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Adaptively Quadratic (AQua) Image Interpolation

D. Darian Muresan, Member, IEEE, and Thomas W. Parks, Fellow, IEEE

Abstract—Image interpolation is a key aspect of digital image
processing. This paper presents a novel interpolation method
based on optimal recovery and adaptively determining the
quadratic signal class from the local image behavior. The advan-
tages of the new interpolation method are the ability to interpolate
directly by any factor and to model properties of the data ac-
quisition system into the algorithm itself. Through comparisons
with other algorithms it is shown that the new interpolation is not
only mathematically optimal with respect to the underlying image
model, but visually it is very efficient at reducing jagged edges, a
place where most other interpolation algorithms fail.

Index Terms—Image modeling, interpolation, quadratic classes.

I. INTRODUCTION

ITH the advent and proliferation of low resolution dig-
Wital cameras, such as those found in today’s cell phones,
there is a dire need for good image interpolation techniques. The
main focus of this paper is the introduction of a novel image
interpolation technique that is based on optimal recovery and
adaptively determining the local quadratic signal class.

This paper is organized as follows. Section II discusses
several published image interpolation algorithms. Section III
details the adaptively quadratic (AQua) image interpolation
algorithm. Section IV compares the performance of the adap-
tively quadratic interpolation against four other interpolation
techniques. Section V concludes with final remarks and future
research work in this area. Finally, the Appendix reviews the
theory of optimal recovery [1], [2], which is key to the problem
of interpolating missing samples in a quadratic signal class.

II. REVIEW

In the area of image interpolation by far the most well known
and widely used techniques are those of polynomial or Lagrange
interpolation and splines. These image models are based on the
assumption that locally each image behaves like an n!”* degree
polynomial. Whether separable or nonseparable, these methods
can be efficiently implemented using an up-sampler followed by
a filter. Examples of such interpolation algorithms are cubic [3]
and other spline based methods [4]. These polynomial image
models have the advantage of being fast but tend to introduce
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serious jaggedness (the staircase effect) and blur. They are the
choice of image manipulation programs such as Adobe Photo-
shop and GIMP.

There have been many attempts at improving the local poly-
nomial image models in order to enhance edges and the overall
image sharpness. In [5] the author introduces the concept of
warped distances to adaptively adjust the bi-cubic interpolation
filter. By assuming a different relative location (a warped dis-
tance) of the four known samples with respect to the interpo-
lated sample, the filter coefficients can be changed in order to
sharpen edges. It is not clear how, or even if, this method re-
moves the staircase affect in curved edges. The image models
of [6], [7] use splines for image resizing. Their methods are es-
pecially useful for down-sampling, while up-sampling is similar
to spline interpolation.

Other attempts at modifying the polynomial image model in
order to reduce jaggedness and sharpen edges are those of [§]
and [9]. Around edges the authors of [8] map a 3 by 3 neighbor-
hood about each pixel in the low-resolution image to a best-fit
continuous space step edge and then re-sample it at the higher
density. Images interpolated with this method look sharper than
bi-cubic interpolation but often look too much like drawings,
especially for zoom factors of four or more. In [9] the authors
use an iterative rendering and correction step for edge directed
interpolation and claim that this produces sharper images.

A second class of image interpolation algorithms are those
based on multi-resolution analysis. The authors of [10] model
the wavelet coefficients of a dyadic (nondecimated) wavelet
transform using exponential decay. In particular, they show
that the local maximum of the dyadic wavelet coefficients
decreases exponentially from coarse to fine scales. The authors
of [11], [12] apply the wavelet exponential decay model to
image interpolation by posing the interpolation problem as one
of estimating the fine detail wavelet coefficients. Exponential
decay is estimated from the coarse scale coefficients. If an
exponential decay is detected, an estimate of the fine scale
wavelet coefficient is made based on the estimated decay,
otherwise the estimate is zero.

