NVIDIA OpenGL
Extension Specifications for the
GeForce 8 Series Architecture (G8x)

February 14, 2008

OpenGL Extension Specifcations for GeForce 8 Series

Copyright NVIDIA Corporation, 2005-2007.

This document is protected by copyright and contain s information
proprietary to NVIDIA Corporation.

This document is an abridged collection of OpenGL e xtension
specifications limited to those extensions for new OpenGL functionality
introduced by the GeForce 8 Series (G8 x) architecture. See the

unabridged document “NVIDIA OpenGL Extension Specif ications” for a

complete collection.

NVIDIA-specific OpenGL extension specifications, po ssibly more up-to-
date, can be found at:

http://developer.nvidia.com/view.asp?lO=nvidia ope ngl specs

Other OpenGL extension specifications can be found at:

http://oss.sai.com/projects/oagl-sample/reaqistry/

Corrections? Email opengl-specs@nvidia.com

NVIDIA Proprietary 2

http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs
http://oss.sgi.com/projects/ogl-sample/registry/

Table of Contents

Tabie 0T I\IVIL)I/-\ UDenbL Extension Support
tXI Dlnﬂable UNITOMM..eeeee e,
EXT_ oraw DUTI'eI'SA
tXI oraw msranceu

EXT packed_fioat..
EXT_texture arrav
EXT_texture_puffer_0oDjeCl...........cccccueeruneee
EXT_texwure_compression_iaiC.......................
EXT_texture_compression _rdiC.........c.ceeeevee...
EXT_T1exXmure _int€ger.........ccocveercueererennee.
EXT_texture_shared_exponent........................
NV_conditionai_render................
NV_depth_pufier_fioat..
NV_Tragment_ oroqram4

NV_ rrameouner mumsample coverage...........

NV_geometry_proaramé...........ccceeceeeeveenee.
NV_geometry_Shaders........ccccocevveerneenen.
NV_QPU_Droarama...........ccceeeueerveereveennen.
NV_parameter_buiier objecCl.............cccccc......
NV _transform_feedback
NV_Vvertex_programé..........ccccevvveeeeeecvvnennn

OpenGL Extension Specifications for GeForce 8 Series

Errori Bookmark not defined.

................. 457

3 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Table of NVIDIA OpenGL Extension Support

Table of NVIDIA OpenGL Extension Support

Extension NVIxX |NV2x [NV3x | NV4x | G8x Notes
ARB_color_buffer_float R75 X

ARB_depth_texture R2b+ X X X 1.4 fupctionality
ARB_draw_buffers R75 X 2.0 fynctionality
ARB_fragment_program X X X

ARB_fragment_program_shadow R54 X X

ARB_fragment_shader R6 X X 2.0 fynctionality, GL SL
ARB_half float_pixel R75 R75 X

ARB_imaging R10 X X X 1.2limaging subset
ARB_multisample X X X X 1.3 functionality
ARB_multitexture X X X X X 1.3 fuctionality
ARB_occlusion_query R5 R50 R50 X 1.5 fupctionalit y
ARB_pixel_buffer_object R80 R80 R80 R80 X 2.1 funct] ionality
ARB_point_parameters R35 R34 X X X 1.4 fupctionalit y
ARB_point_sprite R50 R5(R50] X X

ARB_shader_objects R60 R6D R6(X X 2.0 functionalit y, GLSL
ARB_shading_language 100 R60 R6D R6(X X 2.0 functi onality, GLSL
ARB_shadow R25+ X 1.4 functionality
ARB_texture_border_clamp X X X X 1.3 funictionality
ARB_texture_compression X X X X X 1.3 functionality
ARB_texture_cube_map X X X X X 1.3 finctionality
ARB_texture_env_add X X X X X 1.3 fynctionality
ARB_texture_env_combine X X X X X 1.3 fupctionality
ARB_texture_env_crossbar see explanation
ARB_texture_env_dot3 X X X X X 1.3 fupctionality
ARB_texture_mirrored_repeat R40 R40 | X X X 1.4, same as IBM
ARB_texture_non_power_of_two X X 2.0 fungtionali ty
ARB_texture_rectangle R62 R60+ R62 R62 X

ARB_transpose_matrix X X X X X 1.3 fupctionality
ARB_vertex_buffer_object R65 R65 R65 R65 X 1.5 func tionality
ARB_vertex_program RAO+ R40+ X X X

ARB_vertex_shader R60 R40 R60 R60 X 2.0 fynctionali ty, GLSL
ARB_window_pos R40 RA0 A X X 1.4 functionality
ATI_draw_buffers X X

ATI_texture_float X X

ATI_texture_mirror_once X X use EXT] texture_mirr or_clamp
EXT_abgr X K X X X

EXT_bgra X K A X X 1.2 functionality
EXT_bindable_uniform X GLSL ¢xtension
EXT_blend_color X X X X X 1.4 fynctionality
EXT_blend_equation_separate R60 | X 2.0 funcfional ity
EXT_blend_func_separate X X X 1.4 funjctionality
EXT_blend_minmax) X X X 1.4[functionality
EXT_blend_subtract X X X X X 1.4 fupctionality
EXT_Cg_shader R60 R60 R60 R0 X Cg|through GLSL API
EXT_clip_volume_hint R20+

EXT_compiled_vertex_array X X X X X

EXT_depth_bounds_test R50] X X NV35] NV36, NV4x in hw only
EXT_draw_buffers2 X ARB_[draw_buffers extension
EXT_draw_instanced X

EXT_draw_range_elements R20 R2Dp X X X 1.2 functiona lity
EXT_fog_coord X X X X 1.4 functionality
EXT_framebuffer_blit R95 R95 | X

EXT_framebuffer_multisample R95 R95 X

EXT_framebuffer_object R75 R75 X

EXT_framebuffer sRGB X

EXT_geometry_shader4 X GLSL extension
EXT_gpu_program_parameters RY5 R9% R95 R95 X

EXT_gpu_shader4 X GLYL extension
EXT_multi_draw_arrays R24 R25 X X X 1.4 funjctionali ty
EXT_packed_depth_stencil R80 X X

EXT_packed_float X

EXT_packed_pixels X X X X X 1.2 fynctionality

NVIDIA Proprietary 4

Table of NVIDIA OpenGL Extension Support

OpenGL Extension Specifications for GeForce 8 Series

Extension

NV4x

G8x Notes

EXT_paletted_texture

no NV4k hw support

EXT_pixel_buffer_object

2.1 funct|o nality

EXT_point_parameters

1.4 fupctionality

EXT_rescale_normal

1.2 fynctionality

EXT_secondary_color

x| x>

1.4 functionality

EXT_separate_specular_color

1.2 funcfiona

lity

EXT_shadow_funcs

1.5 functionality

EXT_shared_texture_palette

no NV4x|hw suppo rt

EXT_stencil_clear_tag

NV44 only

EXT_stencil_two_side

2.0 fungtionality

EXT_stencil_wrap

1.4 functionality

EXT_texture3D

1.2 functionality

EXT_texture_array

EXT_texture_buffer_object

EXT_texture_compression_latc

EXT_texture_compression_rgtc

EXT_texture_compression_s3tc

X

EXT_texture_cube_map

1.2 functionality

EXT_texture_edge_clamp

1.2 fupctionality

EXT_texture_env_add

1.3 fynctionality

EXT_texture_env_combine

1.3 fupctionality

EXT_texture_env_dot3

><><><><><

><><><><><

1.3 functionality

EXT_texture_filter_anisotropic

EXT_texture_integer

EXT_texture_lod

x

x

1.2 functionality; no spe

EXT_texture_lod_bias

1.4 fungtionality

EXT_texture_mirror_clamp

EXT_texture_object

1.1 furctionality

EXT_texture_shared_exponent

EXT_texture sRGB

2.1 functionality

EXT_timer_query

EXT_vertex_array

1.1 functionality

EXT_vertex_weighting

Discontinued

KTX_buffer_region

HP_occlusion_test

IBM_rasterpos_clip

IBM_texture_mirrored_repeat

1.4 functipna lity

KTX_buffer_region

use ARB_buffer_region

NV_blend_square

1.4 functionality

NV_conditional_render

NV_copy_depth_to_color

NV_depth_buffer_float

NV_depth_clamp

NV_evaluators

Discontinued

NV_fence

NV_float_buffer

NV_fog_distance

NV_fragment_program

NV_fragment_program_option

NV_fp features for ARB_fp

NV_fragment_program?2

NV_fragment_program4

See NV_gpu_program4

NV_framebufier mulisample_coverage

Nf

Oe xtension

NV_geometr_y_program4

See NV_gpu_program4

NV_geometry_shader4

NV_gpu_program4

NV_half float

| X

NV_light_max_exponent

NV_multisample_filter_hint

NV_occlusion_query

R21

NV_packed_depth_stencil

R10)

H

R10¢

NV_parameter_buffer_object

See NV_|gpu_program 4

NV_pixel_data_range

R4

D

R44

NV_point_sprite

R3

+

R25

NV_primitive_restart

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Table of NVIDIA OpenGL Extension Support

Extension

NVIx

NV2 x

NV3x

NV4x

G8x Notes

NV_register_combiners

NV_register_combiners2

NV_texgen_emboss

Discontinued

NV_texgen_reflection

use 1.3[functionalit

NV_texture_compression_vtc

x| x

NV_texture_env_combine4

NV_texture_expand_normal

NV_texture_rectangle

NV_texture_shader

NV_texture_shader2

NV_texture_shader3

<
|| x| [><] =

only NV25 and up in H

NV_transform_feedback

NV_vertex_array_range

NV_vertex_array_range2

R1(

NV_vertex_program

NV_vertex_programl1_1

R

NV_vertex_program?2

x
X| X[=

NV_vertex_program?2_option

a1

NV_vertex_program3

NV_vertex_program4

See NIV_gpu_program4

S3_s3tc

no gpec; use EXT_t c_s3tc

SGIS_generate_mipmap

1.4 functionality

SGIS_multitexture

use 1.3 version

SGIS_texture_lod

1.2 fupctionality

SGIX_depth_texture

use 1.4 version

SGIX_shadow

use 1.4 version

SUN_slice_accum

accglerated on NV3x

INV4x

WGL_ARB_buffer_region

Win32

WGL_ARB_extensions_string

Win33

WGL_ARB_make_current_read

55

WGL_ARB_multisample

x| D

see| ARB_multisample

WGL_ARB_ pixel_format

10

X

Win32

WGL_ARB_pbuffer

R10

Win32

WGL_ARB_render_texture

S

R2

Win32

WGL_ATI_pixel_format_float

Win32

WGL_EXT_extensions_string

Win32

WGL_EXT_swap_control

Win32

WGL_NV_float_buffer

Win33, see NV_float_buf

fer

WGL_NV_render_depth_texture

R25

Win32

WGL_NV_render_texture_rectangle

R25

R25

Win32

WIN_swap_hint

Wi

nj32, no spec

NVIDIA Proprietary

Table of NVIDIA OpenGL Extension Support OpenGL Extension Specifications for GeForce 8 Series

Key for table entries:

X = supported

sw = supported by software rasterization (expect poo
Nf = Extension advertised but rendering functionality

R10 = introduced in the Release 10 OpenGL driver (not
drivers)

R20 = introduced in the Detanator XP (also known as Re
(not supported by earlier drivers)

R20+ = introduced after the Detanator XP (also known as
driver (not supported by earlier drivers)

R25 = introduced in the GeForce4 launch (also known as
(not supported by earlier drivers)

R25+ = introduced after the GeForce4 launch (also known
driver (not supported by earlier drivers)

R35 = post-GeForce4 launch OpenGL driver release (hot
drivers)

R40 = Detonator 40 release, August 2002.

R40+ = introduced after the Detanator 40 (also known as
driver (not supported by earlier drivers)

R50 = Detonator 50 release

R55 = Detonator 55 release

R60 = Detonator 60 release, May 2004
R65 = Release 65

R70 = Release 70

R80 = Release 80

R95 = Release 95

no spec = no suitable specification available

Discontinued = earlier drivers (noted by 25% gray entries) suppo

extension but support for the extension is disconti
drivers

r performance)
not available

supported by earlier

lease 20) OpenGL driver

Release 20) OpenGL

Release 25) OpenGL driver

as Release 25) OpenGL

supported by earlier

Release 40) OpenGL

rted this

nued in current and future

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series Table of NVIDIA OpenGL Extension Support

Notices:

Emulation: While disabled by default, older GPUs can support e xtensions
supported in hardware by newer GPUs through a proce ss called emulation though

any functionality unsupported by the older GPU must be emulated via software.

For more details see: http://developer.nvidia.com/object/nvemulate.html

Warning: The extension support columns are based on the late st & greatest
NVIDIA driver release (unless otherwise noted). Ch eck your GL_EXTENSIONS string
with glGetString at run-time to determine the speci fic supported extensions for

a particular driver version.

Discontinuation of support: NVIDIA drivers from release 95 no longer support
NV1x- and NV2x-based GPUs.

NVIDIA Proprietary 8

http://developer.nvidia.com/object/nvemulate.html

EXT_bindable_uniform

Name
EXT_bindable_uniform
Name String
GL_EXT_bindable_uniform
Contact

Pat Brown, NVIDIA (pbrown 'at' nvidia.com)
Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at'

Status

Shipping for GeForce 8 Series (November 2006)

Version
Last Modified Date: 12/13/2007
Author revision: 13

Number
342

Dependencies
OpenGL 1.1 is required.

This extension is written against the OpenGL 2.
1.10.59 of the OpenGL Shading Language specific

This extension interacts with GL_EXT_geometry_s
Overview

This extension introduces the concept of bindab
Shading Language. A uniform variable can be de
means that the storage for the uniform is not a
compiler/linker anymore, but is backed by a buf
object is bound to the bindable uniform through
UniformBufferEXT(). Binding needs to happen af
object.

Binding different buffer objects to a bindable
application to easily use different "uniform da
re-specify the data every time.

A buffer object can be bound to bindable unifor
objects. If those bindable uniforms are all of
bindable uniform in program object A will resul
same access is made in program object B. This
‘environment uniforms’, uniform values that can
program objects.

OpenGL Extension Specifications for GeForce 8 Series

nvidia.com)

0 specification and version
ation.

hader4.

le uniforms to the OpenGL
clared bindable, which
llocated by the

fer object. This buffer

the new command

ter linking a program

uniform allows an
ta sets", without having to

ms in different program

the same type, accessing a
t in the same data if the
provides a mechanism for
be shared among multiple

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

New Procedures and Functions

void UniformBufferEXT(uint program, int locatio
int GetUniformBufferSizeEXT(uint program, int |
intptr GetUniformOffsetEXT (uint program, int lo

New Tokens

Accepted by the <pname> parameter of GetBoolean
and GetDoublev:

MAX_VERTEX_BINDABLE_UNIFORMS_EXT
MAX_FRAGMENT_BINDABLE_UNIFORMS_EXT
MAX_GEOMETRY_BINDABLE_UNIFORMS_EXT
MAX_BINDABLE_UNIFORM_SIZE_EXT
UNIFORM_BUFFER_BINDING_EXT

Accepted by the <target> parameters of BindBuff
BufferSubData, MapBuffer, UnmapBuffer, GetBuffe
GetBufferPainterv:

UNIFORM_BUFFER_EXT
Additions to Chapter 2 of the OpenGL 2.0 Specificat
Modify section 2.15.3 "Shader Variables", page

Add the following paragraph between the second
79, "Uniform Variables"

Uniform variables can be further characterized
uniforms. Storage for bindable uniforms does no
potentially limited, uniform variable storage d
paragraph. Instead, storage for a bindable unif
object that is bound to the uniform variable.
objects to a bindable uniform allows an applica
different "uniform data sets", without having t
time. A buffer object can be bound to bindable
program objects. If those bindable uniforms are
accessing a bindable uniform in program object
data if the same access is made in program obje
mechanism for ‘environment', uniform values tha
multiple program objects.

Change the first sentence of the third paragrap

When a program object is successfully linked, a
uniforms belonging to the program object are in
for Booleans). All active bindable uniforms hav
bindings reset to an invalid state. A successfu
location for each active uniform, including act
values of active uniforms can be changed using
appropriate Uniform* command (see below). For b
object has to be first bound to the uniform bef
value. These locations are invalidated.

NVIDIA Proprietary 10

EXT_bindable_uniform

n, uint buffer);
ocation);
cation);

v, Getlntegerv, GetFloatyv,

0x8DE2
0x8DE3
O0x8DE4
0x8DED
O0x8DEF

er, BufferData,
rSubData, and

Ox8DEE
ion (OpenGL Operation)
75.

and third paragraph on page

into bindable

t come out of the,

iscussed in the previous
orm is provided by a buffer
Binding different buffer
tion to easily use

o re-specify the data every
uniforms in different

all of the same type,

A will result in the same

ct B. This provides a

t can be shared among

h, p. 79, as follows:

Il non-bindable active
itialized to zero (FALSE

e their buffer object

I link will also generate a
ive bindable uniforms. The
this location and the
indable uniforms, a buffer
ore changing its

EXT_bindable_uniform

Change the second to last paragraph, p. 79, as

A valid name for a non-bindable uniform cannot
structures, or any portion of a single vector o
for a bindable uniform cannot be any portion of
matrix. In order to identify a valid name, ...

Change the fifth paragraph, p. 81, as follows:

The given values are loaded into the uniform va
by <location>. The parameter <location> cannot
structure or a bindable uniform array of struct

a bindable uniform, the data will be stored in
the buffer object bound to the bindable uniform
below).

Add the following bullets to the list of errors

- If <location> refers to a bindable uniform
uniform array of structures.

- If <location> refers to a bindable uniform
bound to the uniform.

- If <location> refers to a bindable uniform
is not of sufficient size. This means that
smaller than the size that would be returne
GetUniformBufferSizeEXT for the bindable un

- If <location> refers to a bindable uniform
bound to multiple bindable uniforms in the
object.

Add a sub-section called "Bindable Uniforms" ab
p. 82:

The number of active bindable uniform variables

vertex shader is limited and specified by the i

constant MAX_VERTEX_BINDABLE_UNIFORMS_EXT. The
of bindable uniforms is eight. A link error wil

program object contains more active bindable un

To query the minimum size needed for a buffer o
bindable uniform, use the command:

int GetUniformBufferSizeEXT(uint program, int

This command returns the size in basic machine
buffer object that can be used for the bindable
<location>. The size returned is intended to be
parameter to the BufferData() command. The erro
generated if <location> does not correspond to

in <program>. The parameter <location> has to

to the name of the bindable uniform itself, oth
INVALID_OPERATION is generated. If the bindabl
<location> can not refer to a structure member.
<location> can not refer to any array member ot

11

OpenGL Extension Specifications for GeForce 8 Series

follows:

be a structure, an array of
r a matrix. A valid name
a single vector or

riable location identified
identify a bindable uniform
ures. When loading data for
the appropriate location of
(see UniformBufferEXT

on p. 82:

structure or a bindable

that has no buffer object

and the bound buffer object
the buffer object is

d by

iform.

and the buffer object is
currently active program

ove the section "Samplers",

that can be supported by a
mplementation dependent
minimum supported number
| be generated if the

iform variables.

bject to back a given

location);

units of the smallest
uniform given by
passed as the <size>
r INVALID_OPERATION will be
an active bindable uniform
be location corresponding
erwise the error
e uniform is a structure,
If it is an array,
her than the first one. If

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

<program> has not been successfully linked, the
generated.

