxima points, is to compare the initial local
maxima with two neighbouring local minima. The curva-
ture of a corner should be more than twice as much as
the curvature of one of the neighbouring local minima.

Applying this criterion, false corners such as 1, 2, and 3
are removed after comparison to the nearest local minima
of absolute curvature in Fig. 3A. The positions of initial
corners of Figs. 3A and 2D after applying this criterion
have been illustrated in Figs. 4A and 4B respectively. The
method finds four corners on C1 and no false corners on
C2. C2 should have nine corners as seen in Fig. 4A, and
C1 should have four corners as seen in Fig. 4B. Note that
for short contours ECSS first computes absolute curvature
with onign = 2, then applies the final criterion discussed
above.

5.3. Tracking

After the initial corner points are located, tracking is
applied to the detected corners. As the corners were detect-
ed at scale opien the corner localisation might not be ideal.
We compute curvature at a lower scale and examine the
corner candidates in a small neighbourhood of the previous
corners. Corner locations are updated, if needed, in this
neighbourhood. Note that if initial corners on one contour
are extracted at opien = 4, tracking for this contour can be
accomplished at ¢ =3, 0 =2, and ogy, = 1. If initial
corners are extracted at gpig, = 2, tracking can be accom-
plished at o4, = 1. The localisation of corners for contour
C2 and Cl1 after tracking have been shown in Figs. 5A
and B, respectively. This process results in very good local-
isation. The number of corners is determined at the initial
ohigh and tracking only changes the localisation, not the
number of corners. Since the location of corners do not
change substantially during CSS tracking, only a few other
curvature values need be computed.

5.4. Unifying close corners

As described before, corners are detected using ECSS
technique taking T-junctions into consideration. In some
cases the two methods mark the same corner. The final part
of ECSS is to examine T-junctions and the corners that
result from tracking in Section 5.3. If they are very close
to each other, the T-junction corners are removed. The
ECSS method is robust with respect to noise, and performs

Fig. 3. Smoothing of absolute curvature function. (A) C2, ¢ =4. (B) Cl1, 6 =4.

Fig. 4. Applying the criterion of comparing the initial local maxima with two neighbouring local minima. (A) On long contour C2. (B) On short contour C1.
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Fig. 6. Corner detection on the house image. (A) Plessy. (B) K and R. (C) Susan. (D) CSS. (E) ECSS.

better than tested corner detectors as shown in Section 7
(see Fig. 6). Note that this figure is not intended as the
proof of better ECSS performance. Rather the argument
in support of better ECSS performance is presented in
Section 7.

6. New criteria for performance evaluation

In this section new criteria for measuring the consistency
and accuracy of corner detectors are defined theoretically.

6.1. Consistency

Consistency means corner numbers should be invariant
to the combination of noise, rotation, uniform or non-uni-
form scaling and affine transform. By noise we mean natu-
rally occurring noise in images such as camera noise and
discretization errors. No artificial noise was added to input
images. We define the criterion of consistency of corner
numbers as follows:

CCN =100 x 1.17Wi=Nel, (6)

where CCN stands for consistency of corner numbers. Since
consistent corner detectors do not change the corner num-
bers from original image to transformed images then the
value of CCN for stable corner detectors should be close
to 100%. Any differences between the number of corners
in the original image (N,) and the number of corners in
the transformed image (N,), causes CCN to drop below
100% as |N; — No| grows larger. CCN is close to zero for
corner detectors with many false corners. Note that we
studied different formulae carefully, and chose an exponen-
tial form as the most suitable one since it always maps the
CNN value to the [0-100%] range. Furthermore, a base of
1.1 was selected rather than a larger base to ensure that the
CCN measure does not decay to zero too quickly.

Note that the CCN measure as defined considers only
the number of detected corners without regard to whether
they are correct or not. It should be pointed out that the
correctness of corner detections is captured by the accuracy
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measure so there is no point for the consistency measure to
again focus on that. As an extreme example, if a corner
detector found exactly the same number of corners in the
transformed image but all of them at incorrect positions,
the corner detector in question would do well in the consis-
tency measure but not well in the accuracy measure.