The super-resolution image models of [13], [14] can also be
described as interpolation methods based on adding image de-
tails in the wavelet domain, although the details are added based
on training data and not wavelet decay. Using high resolution
training data, images are decimated and table lookups of low-
resolution/high-resolution patches are built. These methods pro-
duce sharper images and can work well, given decent training
data, but their main drawback is the potential for introducing ar-
tifacts when the table lookup procedure chooses a wrong high
resolution patch. In addition, the image models may not work
as well for data containing artifacts, such as JPEG compressed
images, as the methods tend to consider artifacts as part of the
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image and may enhance the artifacts more than the image itself.
The image models of [15] are similar in nature.

The authors of [16] model the wavelet coefficients using
Gaussian mixtures and apply their models to image denoising
[17]. In [18] the image model of [16] is extended to image
interpolation. For this interpolation method the interpolation re-
sults are comparable with bi-cubic interpolation. One particular
feature of this approach is that the detail wavelet coefficients
are realizations of estimated Gaussian mixtures. Hence, every
run of the algorithm produces a different result. The weakness
of this model, in image interpolation, lies primarily in the
determination of the Gaussian mixture parameters.

The authors of [19] propose a maximum a posteriori (MAP)
pixel estimation technique which results in the optimization of
convex functionals. Their nonlinear image expansion technique
sharpens edges but the interpolation technique does not elimi-
nate jagged edges. The work of [20] also uses a MAP frame-
work for estimating a high resolution image from a sequence of
under-sampled images. Their expansion method could be used
for a single image by assuming only one frame. Applying the al-
gorithm to a single frame results in images very similar to those
of [19].

In [21] the authors present a least squares edge directed inter-
polation method. The method assumes that each pixel is a linear
combination of its neighboring pixels. Further, it is assumed that
locally the weights are constant. A linear system of equations is
solved in order to find the local weights. This method works for
interpolation by factors of two and performs well around edges,
but performs poorly in high frequency regions, sometimes intro-
ducing undesired artifacts. In [22] it is shown how this solution
can be reformulated using optimal recovery which allows for
additional assumptions about the local derivatives in addition to
the known local pixels to be used in the interpolation process.

The work of [23] is related to our image interpolation ap-
proach. The authors pose the image interpolation problem as
one where the image belongs to a fixed quadratic image class.
To solve the interpolation problem the authors add some known
linear partial differential constraints. The solution to their in-
terpolation problem is similar to the solution of our interpola-
tion problem. The difference is that this paper develops adap-
tive quadratic signal classes to better model the local image be-
havior.

This paper presents a novel approach to image interpolation
based on optimal recovery (Appendix) and the adaptive determi-
nation of the local quadratic signal class. The new interpolation
method generalizes well to interpolation by any factor, removes
jagged edges, and can easily incorporate a model for the camera
lens in order to produce sharper results.

III. ADAPTIVELY QUADRATIC (AQUA) INTERPOLATION
The first challenge of using optimal recovery for image inter-
polation is determining the quadratic signal class K:

K={xecR":x"Qx < ¢}

from a set of training data. The training data is usually taken
from the local features of the image and selecting a proper
training set is discussed at the end of this section. For now

assume that a training set of patches S = {xi,...,X;,}
representative of the local data is given for estimating the local
quadratic signal class. The Q for which the ellipsoid

x7Qx <, (D

for some constant ¢ must be representative of the training set
S. In other words Q must be a matrix such that when an image
patch y is similar to the vectors in S then (1) holds for y. Let
matrix S be formed by arranging the image patches in S as
columns:

S:(X17"'7xm) (2)

and consider the equation relating the image patch y to the
training set S using a column of m weights, a:

Sa=y. 3)

Vector y is similar to the vectors in S when a has small energy.
Using standard notation for singular value decomposition of S,
(3) can be rewritten as:

UANVTa=y
The weight vector a is given by
a=VA Uy
and the sum of the squares, or the energy of a is:
a’a=y UA?UTy.
Since
SST =UAN*UT
it follows that
aTa=yT(S5T) 1y
=y'Qy

where Q is the pseudo inverse of SST. If y is very similar to
the training set S then

ala< €,
and with the new Q it follows that

y'Qy <e.

This is the desired form for our ellipsoidal signal class. It results
from an “Occam’s razor” type of assumption that small weights
are used to represent vectors that are similar to our training set
S.