There is an implementation-dependent limit on t
variables. LinkProgram will fail if the storag
(in basic machine units) exceeds MAX_BINDABLE_U

To bind a buffer object to a bindable uniform,
void UniformBufferEXT (uint program, int locat

This command binds the buffer object <buffer> t
<location> in the program object <program>. Any
bindable uniform <location> is broken. Before ¢
buffer object has to be created, but it does no

with data nor its size set. Passing the value
unbind the currently bound buffer object. The e
generated if <location> does not correspond to

in <program>. The parameter <location> has to
the uniform variable itself, as described for G
otherwise the error INVALID_OPERATION is genera
been successfully linked, or if <buffer> is not
buffer object, the error INVALID_OPERATION is g

A buffer object cannot be bound to more than on
single program object. However, a buffer object
uniform variables in multiple program objects.
bindable uniforms are all of the same type, acc
member of a structure, or an element of an arra
result in the same data if the same scalar, vec
array element is accessed in program object B.
in both program objects have to have the same m
same order, declared with the same data types a
the buffer object bound to the uniform variable
minimum size required to store the uniform vari
GetUniformbufferSizeEXT, the results of reading
portion thereof) are undefined.

If LinkProgram is called on a program object th
any buffer objects bound to the bindable unifor
unbound prior to linking, as though UniformBuff
bindable uniform with a <buffer> value of zero.

Buffer objects used to store uniform variables
manipulated by buffer object functions (e.g., B
MapBuffer) by calling BindBuffer with a <target
It is not necessary to bind a buffer object to

to use it with an active program object.

The size and layout of a bindable uniform varia
storage is not defined. However, the values of
integer, or floating-point uniforms may be upda
underying buffer object storage using either Ma
The command

intptr GetUniformOffsetEXT (uint program, int

NVIDIA Proprietary 12

EXT_bindable_uniform

error INVALID_OPERATION is

he size of bindable uniform
e required for the uniform
NIFORM_SIZE_EXT.

use the command:
ion, uint buffer)

o the bindable uniform
previous binding to the
alling UniformBufferEXT the
t have to be initialized

zero in <buffer> will

rror INVALID_OPERATION is
an active bindable uniform
correspond to the name of
etUniformBufferSizeEXT,
ted. If <program> has not
the name of an existing
enerated.

e uniform variable in any
can be bound to bindable
Furthermore, if those
essing a scalar, vector, a
y in program object A will
tor, structure member, or
Additionally the structures
embers, specified in the
nd have the same name. If
is smaller than the

able, as reported by

the variable (or any

at has already been linked,
ms in the program are
erEXT were called for each

may be created and

ufferData, BufferSubData,

> of UNIFORM_BUFFER_EXT.
UNIFORM_BUFFER_EXT in order

ble in buffer object
signed integer, unsigned
ted by modifying the
pBuffer or BufferSubData.

location);

EXT_bindable_uniform

returns the offset (in bytes) of the uniform in
returned by GetUniformLocation is <location>.
generated if the object named by <program> does
INVALID_OPERATION is generated if <program> is
<program> was not linked successfully, or if <I
uniform that was not declared as bindable. The
boolean, or boolean vector uniforms is not defi
INVALID_OPERATION will be generated if <locatio
boolean vector, or matrix uniform. The value -
GetUniformOffsetEXT if an error is generated.

The values of such uniforms may be changing by
unsigned integer, or floating-point values into
byte offset returned by GetUniformOffsetEXT. F
integers or floating-point values should be wri
locations in the buffer object storage. For ar
variables, the number of bytes between individu
guaranteed to be constant, but array members ar
stored in adjacent locations. For example, som
scalars, or two- or three-component vectors out
vector.

Change the first paragraph below the sub-headin
follows:

Samplers are special uniforms used in the OpenG
identify the texture object used for each textu

be declared as bindable in a shader. The value
texture image unit being accessed. Setting a sa

Add the following bullets to the list of error
p. 87:

- There is one, or more, bindable uniform(s) i
active program object that does not have a b
bound to it.

- There is one, or more, bindable uniform(s) i
program object that have a buffer object bou
size. This means that the buffer object is s
would be returned by GetUniformBufferSizeEXT

- A buffer object is bound to multiple bindabl
active program object.

Additions to Chapter 3 of the OpenGL 2.0 Specificat

Modify Section 3.11.1 "Shader Variables", p. 19
Add a paragraph between the first and second pa

The number of active bindable uniform variables
fragment shader is limited and specified by the

constant MAX_FRAGMENT_BINDABLE_UNIFORMS_EXT. Th

of bindable uniforms is eight. A link error wil
program object contains more active bindable un

13

OpenGL Extension Specifications for GeForce 8 Series

<program> whose location
The error INVALID_VALUE is
not exist. The error

not a program object, if
ocation> refers to a

memory layout of matrix,
ned, and the error

n> refers to a boolean,

1is returned by

writing signed integer,

the buffer object at the

or vectors, two to four

tten to consecutive

rays of scalar or vector

al array members is

e not guaranteed to be

e implementations may pad
to a four-component

g 'Samplers', p. 82, as

L Shading Language to

re lookup. Samplers cannot
of a sampler indicates the
mpler's value.

conditions for Begin on

n the currently
uffer object

n the currently active
nd to it of insufficient
maller than the size that
for the bindable uniform.

e uniforms in the currently

ion (Rasterization)
3
ragraph, p. 194

that can be supported by a
implementation dependent

€ minimum supported number
| be generated if the

iform variables.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Additions to Chapter 4 of the OpenGL 2.0 Specificat
Operations and the Frame Buffer)

None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat
Change section 5.4 Display Lists, p. 237
Add the command UniformBufferEXT to the list of
compiled into a display list, but executed imme

Shader Objects", p. 241.

Additions to Chapter 6 of the OpenGL 2.0 Specificat
Requests)

None.

Additions to Appendix A of the OpenGL 2.0 Specifica
None.

Additions to the AGL/GLX/WGL Specifications
None.

Interactions with GL_EXT_geometry _shader4

If GL_EXT_geometry_shader4 is supported, a geom

support bindable uniforms. The following paragr
the section that discusses geometry shaders:

"The number of active bindable uniform variable
a geometry shader is limited and specified by t

constant MAX_GEOMETRY_BINDABLE_UNIFORMS_EXT. Th

of bindable uniforms is eight. A link error wil
program object contains more active bindable un

The implementation dependent value MAX_GEOMETRY

need to be added to the state tables and assign

Errors

The error INVALID_VALUE is generated by Uniform

GetUniformBufferSize, or GetUniformOffsetEXT if
of a program or shader object.

The error INVALID_OPERATION is generated by Uni

GetUniformBufferSize, or GetUniformOffsetEXT if
shader object.

The error INVALID_OPERATION is generated by the

<location> refers to a bindable uniform structu
structures.

The error INVALID_OPERATION is generated by the

NVIDIA Proprietary

14

EXT_bindable_uniform

ion (Per-Fragment

ion (Special Functions)

commands that are not
diately, under "Program and

ion (State and State

tion (Invariance)

etry shader will also
aph needs to be added to

s that can be supported by

he implementation dependent
€ minimum supported number
| be generated if the

iform variables."

_BINDABLE_UNIFORMS_EXT will
ed an enum value.

BufferEXT,
<program> is not the name

formBufferEXT,
<program> is the name of a

Uniform* commands if
re or an array of such

Uniform* commands if

EXT_bindable_uniform

<location> refers to a bindable uniform that ha

The error INVALID_OPERATION is generated by the
<location> refers to a bindable uniform and the
of sufficient size to store data into <location

The error INVALID_OPERATION is generated by the
and UniformBufferEXT commands if <program> has
linked.

The error INVALID_OPERATION is generated by the
and UniformBufferEXT commands if <location> is
corresponding to the name of the bindable unifo
does not correspond to an active bindable unifo

The error INVALID_OPERATION is generated by Get
<program> was not linked successfully, if <loca

that was not declared as bindable, or if <locat
boolean vector, or matrix uniform.

The error INVALID_OPERATION is generated by the
<buffer> is not the name of a buffer object.

The error INVALID_OPERATION is generated by Beg
command that performs an implicit Begin if;

- A buffer object is bound to multiple bindabl
active program object.

- There is one, or more, bindable uniform(s) i
program object that does not have a buffer o

- There is one, or more, bindable uniform(s) i
program object that have a buffer object bou
size. This means that the buffer object is s
would be returned by GetUniformBufferSizeEXT

New State

Minimum

GetValue Type Get Command Value

MAX_BINDABLE VERTEX Z+ Getintegerv 8
UNIFORMS_EXT

MAX_BINDABLE_FRAGMENT _Z+ Getintegerv 8
UNIFORMS_EXT

MAX_BINDABLE_GEOMETRY_Z+ Getintegerv 8
UNIFORMS_EXT

MAX_BINDABLE_UNIFORM_ Z+ Getintegerv 16384
SIZE_EXT

15

OpenGL Extension Specifications for GeForce 8 Series

s no buffer object bound.

Uniform* commands if
bound buffer object is not
>,

GetUniformBufferSizeEXT
not been successfully

GetUniformBufferSizeEXT
not the location

rm itself or if <location>

rm in <program>.

UniformOffsetEXT if
tion> refers to a uniform
ion> refers to a boolean,

UniformBufferEXT command if
in, Rasterpos or any
e uniforms in the currently

n the currently active
bject bound to it.

n the currently active
nd to it of insufficient
maller than the size that
for the bindable uniform.

Description Section Attrib
Number ofbindable 215 -
uniforms per vertex

shader

Number ofbindable 3.11.1 -
uniforms per fragment

shader

Number ofbindable XXX -
uniforms per geometry

shader

Maximum size (in bytes) 2.15 -
for bindable uniform

Storage.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_bindable_uniform

New Implementation Dependent State

In itial
GetValue Type GetCommand V alue Description Sec Attibute
UNIFORM_BUFFER BINDING EXT Z+ Getintegerv 0 Uniform bufferboundto 215 -
the context for buffer
object manipulation.

Modifications to The OpenGL Shading Language Specif
1.10.59

ication, Version

Including the following line in a shader can be
language features described in this extension:

#extension GL_EXT_bindable_uniform: <behavio

where <behavior> is as specified in section 3.3

A new preprocessor #define is added to the Open

#define GL_EXT_bindable_uniform 1
Add to section 3.6 "Keywords"
Add the following keyword:

bindable
Change section 4.3 "Type Qualifiers"

In the qualifier table, add the following sub-q
qualifier;

bindable uniform
Change section 4.3.5 "Uniform"

Add the following paragraphs between the last a
paragraphs:

Uniform variables, except for samplers, can opt
qualified with "bindable". If "bindable" is pre
uniform comes from a buffer object, which is bo
the GL API, as described in section 2.15.3 of t
specification. In this case, the memory used do
storage limit described in the previous paragra
"bindable" keyword, it must immediately precede

An example bindable uniform declaration is:
bindable uniform float foo;

Only a limited number of uniforms can be bindab

shader. If this limit is exceeded, it will caus

link-time error. Bindable uniforms that are dec
count against this limit.

NVIDIA Proprietary

16

used to control the

r>

GL Shading Language:

ualifiers under the uniform

nd the second to last

ionally be further

sent, the storage for the
und to the uniform through
he OpenGL 2.0

es not count against the
ph. When using the

the "uniform” keyword.

le for each type of
e a compile-time or
lared but not used do not

EXT_bindable_uniform

Add to section 9 "Shading Language Grammar

type_qualifer:
CONST
ATTRIBUTE // Vertex only
uniform-modifieropt UNIFORM

uniform-modifier:
BINDABLE

Issues

1. Is binding a buffer object to a uniform done
program object?

DISCUSSION: There is no need to re-link when
that backs a uniform. Re-binding can therefor
Binding is be done using the location of the
GetUniformLocation, to make it even faster (i

of the uniform).

Reasons to do this before linking: The linker
buffer object backs the uniform. Binding of
bindable uniform, in this case, will have to
the uniform (no location is available until a
binding of a buffer object to a bindable unif
object will have to be re-linked, which would
overhead of using multiple different "constan
program.

RESOLUTION: Binding a buffer object to a bind
done after the program object is linked. One
extension is to be able to switch among multi
efficiently.

2. Is the memory layout of a bindable uniform av

DISCUSSION: Buffer objects are arrays of byt
a buffer object and retrieve a pointer to it,
directly. Or, the application can use the Buf
store data in a buffer object. They can also
(with ARB_pixel_buffer_object), or filled usi
new transform feedback extension.

If the layout of a uniform in buffer object m
different ways of filling a buffer object cou

other hand, different compiler implementation
packing schemes that may or may not match an
(e.g., all individual uniforms might be store
Uniform*() API were allowed to modify buffer
completely hide the layout of bindable unifor
would limit how the buffer object can be link
data.

RESOLUTION: RESOLVED. The memory layout of a
will not be specified. However, a query func

17

OpenGL Extension Specifications for GeForce 8 Series

before or after linking a

changing the buffer object
e be relatively quickly.
uniform retrieved by
nstead of binding by name

might want to know what
a buffer object to a

be done using the name of
fter linking). Changing the
orm means the program
substantially increase the
t sets" in a single

able uniform needs to be
of the purposes of this
ple sets of uniform values

ailable to an application?

es. The application can map
and read or write into it
ferSubData() command to
be filled using ReadPixels
ng extensions such as the

emory is known, these
Id be leveraged. On the
s may want a different
end-user's expectations
d as vecd's). If only the
objects, we could

ms. Unfortuantely, that
ed to other sources of

bindable uniform variable
tion will be added that

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

allows applications to determine the layout a
via API's other than Uniform*() accordingly i
Unfortunately, the layout may not be consiste
of this extension.

Providing a better standard set of packing ru
and we hope to design and add such functional
near future.

3. How is synchronization handled between a prog
object and updates to the buffer object?

DISCUSSION: For example, what happens when a
object is outstanding, that is bound to a bin
program object, containing the bindable unifo

RESOLUTION: UNRESOLVED. It is probably the GL
responsibility to properly synchronize such u
solving for GL_EXT _texture_buffer_object also

4. A limited number of bindable uniforms can exi

object. Should this limit be queriable?

DISCUSSION: The link operation will fail if t
are declared and active. Should the limit on
bindable uniforms be queriable by the applica

RESOLUTION: Yes, this limit is queriable.
5. Is the limit discussed in the previous issue

DISCUSSION: Is there a different limit for ve
shaders? Hardware might support different lim
uniform variables is a limit queriable per sh
nice to be consistent with the existing model

RESOLUTION: YES.

6. Can an application find out programmatically
as a bindable uniform?

DISCUSSION: Using GetActiveUniform() the appl
programmatically find out which uniforms are
size etc it. Do we need to add a mechanism fo
out if an active uniform is a bindable unifor

RESOLUTION: UNRESOLVED. To be consistent, the
yes. However, extending GetActiveUniform() is

we need a new APl command. If we define a new

is better to define something like: GetNewAc

uint index, enum property, void *data); Or al

to query the properties of a uniform per unif
GetActiveUniformProperty(int program, int loc

*data)

7. What to do when the buffer object bound to a
enough to back the uniform or if no buffer ob

NVIDIA Proprietary 18

EXT_bindable_uniform

nd load their buffer object
f they choose.
nt across implementations

les is highly desirable,
ity in an extension in the

ram object using a buffer

ReadPixels into a buffer
dable uniform while the
rm, is in use?

implementation's
sages. This issue needs
, and should be consistent.

stin one program

00 many bindable uniforms
the number of active
tion?

per shader type?

rtex shader and fragment
its. The storage for
ader type, thus it would be

that a uniform is declared

ication can

active, what their type and
r an application to find

m?

answer should be

not possible, which means
API command, it probably
tiveUniform(int program,
ternatively, define new API
orm location:

ation, enum property, void

bindable uniform is not big
ject is bound at all?

EXT_bindable_uniform

DISCUSSION: The size of a buffer object can b
bound, by calling BufferData. It is possible

isn't sufficiently big enough to back the bin
issue when loading values for uniforms and wh
the case of loading uniforms, should the Unif

In the case of rendering, should this be a Be

RESOLUTION: RESOLVED. It is a Begin error if
small or no buffer object is bound at all. Th
generate an error in these cases as well.

8. What restrictions are there on binding a buff
bindable uniform?

DISCUSSION: Can a buffer object be bound to m
a program object? No, this does not seem to b
buffer object be bound to more than one unifo
objects? Yes, this is useful functionality to

also of the same type, then data access in pr
same access in program object B results in th
case, if the uniform variables are arrays, mu
length declared? No, that is too big of a res

is responsible for making sure the buffer obj

to provide storage for the largest bindable u

RESOLUTION: RESOLVED.

9. It is not allowed to bind a buffer object to
uniform in a program object. There are severa
affected by this rule: UseProgram(), the unif
Uniform*, Begin, RasterPos and any related re
each operation generate an error if the rule

DISCUSSION: See also issue 7. The UseProgram
error if the rule is violated. However, it is

binding of a buffer object to a bindable unif

has been issued. Thus should the Uniform* com

If so, is that going to be a performance burd
should it be undefined? Finally, at renderin

rule will have to be checked. If violated, it
generate an error.

RESOLUTION: RESOLVED. Make violation of the r
Uniform* error.

10. How to provide the ability to use bindable un
uniform arrays of structures) where the amoun
on the buffer object bound to it?
DISCUSSION: In other words, the size of the b
longer declared in the shader, but determined
backing it. This can be achieved through a va
bindable uniform vec3 foo[1];

Where we would allow indexing 'off the end' o

19

OpenGL Extension Specifications for GeForce 8 Series

e changed, after itis

that the buffer object

dable uniform. This is an
en actually rendering. In
orm* API generate an error?
gin error?

a buffer object is too
e Uniform* commands will

er object to more than one

ore than one uniform within
e agood idea. Cana

rm in different program
have. If each uniform is
ogram object A then the

e same data. In the latter

st the arrays have the same
triction. The application

ect is sufficiently sized
niform array.

more than one bindable

| operations that could be
orm loading commands
ndering command. Should
is violated?

command could generate an
possible to change the

orm even after UseProgram
mands also check for this?
en on uniform loading? Or

g time violation of this
seems to make sense to

ule a Begin error and a

iform arrays (or bindable
t of data can differ based

indable uniform is no
by the buffer object
riety of ways:

f the array 'foo’, because

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

it is backed by a buffer object. The actual s
implicitly inferred from the buffer object bo
shader's responsibility to not index outside
object. That in turn means that the layout in
bindable uniform needs to be exposed to the a
Or we could support something like:

bindable uniform vec3 foo[100000]; // Some re
and make all accesses inside the buffer objec
Or we could support something like:

bindable uniform float foo([];

foo[3]
fooli]

1.0;

Where 'i' could be a run-time index.

