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Robust Image Corner Detection Through
Curvature Scale Space

Farzin Mokhtarian and Riku Suomela

Abstract—This paper describes a novel method for image corner
detection based on the curvature scale-space (CSS) representation.
The first step is to extract edges from the original image using a
Canny detector. The corner points of an image are defined as points
where image edges have their maxima of absolute curvature. The
corner points are detected at a high scale of the CSS and tracked
through multiple lower scales to improve localization. This method is
very robust to noise, and we believe that it performs better than the
existing corner detectors. An improvement to Canny edge detector’s
response to 45

o
 and 135

o
 edges is also proposed. Furthermore, the

CSS detector can provide additional point features (curvature zero-
crossings of image edge contours) in addition to the traditional
corners.

Index Terms—Low-level processing, feature extraction, corner
detection, multiscale analysis, curvature scale space, Canny edge-
detector.

————————   F   ————————

1 INTRODUCTION

CORNER detection is an important task in various computer vision
and image-understanding systems. Applications include motion
tracking, object recognition, and stereo matching. Corner detection
should satisfy a number of important criteria:

•� All the true corners should be detected.
•� No false corners should be detected.
•� Corner points should be well localized.
•� Corner detector should be robust with respect to noise.
•� Corner detector should be efficient.

This paper proposes a new corner detection method [16] based
on the curvature scale-space (CSS) technique. The CSS technique is
suitable for extraction of curvature features from an input contour
at a continuum of scales. This corner-detection method requires
image edge contours. In the implementation of the CSS detector, a
Canny edge detector [3] was used. Note, however, that the Canny
edge detector is not a crucial part of the technique: It can be re-
placed with another edge-detection algorithm. Nevertheless, with
Canny’s good edge detection, we believe our corner detector per-
forms better than existing ones.

Much work has been carried out on corner detection, and Sec-
tion 2 gives an overview. Section 3 briefly describes the Canny
detector and the improvement made to its response on edges at 45o

or 135o angles. Section 4 describes the CSS method in general, and
Section 5 describes in detail the proposed corner detection method.
The performance of a corner detector is best evaluated with real
test images, and in Section 6, the results of the CSS detector are
compared to three other corner detectors. Four different images
with different properties are used in the experiments. The conclu-
sions are presented in Section 7.

2 LITERATURE SURVEY

Considerable research has been carried out on corner detection in
recent years. This section briefly reviews a number of proposed
algorithms. Moravec [17] observed that the difference between the
adjacent pixels of an edge or a uniform part of the image is small,
but at the corner, the difference is significantly high in all direc-
tions. Harris [8] implemented a technique referred to as the Plessey
algorithm. The technique was an improvement of the Moravec
algorithm. Beaudet [2] proposed a determinant (DET) operator
which has significant values only near corners. Dreschler and Na-
gel [6] used Beaudet’s concepts in their detector. Kitchen and Ro-
senfeld [10] presented a few corner-detection methods. The work
included methods based on gradient magnitude of gradient direc-
tion, change of direction along edge, angle between most similar
neighbors, and turning of the fitted surface. Lai and Wu [12] con-
sidered edge-corner detection for defective images. Tsai [27] pro-
posed a method for boundary-based corner detection using neural
networks. Ji and Haralick [9] presented a technique for corner de-
tection with covariance propagation. Lee and Bien [13] applied
fuzzy logic to corner detection.

Fang and Huang [7] proposed a method which was an im-
provement on the gradient magnitude of the gradient-angle
method by Kitchen and Rosenfeld. Chen and Rockett utilized Bay-
esian labeling of corners using a gray-level corner image model in
[4]. Wu and Rosenfeld [29] proposed a technique which examines
the slope discontinuities of the x and y projections of an image to
find the possible corner candidates. Paler et al. [21] proposed a
technique based on features extracted from the local distribution of
gray-level values. Rangarajan et al. [22] proposed a detector which
tries to find an analytical expression for an optimal function whose
convolution with the windows of an image has significant values
at corner points. Arrebola et al. [1] introduced corner detection by
local histograms of contour chain code. Shilat et al. [23] worked on
ridge’s corner detection and correspondence. Nassif et al. [18] con-
sidered corner location measurement. Sohn et al. [25] proposed a
mean field-annealing approach to corner detection.