Given the formulation of the quadratic signal class from a
training set S, or equivalently the formulation of Q, the next
challenge is determining the training set S. One direct approach
of selecting the vectors in S is based on the proximity of their lo-
cations to the position of the vector being modeled. In this case,
patches are generated from the local neighborhood. A second
approach is to use patches from other high density images. This
works well when interpolating images that belong to a certain
predetermined class. For example in [24] AQua interpolation is
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applied to face interpolation and the training set is determined
from other high resolution faces. A third approach is to adap-
tively search for training patches in other high resolution im-
ages. This paper uses the first approach where training patches
are selected from the local neighborhood. For example, in Fig. 1
to model the quadratic signal class that the center patch

T
X = [33(2,2)7 Z(2,3), T(2,4), £(2,5)) £(3,2) +-+» 93(5,5)] “4)

belongs to, let

Z(0,0) T(4,4)
Z(0,1 L(4,5

s=dOv e (b )
Z(3,3) L(7,7)

where S is formed by choosing all the possible 4 x 4 image
blocks in the 8 x 8 region of Fig. 1.

A. Interpolation

Adaptively quadratic interpolation is performed in three
steps. A block diagram is shown in Fig. 2 and the detailed steps
are described next.

1) Determine High Density Class K: The training set used
for determining the local quadratic signal class of the high den-
sity image (i.e. the interpolated image) is obtained by taking
image patches from the local neighborhood. In the case of image
interpolation the neighboring image patches contain missing
samples. There are several approaches to handle this situation.
The first approach is to use patches from the decimated image.
For example, in Fig. 1 where the interpolation factor is 2x, in-
stead of forming S as in (5), the set is formed using decimated
patches:

Z(0,0)

(0,2)

S = LS (6)

(6,6)

While this approach works well for small interpolation factors,
the approach quickly deteriorates when interpolating by larger
factors. For larger interpolation factors the size of training
patches is larger and using decimated patches quickly takes
away from the locality of the method. Instead of using deci-
mated training patches an alternative method is to interpolate
the training patches before forming &. Using interpolated
patches in determining the quadratic signal class K is almost
as good as using original high density patches. This can be
explained as follows. Let matrix Q, be formed using original
high density patches, and matrix Q; be formed using interpo-
lated patches. To compare the two quadratic classes we must
compare! Q! and Q; 1A direct way is to look at the norm?

IIn optimal recovery Q! is used for interpolation (see Appendix). Alter-
natively, the quadratic class I is stretched in the direction of the eigenvector
corresponding to the largest eigenvalue of Q ~'. This can be understood by di-
agonalizing matrix Q. That is x¥ Qx = € becomes xT' VAV Tx = . When
x is in the direction of eigenvector v; (i.e. x = «;V;) its squared norm is:
a? = e/X;. Therefore, a small \; (i.e. a large eigenvalue of Q') causes a
large stretch in the ellipsoid x7 Qx = e.
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center patch

Fig. 1. Local high density image used for selecting S to estimate the quadratic
class for the center 4 X 4 patch (dark pixels are part of the decimated image).
To model the image acquisition system our assumption is that the high density
image has been filtered by a low pass filter before down-sampling. For example,
the pixel at location (2,2) is the average of the four high density pixels shown
on the right.

of the difference between Q;'/||Q; !l and Q;'/|1Q;!||.
Table I shows the norms of the error matrix for three different
patches of lena when interpolation is pixel replication and the
interpolation factors are 2, 4, and 8. In all cases the norm of the
error matrix is less than about two percent, suggesting a good
fit between the quadratic signal classes generated by Q, and
Q.

A second method of comparing the quadratic classes gen-
erated by Q, and Q; is to look at the correlation coefficients
between the eigenvectors corresponding to the smallest eigen-
values of Q, and Q; (the largest eigenvalues of Q;” Land QY.
If the correlation is close to one then the quadratic signal classes
are almost the same. Table II depicts the first three correlation
coefficients for three different patches of lena. In all cases the
first eigenvector of Q; (the vector corresponding to the largest
eigenvalue of Q; 1) correlates very strongly with the first eigen-
vector of Q,. Although the correlation coefficient is smaller for
the second and third eigenvectors, the second and third eigen-
values are two orders of magnitude larger than the first. This
suggests that the quadratic classes generated by Q; and Q, are
very similar.