RESOLUTION: For now, we will not support this

11. Do we want to have bindable namespaces instea

"bindable"?
DISCUSSION: Something like this:

bindable {
vec3 blarg;
int booyabh;

g

where "blarg" and "booyah" can be referred to
bindable to the same buffer. You can achieve
stored in structures:

bindable uniform struct {
vec3 blarg;
int booyabh;

} foo;

but then have to use "foo.blarg" and "foo.boo
RESOLUTION: Not in this extension. This might
but not essential. Such a feature may be add
building on this one.

12. How can an application load data into a binda
RESOLUTION: See also issue 2. Uniform variabl
be loaded using the existing Uniform* command

the buffer object bound to the uniform using
mechanisms.

NVIDIA Proprietary 20

EXT_bindable_uniform

ize of the array will be

und to it. It'll be the

the size of the buffer
buffer object memory of a
pplication.

ally big number

t bound to "foo" legal.

functionality.

d of the uniform qualifier

directly, but are both
this with bindable uniforms

yah".

be nice programming sugar,
ed in a future extension

ble uniform?

es declared as bindable can

s, or data can be loaded in
any of the existing

EXT_bindable_uniform OpenGL Extension Specifications for GeForce 8 Series

Uniform* commands, into a
bindable uniform variable

13. Should it be allowed to load data, using the
buffer object that is bound to more than one
in a program object?

DISCUSSION: It is a Begin error to attempt to render in this situation.

RESOLUTION: Yes, to be consistent with the Be
error to load a value in this case.

gin error, it is also an

14. Should a buffer object binding point be provi ded for bindable uniforms?
DISCUSSION: All current OpenGL buffer object
a <target> to which a buffer object must be b
buffer objects are bound to uniforms stored i
bound directly to the context. So these bind
manipulate the

manipulation functions take
ound. In this extension,

n a program, and are not
ings may not be used to

RESOLUTION: Yes, a new <target> called UNIFO RM_BUFFER_EXT is provided.
The following is a simple example of creating
buffer object for a bindable uniform named "s
vec4 values:

, binding, and populating a
tuff", which is an array of

GLuint program, buffer;
GLint location, size;
GLfloat values;

/... compile shaders and link <program>

location = glGetUniformLocation(program, "stuff");
size = GetUniformBufferSize(program, loca tion);
glGenBuffers(1, &buffer);

glBindBuffer(GL_UNIFORM_BUFFER_EXT, buffe
glBufferData(GL_UNIFORM_BUFFER_EXT, size,
glUniformBufferEXT(program, location, buf

glUseProgram(program);
glUniform4fv(location, count, values);

Revision History

Rev. Date Author Changes

13 12/13/07 pbrown Minor clarification o
to GetUniformBufferSi

12 12/15/06 pbrown Documented that the'
for this extension sh
as apparently called

11 -- Pre-release revisions

21

n;
NULL, STATIC_READ);
fer);

n what values can be passed
zeEXT and UniformBufferEXT.

#extension' token
ould begin with "GL_",
for per convention.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Name
EXT_draw_buffers2
Name Strings
GL_EXT_draw_buffers2
Contact
Mike Strauss, NVIDIA Corporation (mstrauss 'at'
Status

Shipping for GeForce 8 Series (November 2006)

Version
Last Modified Date: 11/06/2006
NVIDIA Revision: 9

Number
340

Dependencies
The extension is written against the OpenGL 2.0
OpenGL 2.0 is required.

Overview
This extension builds upon the ARB_draw_buffers
separate blend enables and color write masks fo
ARB_draw_buffers (part of OpenGL 2.0), separate
each color buffer, but the blend enable and col

and apply to all color outputs.

While this extension does provide separate blen
provide separate blend functions or blend equat

New Procedures and Functions

void ColorMaskindexedEXT (uint buf, boolean r, b
boolean b, boolean a);

void GetBooleanIindexedvEXT(enum value, uint ind
void GetIntegerindexedvEXT(enum value, uint ind
void EnableIndexedEXT(enum target, uint index);
void DisablelndexedEXT(enum target, uint index)

boolean IsEnabledindexedEXT(enum target, uint i

NVIDIA Proprietary 22

EXT_draw_buffers2

nvidia.com)

Specification.

extension and provides
r each color output. In

values can be written to
or write mask are global

d enables, it does not
ions per color output.

oolean g,

ex, boolean *data);

ex, int *data);

ndex);

EXT_draw_buffers2

New Tokens
None.

Additions to Chapter 2 of the OpenGL 2.0 Specificat
None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat
None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat
Operations and the Frame Buffer)

Modify the thrid paragraph of section 4.1.8 (Bl
read as follows:

Blending is dependent on the incoming fragment'
that of the corresponding currently stored pixe
only in RGBA mode; in color index mode it is by
is enabled or disabled for an individual draw b

void EnableindexedEXT(GLenum target, GLuint
void DisablelndexedEXT(GLenum target, GLuin

<target> is the symbolic constant BLEND and <in
i specifying the draw buffer associated with th
DRAW_BUFFERI. If the color buffer associated w

one of FRONT, BACK, LEFT, RIGHT, or FRONT_AND_B

multiple color buffers), then the state enabled
applicable for all of the buffers. Blending ca
disabled for all draw buffers using Enable or D
symbolic constant BLEND. If blending is disabl
draw buffer, or if logical operation on color v
(section 4.1.10), proceed to the next operation

Modify the first paragraph of section 4.1.8 (Bl
State), p209, to read as follows:

The state required for blending is two integers
alpha blend equations, four integers indicating
destination RGB and alpha blending functions, f
values to store the RGBA constant blend color,
indicating whether blending is enabled or disab
n draw buffers. The initial blend equations fo
both FUNC_ADD. The initial blending functions
source RGB and alpha functions, and ZERO for th
and alpha functions. The initial constant blen
(R, G, B, A)=(0, 0,0, 0). Initially, blendi

all draw buffers.

OpenGL Extension Specifications for GeForce 8 Series

23

ion (OpenGL Operation)

ion (Rasterization)

ion (Per-Fragment

ending) , p206, to

s alpha value and
I. Blending applies
passed. Blending
uffer using

index);
t index);

dex> is an integer

e symbolic constant

ith DRAW_BUFFERI is
ACK (specifying

or disabled is

n be enabled or

isable with the

ed for a particular
alues is enabled

ending - Blending

for the RGB and
the source and

our floating-point
and n bits

led for each of the

r RGB and alpha are
are ONE for the

e destination RGB

d color is

ng is disabled for

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Modify the first paragraph of section 4.2.2 (Fi
Updates) to read as followS:

Three commands are used to mask the writing of
logical draw buffers after all per-fragment ope
performed.

The commands

void IndexMask(uint mask);

void ColorMask(boolean r, boolean g, boolea

void ColorMaskindexedEXT (uint buf, boolean
boolean b, boolean

control writes to the active draw buffers.

The least significant n bits of <mask>, where n
bits in a color index buffer, specify a mask.
this mask, the corresponding bit in the color i
buffers) is written; where a 0 appears, the bit
This mask applies only in color index mode.

In RGBA mode, ColorMask and ColorMaskindexedEXT
the writing of R, G, B and A values to the draw
ColorMaskindexedEXT sets the mask for a particu

The mask for DRAW_BUFFERI is modified by passin
<buf>. <r>, <g>, , and <a> indicate whether
values, respectively, are written or not (a val

that the corresponding value is written). The

<r>, <g>, , and <a> is applied to the color

with DRAW_BUFFERI. If DRAW_BUFFERI is one of F
RIGHT, or FRONT_AND_BACK (specifying multiple ¢
the mask is applied to all of the buffers. Col

for all draw buffers to the same values as spec

, and <a>.

Additions to Chapter 5 of the OpenGL 2.0 Specificat
None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat
State Requests)

Modify the second paragraph of section 6.1.1 (S
p244 to read as follows:

...<data> is a pointer to a scalar or array of
type in which to place the returned data.

void GetBooleanindexedvEXT(enum target, uin
void GetIntegerindexedvEXT(enum target, uin

are used to query indexed state. <target>ist

the indexed state and <index> is the index of t
element being queried. <data> is a pointer to

NVIDIA Proprietary 24

EXT_draw_buffers2

ne Control of Buffer

bits to each of the
rations have been

n b, boolean a);
r, boolean g,
a);

is the number of
Where a 1 appears in
ndex buffer (or

is not written.

are used to mask
buffer or buffers.

lar draw buffer.

g i as the parameter
R, G,B,or A

ue of TRUE means
mask specified by
buffer associated
RONT, BACK, LEFT,
olor buffers) then
orMask sets the mask
ified by <r>, <g>,

ion (Special Functions)

ion (State and

imple Queries)

the indicated

t index, boolean *data);
tindex, int *data);

he name of
he particular
a scalar or array

EXT_draw_buffers2
of the indicated type in which to place the ret
addition

boolean IsEnabled(enum value);

can be used to determine if <value> is currentl
Enable) or disabled.

boolean IsEnabledindexedEXT(enum target, ui

can be used to determine if the index state cor
<target> and <index> is enabled or disabled.

Additions to Appendix A of the OpenGL 2.0 Specifica

None.

Additions to the AGL/GLX/WGL Specifications

None.

Errors

The error INVALID_ENUM is generated by Enableln
DisableIndexedEXT if the <target> parameter is

The error INVALID_OPERATION is generated by Ena
DisablelndexeEXT if the <target> parameter is B
parameter is outside the range [0, MAX_DRAW_BUF

The error INVALID_ENUM is generated by IsEnable
<target> parameter is not BLEND.

The error INVALID_OPERATION is generated by ISE
the <target> parameter is BLEND and the <index>
outside the range [0, MAX_DRAW_BUFFERS-1].

The error INVALID_OPERATION is generated by Dra
if the <buf> parameter is outside the range
[0, MAX_DRAW_BUFFERS-1].

The error INVALID_ENUM is generated by GetBoole
<target> parameter is not BLEND.

The error INVALID_OPERATION is generated by Get

if the <target> parameter is BLEND and the <ind
outside the range [0, MAX_DRAW_BUFFERS-1].

25

OpenGL Extension Specifications for GeForce 8 Series

urned data. In

y enabled (as with

nt index);

responding to

tion (Invariance)

dexedEXT and
not BLEND.

bleindexedEXT and
LEND and the <index>
FERS-1].
dindexedEXT if the

nabledindexedEXT if
parameter is

wBufferColorMaskEXT

anindexedvEXT if the

BooleanindexedvEXT
ex> parameter is

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

New State

Modify (table 6.20, p281), modifying the entry
a new one.

GetTarget TypeGetCommand ~ Value Desc

BLEND B IsEnabed False Blen

BLEND B IsEnabledindexedEXT False Blen
whereiis

Modify (table 6.21, p282), modifying the entry
and adding a new one.

GetVaue TypeGetCommand Val

COLOR WRITEMASK 4xB GetBooeanv ~ True
COLOR_WRITEMASK 4xB GetBodleanindexedvEXT True

Issues

1. Should the extension provide support for pe
masks as well as per draw buffer color masks?

RESOLVED: No. Color index rendering is no

enough to warrant extending the API in this

2. Should the API for specifying separate colo
based on DrawBuffers() (specifying an array of

once)?

RESOLVED: No. There are two ways to mimic

API. A function, ColorMasks(), could take

and an array of four element boolean arrays
Each four element boolean array contains a

blue, and alpha write masks for a specific
alternative is a ColorMasks() function that
count and four parallel boolean arrays with
channel. Neither approach is particularly

approach, taken by ColorMaskindexedEXT(), i

color mask for a single draw buffer where t
specified as a parameter to the function.

for BLEND and adding

ding enabled for oraw buffer 0 4.1.8 color-buffer
ding enabled for draw buffer i 4.1.8 color-butfer

speciied as <index>
for COLOR_WRITEMASK

e Description Section Attrib

Color wite mask for draw buffer 04.22 color-
Color wiite mask for draw bufferi4.2.2 color-
whereiis specified as <index>

r draw buffer index

t interesting
direction.

r write masks be
write masks at

the DrawBuffers()
an an element count
as parameters.

set of red, green,
color buffer. An
takes an element
one array per color
clean. A cleaner

s to specify a

he draw buffer is

buffer write masks?

. How should ColorMask() affect the per color

RESOLVED: ColorMask() should set all color
to the same values. This is backwards comp
ColorMask() behaves in the absence of this

. What should GetBooleanv return when COLOR_W

RESOLVED: COLOR_WRITEMASK should return
DRAW_BUFFERO_COLOR_WRITEMASK_EXT. This is

with the way the query works without this e
the writemask associated with a particular
application can use GetBooleanindexedvEXT.

NVIDIA Proprietary

buffer write masks
atible with the way
extension.

RITEMASK is queried?
backwards compatible

xtension. To query
draw buffer, an

EXT_draw_buffers2

EXT_draw_buffers2 OpenGL Extension Specifications for GeForce 8 Series

Should a new
ble() provide

5. How are separate blend enables controlled?
function be introduced, or do Enable() and Disa
sufficient functionality?

RESOLVED: This extension introduces new fu
EnableindexedEXT and DisableIndexedEXT that
enable/disable individual states of a state
functions are introduced because there is a
introducing arrays of state. Rather than c

each index in the array, it is better to gi

a mechanism for accessing a particular elem
array given the name of the state and an in

6. What effect does enabling or disabling blen
have on per draw buffer blend enables?

RESOLVED: BLEND, used with Enable() and Di
enable or disable all per draw buffer blend
similar to the way that ColorMask() affects

buffer write masks.

Revision History

None

27

nctions

can be used to
array. These
trend towards
reating enums for
ve applications
ent of the state
dex into the array.

ding using BLEND

sable(), should
enables. Thisis
the per draw

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Name

EXT_draw_instanced
Name Strings

GL_EXT_draw_instanced
Contact

Michael Gold, NVIDIA Corporation (gold 'at' nvi
Status

Shipping for GeForce 8 Series (November 2006)
Version

Last Modified Date: November 6, 2006
Author Revision: 1.4

Number
327
Dependencies
OpenGL 2.0 is required.
EXT_gpu_shader4 or NV_vertex_shader4 is require
Overview
This extension provides the means to render mul
an object with a single draw call, and an "inst
which can be used by the vertex program to comp
values, typically an object's transform.
New Tokens
None
New Procedures and Functions
void DrawArraysinstancedEXT(enum mode, int firs
sizei primcount);

void DrawElementsinstancedEXT(enum mode, sizei
const void *indices, sizei primcount);

NVIDIA Proprietary 28

EXT_draw_instanced

dia.com)

tiple instances of
ance ID" variable
ute per-instance

t, sizei count,

count, enum type,

EXT_draw_instanced OpenGL Extension Specifications for GeForce 8 Series

Additions to Chapter 2 of the OpenGL 2.0 Specificat
(OpenGL Operation)

Modify section 2.8 (Vertex Arrays), p. 23
(insert before the final paragraph, p. 30)

The internal counter <instancelD> is a 32-bit i
may be read by a vertex program as <vertex.inst
in section 2.X.3.2, or vertex shader as <gl_Ins
described in section 2.15.4.2. The value of th
always zero, except as noted below.

The command

void DrawArraysInstancedEXT(enum mode, int
sizei primcount);

behaves identically to DrawArrays except that <
instances of the range of elements are executed
<instancelD> advances for each iteration. It h
as:

if (mode or count is invalid)
generate appropriate error
else {
for (i= 0; i < primcount; i++) {
instancelD =1i;
DrawArrays(mode, first, count, i);

}

instancelD = 0;

}

The command

void DrawElementsinstancedEXT(enum mode, Si
const void *indices, sizei primcoun

behaves identically to DrawElements except that
instances of the set of elements are executed,
<instancelD> advances for each iteration. It h
as:

if (mode, count, or type is invalid)
generate appropriate error
else {
for (inti=0; i < primcount; i++) {
instancelD =1i;
DrawElements(mode, count, type, ind

}

instancelD = 0;

}

29

ion

nteger value which
ance>, as described
tancelD>, as

is counter is

first, sizei count,

primcount>
and the value of
as the same effect

zei count, enum type,

t);

<primcount>
and the value of
as the same effect

ices, i);

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Additions to Chapter 5 of the OpenGL 2.0 Specificat
(Special Functions)

The error INVALID_OPERATION is generated if Dra
or DrawElementsinstancedEXT is called during di
compilation.

Dependencies on NV_vertex_program4

If NV_vertex_program4 is not supported, all ref
vertex.instance are deleted.

Dependencies on EXT_gpu_shader4

If EXT_gpu_shader4 is not supported, all refere
gl_InstancelD are deleted.

Errors

INVALID_ENUM is generated by DrawElementsinstan
not one of UNSIGNED_BYTE, UNSIGNED_SHORT or UNS

INVALID_VALUE is generated by DrawArraysinstanc
less than zero.

Issues
(1) Should instancelD be provided by this extensi

provided by EXT_gpu_shader4, thus creating a

spec?
Resolved: While this extension could stand
would be limited without the additional fun
by EXT_gpu_shader4; also, the spec language
EXT_gpu_shader4 assumes instancelD is alway
if its value is always zero without this ex

(2) Should MultiDrawArrays and MultiDrawElements
instancelD?

Resolved: No, this may cause implementation
is considered unlikely to provide any real

(3) Should DrawArraysinstanced and DrawElementsin
into display lists?

Resolved: No, calling these during display
generate INVALID_OPERATION.

Revision History

None

NVIDIA Proprietary 30

EXT_draw_instanced

ion

wArraysinstancedEXT
splay list

erences to

nces to

cedEXT if <type> is
IGNED_INT.

edEXT if <first> is

on, or should it be
dependence on that

alone, its utility
ctionality provided
is cleaner if

s available, even
tension.

affect the value of
difficulties and
benefit.

stanced be compiled

list compilation

EXT_framebuffer sRGB OpenGL Extension Specifications for GeForce 8 Series

Name
EXT_framebuffer sRGB
Name Strings
GL_EXT_framebuffer sRGB
GLX_EXT_framebuffer sRGB
WGL_EXT_framebuffer sRGB
Contributors
Herb (Charles) Kuta, Quantum3D
From the EXT_texture_sRGB specification...
Alain Bouchard, Matrox
Brian Paul, Tungsten Graphics
Daniel Vogel, Epic Games
Eric Werness, NVIDIA
Kiril Vidimce, Pixar
Mark J. Kilgard, NVIDIA
Pat Brown, NVIDIA
Yanjun Zhang, S3 Graphics
Jeremy Sandmel, Apple
Contact
Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)
Status
Shipping for GeForce 8 Series (November 2006)

Version

Date: November 6, 2006
Revision: 2

Number
337
Dependencies

OpenGL 1.1 required

This extension is written against the OpenGL 2. 0 (September 7,
2004) specification.