6.2. Accuracy

Accuracy requires that corners should be detected as
close as possible to their correct positions. In a given
image, the corner positions and numbers can be different
according to different individuals. As there is no standard
procedure to measure accuracy of corner detectors, we
adopted a new approach for creating ground truth. This
approach is based on majority human judgement. To moti-
vate this approach, we should point out that we are speci-
fically interested in performance evaluation of corner
detectors, and not the more general feature point detectors
or interest point detectors. A suitable definition for a cor-
ner is an image point where two-dimensional change can
be observed in the image. Using this definition, we believe
it is quite reasonable to expect that the performance of a
corner detector should correspond to human judgment.

Note that ground truth has been used extensively in
computer vision and image processing. However, we
believe it has never been used before in the context of cor-
ner detection. To create the ground truth, 10 persons who
were familiar with the task of corner detection were chosen.
This number is significant as it indicates that we did not
rely on just one or a small number of people to determine
the ground truth. In principle, it is possible to use even
more human judges, but even with 10 judges, the experi-
mental effort required was quite substantial. None of the
judges were familiar with the algorithm used by the ECSS
corner detector. We asked them individually to mark the
corners of an image. To select the locations of the corners,
the human judges viewed the image on a computer screen
using a program that allowed them to read the coordinates
of individual pixels in the image, and used a cursor to
determine the pixel coordinates of each corner. The viewing
conditions were essentially the same for all human judges.
There is no reason to believe that the cursor affected the
perception of the corners. The corners marked by at least
70% of individuals were selected as the ground truth for
that image. There was some variation amongst the human
judges, but not substantial variation. In general, the human
judges showed strong consistency in determining the loca-
tions of corners, however, occasionally a corner was
marked by some judges and not the others, so the purpose
of the 70% figure was to ensure that a convincing majority
of judges agreed on a corner before it was admitted as
part of the ground truth. To determine whether points
marked by two judges were the same corner, a neighbor-
hood test was utilized to ensure that the points were quite
close to each other if not identical. All judges looked at the
image at the same scale, therefore there were no problems

caused by scale changes. The position of a corner in ground
truth was defined as the average of the positions of this cor-
ner in individual images marked by those 10 individuals.
We repeated the same procedure for other images. By com-
paring the corners detected using each of five corner detec-
tors to the list of corners in the ground truth, the accuracy
was computed as follows.

For a given image, let N, be the total number of corners
detected by a specific corner detector (note that N, # 0), let
N, be the total number of corners in the ground truth, and
let N, be the total number of matched corners when com-
paring the first set of corners (found using a corner detec-
tor) to the second set (ground truth) using a neighborhood
test. The criterion of accuracy is defined as

Na 4 Na

No T N,

-, ™

ACU = 100 x

where ACU stands for accuracy. The value of ACU for
accurate corner detectors should be close to 100%. Howev-
er, the value of ACU for inaccurate corner detectors is
close to zero. Note that if a corner detector finds more false
corners which implies more matched corners, it does not
follow that the ACU of this detector is high since in this
case, if N,/N, is near one, N,/N, drops closer to zero.
On the other hand, if a corner detector finds less corners
which means less matched corners, N,/N, goes to one
and N,/N, drops closer to zero. Therefore in both cases,
the ACU of such detectors computed through Eq. (7) is less
than 100%. Note that the case of N, = 0 in Eq. (7) occurs if
a test image has no corners or the test corner detectors can
not detect any corners. These situations do not arise in
practice as only images with many corners are used in
experiments and corner detectors under consideration also
find many corners in test images.