Table II also depicts two other trends. First, as expected, the
correlation coefficient decreases as the scaling factor increases.
This behavior does not depend solely on scaling factors but it
also depends on the level of detail present in the decimated
image. Starting with the 512 x 512 image of lena and inter-
polating by factors of 8 (horizontally and vertically) produces
naturally good visual results. Decimating the 512 x 512 image
by 8 and then interpolating back to 512 x 512 produces bad
visual results, while the image continues to maintain nonjagged
edges. Second, the correlation coefficient is smaller for textured
regions than for well defined edge regions, suggesting that in
textured regions more error is introduced. On the other hand,
textured regions are also more forgiving from a visual score
since human eyes are not as sensitive to errors made in these
regions.

The correlation results shown in Table II are for the case when
the initial interpolation step of Fig. 2 is pixel replication. The
results are slightly better for cubic and linear interpolation. As it
will be shown in the Results Section, if the iteration step of Fig. 2

2The norm of a matrix is its largest singular value [25].
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Determine high density class K

Initial (rough)

Determine the Optimal recovery

interpolation interpolation

known representors

Optional iterative step

Fig. 2. Interpolation steps performed for each local region.

TABLE 1
THREE HIGH DENSITY PATCHES (36 X 36) FROM THE lena IMAGE DEPICT: AN EDGE, A STRIPE, AND A TEXTURED REGION. THE HIGH DENSITY PATCH IS
DECIMATED BY 2, 4, AND 8 AND THEN INTERPOLATED USING PIXEL REPLICATION. USING 4 X 4 PATCHES, MATRICES Q; AND Q, ARE BUILT. SHOWN IS
THE MATRIX NORM OF THE DIFFERENCE OF THE NORMALIZED MATRICES: ||(1/||Q: 1 NQ: — (1/11Q: 1N Q:

1 -1 1 —1
| HQ;‘HQ” HQE'HQ’“ |
High Density Patch || Pix. Rep. Int. 2X | Pix. Rep. Tnt. 4X | Pix. Rep. Tnt. 8X
0.0013 0.0035 0.0087
0.0041 0.0111 0.0147
0.0062 0.0155 0.0267
TABLE 1I

THREE HIGH DENSITY PATCHES (36 X 36) FROM THE lena IMAGE DEPICT: AN EDGE, A STRIPE, AND A TEXTURED REGION. THE HIGH DENSITY PATCH IS
DECIMATED BY 2, 4, AND 8 AND THEN INTERPOLATED USING PIXEL REPLICATION. USING 4 X 4 PATCHES, MATRICES Q; AND Q, ARE BUILT. SHOWN IS THE
CORRELATION COEFFICIENT (p) BETWEEN THE EIGENVECTORS CORRESPONDING TO THE SMALLEST EIGENVALUES OF Q; AND Q,,, AND THE INVERSE OF THE

SMALLEST EIGENVALUES OF Q; (DENOTED BY e{l) AND Q, (DENOTED BY e, 1)

High Density Patch Pix. Rep. Int. 2X Pix. Rep. Int. 4X Pix. Rep. Int. 8X

-1 -1 -1 -1 -1 -1
P € eo P € eo p € eo

099 4.03 408 099 393 4.08 099 477 4.08
099 0.03 004 098 004 0.04 093 005 0.04

098 001 001 047 001 0.01 000 003 001

-1 -1 -1 -1 -1 -1
P € €q 2 € €q P € €q

099 244 2351 0% 232 2.5 093 257 2351
0.99 0.05 006 0.98 004 006 097 004 0.06
098 0.01 001 0.03 002 00 0.00 003 001

PGt et | _p &t et |0 gt e
095 133 134 088 136 134 087 174 134
0.99 003 004 059 002 004 099 005 004

097 001 0.01 0.08 001 0.01 0.07 003 0.1

is not used the interpolation output is dependent on the quality two times (i.e. use the interpolated image to re-determine the
of the initial interpolation step. However, using the iterative step  quadratic signal class and then re-apply optimal recovery twice)
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Fig. 3. Local image and two patches of 6 X 6 (dark pixels are part of the
decimated image). To model the image acquisition system the assumption
is that the high density image has been filtered by a low pass filter before
down-sampling. For example, the pixel at location (1.5,1.5) is a weighted
average of the nine high density pixels x(1 5,1.5), - - -, Z(2.5,2.5), shown on the
right.

generates visual results that are very similar regardless of the
initial interpolation step.