WGL_EXT_extensions_string is required for WGL s upport.
WGL_EXT_pixel_format is required for WGL suppor t.
ARB_color_buffer_float interacts with this exte nsion.
EXT_framebuffer_object interacts with this exte nsion.

31 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

EXT_texture_sRGB interacts with this extension.
ARB_draw_buffers interacts with this extension.
Overview

Conventionally, OpenGL assumes framebuffer colo
in a linear color space. In particular, frameb
linear operation.

The sRGB color space is based on typical (non-I
characteristics expected in a dimly lit office.
standardized by the International Electrotechni

as IEC 61966-2-1. The sRGB color space roughly
gamma correction.

This extension adds a framebuffer capability fo
update and blending. When blending is disabled
updated mode is enabled (assume the framebuffer
capability), high-precision linear color compon
green, and blue generated by fragment coloring
prior to being written into the framebuffer. W
along with the new sRGB update mode, red, green
color components are treated as sSRGB values tha
linear color values, blended with the high-prec
generated by fragment coloring, and then the bl
for SRGB just prior to being written into the f

The primary motivation for this extension is th
applications to render into a framebuffer that
configured to assume framebuffer color values a
This assumption is roughly true of most PC moni
gamma correction. This allows applications to
color reproduction for OpenGL rendering without
monitor's gamma correction.

New Procedures and Functions
None

New Tokens

Accepted by the <attribList> parameter of gIXCh
the <attrib> parameter of gIXGetConfig:

GLX_FRAMEBUFFER_SRGB_CAPABLE_EXT
Accepted by the <piAttributes> parameter of
wglGetPixelFormatAttribivEXT, wglGetPixelFormat
the <piAttriblList> and <pfAttriblList> of wgIC

WGL_FRAMEBUFFER_SRGB_CAPABLE_EXT

NVIDIA Proprietary 32

EXT_framebuffer sRGB

r components are stored
uffer blending is a

inear) monitor

It has been
cal Commission (IEC)
corresponds to 2.2

r sRGB framebuffer
but the new sRGB
supports the

ent values for red,

are encoded for sSRGB
hen blending is enabled
, and blue framebuffer
t are converted to
ision color values

end result is encoded
ramebuffer.

at it allows OpenGL

is scanned to a monitor
re SRGB encoded.

tors with default
achieve faithful
adjusting the

ooseVisual, and by
0x20B2
AttribfvEXT, and

hoosePixelFormatEXT:

0x20A9

EXT_framebuffer sRGB OpenGL Extension Specifications for GeForce 8 Series

Accepted by the <cap> parameter of Enable, Disa
and by the <pname> parameter of GetBooleanv, Ge
and GetDoublev:

FRAMEBUFFER_SRGB_EXT

Accepted by the <pname> parameter of GetBoolean
GetFloatv, and GetDoublev:

FRAMEBUFFER_SRGB_CAPABLE_EXT
Additions to Chapter 2 of the 2.0 Specification (Op
None
Additions to Chapter 3 of the 2.0 Specification (Ra
None

Additions to Chapter 4 of the 2.0 Specification (Pe
and the Frame Buffer)

DELETE the following sentence from section 4.1.
it is moved to the new "sRGB Conversion" sectio

"Each of these floating-point values is clamped
converted back to a fixed-point value in the ma
section 2.14.9."

If ARB_color_buffer_float is supported, the fol
is modified to eliminate the fixed-point clampi
because this behavior is moved to the new "sRGB

"If the color buffer is fixed-point, the compon
and destination values and blend factors are cl
prior to evaluating the blend equation, the com
blending result are clamped to [0,1] and conver
point values in the manner described in section
color buffer is floating-point, no clamping occ
resulting four values are sent to the next oper

The modified ARB_color_buffer_float paragraph s

"If the color buffer is fixed-point, the compon
and destination values and blend factors are cl
prior to evaluating the blend equation. If the
floating-point, no clamping occurs. The result
sent to the next operation.”

33

ble, and IsEnabled,
tintegerv, GetFloatv,

0x8DB9

v, Getintegerv,

0x8DBA

enGL Operation)

sterization)

r-Fragment Operations

8 (Blending) because
n:

to [0,1] and
nner described in

lowing paragraph
ng and conversion
Conversion" section.

ents of the source
amped to [0, 1]
ponents of the
ted to fixed-
2.14.9. If the

urs. The

ation.”

hould read:
ents of the source
amped to [0, 1]

color buffer is
ing four values are

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Replace the following sentence:

"Destination (framebuffer) components are taken
values represented according to the scheme in s
Color Processing), as are source (fragment) com

with the following sentences:
"Destination (framebuffer) components are taken

values represented according to the scheme in s
Color Processing). If FRAMEBUFFER_SRGB_EXT is

FRAMEBUFFER_SRGB_CAPABLE_EXT state for the draw

G, and B destination color values (after conver

to floating-point) are considered to be encoded
space and hence need to be linearized prior to
Each R, G, and B component is linearized by som
the following:

{ cs/12.92, cs <=0.
cl={
{ ((cs + 0.055)/1.055)"2.4, cs> 0.

where cs is the component value prior to linear

the result. Otherwise if FRAMEBUFFER_SRGB_EXT
drawable is not SRGB capable, or the value corr
component, then cs = cl for such components. T
values for R, G, B, and A are recombined as the

used subsequently by blending."

ADD new section 4.1.X "sRGB Conversion" after s
and before section 4.1.9 (Dithering). With thi
understand the "next operation" referred to in
(Blending) to now be "sRGB Conversion" (instead

"If FRAMEBUFFER_SRGB_EXT is enabled and the boo

FRAMEBUFFER_SRGB_CAPABLE_EXT state for the draw

G, and B values after blending are converted in
sSRGB color space by some approximation of the f

{ 0.0, 0
{ 12.92*c, 0

cs ={ 1.055 * cl"0.41666 - 0.055, 0.003
{ 1.0,

where cl is the R, G, or B element and cs is th
(effectively converted into an SRGB color space
FRAMEBUFFER_SRGB_EXT is disabled, or the drawab
capable, or the value corresponds to the A elem

for such elements.

The resulting cs values form a new RGBA color v
buffer is fixed-point, the components of this R
clamped to [0,1] and then converted to a fixed-
manner described in section 2.14.9. The result
sent to the subsequent dithering operation."”

NVIDIA Proprietary 34

EXT_framebuffer sRGB

to be fixed-point
ection 2.14.9 (Final
ponents."

to be fixed-point

ection 2.14.9 (Final
enabled and the boolean
able is true, the R,

sion from fixed-point

for the sRGB color

their use in blending.

e approximation of

04045
04045

ization and cl is

is disabled, or the
esponds to the A

he corresponding cs
destination color

ection 4.1.8 (Blending)
s new section added,
the section 4.1.8

of "Dithering").

lean

able is true, the R,
to the non-linear
ollowing:

<=cl
< ¢l <0.0031308
1308 <=cl<1
cl>=1

e result

). Otherwise if
le is not SRGB
ent, then cs = cl

alue. If the color
GBA color value are
point value in the
ing four values are

EXT_framebuffer sRGB

Additions to Chapter 5 of the 2.0 Specification (Sp
None

Additions to Chapter 6 of the 2.0 Specification (St
None

Additions to the OpenGL Shading Language specificat
None

Additions to the GLX Specification
None

Dependencies on ARB_color_buffer_float

If ARB_color_buffer_float is not supported, ign
ARB_color_buffer_float language.

Dependencies on EXT_texture_ sSRGB and EXT_framebuffe

If EXT_texture_sRGB and EXT_framebuffer_object
implementation should set FRAMEBUFFER_SRGB_CAPA
rendering to a color texture that is not one of

introduced internal formats. An implementation

or not it will set FRAMEBUFFER_SRGB_CAPABLE_EXT
EXT_texture sRGB introduced internal formats.

encouraged to allow sRGB update and blending wh

textures using EXT_framebuffer_object but this

In any case, FRAMEBUFFER_SRGB_CAPABLE_EXT shoul
or not SRGB update and blending is supported.

Dependencies on ARB_draw_buffers, EXT_texture_sRGB,
If ARB_draw_buffers, EXT_texture_sRGB, and EXT_
are supported and an application attempts to re
of color buffers where some but not all of the
are FRAMEBUFFER_SRGB_CAPABLE_EXT individually,
FRAMEBUFFER_SRGB_CAPABLE_EXT should return true

However sSRGB update and blending only apply to
that are actually sSRGB-capable.

GLX Protocol
None.
Errors

Relaxation of INVALID_ENUM errors

Enable, Disable, IsEnabled, GetBooleanv, Getint
and GetDoublev now accept the new token as allo
Tokens" section.

35

OpenGL Extension Specifications for GeForce 8 Series

ecial Functions)
ate and State Requests)

ion

ore the edits to

r_object

are both supported, the
BLE_EXT to false when
the EXT_texture_sRGB
can determine whether
to true for the
Implementations are

en rendering to SRGB
is not required.

d indicate whether

and EXT_framebuffer_object
framebuffer_object
nder to a set

color buffers
the query of

the color buffers

egerv, GetFloatv,
wed in the "New

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_framebuffer sRGB

New State

Add to table 6.20 (Pixel Operations)

GetVaue Type GetCommand Iniia IValue Desaripion Sec. Attribute
FRAMEBUF%R_SRGI%_—EXT B IsEnabled False —SRGB updat;_ and 4.1.X color-bufferfenall ;3
blending enable
Add to table 6.33 (Implementation Dependent Val ues)
GetValue Type GetCommand Initial Value Descripion ~~ Sec. Al bute
FRAI\/IEBUFFER_ERGB_CAPABLE_EXT B IsEnabled © nefdavabe 41X - B
supports SRGB update
and blending
New Implementation Dependent State
None
Issues
1) What should this extension be called?
RESOLVED: EXT_framebuffer_ sRGB.
The "EXT_framebuffer" part indicates the ex tension is in

the extension is
the naming of the
exture formats.

the framebuffer domain and "sRGB" indicates
adding a set of SRGB formats. This mimics
EXT_texture_sRGB extension that adds sRGB t

The mixed-case spelling of SRGB is the esta
" sRGB" is preferred to "_srgb". The "s"s
(color space).

blished usage so
tands for standard

For token names, we use "SRGB" since token
capitalized.

names are uniformly

2) Should alpha be sRGB encoded?
RESOLVED: No. Alpha remains linear.

A rationale for this resolution is found in Alvy Ray's "Should

Alpha Be Nonlinear If RGB Is?" Tech Memo 17
See: ftp://ftp.alvyray.com/Acrobat/17_Nonln

3) Should the ability to support SRGB framebuf

be an attribute of the framebuffer?
RESOLVED: Yes. It should be a capability
(mostly likely just RGB8 and RGBABS) that sa
be enabled.

This allows an implementation to simply mar
and RGBAS8 pixel formats as supporting sSRGB

NVIDIA Proprietary

36

(December 14, 1998).
.pdf

fer update and blending

of some pixel formats
ys sRGB blending can

k the existing RGB8
blending and then

EXT_framebuffer sRGB

just provide the functionality for SRGB upd
such formats.

sRGB support for floating-point formats mak
(because floating-point already provide a n
of precision and typically have considerabl
than 8-bit fixed-point framebuffer componen
be expensive to support.

Requiring sRGB support for all fixed-point
support for 16-bit components or very small
components would require special SRGB conve
Typically sSRGB is well-suited for 8-bit fix

so we do not want this extension to require

for other component sizes that are unlikely
Implementations could support SRGB conversi
framebuffer format but implementations are
(honestly nor are implementations like to s

but 8-bit fixed-point color formats).

4) Should there be an enable for SRGB update a

RESOLVED: Yes, and it is disabled by defau
applies if the framebuffer's underlying pix

of sSRGB update and blending. Otherwise, th
ignored (similar to how the multisample ena
the pixel format lacks multisample supports

5) How is sRGB blending done?

RESOLVED: Blending is a linear operation s
on values in linear spaces. sRGB-encoded v
non-linear space so sRGB blending should co
values from the framebuffer to linear value
sRGB-encode the result to store it in the f

The destination color RGB components are ea
from sRGB to a linear value. Blending is t
The source color and constant color are sim
treated as linear color components. Then t

is converted to an sRGB encoding and stored

6) What happens if GL_FRAMEBUFFER_SRGB_EXT is
GL_FRAMEBUFFER_SRGB_CAPABLE_EXT is true for
GL_BLEND is not enabled?

RESOLVED: The color result from fragment ¢
color) is converted to an sRGB encoding and
framebuffer.

7) How are multiple render targets handled?

RESOLVED: Render targets that are not
GL_FRAMEBUFFER_SRGB_CAPABLE_EXT ignore the
GL_FRAMEBUFFER_SRGB_EXT enable for sRGB upd
So only the render targets that are SRGB-ca

blending and update when GL_FRAMEBUFFER_SRG

37

OpenGL Extension Specifications for GeForce 8 Series

ate and blending for

es little sense
on-linear distribution
y more precision

ts allow) and would

buffers means that

5-bit or 6-bit

rsion hardware.

ed-point components
expensive tables

to ever be used.

on for any color

not required to

upport SRGB on anything

nd blending?

It. The enable only

el format is capable

e enable is silently
bles are ignored when

).

o should be performed
alues are in a

nvert SRGB-encoded
s, blend, and then
ramebuffer.

ch converted

hen performed.

ply assumed to be
he result of blending
in the framebuffer.

enabled (and
the drawable) but

oloring (the source
stored in the

state of the

ate and blending.
pable perform sRGB
B_EXT is enabled.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

8) Should sRGB framebuffer support affect the

RESOLVED: No.

sRGB conversion only applies to color reads
color writes. Color reads for glReadPixels
or glAccum have no sRGB conversion applied.

For pixel path operations, an application ¢
or color tables to perform an sRGB-to-linea
these lookup tables.

9) Can luminance (single color component) fram

support SRGB blending?

RESOLVED: Yes, if an implementation choose
a format and set the sRGB attribute for the

Implementations are not obliged to provide

10) Should all component sizes be supported for

just 8-bit?

RESOLVED: This is at the implementation's
the implementation decides what pixel forma
update and blending.

It likely implementations will only provide
framebuffer configurations for configuratio
components.

11) What must be specified as far as how do you

sRGB and linear RGB color spaces?

RESOLVED: The specification language needs
linear RGB to SRGB conversion (see section

The sRGB to linear RGB conversion is docume
EXT_texture_sRGB specification.

For completeness, the accepted linear RGB t

(the inverse of the function specified in s
follows:

NVIDIA Proprietary 38

EXT_framebuffer sRGB

pixel path?

for blending and
, glCopyPixels,

ould use pixel maps
r conversion with

ebuffer formats

s to advertise such
format too.

such formats.

SRGB components or

discretion since
ts such support SRGB

sRGB-capable
ns with 8-bit

convert to and from
to only supply the
4.9.X above).

nted in the

0 sRGB conversion
ection 3.8.x) is as

EXT_framebuffer sRGB

Given a linear RGB component, cl, convert i
cs, in the range [0,1], with this pseudo-co

if (isnan(cl)) {
/* Map IEEE-754 Not-a-number to zer
cs =0.0;
}else if (cl > 1.0) {
cs =1.0;
}else if (cl < 0.0) {
cs =0.0;
} else if (cl < 0.0031308) {
cs =12.92 * cl;
}else {
cs = 1.055 * pow(cl, 0.41666) - 0.0
}

The NaN behavior in the pseudo-code is rec
specified in the actual specification lang

sRGB components are typically stored as un
fixed-point values. If cs is computed wit
pseudo-code, cs can be converted to a [0,2
formula:

csi = floor(255.0 * ¢cs + 0.5)

12) Does this extension guarantee images render
will "look good" when output to a device su
color space?

RESOLVED: No.

Whether the displayed framebuffer is displa
faithfully reproduces the sRGB color space
of this extension. This involves the gamma
calibration of the physical display device.

13) How does this extension interact with EXT _f

RESOLVED: When rendering to a color textur

can query GL_FRAMEBUFFER_SRGB_CAPABLE_EXT t

color texture image is capable of SRGB rend

This boolean should be false for all textur
except may be true (but are not required to
internal formats introduced by EXT _texture
is that implementations of this extension w
SRGB update and blending of SRGB textures.

14) How is the constant blend color handled for
RESOLVED: The constant blend color is spec
floating-point values. Given that the text

be specified at such high precision, it is
linear RGBA value.

39

OpenGL Extension Specifications for GeForce 8 Series

t to an SRGB component,

de:

0.*

55;

ommended but not
uage.

signed 8-hit
h the above
55] integer with this

ed with sRGB textures
pporting an sRGB

yed to a monitor that
is beyond the scope
correction and color

ramebuffer_object?

e, an application
o determine if the
ering.

e internal formats

be true) for the sRGB
sRGB. The expectation
ill be able to support

sRGB framebuffers?

ified as four
ure border color can
always treated as a

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

15) How does glCopyTex[Sub]image work with SRGB

rendering to a floating point pbuffer or fr
do CopyTeximage. Are the linear framebuffe
to sRGB during the copy?

RESOLVED: No, linear framebuffer values wi
converted to the SRGB encoding during the ¢
conversion is desired, as explained in issu
and blue pixel map functionality can be use
linear-to-sRGB encoding translation.

16) Should this extension explicitly specify th

SRGB-to-linear and linear-to-sRGB conversio

RESOLVED: The conversions are explicitly s
allowance for approximations is provided.
that the implementation is likely to use a
conversions the conversion is necessarily t

17) How does this extension interact with multi

RESOLVED: There are no explicit interactio
if the color samples for multisampling are
samples should be linearized before being "
and then recoverted to sRGB if the output d
encoded color components.

This is really a video scan-out issue and b
of this extension which is focused on the r
However some implementation advice is provi

The implementation sufficiently aware of th
configured for the display device could dec
sRGB-correct multisample resolve. Whether
could be determined by a control panel sett
the application's use of this extension.

18) Why is the sSRGB framebuffer GL_FRAMEBUFFER _

disabled by default?

RESOLVED: This extension could have a bool
sRGB-versus-non-sRGB pixel format configura
determined whether or not SRGB framebuffer
occurs. The problem with this approach is
pixel formation configurations because sRGB
of lots of existing configurations must be
applicaitons unaware of SRGB might unknowin
configuration and then generate over-bright

It seems more appropriate to have a capabil
framebuffer update and blending that is dis
This allows existing RGB8 and RGBAS8 framebu
to be marked as sSRGB capable (so no additio
need be enumerated). Applications that des
should identify an sRGB-capable framebuffer
then enable sRGB rendering.