Some may argue that the more conventional terms of

false positives and false negatives should be used to ana-

lyze accuracy. In fact, formula 7 captures both concepts
at the same time. The concept of false positives is cap-
tured by the term N,/N,. When a corner detector is find-
ing too many corners, N, will grow large and therefore
N,/N, will move towards zero. Furthermore, the concept
of false negatives is captured by the term N,/N,. When a
corner detector is not finding enough corners, N, will be
much smaller than N,, and therefore N,/N, will move
towards zero. Note that the relative cost of false posi-
tives and false negatives varies from application to appli-
cation, but since our work was intended to be
independent of specific applications, we used formula 7
to evaluate the accuracy of corner detectors. This formu-
la in fact attaches equal cost to false positives and false
negatives, and combines them in a single measure.

7. Results and discussion

We carried out many experiments using several images
from our image collection which included a leaf image,
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an airplane image, a fish image, a lab image and a building
image. All the test images have been illustrated in Fig. 7.
Note that while it would be ideal to capture images of
transformed objects for corner detector testing, in practice
it can be a very difficult and complicated process as it
requires a special setup (for example, consider accurate
rotation of the camera about its axis). Digital image trans-
formations are a good approximation to that process which
allow us to evaluate corner detectors more systematically
and more comprehensively. Furthermore, all corner detec-
tors are evaluated under the same testing conditions. A
total of five experiments were carried out. The first four
experiments are relevant to the computation of the
consistency measure. The fifth experiment is relevant to
the computation of the accuracy measure. The experiments
were performed as following.

7.1. Experiment 1

The number of corners in original image were first
extracted using the test corner detectors. The original
image was then rotated with rotation angle chosen by uni-
form sampling of the interval [—90°, +90°] excluding zero.
Distance between consecutive samples was 10°. The num-
ber of corners in all rotated images were then extracted
using the test detectors.

7.2. Experiment 2

A similar procedure was carried out for the original image
and uniform scaling of this image with 10 scale factors cho-
sen by uniform sampling of the interval [0.5, 1.5] excluding
1.0. Distance between consecutive samples was 0.1.

Fig. 7. Test images for computation of accuracy. The corner points in the ground truths have also been shown. (A) Lab. (B) Building. (C) Airplane.

(D) Leaf. (E) Fish.
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7.3. Experiment 3 7.4. Experiment 4

A similar procedure was carried out for the original A similar procedure was carried out for the original
image and non-uniform scaling of that image using scale  image and affine transforms of that image. The affine trans-
factors x-scale and y-scale. The x-scale and y-scale param-  forms consisted of a rotation angle of —10° and +10° com-
eters were chosen by uniform sampling of the intervals [0.8, bined with non-uniform scaling with the x-scale and y-scale
1.0] and [0.5, 1.5], respectively. Distance between consecu-  parameters chosen by uniform sampling of the intervals
tive samples was 0.1. [0.8, 1.0] and [0.5, 1.5], respectively. Distance between con-

secutive samples was 0.1.

C R

X
g

Fig. 8. Airplane image under similarity and affine transforms. In this figure S, S\, S), and 0 stand for the uniform scale factor, scale factors in x and y
directions in non-uniform scaling, and the rotation parameter, respectively. (A) Original. (B) §=2. (C) 0 = —-60°. (D) S,=1.5, S, =0.8. (E) Affine

transform: 0 = +40°, S, = 1.6, S, = 0.6.
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Fig. 9. Consistency of corner numbers for rotation. (A) Plessy. (B) K and R. (C) Susan. (D) CSS. (E) ECSS.
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Fig. 10. Consistency of corner numbers for uniform scaling. (A) Plessy. (B) K and R. (C) Susan. (D) CSS. (E) ECSS.

Note that in Experiments 1-4, affine warps of the origi-
nal test images are computed instead of using “real world
examples.” Note that use of real world examples would
have resulted in a very complex hardware setup to carry
out the experiments. For example, to achieve rotations of
the image, we would have to put together a setup that
would rotate the camera by a specific number of degrees
each time so that a rotated image of the scene could be
obtained. The hardware setup required to obtain an affine
warped image of the same scene would be even more com-
plex. We did not have access to the required hardware. As a
result, application of mathematical transforms to the origi-
nal images was considered an acceptable alternative. Fur-
thermore, the testing conditions are exactly the same for
all tested corner detectors, and therefore the conclusions
are still valid.