2) Determine the Known Representors: First, a decision
must be taken about the known linear functionals of the patch
that needs to be interpolated. (A linear functional of x, denoted
by F(x), is any single valued linear function of x, such as:
samples, derivatives, integrals, etc.) In the large square of Fig. 1
assume that the center patch (x of (4)) belongs to a predeter-
mined quadratic signal class K. To estimate the samples of
the center patch x a decision must be made about what linear
functionals of x are known. One approach is to assume that the
known linear functionals of x (the dark pixels) are the samples
of x. In that case:

Fl(X) :.17(2 2)
F2(X) =T(2,4)
Fg(X) —.’17(472)

Once linear functionals are known the representors are vectors
¢; in R™ for which:

Fi(x) = (di,x)q-

The representors of the known functionals are products between
Q! and vectors with 1 in the location of the known values and
zero everywhere else (i.e. for F the vector would have 1 at lo-
cation (2,2)). A second alternative is to assume that the original
high density pixels have been averaged first, before decimation
by two. (For example, this would be the case in a digital camera
where one pixel in a CCD sensor records the average light en-
ergy detected in the area of the pixel.) In this second case the
known linear functionals are:

(re + 73 +re2) +263)

Fi(x) = ;

F(x) = (z2,0) + T(2s) 1—117(374) +3(35))
F3(x) = ($(4,2) + Z(4,3) Zx(s,z) + x(573))
Fi(x) = (T(a,0) + Tas) + Ta) + T(5.5))

4
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The interpolation problem is estimating (2 2), ¥(2,3), Z(3,2)>
and T (3,3) On the right of Fig. 1 from knowing Fi, F5, F3, and
F, which are the high density averages at (3 2), T(2,4)» T(4,2)»
and T4 7) in the big square of Fig. 1. The representors of the
known functionals are now products between Q! and vectors
that average the four samples (i.e. for F} the vector has 1/4 at
T(2,2) T(2,3)> T(3,2)> (3,3) and zero everywhere else). As it will
be shown in the Results Section making the first assumption
about the known functionals tends to produce smoother images,
while using average functionals images tend to look sharper.

3) Optimal Recovery Interpolation: Once the quadratic
signal class is determined from step 1 the optimal recovery
solution (reviewed in the Appendix) is vector u which is a
linear combination of the representors found in the previous
step. The estimates of the missing samples are the samples of
u. The optimal estimates for the samples of x are weighted
averages of the known functionals F; and depend on both the
quadratic signal class K and the representors of F;.

To clarify the details of the interpolation steps and to exem-
plify the extension of AQua interpolation to any factor this paper
goes through the mechanics of interpolating by a factor of 1.5.
In the large square of Fig. 3 the dark pixels are the known sam-
ples from the decimated image and the pixels marked with “X”
are the pixels that need to be estimated when the interpolation
factor is 1.5. If the pixels of the decimated image are at indices
0,1,2,...,m and the interpolation factor is & > 1 then in the
high density image the pixels of the decimated image are at lo-
cations 0, k, 2k, . . . , km and interpolation is done by estimating
the missing samples at the integer locations. In our case the dec-
imated pixels are at locations 0, 1.5, 3, 4.5, .. ., etc. and the in-
terpolation estimates the pixels at location 0, 1, 2, 3, ..., etc.
The interpolation algorithm for 1.5% is as follows:

1) Determine high density class K.

In Fig. 3 two different training patches are patch A
and B. For a general interpolation factor k the size of the
training patches should be chosen such that each patch
contains at least four of the known decimated pixels. This
is so that the estimation of any pixel is based on at least
four closest known functionals. The training patches are
first estimated using cubic or other initial interpolation.

2) Determine the known representors.