NVIDIA Proprietary 40

EXT_framebuffer sRGB

? Suppose we're
amebuffer object and
r values converted

I NOT be automatically
opy. Ifsucha

e 12, the red, green,

d to implement a

e particular
ns it uses?

pecified but

The expectation is
table to implement the
hen an approximation.

sampling?

ns. However, arguably
sRGB encoded, the
resolved" for display
evice expects SRGB

eyond the scope
endering issues.
ded:

€ gamma correction
ide to perform an
this occurs or not
ing or inferred by

SRGB_EXT enable

ean
tion mode that

update and blending

1) it creates may more
and non-sRGB versions
advertised, and 2)

gly select an sRGB
rendering.

ity for SRGB

abled by default.
ffer configurations
nal configurations
ire SRGB rendering
configuration and

EXT_framebuffer sRGB

This is different from how EXT_texture_ sRGB
for texture formats. In the EXT_texture_sR

are either sRGB or non-sRGB and there is no
to switch textures between the two modes.
EXT_texture_sRGB because it allows implemen
textures with higher-precision linear textu
sRGB-encoded texels to sufficiently precise

Texture formats also don't have the problem
format descriptions have where a naive appl
upon an sRGB-capable pixel format. sRGB te
explicit use of one of the new EXT_texture_
internal formats.

19) How does sRGB and this extension interact w

output standards, in particular DVI?

RESOLVED: The DVI 1.0 specification recomm
position that digital moniotrs of all types

transfer function similar to analog CRT mon
which makes up the majority of the compute
means DVI output devices should benefit fro
SRGB color space just like analog monitors.

Revision History

None

OpenGL Extension Specifications for GeForce 8 Series

41

handles sRGB support
GB extension, textures
texture parameter
This makes sense for
tations to fake sSRGB
res that simply convert
linear RGB values.

enumerated pixel
ication could stumble
xtures require
SRGB-introduced

ith digital video

ends "as a default
support a color

itors (gamma=2.2)
display market." This
m blending in the

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Name
EXT_geometry_shader4
Name String
GL_EXT_geometry shader4
Contact

Pat Brown, NVIDIA (pbrown 'at' nvidia.com)
Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at'

Status

Multi-vendor extension

Shipping for GeForce 8 Series (November 2006)
Version

Last Modified Date: 05/22/2007
NVIDIA Revision: 17

Number
324

Dependencies
OpenGL 1.1 is required.
This extension is written against the OpenGL 2.
EXT_framebuffer_object interacts with this exte
EXT_framebuffer_blit interacts with this extens
EXT_texture_array interacts with this extension

ARB _texture_rectangle trivially affects the def
extension.

EXT_texture_buffer_object trivially affects the
extension.

NV_primitive_restart trivially affects the defi
extension.

This extension interacts with EXT_tranform_feed
Overview
EXT_geometry shader4 defines a new shader type

GPU, called a geometry shader. Geometry shaders
transformed, but prior to color clamping, flat

NVIDIA Proprietary 42

EXT_geometry_shader4

nvidia.com)

0 specification.

nsion.

ion.

inition of this

definition of this

nition of this

back.

available to be run on the
are run after vertices are
shading and clipping.

EXT_geometry shader4

A geometry shader begins with a single primitiv
triangle). It can read the attributes of any of
primitive and use them to generate new primitiv
fixed output primitive type (point, line strip,
emits vertices to define a new primitive. A geo
multiple disconnected primitives. The primitive
shader are clipped and then processed like an e
specified by the application.

Furthermore, EXT_geometry_shader4 provides four
types: lines with adjacency, line strips with a
triangles with adjacency, and triangle strips w
vertices specified in these new primitive types
ordinary primitives, instead they represent nei
adjacent to the two line segment end points (li
triangle edges (triangles/tstrips). These verti
geometry shaders and used to match up the verti
shader with those of neighboring primitives.

Since geometry shaders expect a specific input

will occur if the application presents primitiv

For example, if a geometry shader expects point
Begin() time, if a primitive mode of TRIANGLES

New Procedures and Functions

void ProgramParameteriEXT(uint program, enum pn
void FramebufferTextureEXT(enum target, enum at
uint texture, int le
void FramebufferTextureLayerEXT(enum target, en
uint texture, i
void FramebufferTextureFaceEXT(enum target, enu
uint texture, in

New Tokens

Accepted by the <type> parameter of CreateShade
<params> parameter of GetShaderiv:

GEOMETRY_SHADER_EXT

Accepted by the <pname> parameter of ProgramPar
GetProgramiv:

GEOMETRY_VERTICES_OUT_EXT

GEOMETRY_INPUT_TYPE_EXT
GEOMETRY_OUTPUT_TYPE_EXT

43

OpenGL Extension Specifications for GeForce 8 Series

e (point, line,

the vertices in the

es. A geometry shader has a
or triangle strip) and

metry shader can emit

s emitted by the geometry
quivalent OpenGL primitive

additional primitive
djacency, separate

ith adjacency. Some of the
are not part of the

ghboring vertices that are
nes/strips) or the three

ces can be accessed by
ces emitted by the geometry

primitive type, an error
es of a different type.
s, an error will occur at
is specified.

ame, int value);
tachment,

vel);

um attachment,

nt level, int layer);
m attachment,

t level, enum face);

r and returned by the

0x8DD9

ameteriEXT and

0x8DDA
0x8DDB
0x8DDC

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Accepted by the <pname> parameter of GetBoolean
GetFloatv, and GetDoublev:

MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT
MAX_GEOMETRY_VARYING_COMPONENTS_EXT
MAX_VERTEX_VARYING_COMPONENTS_EXT
MAX_VARYING_COMPONENTS_EXT
MAX_GEOMETRY_UNIFORM_COMPONENTS_EXT
MAX_GEOMETRY_OUTPUT_VERTICES_EXT
MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT

Accepted by the <mode> parameter of Begin, Draw
MultiDrawArrays, DrawElements, MultiDrawElement
DrawRangeElements:

LINES_ADJACENCY_EXT
LINE_STRIP_ADJACENCY_EXT
TRIANGLES_ADJACENCY_EXT
TRIANGLE_STRIP_ADJACENCY_EXT

Returned by CheckFramebufferStatusEXT:

FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT
FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT

Accepted by the <pname> parameter of GetFramebu
ParameterivEXT:

FRAMEBUFFER_ATTACHMENT_LAYERED_EXT
FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT

Accepted by the <cap> parameter of Enable, Disa
and by the <pname> parameter of Getintegerv, Ge
and GetBooleanv:

PROGRAM_POINT_SIZE_EXT

EXT_geometry_shader4

v, Getintegeryv,

0x8C29
0x8DDD
0x8DDE
0x8B4B
0x8DDF
0x8DEO
0x8DE1

Arrays,

s, and

OxA
0xB
0oxC
0oxD

0x8DA8
0x8DA9

fferAttachment-

Ox8DA7
0x8CD4
ble, and IsEnabled,
tFloatv, GetDoublev,

0x8642

(Note: FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is simply an alias for the
FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXTdken provided in

EXT_framebuffer_object. This extension general
"<zoffset>" to include layers of an array textu

(Note: PROGRAM_POINT_SIZE_EXT is simply an ali
VERTEX_PROGRAM_POINT_SIZE token provided in Ope
alias for VERTEX_PROGRAM_POINT_SIZE_ARB provide
ARB_vertex_program. Program-computed point size
geometry shaders are enabled.)

NVIDIA Proprietary 44

izes the notion of
re.)

as for the

nGL 2.0, which is itself an
d by

s can be enabled if

EXT_geometry shader4
Additions to Chapter 2 of the OpenGL 2.0 Specificat
Operation)
Modify Section 2.6.1 (Begin and End Objects), p
(Add to end of section, p. 18)

(add figure)

1---2---—->3---4 1---2--->3
5---6--->7---8
(@) (b)
Figure 2.X1

The vertices connected with solid lines belon
the vertices connected by dashed lines are th
may be used in a geometry shader.

Lines with Adjacency

Lines with adjacency are independent line segme
a corresponding "adjacent” vertex that can be a
shader (Section 2.16). If a geometry shader is
vertices are ignored.

A line segment is drawn from the 4i + 2nd verte
foreachi=0, 1, ..., n-1, where there are 4
Begin and End. ki is either 0, 1, 2, or 3; if k
vertices are ignored. For line segment i, the
vertices are considered adjacent to the 4i + 2n
respectively. See Figure 2.X1.

Lines with adjacency are generated by calling B
value LINES_ADJACENCY_EXT.

Line Strips with Adjacency

Line strips with adjacency are similar to line
line segment has a pair of adjacent vertices th
geometry shader (Section 2.15). If a geometry
"adjacent" vertices are ignored.

A line segment is drawn from the i + 2nd vertex
eachi=0,1, ..., n-1, where there are n+3 ve
and End. If there are fewer than four vertices
all vertices are ignored. For line segment i,
vertex are considered adjacent to the i + 2nd a
respectively. See Figure 2.X1.

Line strips with adjacency are generated by cal

argument value LINE_STRIP_ADJACENCY_EXT.

(a) Lines with adjacency, (b) Line strip with adja

45

OpenGL Extension Specifications for GeForce 8 Series

ion (OpenGL

.13

~>4-->5 - - - 6

cency.
g to the main primitives;
e adjacent vertices that

nts where each endpoint has
ccessed by a geometry
not active, the "adjacent"

X to the 4i + 3rd vertex
n+k vertices between the
is not zero, the final k

4i + 1st and 4i + 4th

d and 4i + 3rd vertices,

egin with the argument

strips, except that each
at can be accessed by a
shader is not active, the

to the i + 3rd vertex for
rtices between the Begin
between a Begin and End,
the i + 1st and i + 4th

nd i + 3rd vertices,

ling Begin with the

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

(add figure)
2---3---4 8---9
N N
L U B U
|\ |
VoV \
|\ |
V[\
| v |
1<-—--- 5 7<
o
\
\
6

Figure 2.X2 Triangles with adjacency. The vertices connected

lines belong to the main primitive; the verti
lines are the adjacent vertices that may be u

Triangles with Adjacency

Triangles with adjacency are similar to separat
each triangle edge has an adjacent vertex that
geometry shader (Section 2.15). If a geometry
"adjacent" vertices are ignored.

The 6i + 1st, 6i + 3rd, and 6i + 5th vertices (
triangle for each i =0, 1, ..., n-1, where the
between the Begin and End. kis either 0, 1, 2
non-zero, the final k vertices are ignored. Fo

i + 4th, and i + 6th vertices are considered ad
+ 1stto the i + 3rd, from the i + 3rd to the i

5th to the i + 1st vertices, respectively. See

Triangles with adjacency are generated by calli
value TRIANGLES_ADJACENCY_EXT.

NVIDIA Proprietary 46

EXT_geometry_shader4

12

ces connected by dashed
sed in a geometry shader.

e triangles, except that
can be accessed by a
shader is not active, the

in that order) determine a
re are 6n+k vertices
,3,4,0r5;ifkis

r triangle i, the i + 2nd,
jacent to edges from the i
+ 5th, and from the i +
Figure 2.X2.

ng Begin with the argument

with solid

EXT_geometry shader4

OpenGL Extension Specifications for GeForce 8 Series

(add figure)
6 6
'\ '\
|\ [\
|\ |\
2---3--->6 2---3-->7 2- --3---->7---10
/\\ NN | NN\ NN\
| A 1 W W I W AU [\]\
|\ |\ A
VoV LU I LS I
|\ |\ | VoV
Vo LAY A YERYER
| v | w | w v
1<-m---- 5 1<-----5---8 1<------ 5<-mm--- 9
v Vo L A
\ \ VoV
\ \ LAY
4 4 4 8
6 10
ANA
AN B
Y I
2---3--- >7---- > 11
NN\ NN\ |
LU L A [\
[\ I
LU I | \
| V] I
VAN |
| w v %
1<------ B<-mmmm 9---12
VO I
VA I
Vo I
4 8
Figure 2.X3 Triangle strips with adjacency. The vertices conn ected with

solid lines belong to the main primitives; th
dashed lines are the adjacent vertices that m

shader.

e vertices connected by
ay be used in a geometry

47 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

Triangle Strips with Adjacency

Triangle strips with adjacency are similar to t riangle strips, except that
each line triangle edge has an adjacent vertex that can be accessed by a
geometry shader (Section 2.15). If a geometry shader is not active, the

"adjacent" vertices are ignored.

In triangle strips with adjacency, n triangles are drawn using 2 * (n+2) +
k vertices between the Begin and End. k is eit herOor 1;ifkis 1, the
final vertex is ignored. If fewer than 6 verti ces are specified between
the Begin and End, the entire primitive is igno red. Table 2.X1 describes
the vertices and order used to draw each triang le, and which vertices are
considered adjacent to each edge of the triangl e. See Figure 2.X3.
(add table)
primitive adjacent
vertices vertices
primitive 1st 2nd 3rd 1 12 2/3 3/1
only (i==0, n==1) 1 3 5 2 6 4
first (i==0) 1 3 5 2 7 4
middle (i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+7
middle (i even) 2i+1 2i+3 2i+5 2i -1 2i+7 2i+4
last (i==n-1, iodd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+6
last (i==n-1, i even) 2i+1 2i+3 2i+5 2i -1 2i+6 2i+4
Table 2.X1: Triangles generated by triangle strips with adjacency.
Each triangle is drawn using the vertices in the "1st", "2nd", and "3rd"
columns under "primitive vertices", in that o rder. The vertices in the
"1/2", "2/3", and "3/1" columns under "adjace nt vertices" are considered
adjacent to the edges from the first to the s econd, from the second to
the third, and from the third to the first ve rtex of the triangle,
respectively. The six rows correspond to the six cases: the first and
only triangle (i=0, n=1), the first triangle of several (i=0, n>0),
"odd" middle triangles (i=1,3,5...), "even" m iddle triangles
(i=2,4,6,...), and special cases for the last triangle inside the
Begin/End, when i is either even or odd. For the purposes of this
table, the first vertex specified after Begin is numbered "1" and the

first triangle is numbered "0".

Triangle strips with adjacency are generated by calling Begin with the
argument value TRIANGLE_STRIP_ADJACENCY_EXT.

Modify Section 2.14.1, Lighting (p. 59)

(modify fourth paragraph, p. 63) Additionally, vertex and geometry shaders

can operate in two-sided color mode, which is e nabled and disabled by

calling Enable or Disable with the symbolic val ue VERTEX PROGRAM_TWO_SIDE.
When a vertex or geometry shader is active, the shaders can write front

and back color values to the gl_FrontColor, gl_ BackColor,

gl_FrontSecondaryColor and gl_BackSecondaryColo r outputs. When a vertex or

geometry shader is active and two-sided color m ode is enabled, the GL

chooses between front and back colors, as descr ibed below. If two-sided

color mode is disabled, the front color output is always selected.

NVIDIA Proprietary 48

EXT_geometry shader4

Modify Section 2.15.2 Program Objects, p. 73
Change the first paragraph on p. 74 as follows:

Program objects are empty when they are created
program object parameters are discussed in sect
State. A non-zero name that can be used to refe
returned.

Change the language below the LinkProgram comma

... Linking can fail for a variety of reasons a

Shading Language Specification. Linking will al

the shader objects, attached to <program> are n

or if more active uniform or active sampler var
<program> than allowed (see sections 2.15.3 and

fail if the program object contains objects to

section 2.16), but no objects to form a vertex

object contains objects to form a geometry shad
GEOMETRY_VERTICES_OUT_EXT is zero. If LinkProgr

Add the following paragraphs above the descript
DeleteProgram, p. 75:

To set a program object parameter, call
void ProgramParameteriEXT(uint program, enu

<param> identifies which parameter to set for <
value being set. Legal values for <param> and
section 2.16.

Modify Section 2.15.3, Shader Variables, p. 75

Modify the first paragraph of section 'Varying
follows:

A vertex shader may define one or more varying
Shading Language specification). Varying variab
shader. They are either used as the mechanism t
geometry shader, if one is active, or to commun
fragment shader. The OpenGL Shading Language s
set of built-in varying variables that vertex s

section 7.6 of the OpenGL Shading Language Spec
can also be used to communicate values to a geo
active, or to communicate values to the fragmen
function processing that occurs after vertex sh

If a geometry shader is not active, the values

including built-in variables, are expected to b

primitive being rendered, unless flat shaded. T
available for processing varying variables is g
implementation-dependent constant MAX_VARYING_C
represents the number of individual components
varying variables declared as vectors, matrices
consume multiple interpolators. When a program

of any varying variable written by a vertex sha

49

OpenGL Extension Specifications for GeForce 8 Series

. Default values for
ion 2.15.5, Required
rence the program object is

nd on p. 74 as follows:

s specified in the OpenGL
so fail if one or more of

ot compiled successfully,
iables are used in

2.16.3). Linking will also
form a geometry shader (see
shader or if the program

er, and the value of

am failed, ..

ion of

m pname, int value)

program>. <value> holds the
<value> are discussed in

Variables' p. 83 as

variables (see the OpenGL
les are outputs of a vertex
0 communicate values to a
icate values to the
pecification also defines a
haders can write to (see
ification). These variables
metry shader, if one is

t shader and to the fixed-
ading.

of all varying variables,

e interpolated across the

he number of interpolators

iven by the
OMPONENTS_EXT. This value
that can be interpolated;

, and arrays will all

is linked, all components

der, or read by a fragment

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

shader, will count against this limit. The tran
(gl_Position) does not count against this limit

and/or fragment shaders access more than MAX_VA
components worth of varying variables may fail
device-dependent optimizations are able to make
available hardware resources.

Note that the two values MAX_VARYING_FLOATS and
are aliases of each other. The use of MAX_VARYI
discouraged; varying variables can be declared

If a geometry shader is active, the values of v

collected by the primitive assembly stage and p

shader once enough data for one primitive has b

section 2.16). The OpenGL Shading Language spec

set of built-in varying and built-in special va

can write to (see sections 7.1 and 7.6 of the O
Specification). These variables are also collec

geometry shader once enough data has been colle
components of varying and special variables tha

vertex by the primitive assembly stage is given
dependent constant MAX_VERTEX_ VARYING_COMPONENT
represents the number of individual components

varying variables declared as vectors, matrices
consume multiple components. When a program is

any varying variable written by a vertex shader

shader, will count against this limit. A progra

geometry shaders access more than MAX_VERTEX_VA
components worth of varying variables may fail
device-dependent optimizations are able to make
available hardware resources.

Modify Section 2.15.4 Shader Execution, p. 84
Change the following sentence:

"The following operations are applied to vertex
of executing the vertex shader:"

As follows:

If no geometry shader (see section 2.16) is pre
the following operations are applied to vertex
of executing the vertex shader:

[bulleted list of operations]

On page 85, below the list of bullets, add the

If a geometry shader is present in the program
(section 2.16) is applied to vertex values that

executing the vertex shader.