Zhang and Zhao [30] considered a parallel algorithm for de-
tecting dominant points on multiple digital curves. Kohlmann [11]
applied the 2D Hilbert transform to corner detection. Mehrotra et
al. [14] proposed two algorithms for edge and corner detection.
The first is based on the first-directional derivative of the Gaussian,
and the second is based on the second-directional derivative of the
Gaussian. Davies [5] applied the generalized Hough transform to
corner detection. Zuniga and Haralick [31] utilized the facet model
for corner detection. Smith and Brady [24] used a circular mask for
corner detection. No derivatives were used. Orange and Groen [20]
proposed a model-based corner detector. Other corner detectors
have been proposed in [26], [19], [28]. Our survey suggested that the
Plessey corner detector, the Kitchen and Rosenfeld detector, and the
SUSAN detector [24] have demonstrated good performance. These
detectors were therefore chosen as our test detectors.

3 CANNY EDGE DETECTOR

The CSS-based image corner detector uses the Canny [3] edge de-
tector. During the implementation of the CSS corner detector it
was found that Canny edge detector produced a thick edge when
edge orientation was 45o or 135o.

The Canny edge detector uses a Gaussian function to compute
the first derivatives from an image. The process produces two
similar gradient values at either side of an edge if the areas at each
side of the edge have a constant brightness level. Nonmaximum
suppression is meant to ensure that the edge line is thinned and is
only one pixel wide. Canny’s nonmaximum suppression uses the
direction of the gradient at an edge point to look at neighboring
pixels. If the chosen neighboring pixels have larger gradient values
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than the examined point, the point is removed from the edge map.
When there is a 45o or 135o edge with uniform areas on either
side, the nonmaximum suppression produces a thick edge. This
problem is caused by the fact that the gradient direction at the
edge point points to nonedge pixels. This can be seen in Fig. 1.
The edge points which are examined during the nonmaximum
suppression do not see their neighboring edge pixels due to the
45o or 135o orientation.

This problem is solved with a small addition to the Canny edge
detector algorithm. The final stage should be to compare each edge
pixel which has an edge orientation of 45o or 135o to one of its
horizontal or vertical neighbors. If the neighbor has the same ori-
entation, the other point can be removed.

4 THE CURVATURE SCALE-SPACE TECHNIQUE

The CSS technique is suitable for recovering invariant geometric
features (curvature zero-crossing points and/or extrema) of a pla-
nar curve at multiple scales. To compute it, the curve G is first pa-
rameterized by the arc length parameter u:

G(u) = (x(u), y(u)).

An evolved version Gs of G can then be computed. Gs is defined by [15]:

Gs = (X(u, s), Y(u, s)),

where

;(u, s) = x(u) ƒ g(u, s)       <(u, s) = y(u) ƒ g(u, s),

where ƒ is the convolution operator and g(u, s) denotes a Gaus-
sian of width s. Note that s is also referred to as the scale parame-
ter. The process of generating evolved versions of G as s increases
from zero to infinity (•) is referred to as the evolution of G. This
technique is suitable for removing noise from and smoothing a
planar curve as well as gradual simplification of its shape. In order
to find curvature zero-crossings or extrema from evolved versions of
the input curve, one needs to compute curvature accurately and
directly on an evolved version Gs. Curvature k on Gs is given by [15]:
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where

;u(u, s) = x(u) ƒ gu(u, s)       ;uu(u, s) = x(u) ƒ guu(u, s)

<u(u, s) = y(u) ƒ gu(u, s)       <uu(u, s) = y(u) ƒ guu(u, s).

For examples of contour evolution, see [15].

5 CSS CORNER-DETECTION METHOD

5.1 Overview
The corners are defined as the local maxima of the absolute value
of curvature. At a very fine scale, there exists many such maxima
due to noise on the digital contour. As the scale is increased, the
noise is smoothed away and only the maxima corresponding to the
real corners remain. The CSS corner-detection method finds the
corners at these local maxima.

As the contour evolves, the actual locations of the corners
change. If the detection is achieved at a large scale the localization
of the corners may be poor. To overcome this problem, tracking is
introduced in the detection. The corners are located at a high scale
shigh, assuring that the corner detection is not affected by noise. s is
then reduced and the same corner points are examined at lower
scales. As a result, location of corners may be updated. This is
continued until the scale is very low and the operation is very lo-
cal. This improves localization and the computational cost is low,
as curvature values at scales lower than shigh do not need to be
computed at every contour point but only in a small neighborhood
of the detected corners.