As previously mentioned selecting the known func-
tionals can be based on the assumption that the decimated
pixels are the same in the high density image as in the dec-
imated image, or that the pixels in the decimated image
are some weighted average of the high density pixels. For
example, in the large square of Fig. 3 the value of pixel
T(1.5,1.5) can be taken as the average of the pixels on the
right side of Fig. 3. The representors are determined sim-
ilarly to the 2X interpolation example.

3) Optimal recovery interpolation.

Again, the optimal recovery solution is vector u which
is a linear combination of the representors in step 2
and the estimated pixels are samples of vector u. The
samples of @1 can be estimated directly, without finding u
first. For patch A of Fig. 3 this means that the estimated
samples are the pixels at location (g 0y, Z(0,1)> (1,0
and T(1,1)-
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TABLE 1II
COMPARISON OF DIFFERENT 2 X INTERPOLATION ALGORITHMS USING PSNR VALUES (101log, (2552 /M SE)). THE ORIGINAL IMAGE IS LOW-PASSED BEFORE
DECIMATION. FOR AQUA INTERPOLATION THE FIRST NUMBER REPRESENTS THE ORDER OF THE POLYNOMIAL USED FOR THE INITIAL INTERPOLATION AND THE
SECOND NUMBER REPRESENTS THE NUMBER OF ITERATIONS. NUMBER (3,2) MEANS A CUBIC INITIAL INTERPOLATION AND TWO ITERATIONS. THE LAST TWO
COLUMNS REPRESENT THE RESULTS OF AQUA WHEN USING THE HIGH DENSITY IMAGE AS THE INITIAL ESTIMATE

Image Cubic | Sub-Pix | Bayesian | Edge Dir AQua

60 | 62 | 0o | 02 | apo | @2
Rings 22.41 21.14 19.40 21.65 27.21 | 33.26 | 19.31 | 28.88 || 35.11 33.59
Barbra 30.86 | 30.29 29.11 27.12 30.39 | 29.58 | 31.03 | 30.20 || 35.27 34.72
Lena 39.69 36.18 35.48 38.13 39.34 | 39.45 | 37.46 | 3947 | 39.70 39.56
Mandrill || 30.21 29.28 29.18 29.55 30.16 | 30.34 | 29.59 | 30.25 || 30.62 30.52
Peppers 40.12 | 36.16 38.86 39.40 40.04 | 40.24 | 3835 | 40.21 || 40.39 40.27

IV. INTERPOLATION RESULTS

AQua interpolation is compared against four other interpo-
lation methods. These methods are: sub-pixel edge localization
[8], edge directed interpolation [21], bi-cubic, and Bayesian
interpolation [19]. The sub-pixel edge localization interpolation
is our own implementation of the algorithm described in [8],
the edge directed interpolation was obtained directly from the
author, bi-cubic interpolation is Matlab’s “INTERP2” function,
and the Bayesian interpolation algorithm was obtained from
Simon Baker [14]. Interpolation is applied to five different
test images: rings, barbra, lena, mandrill, and peppers. The
rings image is 256 x 256 and consists of concentric circles
that get closer and closer to each other as they move outward,
away from the origin. The rings image is suggested by [26]
for visualizing the results of applying different interpolation
filters. Images barbra, lena, mandrill, and peppers are 512 x
512 gray scale images available from [27]. All images are
gray scale images with 8 bits per pixel. In all cases interpo-
lation is performed by first filtering the original image using
a 2 x 2 averaging filter and then decimating by two. The
decimated images were then interpolated using the five dif-
ferent algorithms and these results are presented next. The
interested reader can view and download full copies of these
interpolated image from [28].

Peak signal-to-noise-ratio (101log;,(255%/M SE)) between
the 2x interpolated images and the high density filtered
images (just before down-sampling by two) are presented in
Table III. Without iterations the AQua algorithm performs
slightly worse than cubic interpolation, and when using two
iterations the AQua algorithm slightly outperforms bi-cubic.
Table III shows a few other interesting trends. First, for the
more natural images of lena, mandrill and peppers using AQua
with 2 iterations produces similar results regardless of the
initial interpolation image. Down-sampling barbra and rings
introduces strong aliasing and for these two images PSNR
values are not as meaningful. None the less for the rings image
AQua performs much better. This is due to the very structured
nature of the rings image. For the rings image AQua is able to
lock in on the structure of the local edge and better reconstruct
the local image. Second, using the high density image as the
initial interpolation estimate produces the best PSNR values.