Modify the first paragraph of the section "Text
as follows:

NVIDIA Proprietary 50

EXT_geometry_shader4

sformed vertex position

. A program whose vertex
RYING_COMPONENTS_EXT
to link, unless

the program fit within

MAX_VARYING_COMPONENTS_EXT
NG_FLOATS however is
as integers as well.

arying variables are

assed on to the geometry
een collected (see also
ification also defines a
riables that vertex shaders
penGL Shading Language
ted and passed on to the
cted. The number of

t can be collected per

by the implementation
S_EXT. This value

that can be collected;

, and arrays will all

linked, all components of

, or read by a geometry

m whose vertex and/or
RYING_COMPONENTS_EXT
to link, unless

the program fit within

values that are the result

sent in the program object,
values that are the result

following:

object, geometry shading
are the result of

ure Access', p. 85,

EXT_geometry shader4

Vertex shaders have the ability to do a lookup

supported by the GL implementation. The maximum

units available to a vertex shader is MAX_VERTE
maximum number of zero indicates that the GL im
support texture accesses in vertex shaders. The
shader, if exists, and fragment processing comb

MAX_COMBINED_TEXTURE_IMAGE_UNITS texture image

shader, geometry shader and the fragment proces
texture image unit, then that counts as using t

against the MAX_COMBINED_TEXTURE_IMAGE_UNITS i

Modify Section 2.15.5, Required State, p. 88
Add the following bullets to the state required

* One integer to store the value of GEOMETRY _
zero.

* One integer to store the value of GEOMETRY _
set to TRIANGLES.

* One integer to store the value of GEOMETRY _
set to TRIANGLE_STRIP.

Insert New Section 2.16, Geometry Shaders after

After vertices are processed, they are arranged
described in section 2.6.1 (Begin/End Objects).
new pipeline stage that processes those primiti
defines the operations that are performed in th
geometry shader is an array of strings containi
code language used is described in the OpenGL S
specification. A geometry shader operates on a
and emits one or more output primitives, all of
then processed like an equivalent OpenGL primit
application. The original primitive is discard
shader completes. The inputs available to a geo
transformed attributes of all the vertices that
Additional "adjacency" primitives are available
transformed attributes of neighboring vertices
The results of the shader are a new set of tran
into primitives by the shader.

This new geometry shader pipeline stage is inse
assembly, right before color clamping (section
(section 2.14.7) and clipping (sections 2.12 an

A geometry shader only applies when the GL is i
in color index mode is undefined.

Geometry shaders are created as described in se

parameter of GEOMETRY_SHADER_EXT. They are atta

objects as described in section 2.15.2. When th
in use includes a geometry shader, its geometry
active, and is used to process primitives. If t
geometry shader, or no program object is in use
processing pipeline stage is bypassed.

OpenGL Extension Specifications for GeForce 8 Series

into a texture map, if

number of texture image
X_TEXTURE_IMAGE_UNITS; a
plementation does not

vertex shader, geometry

ined cannot use more than
units. If the vertex

sing stage access the same
hree texture image units

mit.

per program object:

VERTICES_OUT_EXT, initially

INPUT_TYPE_EXT, initially

OUTPUT_TYPE_EXT, initially

p. 89

into primitives, as

This section described a
ves. A geometry shader

is new pipeline stage. A
ng source code. The source
hading Language

single primitive at a time
the same type, which are
ive specified by the

ed after the geometry
metry shader are the
belong to the primitive.
which also make the
available to the shader.
sformed vertices, arranged

rted after primitive
2.14.6), flat shading
d 2.14.8).

n RGB mode. Its operation

ction 2.15.1 using a type
ched to and used in program
e program object currently
shader is considered

he program object has no

, this new primitive

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

A program object that includes a geometry shade
vertex shader; otherwise a link error will occu

Section 2.16.1, Geometry shader Input Primitive

A geometry shader can operate on one of five in
Depending on the input primitive type, one to s
available when the shader is executed. Each in

a subset of the primitives provided by the GL.

active, Begin, or any function that implicitly

an INVALID_OPERATION error if the <mode> parame
the input primitive type of the currently activ

discussed below.

The input primitive type is a parameter of the
set before linking by calling ProgramParameteri

GEOMETRY_INPUT_TYPE_EXT and <value> set to one
LINES_ADJACENCY_EXT, TRIANGLES or TRIANGLES_ADJ

will not be in effect until the next time LinkP
successfully. Note that queries of GEOMETRY_INP
last value set. This is not necessarily the va
executable code in the program object. After a
created it will have a default value for GEOMET
discussed in section 2.15.5, Required State.

Note that a geometry shader that accesses more
available for a given input primitive type can
because the input primitive type is not part of
object. However, a program object, containing a
more input vertices than are available for the
program object, will not link.

The supported input primitive types are:
Points (POINTS)

Geometry shaders that operate on points are val
primitive type. There is only a single vertex
shader invocation.

Lines (LINES)

Geometry shaders that operate on line segments
LINES, LINE_STRIP, and LINE_LOOP primitive type
available for each geometry shader invocation.

the vertex at the beginning of the line segment

refers to the vertex at the end of the line seg

2.16.4.

Lines with Adjacency (LINES_ADJACENCY_EXT)

Geometry shaders that operate on line segments
valid only for the LINES_ADJACENCY_EXT and LINE
primitive types. There are four vertices avalil
invocation. The second vertex refers to attribu
beginning of the line segment and the third ver

NVIDIA Proprietary 52

EXT_geometry_shader4

r must also include a
r.

S

put primitive types.

ix input vertices are

put primitive type supports
If a geometry shader is
calls Begin, will produce
ter is incompatible with

e program object, as

program object, and must be
EXT with <pname> set to

of POINTS, LINES,
ACENCY_EXT. This setting
rogram has been called
UT_TYPE_EXT will return the
lue used to generate the
program object has been
RY_INPUT_TYPE_EXT, as

input vertices than are

be successfully compiled,
the shader

shader object that access
input primitive type of the

id only for the POINTS
available for each geometry

are valid only for the

s. There are two vertices
The first vertex refers to
and the second vertex
ment. See also section

with adjacent vertices are
_STRIP_ADJACENCY_EXT
able for each program

tes of the vertex at the

tex refers to the vertex at

EXT_geometry shader4

the end of the line segment. The first and four
vertices adjacent to the beginning and end of t
respectively.

Triangles (TRIANGLES)

Geometry shaders that operate on triangles are
TRIANGLE_STRIP and TRIANGLE_FAN primitive types

There are three vertices available for each pro
second and third vertices refer to attributes o
third vertex of the triangle, respectively.

Triangles with Adjacency (TRIANGLES_ADJACENCY_E

Geometry shaders that operate on triangles with

valid for the TRIANGLES_ADJACENCY_EXT and TRIAN
primitive types. There are six vertices availa

invocation. The first, third and fifth vertices

first, second and third vertex of the triangle,

fourth and sixth vertices refer to attributes o

the edges from the first to the second vertex,

third vertex, and from the third to the first v

Section 2.16.2, Geometry Shader Output Primitiv

A geometry shader can generate primitives of on
supported output primitive types are points (PO
(LINE_STRIP), and triangle strips (TRIANGLE_STR
by the geometry shader are decomposed into poin
based on the output primitive type in the manne
2.6.1. The resulting primitives are then furthe

figure 2.16.xxx. If the number of vertices emit

is not sufficient to produce a single primitive

The output primitive type is a parameter of the

set by calling ProgramParameteriEXT with <pname
GEOMETRY_OUTPUT_TYPE_EXT and <value> set to one
TRIANGLE_STRIP. This setting will not be in eff
LinkProgram has been called successfully. Note
GEOMETRY_OUTPUT_TYPE_EXT will return the last v
necessarily the value used to generate the exec

object. After a program object has been created

value for GEOMETRY_OUTPUT_TYPE_EXT, as discusse
Required State. .

Section 2.16.3 Geometry Shader Variables
Geometry shaders can access uniforms belonging

object. The amount of storage available for geo
variables is specified by the implementation de

MAX_GEOMETRY_UNIFORM_COMPONENTS_EXT. This value

individual floating-point, integer, or Boolean
uniform variable storage for a geometry shader.
generated if an attempt is made to utilize more
for geometry shader uniform variables. Uniforms
described in section 2.15.3. Geometry shaders

53

OpenGL Extension Specifications for GeForce 8 Series

th vertices refer to the
he line segment,

valid for the TRIANGLES,

gram invocation. The first,
f the first, second and

XT)

adjacent vertices are
GLE_STRIP_ADJACENCY_EXT
ble for each program

refer to attributes of the
respectively. The second,

f the vertices adjacent to

from the second to the

ertex, respectively.

es

e of three types. The
INTS), line strips

IP). The vertices output

ts, lines, or triangles

r described in section

r processed as shown in
ted by the geometry shader
, hothing is drawn.

program object, and can be
> set to

of POINTS, LINE_STRIP or
ect until the next time

that queries of

alue set; which is not

utable code in the program
it will have a default

d in section 2.15.5,

to the current program

metry shader uniform

pendent constant
represents the number of

values that can be held in
A link error will be

than the space available
are manipulated as

also have access to

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

samplers, to perform texturing operations, as d
and 3.8.

Geometry shaders can access the transformed att
its input primitive type through input varying
writing to output varying variables, generates
varying variables. This includes values for bui
user-defined varying variables. Values for any

not written by a vertex shader are undefined. A
shader has access to a built-in variable that h
primitive. This ID is generated by the primitiv

in between the vertex and geometry shader.

Additionally, geometry shaders can write to one
variables for each primitive it outputs. These
shaded (using the OpenGL Shading Language varyi
clipped, then the clipped values interpolated a

flat shaded). The results of these interpolatio
fragment shader, if one is active. Furthermore,

to a set of built- in varying variables, define
Language, that correspond to the values require
processing that occurs after geometry processin
Section 2.16.4, Geometry Shader Execution Envir
If a successfully linked program object that co
made current by calling UseProgram, the executa
shader is used to process primitives resulting
stage.

The following operations are applied to the pri
of executing a geometry shader:

* color clamping or masking (section 2.14.6),
* flat shading (section 2.14.7),

* clipping, including client-defined clip pla

* front face determination (section 2.14.1),

* color and associated data clipping (section
* perspective division on clip coordinates (s
* final color processing (section 2.14.9), an

* viewport transformation, including depth-ra
2.11.2).

There are several special considerations for ge
described in the following sections.

Texture Access

Geometry shaders have the ability to do a looku
supported by the GL implementation. The maximum

NVIDIA Proprietary 54

EXT_geometry_shader4

escribed in sections 2.15.3

ributes of all vertices for
variables. A vertex shader,
the values of these input
It-in as well as

varying variables that are
dditionally, a geometry
olds the ID of the current
e assembly stage that sits

, Or more, varying

values are optionally flat

ng qualifier "flat") and

cross the primitive (if not

ns are available to a
geometry shaders can write
d in the OpenGL Shading

d for the fixed-function

g.
onment
ntains a geometry shader is

ble version of the geometry
from the primitive assembly

mitives that are the result

nes (section 2.12),

2.14.8),
ection 2.11),

d

nge scaling (section

ometry shader execution

p into a texture map, if
number of texture image

EXT_geometry shader4 OpenGL Extension Specifications for GeForce 8 Series

units available to a geometry shader is

MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT; a maximum number of zero indicates

that the GL implementation does not support tex
shaders.

The vertex shader, geometry shader and fragment

use more than MAX_COMBINED_TEXTURE_IMAGE_UNITS
vertex shader, geometry shader and the fragment

the same texture image unit, then that counts a

units against the MAX_COMBINED_TEXTURE_IMAGE_UN

When a texture lookup is performed in a geometr
texture value tau is computed in the manner des
and 3.8.9, and converted to a texture source co
3.21 (section 3.8.13). A four component vector

to the geometry shader. In a geometry shader it
automatic level-of- detail calculations using p
texture coordinates with respect to window coor
section 3.8.8. Hence, there is no automatic sel
level. Minification or magnification of a textu
level-of-detail value optionally passed as an a
lookup functions. If the texture lookup functio
level-of-detail value lambda, then the pre-bias
LAMBDAbase(x, y) = lambda (replacing equation 3
function does not supply an explicit level-of-d
LAMBDADbase(x, y) = 0. The scale factor Rho(x, y
function f(x, y) (see equation 3.21) are ignore

Texture lookups involving textures with depth ¢
return the depth data directly or return the re

the R value (see section 3.8.14) used to perfor
comparison operation is requested in the shader
sampler and in the texture using the TEXTURE CO
requests must be consistent; the results of a t

if:

* the sampler used in a texture lookup functi
sampler types, and the texture object's int
COMPONENT, and the TEXTURE COMPARE MODE is

* the sampler used in a texture lookup functi
sampler types, and the texture object's int
COMPONENT, and the TEXTURE COMPARE MODE is

* the sampler used in a texture lookup functi
sampler types, and the texture object's int
COMPONENT.

If a geometry shader uses a sampler where the a
not complete as defined in section 3.8.10, the
return (R,G,B,A) = (0, 0, 0, 1).

Geometry Shader Inputs

The OpenGL Shading Language specification descr

variables that are available as inputs to the g
receives the values from the equivalent built-i

55

ture accesses in geometry

processing combined cannot
texture image units. If the
processing stage access

s using three texture image
ITS limit.

y shader, the filtered
cribed in sections 3.8.8
lor Cs according to table
(Rs,Gs,Bs,As) is returned
is not possible to perform
artial derivatives of the
dinates as described in
ection of an image array
re map is controlled by a
rgument in the texture

n supplies an explicit
level-of-detail value

.18). If the texture lookup
etail value, then

) and its approximation

omponent data can either

sults of a comparison with

m the lookup. The

by using any of the shadow
MPARE MODE parameter. These
exture lookup are undefined

on is not one of the shadow
ernal format is DEPTH
not NONE;

on is one of the shadow
ernal format is DEPTH
NONE; or

on is one of the shadow

ernal format is not DEPTH

ssociated texture object is
texture image unit will

ibes the set of built-in
eometry shader. This set
n output variables written

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

by the vertex shader. These built-in variables
the array holds the value for a specific vertex
primitive. The length of each array depends on
primitive type, as determined by the program ob

GEOMETRY_INPUT_TYPE_EXT, and is set by the GL d

variable is a one-dimensional array, except for
coordinate variable, which is a two- dimensiona
built-in output gl_TexCoord[] is a one-dimensio
geometry shader equivalent input variable gl_Te
dimensional array. See the OpenGL Shading Langu
4.3.6 and 7.6 for more information.

The built-in varying variables gl_FrontColorin[
gl_FrontSecondaryColorIn[] and gl_BackSecondary
per-vertex front and back colors of the primary
written by the vertex shader to its equivalent

The built-in varying variable gl_TexCoordIn[][]
values of the array of texture coordinates, as
shader to its built-in output array gl_TexCoord

The built-in varying variable gl_FogFragCoordIn
fog coordinate, as written by the vertex shader
variable gl_FogFragCoord.

The built-in varying variable gl_PositionIn[] h
position, as written by the vertex shader to it
gl_Position. Note that writing to gl_Position f
fragment shader is optional. See also section 7
Shader Special Variables" of the OpenGL Shading

The built-in varying variable gl_ClipVertexIn[]
position in clip coordinates, as written by the
output variable gl_ClipVertex.

The built-in varying variable gl_PointSizeln[]
size written by the vertex shader to its built-
gl_PointSize. If the vertex shader does not wri
of gl_PointSizeln[] is undefined, regardless of
VERTEX_PROGRAM_POINT_SIZE.

The built-in special variable gl_PrimitivelDIn
vertex shader equivalent. It is filled with the
processed since the last time Begin was called
vertex array functions). The first primitive g
numbered zero, and the primitive ID counter is
individual point, line, or triangle primitive i
drawn in point or line mode, the primitive ID ¢
once, even though multiple points or lines may
primitive topology using the primitive restart
primitive ID counter.

Similarly to the built-in varying variables, us
variables need to be declared as arrays. Declar
no size is specified, it will be inferred by th
primitive type. If a size is specified, it has

the number of vertices of the input primitive t

NVIDIA Proprietary 56

EXT_geometry_shader4

are arrays; each element in
of the input

the value of the input

ject value

uring link. Each built-in

the built-in texture

| array. The vertex shader
nal array. Therefore, the
xCoordIn[][] becomes a two-
age Specification, sections

], gl_BackColorIn[],
Colorin[] hold the

and secondary colors, as
built-in output variables.

holds the per- vertex
written by the vertex

il

[] holds the per- vertex
to its built- in output

olds the per-vertex

s output variable

rom either the vertex or
.1 "Vertex and Geometry
Language specification.

holds the per-vertex
vertex shader to its

holds the per-vertex point
in output varying variable
te gl_PointSize, the value
the value of the enable

is not an array and has no
number of primitives
(directly or indirectly via
enerated after a Begin is
incremented after every

s processed. For triangles
ounter is incremented only
be drawn. Restarting a
index has no effect on the

er-defined input varying
ing a size is optional. If

e linker from the input

to be of the size matching
ype, otherwise a link error

EXT_geometry shader4

will occur. The built-in variable gl_VerticesIn

used to size the array correctly for each input

type. User-defined varying variables can be dec
vertex shader. This means that those, on input
must be declared as two-dimensional arrays. See
the OpenGL Shading Language Specification for m

Using any of the built-in or user-defined input
count against the limit MAX_VERTEX_VARYING_COMP
section 2.15.3.

Geometry Shader outputs

A geometry shader is limited in the number of v

invocation. The maximum number of vertices a ge

emit needs to be set as a parameter of the prog

the geometry shader. To do so, call ProgramPara

to GEOMETRY_VERTICES OUT_EXT and <value> set to
vertices the geometry shader will emit in one i

will not be guaranteed to be in effect until th

been called successfully. If a geometry shader,

more vertices than the value GEOMETRY_VERTICES
have no effect.

There are two implementation-dependent limits o
GEOMETRY_VERTICES OUT_EXT. First, the error IN
generated by ProgramParameteriEXT if the number
exceeds the value of MAX_GEOMETRY_OUTPUT_VERTIC
product of the total number of vertices and the

all active varying variables may not exceed the

OpenGL Extension Specifications for GeForce 8 Series

, if so desired, can be
primitive

lared as arrays in the

to the geometry shader,
sections 4.3.6 and 7.6 of
ore information.

varying variables can
ONENTS_EXT as discussed in

ertices it may emit per
ometry shader can possibly
ram object that contains
meteriEXT with <pname> set
the maximum number of
nvocation. This setting

e next time LinkProgram has
in one invocation, emits
OUT_EXT, these emits may

n the value of
VALID_VALUE will be

of vertices specified

ES EXT. Second, the
sum of all components of
value of

MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT. Linkrogram will fail if it

determines that the total component limit would

A geometry shader can write to built-in as well
variables. These values are expected to be inte
primitive it outputs, unless they are specified
order to seamlessly be able to insert or remove
program object, the rules, names and types of t
variables and user-defined varying variables ar
vertex shader. Refer to section 2.15.3 and the
specification sections 4.3.6, 7.1 and 7.6 for m

The built-in output variables gl_FrontColor, gl
gl_FrontSecondaryColor, and gl_BackSecondaryCol
colors for the primary and secondary colors for

The built-in output variable gl_TexCoord[] is a
of texture coordinates for the current vertex.