There are local maxima on the evolved contours due to
rounded corners or noise. These can be removed by introducing a
threshold value t. The curvature of a sharp corner is higher than
that of a rounded corner. There is one final addition to the corner
candidate declaration. Each local maximum of the curvature is
compared to its two neighboring local minima. The curvature of a
corner point should be double the curvature of a neighboring ex-
tremum. This is necessary since if the contour is continuous and
round, the curvature values can be well above the threshold value
t and false corners may be declared.

5.2 Outline
The process of CSS image corner detection is as follows:

•� Utilize the Canny edge detector to extract edges from the
original image.

•� Extract the edge contours from the edge image:
—Fill the gaps in the edge contours.
—Find the T-junctions and mark them as T-corners.

•� Compute the curvature at highest scale shigh and determine
the corner candidates by comparing the maxima of curva-
ture to the threshold t and the neighboring minima.

•� Track the corners to the lowest scale to improve localization.
•� Compare the T-corners to the corners found using the cur-

vature procedure and remove corners which are very close.

The following is an explanation of each stage of the CSS corner
detector.

5.3 Canny Edge Detection
The first stage of the CSS corner-detection method is edge detec-
tion. A Canny edge detector was chosen for this implementation
due to its good performance. A small s was used for Canny to
obtain good edge localization.

5.4 Filling the Gaps and T-Junctions
Canny detector can cause gaps at T-junctions and the corners might
not be found with the CSS method. Canny can also cause gaps in
otherwise continuous edges. When the edge-extraction method ar-
rives at the endpoint of a contour, it performs two checks:

•� If the endpoint is nearly connected to another endpoint, fill
the gap and continue the extraction.

Fig. 1. Canny’s nonmaximum suppression with 135
o
 edges.
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•� If the endpoint is nearly connected to an edge contour, but not
to another endpoint, mark this point as a T-junction corner.

In Fig. 2, both cases of gaps are shown. The T-junction gap is
marked as a corner and the gap between two contour ends is filled.

5.5 Initial Corner Points
The edge contours are extracted from the edge image and the ab-
solute value of curvature is computed at the initial scale shigh. The
local maxima of absolute curvature are the possible candidates for
corner points. A local maximum is either a corner, the top value of
a rounded corner or a peak due to noise. The latter two should not
be detected as corners. The curvature of a real corner point has a
higher value than that of a rounded corner or noise. The corner
points are also compared to the two neighboring local minima. The
curvature of a corner should be twice that of one of the neighbor-
ing local minima. This is because when the shape of the contour is
very round, contour curvature can be above the threshold t. The
threshold t depends on shigh used and it is set according to it.

5.6 Tracking
After the initial corner points are located, tracking is introduced to
the detection. As the corners were detected at scale shigh, the corner
localization might not be good. We compute curvature at a lower
scale and examine the corner candidates in a small neighborhood
of the previous corners. Corner locations are updated, if needed, in
this neighborhood. Tracking is continued until scale is very low.
This process gives very good localization. No thresholding is
needed in the tracking. The number of corners is determined at the
initial shigh, and tracking only changes the localization, not the
number of corners. Tracking improves the localization of the cor-
ners. Corners do not move dramatically during tracking and only
a few other curvature values need to be computed.

5.7 Removing False Corners
As described before, corners are declared using two methods and, in
some cases, the two methods mark the same corner. In Fig. 3, the
case where one corner is marked twice is shown. The edge extrac-
tion algorithm examines a small neighborhood when it arrives at the
end of a contour. The corner in Fig. 3 is a Y junction and it is marked
twice. The CSS method finds a corner on the continuous contour and
the edge extraction algorithm marks a T-corner at the end of the
other contour as it is nearly connected to a continuous edge contour.
The final part of the algorithm is to examine the points marked by
the edge-extraction algorithm. These T-junction corners are com-
pared to the corner points found with the CSS method and if they
are very close to each other, the T-junction corners are removed. In
the implementation, a 5 ¥ 5 neighborhood was used.