Fig. 4. Rings 2X interpolation (from left to right, top to bottom): bi-cubic
(a), Bayesian (b), sub-pixel edge localization (c), edge-directed (d), AQua with
samples as functionals (e), and AQua with averages as functionals (f).

It is interesting to note that in this case using two iterations
deteriorates the PSNR values, as AQua tries to make the edges
smoother than in the original image.

Although PSNR methods are the most common methods for
measuring the quality of images, their inadequacies have long
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Fig. 5. Lena’s hat 3X interpolation (from left to right): bi-cubic (a), AQua
with samples as functionals (b).

Fig. 6. Mandrill eye 4x interpolation (from left to right, top to bottom):
bi-cubic (a), edge-directed (b), AQua with samples as functionals (c), AQua
with averages as functionals (d).

been recognized. For example, PSNR values do not take into
consideration edge integrity and reconstructed images with low
PSNR values can still have a very high visual quality score, as it
is the case with AQua interpolation. For visual comparison and a
more subjective evaluation, our results are also presented using
images of interpolated results. The interpolation method uses
cubic interpolation as the initial step and no iterations. From a
visual point of view this method produces results that are almost
indistinguishable from using any other initial interpolation and
two or more iterations.

Our first image is a 256 x 256 rings image, a 1-D chirp signal
rotated around 360 degrees, filtered with an averaging filter
and down-sampled to 128 x 128. The down-sampling process
introduces slight aliasing artifacts that manifest themselves as
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extra gray rings. In Fig. 4 the 2x interpolation results using
six different interpolation methods are presented. In this test
image AQua interpolation does the best job at removing the
aliasing artifacts introduced by the down-sampling process.
Cubic interpolation tends to be the most blurry of all the images,
while the edge directed interpolation tends to introduce slight
artifacts. Also notice the extra sharpness in the AQua result that
uses averages (instead of samples) for the known functionals.

The second image is lena (Fig. 5). To show that AQua can be
applied to any interpolation factor this image has been increased
3X in size using bi-cubic interpolation and AQua. (The other in-
terpolation methods are based on interpolation by factors of 2x
and therefore are not compared here.) Notice how bi-cubic pro-
duces a more jagged edge in lena’s hat, while AQua maintains
a cleaner edge.

Our final image is the 4x interpolation of mandrill’s eye,
as shown in Fig. 6. Using bi-cubic interpolation the edges
around the eye tend to be somewhat jagged. The edge-directed
algorithm does a much better job of maintaining edge integrity
but the image tends to look a bit overly smooth. AQua inter-
polation with samples as functionals maintains fairly straight
edges around the eye while making the image look somewhat
more natural than the edge directed interpolation. Also notice
the extra sharpness added to the image when functionals for
AQua interpolation are averages.

In conclusion bi-cubic’s main weaknesses are jagged and
blurry edges. Bayesian interpolation [19] generates sharper
edges but retains jagged edges. Sub-pixel edge localization
interpolation [8] performs well at keeping sharp edges, but
images tend to be less natural and flat. The edge directed
interpolation [21] performs well at maintaining edge integrity
but it performs less desirably in high frequency regions. AQua
performs well compared to all the reviewed algorithms.

V. CONCLUSION

This paper presented a novel method for adaptive image
interpolation. The algorithm first determines the local quadratic
signal class from local image patches and then applies optimal
recovery to estimate the missing samples. Additionally, the
new interpolation algorithm allows for integrating knowledge
about the lens acquisition system into the interpolation itself by
using weighted averages as functionals. This tends to produce
somewhat sharper images. The general theory of optimal
recovery allows estimation of any linear functional of the
image. Arbitrary interpolation factors can be used and samples
on any lattice can be estimated directly. The focus here has
been the interpolation of images by arbitrary factors. Through
visual examples this paper has shown that AQua interpolation
performs better than several other published interpolation
algorithms, especially in structured images and around edges
where most other algorithms introduce objectionable artifacts
or jaggedness. An extension of AQua interpolation is image ro-
tation where the samples of the rotated image can be estimated
directly on the rotated grid.
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Fh={xer": F(x) = f,Vi}

Fig. 7.