The built-in output variable gl_FogFragCoord is
described in section 3.10 "Fog" of the OpenGL 2

The built-in special variable gl_Position is in
homogeneous vertex position. Writing gl_Positio

57

be violated.

as user-defined varying
rpolated across the

to be flat shaded. In

a geometry shader from a
he output built-in varying

e the same as for the
OpenGL Shading Language
ore detail.

_BackColor,
or hold the front and back
the current vertex.

n array and holds the set
used as the "c" value, as
.0 specification.

tended to hold the
n is optional.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

The built-in special variable gl_ClipVertex hol
used in the clipping stage, as described in sec
OpenGL 2.0 specification.

The built-in special variable gl_PointSize, if
the point to be rasterized, measured in pixels.

Additionally, a geometry shader can write to th
variables gl_PrimitivelD and gl_Layer, whereas
built-in gl_PrimitivelD provides a single integ
primitive identifier. This written primitive |
shaders. If a fragment shader using primitive
geometry shader is also active, the geometry sh
gl_PrimitivelD or the primitive ID number is un
variable gl_Layer is used in layered rendering,
section.

The number of components available for varying
implementation-dependent constant

MAX_GEOMETRY_VARYING_COMPONENTS_EXT. This value

individual components of a varying variable; va
vectors, matrices, and arrays will all consume
program is linked, all components of any varyin
geometry shader, or read by a fragment shader,
limit. The transformed vertex position (gl_Posi
against this limit. A program whose geometry an

access more than MAX_GEOMETRY_VARYING_COMPONENT

variable components may fail to link, unless de
optimizations are able to make the program fit
resources.

Layered rendering

Geometry shaders can be used to render to one o
of cube map textures, three-dimensional texture
and two-dimensional texture arrays. This functi
application to bind an entire "complex" texture
and render primitives to arbitrary layers compu
example, this mechanism can be used to project
six faces of a cubemap texture in one pass. The
specified by writing to the built-in output var
rendering requires the use of framebuffer objec
'‘Dependencies on EXT_framebuffer_object’ for de

Additions to Chapter 3 of the OpenGL 2.0 Specificat
Modify Section 3.3, Points (p. 95)
(replace all Section 3.3 text on p. 95)
A point is drawn by generating a set of fragmen

or circle centered around the vertex of the poi
associated point size that controls the size of

NVIDIA Proprietary

58

EXT_geometry_shader4

ds the vertex coordinate
tion 2.12 "Clipping" of the

written, holds the size of

e built-in special

a vertex shader cannot. The
er that serves as a

D is available to fragment
IDs is active and a

ader must write to

defined. The built-in

and discussed in the next

variables is given by the

represents the number of
rying variables declared as
multiple components. When a
g variable written by a

will count against this

tion) does not count

d/or fragment shaders

S_EXT worth of varying
vice-dependent

within available hardware

f several different layers

s, plus one- dimensional
onality allows an

to a framebuffer object,
ted at run time. For

and render a scene onto all
layer to render to is

iable gl_layer. Layered

ts. Refer to the section
tails.

ion (Rasterization)

ts in the shape of a square
nt. Each vertex has an
that square or circle.

EXT_geometry shader4

If no vertex or geometry shader is active, the
controlled by

void PointSize(float size);

<size> specifies the requested size of a point.
1.0. A value less than or equal to zero results
INVALID_VALUE.

The requested point size is multiplied with a d
clamped to a specified point size range, and fu
implementation-dependent point size range to pr
size:

derived size = clamp(size * sqrt(1/(a+b*

where d is the eye-coordinate distance from the
coordinates, to the vertex, and a, b, and c are
function coefficients.

If a vertex or geometry shader is active, the d
per-vertex point size mode enable. Per-vertex
or disabled by calling Enable or Disable with t
PROGRAM_POINT_SIZE_EXT. If per-vertex point si
geometry shader is active, the derived point si
(potentially clipped) point size variable gl_Po
geometry shader. If per-vertex point size is en
shader is active, the derived point size is tak
clipped) point size variable gl_PointSize writt
per-vertex point size is disabled and a geometr
active, the derived point size is taken from th
PointSize, with no distance attenuation applied
derived point size is clamped to the implementa
range.

If multisampling is not enabled, the derived si
rasterization as the point width. ...

Modify section 3.10 "Fog", p. 191

Modify the third paragraph of this section as f

If a vertex or geometry shader is active, or if
below, is FOG_COORD, then c is the interpolated

coordinate for this fragment. Otherwise, ...

Additions to Chapter 4 of the OpenGL 2.0 Specificat
Operations and the Frame Buffer)

None.

59

OpenGL Extension Specifications for GeForce 8 Series

size of the point is

The default value is
in the error

istance attenuation factor,
rther clamped to the
oduce the derived point

d+c*dn2))

eye, (0,0,0,1) in eye
distance attenuation

erived size depends on the
point size mode is enabled
he symbolic value

ze is enabled and a

ze is taken from the
intSize written by the
abled and no geometry

en from the (potentially

en by the vertex shader. If
y and/or vertex shader is

e <size> value provided to
. In all cases, the
tion-dependent point size

ze is passed on to

ollows.
the fog source, as defined

value of the fog

ion (Per-Fragment

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Additions to Chapter 5 of the OpenGL 2.0 Specificat
Functions)

Change section 5.4 Display Lists, p. 237

Add the command ProgramParameteriEXT to the lis
compiled into a display list, but executed imme
Shader Objects", p. 241

Additions to Chapter 6 of the OpenGL 2.0 Specificat
Requests)

Modify section 6.1.14, Shader and Program Objec
Add to the second paragraph on p. 257:

... if <shader> is a fragment shader object, an
returned if <shader> is a geometry shader objec

Add to the end of the description of GetProgram

If <pname> is GEOMETRY_VERTICES_OUT_EXT, the cu
number of vertices the geometry shader will out

is GEOMETRY_INPUT_TYPE_EXT, the current geometr
returned and can be one of POINTS, LINES, LINES

or TRIANGLES_ADJACENCY_EXT. If <pname> is GEOM
current geometry shader output type is returned
LINE_STRIP or TRIANGLE_STRIP.

Additions to Appendix A of the OpenGL 2.0 Specifica
None.

Additions to the AGL/GLX/WGL Specifications
None.

Dependencies on NV_primitive_restart

The spec describes the behavior that primitive
primitive ID counter gl_PrimitivelDIn. If NV_pr
supported, references to that extension in the
ID should be removed.

Dependencies on EXT_framebuffer_object

If EXT_framebuffer_object (or similar functiona

gl_Layer output has no effect. "FramebufferTex
"FramebufferTextureLayerEXT" should be removed

Functions"”, and FRAMEBUFFER_ATTACHMENT_LAYERED_
FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT, and
FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT should b
Tokens".

Otherwise, this extension modifies EXT_framebuf

notion of layered framebuffer attachments and f
used in conjunction with geometry shaders to al

NVIDIA Proprietary 60

EXT_geometry_shader4

ion (Special

t of commands that are not
diately, under "Program and

ion (State and State

ts, p. 256

d GEOMETRY_SHADER_EXT is
t.

iv, p. 257:

rrent value of the maximum

put is returned. If <pname>

y shader input type is
_ADJACENCY_EXT, TRIANGLES
ETRY_OUTPUT_TYPE_EXT, the
and can be one of POINTS,

tion (Invariance)

restart does not affect the
imitive_restart is not
discussion of the primitive

lity) is not supported, the
tureEXT" and

from "New Procedures and
EXT,

e removed from "New
fer_object to add the

ramebuffers that can be
low programs to direct

EXT_geometry shader4

primitives to a face of a cube map or layer of
or one- or two-dimensional array texture. The
can be selected by the geometry shader at run t

(insert before the end of Section 4.4.2, Attach
Objects)

There are several types of framebuffer-attachab
* the image of a renderbuffer object, which i

* a single level of a one-dimensional texture
two-dimensional image with a height of one,

* a single level of a two-dimensional or rect

* a single face of a cube map texture level,
two-dimensional image, or

* a single layer of a one- or two-dimensional
three-dimensional texture, which is treated
image.

Additionally, an entire level of a three-dimens
texture, or one- or two-dimensional array textu
attachment point. Such attachments are treated
two-dimensional images, arranged in layers, and
attachment point is considered to be layered.

(replace section 4.4.2.3, "Attaching Texture Im

GL supports copying the rendered contents of th
images of a texture object through the use of t
CopyTeximage{1D|2D}, and CopyTexSublmage{1D|2D|
supports rendering directly into the images of

To render directly into a texture image, a spec
object can be attached as one of the logical bu
bound framebuffer object by calling:

void FramebufferTextureEXT(enum target, enum
uint texture, int

<target> must be FRAMEBUFFER_EXT. <attachment>
attachment points of the framebuffer listed in

If <texture> is zero, any image or array of ima
attachment point named by <attachment> is detac
attachment point is reset to its initial values
<texture> is zero.

If <texture> is non-zero, FramebufferTextureEXT

the texture object named <texture> to the frame
named by <attachment>. The error INVALID_VALUE
is not the name of a texture object, or if <lev

texture level number for textures of the type ¢

61

OpenGL Extension Specifications for GeForce 8 Series

a three-dimensional texture
layer used for rendering
ime.

ing Images to Framebuffer

le images:
s always two-dimensional,

, Which is treated as a

angle texture,

which is treated as a

array texture or
as a two-dimensional

ional texture, cube map
re can be attached to an
as an array of

the corresponding

ages to a Framebuffer")

e framebuffer into the
he routines

3D}. Additionally, GL
a texture object.

ified level of a texture
ffers of the currently

attachment,
level);

must be one of the
table 1.nnn.

ges attached to the
hed, and the state of the
. <level> is ignored if

attaches level <level> of
buffer attachment point
is generated if <texture>
el> is not a supported
orresponding to <target>.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

The error INVALID_OPERATION is generated if <te xture> is the name of a
buffer texture.

If <texture> is the name of a three-dimensional texture, cube map texture,
or one- or two-dimensional array texture, the t exture level attached to
the framebuffer attachment point is an array of images, and the

framebuffer attachment is considered layered.

The command

void FramebufferTextureLayerEXT(enum target, enum attachment,
uint texture, int level, int layer);

operates like FramebufferTextureEXT, except tha t only a single layer of
the texture level, numbered <layer>, is attache d to the attachment point.
If <texture> is non-zero, the error INVALID_ VAL UE is generated if <layer>
is negative, or if <texture> is not the name of a texture object. The
error INVALID_OPERATION is generated unless <te xture> is zero or the name
of a three-dimensional or one- or two-dimension al array texture.

The command

void FramebufferTextureFaceEXT(enum target, e num attachment,
uint texture, int level, enum face);
operates like FramebufferTextureEXT, except tha t only a single face of a
cube map texture, given by <face>, is attached to the attachment point.
<face> is one of TEXTURE_CUBE_MAP_POSITIVE_X, T EXTURE_CUBE_MAP_NEGATIVE_X,

TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_Z. If <texture> is

non-zero, the error INVALID_VALUE is generated if <texture> is not the
name of a texture object. The error INVALID_OP ERATION is generated unless
<texture> is zero or the name of a cube map tex ture.

The command

void FramebufferTexturelDEXT(enum target, enu m attachment,
enum textarget, uint texture, int level);
operates identically to FramebufferTextureEXT, except for two additional
restrictions. If <texture> is non-zero, the er ror INVALID_ENUM is
generated if <textarget> is not TEXTURE_1D and the error INVALID_OPERATION
is generated unless <texture> is the name of a one-dimensional texture.

The command

void FramebufferTexture2DEXT(enum target, enu m attachment,
enum textarget, uint texture, int level);
operates similarly to FramebufferTextureEXT. | f <textarget> is TEXTURE_2D
or TEXTURE_RECTANGLE_ARB, <texture> must be zer o or the name of a
two-dimensional or rectangle texture. If <text arget> is

TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MA P_NEGATIVE_Z, <texture>
must be zero or the name of a cube map texture. For cube map textures,
only the single face of the cube map texture le vel given by <textarget> is

NVIDIA Proprietary 62

EXT_geometry shader4

attached. The error INVALID_ENUM is generated
and <textarget> is not one of the values enumer
INVALID_OPERATION is generated if <texture> is
type does not match the texture type required b

The command

void FramebufferTexture3DEXT(enum target, enu
enum textarget,
int level, int z

behaves identically to FramebufferTextureLayerE
parameter set to the value of <zoffset>. The e
generated if <textarget> is not TEXTURE_3D. Th
is generated unless <texture> is zero or the na
texture.

For all FramebufferTexture commands, if <textur
command does not result in an error, the frameb
corresponding to <attachment> is updated based

OpenGL Extension Specifications for GeForce 8 Series

if <texture> is not zero

ated above. The error

the name of a texture whose
y <textarget>.

m attachment,
uint texture,
offset);

XT, with the <layer>

rror INVALID_ENUM is

e error INVALID OPERATION
me of a three-dimensional

e> is non-zero and the
uffer attachment state
on the new attachment.

FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT issett o TEXTURE,
FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT is sett o <texture>, and
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to <level>.
FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_FACE is set to <textarget> if
FramebufferTexture2DEXT is called and <texture> is the name of a cubemap
texture; otherwise, it is set to TEXTURE_CUBE_M AP_POSITIVE_X.
FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is set to <layer> or <zoffset> if
FramebufferTextureLayerEXT or FramebufferTextur e3DEXT is called;
otherwise, it is set to zero. FRAMEBUFFER_ATTA CHMENT_LAYERED_ EXT is set
to TRUE if FramebufferTextureEXT is called and <texture> is the name of a
three-dimensional texture, cube map texture, or one- or two-dimensional
array texture; otherwise it is set to FALSE.

(modify Section 4.4.4.1, Framebuffer Attachment Completeness -- add to the
conditions necessary for attachment completenes s)

The framebuffer attachment point <attachment> i s said to be "framebuffer
attachment complete" if ...

* If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a three-dimensional
texture, FRAMEBUFFER_ATTACHMENT_TEXTURE_LAY ER_EXT must be smaller than
the depth of the texture.

* If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a one- or two-dimensional
array texture, FRAMEBUFFER_ATTACHMENT_TEXTU RE_LAYER_EXT must be
smaller than the number of layers in the te xture.

(modify section 4.4.4.2, Framebuffer Completene ss -- add to the list of
conditions necessary for completeness)

* If any framebuffer attachment is layered, a
must be layered. Additionally, all populat ed color attachments must
be from textures of the same target (i.e., three-dimensional, cube
map, or one- or two-dimensional array textu res).

{ FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT }

Il populated attachments

63 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

* If any framebuffer attachment is layered, a
the same layer count. For three-dimensiona
is the depth of the attached volume. Forc
count is always six. For one- and two-dime
layer count is simply the number of layers

{ FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT }

The enum in { brackets } after each clause of t
rules specifies the return value of CheckFrameb
that is generated when that clause is violated.

(add section 4.4.7, Layered Framebuffers)

A framebuffer is considered to be layered if it
populated attachments are layered. When render
framebuffer, each fragment generated by the GL
The layer number for a fragment is zero if

* the fragment is generated by DrawPixels, Co
* geometry shaders are disabled, or

* the current geometry shader does not contai
statically assigns a value to the built-in

Otherwise, the layer for each point, line, or t
geometry shader is taken from the layer output
the primitive. The vertex used is implementati
defined results, all vertices of each primitive
same value for gl_Layer. Since the EndPrimitiv
starts a new output primitive, defined results
EndPrimitive() is called between two vertices e
numbers. A layer number written by a geometry
framebuffer is not layered.

When fragments are written to a layered framebu
number selects an image from the array of image
from which to obtain the destination R, G, B, A
(Section 4.1.8) and to which to write the final
attachment. If the fragment's layer number is

the number of layers attached, the effects of t
framebuffer contents are undefined.

When the Clear command is used to clear a layer
all layers of the attachment are cleared.

When commands such as ReadPixels or CopyPixels

framebuffer, the image at layer zero of the sel
used to obtain pixel values.

When cube map texture levels are attached to a

are six layers attached, numbered zero through
mapped to a cube map face, as indicated in Tabl

NVIDIA Proprietary

64

EXT_geometry_shader4

Il attachments must have

| textures, the layer count
ube map textures, the layer
nsional array textures, the
in the array texture.

he framebuffer completeness
ufferStatusEXT (see below)

is complete and all of its
ing to a layered
is assigned a layer number.

pyPixels, or Bitmap,

n an instruction that
output variable gl_Layer.

riangle emitted by the

of one of the vertices of
on-dependent. To get
emitted should set the
e() built-in function

can be achieved if

mitted with different layer
shader has no effect if the

ffer, the fragment's layer

s at each attachment point
values for blending

color values for that
negative or greater than
he fragment on the

ed framebuffer attachment,

read from a layered
ected attachment is always

layered framebuffer, there
five. Each layer number is
e X.4.

EXT_geometry shader4

layer number cube map face

TEXTURE_CUBE_MAP_POSITIVE_X
TEXTURE_CUBE_MAP_NEGATIVE_X
TEXTURE_CUBE_MAP_POSITIVE_Y
TEXTURE_CUBE_MAP_NEGATIVE_Y
TEXTURE_CUBE_MAP_POSITIVE_Z
TEXTURE_CUBE_MAP_NEGATIVE_Z

arrwWNEFLO

OpenGL Extension Specifications for GeForce 8 Series

Table X.4, Layer numbers for cube map texture faces. The lay ers are

numbered in the same sequence as the cube map

(modify Section 6.1.3, Enumerated Queries -- Mo
values for GetFramebufferAttachmentParameterivE

face token values.

dify/add to list of <pname>
XT if

FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is TEXTURE)

If <pname> is FRAMEBUFFER_ATTACHMENT_TEXTURE_

image is a layer of a three-dimensional textu
two-dimensional array texture, then <params>
layer number. Otherwise, <params> will conta

If <pname> is FRAMEBUFFER_ATTACHMENT_LAYERED_

contain TRUE if an entire level of a three-di
texture, or one- or two-dimensional array tex
<attachment>. Otherwise, <params> will conta

(Modify the Additions to Chapter 5, section 5.4

Add the commands FramebufferTextureEXT, Framebu
FramebufferTextureFaceEXT to the list of comman
into a display list, but executed immediately.
Dependencies on EXT_framebuffer_blit

If EXT_framebuffer_blit is supported, the EXT_f

should be further amended so that <target> valu
FramebufferTextureEXT and FramebufferTextureLay

LAYER_EXT and the attached
re or one- or

will contain the specified

in the value zero.

EXT, then <params> will
mesional texture, cube map
ture is attached to the

in FALSE.