6 EXPERIMENTAL RESULTS AND DISCUSSION

The CSS corner detector was tested using four different images
and the results are compared with the output of three other corner

detectors: Kitchen and Rosenfeld, SUSAN, and Plessey corner
detectors. Note that we attempted to obtain the best possible
results for each corner detector tested by searching for parameter
values that appeared to yield the best results. The first test image
is an artificially created one with significant Gaussian noise
added to the image. The second test image is a real image of
blocks. Much texture and noise is present in the image. The third
test image is an image of a house. This image has a lot of small
details and texture in the brick wall. Finally, an image of a lab is
used.

The results showed that CSS corner detector gave the best results
in each of the four cases, and that it was robust to image noise.

The CSS detector performed very well on the noisy artificial
image, but the other three other detectors did not perform well, as
seen in Fig. 4. The real block image corner detection was a more
difficult task for the detectors. Again the CSS corner detector gave
the best results amongst the four. The results are seen in Fig. 5.

House image was a difficult task for all the detectors as the de-
tails are very varied. Overall, the CSS detector still performed bet-
ter. Fig. 6 shows the results. Finally, the results on the lab image is
shown in Fig. 7. The CSS detector performed very well with the
image, but the three other detectors had serious problems with
very obvious corners.

The speed of the corner detectors was measured on a Sun
SPARCstation 5. The Kitchen and Rosenfeld detector was the
fastest of these detectors, but the rest of the detectors had quite
similar speeds. All the detectors are implemented in C++. Note
that the source code for the CSS corner detector can be obtained
at:

http://www.ee.surrey.ac.uk/Personal/F.Mokhtarian/corners/source.html.

Over 80 percent of the time used by the CSS detector is spent in
edge detection.

The CSS corner detector uses only two important parameters.
Experiments showed that shigh = 4 gave good results with almost
all images. The threshold t depends on the value of shigh and with
shigh = 4, the threshold can be set to 0.03. Other values of shigh are
also possible and for a very noisy image shigh = 8 and threshold t =
0.02 can be used. Starting with shigh = 4, tracking can be accom-
plished at s = 2, s = 1, and sfinal = 0.7. The final scale sfinal should
be as local as possible to ensure good localization. It was found
that the results were not sensitive to the exact values of the pa-
rameters, and that the same values worked well for the different
test images used except for one that was very noisy by intention.
Note, however, that the detection of corners can be carried out at
multiple scales. As a result, by adjusting the scale, the number of
corner points recovered can increase or decrease, depending on the
requirements of later processes. For example, in a motion tracking
system, object detail is not needed when tracking in a noncluttered
scene, and a small number of corners will be sufficient. However,
when part of the object becomes occluded, a larger number of cor-
ners will be required.

Fig. 3. Case where one corner is marked twice.Fig. 2. The two cases of gaps in the edge contours.
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(a)                                                                                      (b)

(c)                                                                                     (d)

Fig. 4. Artificial test image with noise. (a) Plessey. (b) Kitchen/Rosenfeld. (c) SUSAN. (d) CSS.

(a)                                                                        (b)

(c)                                                                       (d)

Fig. 5. Blocks image. (a) Plessey. (b) Kitchen/Rosenfeld. (c) SUSAN. (d) CSS.
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It has been argued that corner detectors that perform directly
on images may be preferable, since they do not depend on the
results of an earlier stage (such as edge detection). It should be
pointed out that most corner detectors carry out some form of
edge detection either implicitly or explicitly. As a result, even
when they appear to be directly applicable to the input image, the
results are affected by the implicit edge detection. The CSS detec-
tor simply makes the process explicit.

The CSS detector makes both image edges and image corners
available for later processes. It can also provide additional point
features as well as the traditional corners. The new features are the
curvature zero-crossings or inflection points of the image edge
contours recovered in a similar way as the corners. They can com-
plement the traditional corners when used by later processes. For
example, they can be utilized by motion-tracking systems in an
area of the image where there is a lack of corner features.

7 CONCLUSIONS

This paper proposed a new corner-detection method based on the
curvature scale-space technique. The edges of a real image were
extracted using the Canny edge detector. The gaps between two
close contours were examined in order to find T-junction corners
or to fill the gap to form a continuous contour. Curvature maxima
were extracted at a high scale and the corner locations were
tracked at multiple lower scales to improve localization. Finally,
the T-junction corners were compared to the CSS corners in order
to remove corners marked twice. The CSS image corner-detection
method was very robust with respect to noise and performed bet-
ter than the other detectors it was compared to.
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