Intersection of K with hyper-plane F".
APPENDIX

OPTIMAL RECOVERY

The theory of optimal recovery is detailed in [1], [2]. Using
the notation of [1] this appendix reviews optimal recovery as it
applies to the problem of image interpolation.

The basic problem of image interpolation is that of approxi-
mating an unknown function x at pixel x( in terms of its known
values at pixels z1, . . ., z, with the additional assumption that
x is an element of a known linear space V. More generally,
the problem is to approximate a linear functional F'(x) in terms
of other known linear functionals Fi(x), ..., Fx(x). (A linear
functional F'(x) can be any linear function of x, such as: sam-
ples, derivatives, integrals, etc.) Further, there is the assumption
that F; are linearly independent.

The image is modeled as belonging to a certain ellipsoidal
signal class K

K={xeR":x"Qx < ¢} @)

where Q is a positive definite matrix. Noting the values of the
functionals F; by f;, the unknown function x lies in the set C's

Cr = {xe R™: x'Qx < ¢, Fj(x) = fi fori = 1,...,k}.
®)
That is x lies in C'y, the hyper-circle defined by the intersection
of the hyper-plane F" = {x € R" : F;(x) = f;,Vi} with the
ellipsoid signal class K, as shown in Fig. 7. With Q-norm of
x defined as ||x||q = x7 Qx, let @ be the minimum Q-norm
signal in C¥

[tlle=_ inf lxllq ©

(X)=fi
and F be the subspaces parallel to the hyper-circle C's:

F={xeR": Fi(x)=...= F(x) =0}. (10)

Then F'(u) is the best approximation to the value of F'(x). That
is (1) is the Chebyshev center [29] of F'(x) on Cj:

sup |F(u) — F(x)| = _inf sup |F(u) — F(x)| (11)
XeCy Uelr xecy
Next, let y be the unit norm element in  for which the func-
tional F' attains its least upper bound

F(y) = 12)

sup
XeF,|[X[lq=1

[F(x)]-

Then, the bounds on the error of F'(x) are

1

F(a) = F(y) (e = |lullq)?
<

1
F(x) < F(u) + F(y) (¢ — [luflq)? (13)
and these bounds are attained for the functions x € C
1_
x=uzx(c—|ullq)*y (14)

which are vectors on the boundary of the hyper-circle C'.

Calculation of @, F(u), and ¥ is done using representors.
By the Riesz representation theorem [30] there are elements
¢, ¢1,. .., ¢, in R™ such that

F(x) = (6, %)q, Fi(x) = (6, %)q, Vi

for all x € K. Vectors ¢, ¢1, ..., ¢ are linearly independent
since F, Fy,..., F} are assumed to be linearly independent.
Functionals F;(x) = (¢;, x)q remain constant for all x € Cy.
That means subspace F is the set of all vectors in R™ orthogonal
to the representors ¢;, Vi. Equivalently, ¢1, . . ., ¢ is a basis for
F+. With a € F+ it follows that 1 is a linear combination of
the representors ¢;. Similarly, y is a linear combination of the

representors ¢, i, ..., ok

u=) cipandy =dp+ ) digi.

i

15)

(16)

Constants ¢; are found by forcing u to satisfy the given func-
tionals

Fiy(q) = (¢, ﬁ)Q

§bi7zcj§bj

7)

(13)
Q

In matrix form, this is equivalent to solving

P (B (f1,01)Q (P1,92)q -+ (P1,9%)q
W) (g d2)q (d2de)a - (d2.du)a | [@
mwl | L

for ¢;. Constants d and d; are found similarly. Using the fact that
y € F it follows that ¥ is perpendicular to the representors ¢;,
Vi

(b, ¢1)q

d +

((b;g[.)k)Q

(b1,61)Q (91,92)q --- (d1,%k)qQ

(b1, 92)q ($2,d2)q --- (d2,dk)q | [©
: : : : | =0 0

(61, 91)q (Prs 1)

From (20) find d; as a function of d. Vector § from (16) is now
defined as a function of only one unknown constant d. Constant
d is found from the restriction that ||¥|/q = 1.
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