7.5. Experiment 5

Ground truth corners were extracted from the original
images using the procedure described in Section 6.2.

Examples of image transforms have been illustrated
in Fig. 8. After performing the experiments on rotated,
uniformly and non-uniformly scaled and affine trans-
formed images, values for the CCN measure were com-
puted. The results of these computations for rotation
and uniform scaling have been illustrated in Figs. 9
and 10. The average values of the consistency measure
for non-uniform and affine transforms have been shown
in Table 1.

We also computed the mean and standard deviation of
the accuracy measure for all the tested corner detectors
as well as the operators. The results have been shown in
Table 2. As this table shows, we found that the mean of

accuracy for the operators was quite high and the standard
deviation was quite small. This table also shows that the
human operators performed much better than the best cor-
ner detector (ECSS) indicating that further research should
be carried out by the research community on even better
corner detectors.

It should be pointed out that all test images are real and
contain noise. As a result, the transformed images also con-
tain noise, and are by no means clean. However, no artifi-
cial noise was added to the test images. Furthermore, in
Fig. 7, the corner points in the image ground truths also
have been shown. Note that the size of each test image is
always the same for all tested detectors, and while the size
of different test images can vary, the conditions are the

Table 1
Mean and standard deviation of consistency for test corner detectors
Plessey K and R Susan  CSS ECSS

Consistency. mean and standard deviation

Rotation 32% 33% 24% 62%  74%

Uniform scaling 35% 30% 28% 31%  42%

Non-uniform scaling ~ 28% 31% 31% 55%  68%

Affine transform 14% 11% 9% 42% 51%

Mean 27.2 26.2 23.0 475 587

Standard deviation 8.0 8.9 8.4 11.9 12.8

Table 2

Mean and standard deviation of accuracy for test corner detectors
Plessey K and R Susan CSS ECSS Operators

Accuracy: mean and standard deviation

49.6
10.4

56.0
9.0

53.4
10.9

71.6 772
109 10.7

94.7
32

Mean
Standard deviation
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Fig. 11. Overall consistency and accuracy values for test corner detectors. (A) Consistency. (B) Accuracy.

same for each detector tested, and therefore the CCN val-
ues can be averaged across different images.

The overall consistency and accuracy values for test
detectors have been illustrated in Fig. 11. These figures
show that the ECSS detector has better accuracy and con-
sistency than the other four corner detectors.

Regarding the computational requirements of the cor-
ner detectors tested, it should be pointed out that the
Kitchen and Rosenfeld detector was the fastest of those
detectors, but the rest of the detectors had quite similar
speeds.

Note that none of the test corner detectors have been
designed to be invariant to affine transformations. While
it may be possible in principle to design invariant corner
detectors ([35] and [65] are examples of invariant feature
point detector and invariant descriptor detector, respective-
ly), in practice such detectors depend on high-order deriv-
atives and are therefore highly sensitive to noise in the
image which significantly limits their practical value. In
fact, the ECSS corner detector could be extended so that
affine curvature rather than regular curvature is computed
on edge contours. Maxima of affine curvature could then
be put forward as invariant image corners. This idea was
considered at an early stage of our work, but experiments
showed that the resulting corners were not robust.

8. Concluding remarks

This paper evaluated the performance of the ECSS
corner detector and compared it to the performances of
a few popular corner detectors. This performance evalu-
ation was carried out using two new criteria of consisten-
cy and accuracy. We also proposed a new approach for
creation of ground truth used for computation of accura-
cy. The application of these criteria showed that the
ECSS corner detector performed better in terms of
consistency and accuracy.
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