)

fferTextureLayerEXT, and
ds that are not compiled

ramebuffer_object language
es passed to
erEXT can be

DRAW_FRAMEBUFFER_EXT or READ_FRAMEBUFFER_EXT, and that those functions

set/query state for the draw framebuffer if <ta
Dependencies on EXT_texture_array

If EXT_texture_array is not supported, the disc
layered rendering edits to EXT_framebuffer_obje
removed. Layered rendering to cube map and 3D t
supported.

If EXT_texture_array is supported, the edits to
supersede those made in EXT_texture_array, exce
to mipmap generation of array textures.

There are no functional incompatibilities betwe
two specifications. The only differences are t
layered rendering and also rewrites certain sec
specification more aggressively.

65

rget> is FRAMEBUFFER_EXT.

ussion array textures the
ct should be
extures would still be

EXT_framebuffer_object
pt for language pertaining

en the FBO support in these
hat this extension supports
tions of the core FBO

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

Dependencies on ARB_texture_rectangle

If ARB_texture_rectangle is not supported, all references to rectangle
textures in the EXT_framebuffer_object spec lan guage should be removed.

Dependencies on EXT_texture_buffer_object
If EXT_buffer_object is not supported, the refe rence to an
INVALID_OPERATION error if a buffer texture is passed to
FramebufferTextureEXT should be removed.

GLX protocol

TBD

Errors
The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
GEOMETRY_INPUT_TYPE_EXT and <value> is not one of POINTS, LINES,
LINES_ADJACENCY_EXT, TRIANGLES or TRIANGLES_ADJ ACENCY_EXT.
The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
GEOMETRY_OUTPUT_TYPE_EXT and <value> is not one of POINTS, LINE_STRIP or
TRIANGLE_STRIP.
The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
GEOMETRY_VERTICES _OUT_EXT and <value> is negati ve.
The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is

GEOMETRY_VERTICES _OUT_EXT and <value> exceeds
MAX_GEOMETRY_OUTPUT_VERTICES_EXT.

The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
set to GEOMETRY_VERTICES_OUT_EXT and the produc t of <value> and the sum of
all components of all active varying variables exceeds

MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT.

The error INVALID_OPERATION is generated if Beg in, or any command that
implicitly calls Begin, is called when a geomet ry shader is active and:
* the input primitive type of the current geo metry shader is

POINTS and <mode> is not POINTS,

* the input primitive type of the current geo metry shader is
LINES and <mode> is not LINES, LINE_STRIP, or LINE_LOOP,

* the input primitive type of the current geo metry shader is
TRIANGLES and <mode> is not TRIANGLES, TRIA NGLE_STRIP or
TRIANGLE_FAN,

* the input primitive type of the current geo metry shader is
LINES_ADJACENCY_EXT and <mode> is not LINES _ADJACENCY_EXT or

LINE_STRIP_ADJACENCY_EXT, or
* the input primitive type of the current geo metry shader is

TRIANGLES_ADJACENCY_EXT and <mode> is not
TRIANGLES_ADJACENCY_EXT or TRIANGLE_STRIP_A DJACENCY_EXT.

NVIDIA Proprietary 66

EXT_geometry shader4 OpenGL Extension Specifications for GeForce 8 Series

New State
Initial
GetValue Type GetCommand Value Description Sec. Attribut e
FRAMEBUFFER _ATTACHMENT_ nxB GetFramebuff er- FALSE Famebuffer atachment44.23 -
LAYERED EXT Attachment- islayered
ParameteriveE XT
Modify the following state value in Table 6.28, Shader Object State,
p. 289.
GetVaue Type GetCommand Va lue Description Sec. Attribut e
SHADER TYPE 22 GetShaderv - Typeofshader(vertex, 2151 -
Fragment, geomety)
Add the following state to Table 6.29, Program Object State, p. 290
Initial
GetValue Type GetCommand Value Desciption Sec. Attribu te
GEOMETRY_VERTICES OUT EXT Z+ GetProgramiv 0 max#ofoutputvertices2164 -
GEOMETRY_INPUT_TYPE EXT 75 GetProgramiv TRIANGLES Primitveinputtype 2161 -
GEOMETRY_OUTPUT_TYPE EXT 73 GetProgramiv TRIANGLE _ Primiive outputtype 2162 -
STRIP

67 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

New Implementation Dependent State

Min.
GetValue Type GetCommand Valu e Description Sec. Atib
MAX_GEOMETRY_TEXTURE Z+ Getintegerv 16 maximumnumberof 2164 -
IMAGE_UNITS EXT texture image units
accesshbleina
geometry shader
MAX_GEOMETRY _OUTPUT _ Z+ Getintegerv 256 maximumnumberof 2164 -
VERTICES EXT vertices thatany
geometry shader can
canemit
MAX_GEOMETRY_TOTAL Z+ Getintegerv 1024 maximumnumberof 2164 -
OUTPUT_COMPONENTS _EXT total components (all
vertices) of active
varyings thata
geometry shader can
emit
MAX_GEOMETRY_UNIFORM_ Z+ Getintegerv 512 Numberofwordsfor 2163 -
COMPONENTS_EXT geometry shader
uniform variables
MAX_ GEOMETRY_VARYING _ Z+ Getintegerv 32 Number of components 2164 -
COMPONENTS_EXT forvarying variables
between geometry and
fragment shaders
MAX VERTEX VARYING Z+ Getintegerv 32 Number of components 2153 -
COMPONENTS_EXT for varying variables
between Vertexand
geometry shaders
MAX VARYING _ Z+ Getintegerv 32 Alias for 2153 -
COMPONENTS_EXT MAX_VARYING_FLOATS
Modifications to the OpenGL Shading Language Specif ication version
1.10.59
Including the following line in a shader can be used to control the
language features described in this extension:
#extension GL_EXT_geometry_shader4 : <behavio r>
where <behavior> is as specified in section 3.3
A new preprocessor #define is added to the Open GL Shading Language:
#define GL_EXT_geometry_shader4 1
Change the introduction to Chapter 2 "Overview of OpenGL Shading" as
follows:
The OpenGL Shading Language is actually three ¢ losely related
languages. These languages are used to create s haders for the programmable
processors contained in the OpenGL processing p ipeline. The precise
definition of these programmable units is left to separate
specifications. In this document, we define the m only well enough to
provide a context for defining these languages. Unless otherwise noted in
this paper, a language feature applies to all | anguages, and common usage

NVIDIA Proprietary 68

EXT_geometry shader4

will refer to these languages as a single langu
will be referred to by the name of the processo
geometry or fragment.

Change the last sentence of the first paragraph
"Source Strings" to:

Multiple shaders of the same language (vertex,
be linked together to form a single program.

Change the first paragraph of section 4.1.3, "l

... integers are limited to 16 bits of precisio
representation in the vertex, geometry and frag

Change the first paragraph of section 4.1.9, "A

Variables of the same type can be aggregated in
dimensional arrays by declaring a name followed
one-dimensional arrays and [][] for two-dimensi
optional size. When an array size is specified

be an integral constant expression (see Section
Expressions") greater than zero. If an array i
expression that is not an integral constant exp
argument to a function, then its size must be d
use. It is legal to declare an array without a
re-declare the same name as an array of the sam
size. It is illegal to declare an array with a

the same shader) index the same array with an i
greater than or equal to the declared size. It
array with a negative constant expression. Arra
parameters in a function declaration must speci
behavior results from indexing an array with a
that's greater than or equal to the array's siz
types and structures can be formed into arrays.

Two-dimensional arrays can only be declared as
geometry shader. See section 4.3.6 for details.
two-dimensional arrays are illegal.

Change the fourth paragraph of section 4.2 "Sco
Shared globals are global variables declared wi

independently compiled units (shaders) of the s
geometry or fragment) that are linked together

69

OpenGL Extension Specifications for GeForce 8 Series

age. The specific languages
r they target: vertex,

of section 3.2
geometry or fragment) can

ntegers" as follows:

n, plus a sign
ment languages..

rrays"”, as follows:

to one- and two-

by brackets ([] for

onal arrays) enclosing an
in a declaration, it must
4.3.3 "Integral Constant
s indexed with an
ression or passed as an
eclared before any such
size and then later

e type and specify a
size, and then later (in
ntegral constant expression
is also illegal to index an
ys declared as formal

fy a size. Undefined
non-constant expression
e or less than 0. All basic

"varying in" variables in a
All other declarations of

ping", as follows:

th the same name in
ame language (vertex,

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Change section 4.3 "Type Qualifiers"

Change the "varying", "in" and "out" qualifiers

varying - linkage between a vertex shader and g
a geometry shader and a fragment shader, or bet
fragment shader.

in - for function parameters passed into a func
variables (geometry only)

out - for function parameters passed back out o
initialized for use when passed in. Also for ou
(geometry only).

Change section 4.3.6 "Varying" as follows:

Varying variables provide the interface between
geometry shader and also between the geometry s
and the fixed functionality between them. If no
present, varying variables also provide the int
shader and fragment shader.

The vertex, or geometry shader will compute val
as color, texture coordinates, etc) and write t
declared with the "varying" qualifier (vertex o
out" qualifiers (geometry only). A vertex or ge
read these output varying variables, getting ba
written. Reading an output varying variable in
returns undefined results if it is read before

A geometry shader may also read from an input v
with the "varying in" qualifiers. The value rea
written by the vertex shader for that varying v
shader operates on primitives, each input varyi
declared as an array. Each element of such an a
vertex of the primitive being processed. If the
declared as a scalar or matrix in the vertex sh
one-dimensional array in the geometry shader. E
have a size declared. If a size is not specifie
linker and depends on the value of the input pr
4.3.xxx to determine the exact size. The read-o
gl_Verticesln will be set to this value by the
specified, it has to be the size as given by ta

link error will occur. The built-in constant gl

can be used to size the array correctly for eac
type. Varying variables can also be declared as
shader. This means that those, on input to the
declared as two- dimensional arrays. The first
two-dimensional array holds the vertex number.
first range of the array is optional, just as i
arrays. The second index holds the per-vertex
size for the second range of the array is not o
the declaration in the vertex shader.

NVIDIA Proprietary 70

EXT_geometry_shader4

as follows:

eometry shader, or between
ween a vertex shader and a

tion or for input varying

f a function, but not
tput varying variables

the vertex shader and
hader and fragment shader
geometry shader is

erface between the vertex

ues per vertex (such

hem to output variables

r geometry) or "varying
ometry shader may also

ck the same values it has

a vertex or geometry shader
being written.

arying variable declared
d will be the same value as
ariable. Since a geometry
ng variable needs to be
rray corresponds to a
varying variable is

ader, it will be a

ach array can optionally
d, it inferred by the
imitive type. See table
nly built-in constant
linker. If a size is

ble 4.3.xxx, otherwise a
_Verticesln, if so desired,
h input primitive

arrays in the vertex
geometry shader, must be
index to the

Declaring a size for the

t is for one-dimensional
array data. Declaring a
ptional, and has to match

EXT_geometry shader4

Value of built-in
Input primitive type gl_VerticesIn

POINTS 1

LINES 2
LINES_ADJACENCY_EXT 4
TRIANGLES 3

TRIANGLES_ADJACENCY_EXT 6

OpenGL Extension Specifications for GeForce 8 Series

Table 4.3.xxxx The value of the built-in variable gl_VerticeslIn i S

determined at link time, based on the input pri

Itis illegal to index these varying arrays, or
dimensional arrays, the first range of the arra
constant expression or an integral constant exp
equal to gl_VerticesIn. A link error will occur

Varying variables that are part of the interfac
are set per vertex and interpolated in a perspe
unless flat shaded, over the primitive being re
the interpolated value is for the fragment cent
interpolated value can be anywhere within the p
fragment center or one of the fragment samples.

A fragment shader may read from varying variabl
be the interpolated value, as a function of the
the primitive, unless the varying variable is f
shader cannot write to a varying variable.

If a geometry shader is present, the type of th

the same name declared in the vertex shader and
variables in the geometry shader must match, ot
will fail. Likewise, the type of the output var

same name declared in the geometry shader and t
fragment shader must match.

If a geometry shader is not present, the type o
with the same name declared in both the vertex
match, otherwise the link command will fail.

Only those varying variables used (i.e. read) i
shader must be written to by the vertex or geom
superfluous varying variables in the vertex sha
superfluous output varying variables in the geo
permissible.

71

mitive type.

in the case of two-

y, with a negative integral
ression greater than or

in these cases.

e to the fragment shader
ctive correct manner,
ndered. If single-sampling,
er. If multi-sampling, the
ixel, including the

es and the value read will
fragment's position within
lat shaded. A fragment

e varying variables with
the input varying

herwise the link command
ying variables with the

he varying variables in the

f the varying variables
and fragment shaders must

n the geometry or fragment
etry shader; declaring

der or declaring

metry shader is

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Varying variables are declared as in the follow

varying in float foo[]; // geometry shader
/[array set as a
/I on the input pr

varying in float foo[gl_VerticeslIn]; // geome

varying in float foo[3]; // geometry shader
// the TRIANGLES i

varying in float foo[][5]; // Size of the fir
/I result of link.
[l array of 5 floa

varying out vec4 bar; // geometry output
varying vec3 normal; /I vertex shader o
/I shader input

The varying qualifier can be used only with the
vec3, vecd, mat2, mat3 and mat4 or arrays of th
varying. Additionally, the "varying in" and "va
only be used in a geometry shader.

If no vertex shader is active, the fixed functi
will compute values for the built-in varying va
consumed by the fragment shader. Similarly, if
active, the vertex shader or geometry shader is
and writing to the built-in varying variables t
fixed functionality fragment pipeline.

Varying variables are required to have global s
outside of function bodies, before their first

Change section 7.1 "Vertex Shader Special Varia
Rename this section to "Vertex and Geometry Sha

Anywhere in this section where it reads "vertex
"vertex and geometry language".

Anywhere in this section where it reads "vertex
"vertex shader or geometry shader".

Change the second paragraph to:

The variable gl_Position is available only in t
language and is intended for writing the homoge
can be written at any time during shader execut
back by the shader after being written. This va
primitive assembly, clipping, culling, and othe
operations that operate on primitives after ver
has occurred. Compilers may generate a diagnos
gl_Position is read before being written, but n
detectable. Writing to gl_Position is optional.
written but subsequent stages of the OpenGL pip
then results are undefined.

NVIDIA Proprietary 72

EXT_geometry_shader4

ing example:

input. Size of the
result of link, based
imitive type.

try shader input

input. Only legal for
nput primitive type

st range set as a
Each vertex holds an
ts.

utput or fragment

data types float, vec2,
ese. Structures cannot be
rying out" qualifiers can

onality pipeline of OpenGL
riables that will be

no fragment shader is
responsible for computing
hat are needed for OpenGL's

cope, and must be declared
use.

bles"
der Special Variables"

language" replace it with

shader" replace it with

he vertex and geometry
neous vertex position. It
ion. It may also be read
lue will be used by

r fixed functionality

tex or geometry processing
tic message if they detect
ot all such cases are

If gl_Position is not

eline consume gl_Position,

EXT_geometry shader4

Change the last sentence of this section into t

The read-only built-in gl_PrimitivelDIn is avai
language and is filled with the number of primi
geometry shader since the last time Begin was ¢
indirectly via vertex array functions). See sec
information.

This variable is intrinsically declared as:
int gl_PrimitivelDIn; // read only

The built-in output variable gl_PrimitivelD is
geometry language and provides a single integer
identifier. This written primitive ID is avail

If a fragment shader using primitive IDs is act

is also active, the geometry shader must write
primitive ID in the fragment shader number is u

The built-in output variable gl_Layer is availa
language, and provides the number of the layer
FBO to direct rendering to. If a shader statica
gl_Layer, layered rendering mode is enabled. Se
detailed explanation. If a shader statically as
and there is an execution path through the shad
gl_Layer, then the value of gl_Layer may be und
the shader that take that path.

These variables area intrinsically declared as:

int gl_PrimitivelD;
int gl_Layer;

These variables can be read back by the shader
retrieve what was written. Reading the variable

in undefined behavior. If it is written more th
written is consumed by the subsequent operation
All built-in variables discussed in this sectio
Change section 7.2 "Fragment Shader Special Var
Change the first paragraph on p. 44 as follows:
The fragment shader has access to the read-only
gl_FrontFacing whose value is true if the fragm
front-facing primitive. One use of thisis to e

by selecting one of two colors calculated by th
shader.

Change the first sentence of section 7.4 "Built

The following built-in constant is provided to

const int gl_VerticeslIn; // Value set at link

73

OpenGL Extension Specifications for GeForce 8 Series

he following:

lable only in the geometry
tives processed by the
alled (directly or

tion 2.16.4 for more

available only in the

that serves as a primitive
able to fragment shaders.
ive and a geometry shader
to gl_PrimitivelD or the
ndefined.

ble only in the geometry
of textures attached to a
lly assigns a value to

e section 2.16.4 for a
signs a value to gl_Layer,
er that does not set
efined for executions of

after writing to them, to
before writing it results
an once, the last value
s.

n have global scope.

iables”

built-in variable

ent belongs to a

mulate two-sided lighting

e vertex shader or geometry
-in Constants”

geometry shaders.

time

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

The following built-in constants are provided t
fragment shaders:

Change section 7.6 "Varing Variables"

Unlike user-defined varying variables, the buil
don't have a strict one-to-one correspondence b
geometry language and the fragment language. Fo
set for the vertex language output, one set for
output, one set for the fragment language input
geometry language input. Their relationship is

The following built-in varying variables are av
vertex shader or geometry shader. A particular
any functionality in a corresponding geometry s
fixed pipeline uses it or state derived from it
undefined.

Vertex language built-in outputs:

varying vec4 gl_FrontColor;

varying vec4 gl_BackColor;

varying vec4 gl_FrontSecondaryColor;
varying vec4 gl_BackSecondaryColor;
varying vec4 gl_TexCoord([]; // at most will b
varying float gl_FogFragCoord;

Geometry language built-in outputs:

varying out vec4 gl_FrontColor;

varying out vec4 gl_BackColor;

varying out vec4 gl_FrontSecondaryColor;
varying out vec4 gl_BackSecondaryColor;
varying out vec4 gl_TexCoord[]; // at most gl
varying out float gl_FogFragCoord;

For gl_FogFragCoord, the value written will be
page 160 of the OpenGL 1.4 Specification by the
pipeline. For example, if the z-coordinate of t
desired as "c", then that's what the vertex or
write into gl_FogFragCoord.

Indices used to subscript gl_TexCoord must eith
expressions, or this array must be re-declared
size. The size can be at most gl_MaxTextureCoor
0 may aid the implementation in preserving vary

NVIDIA Proprietary 74

EXT_geometry_shader4

o the vertex, geometry and

t-in varying variables
etween the vertex language,
ur sets are provided, one
the geometry language

and another set for the
described below.

ailable to write to in a

one should be written to if
hader or fragment shader or
. Otherwise, behavior is

e gl_MaxTextureCoords

_MaxTextureCoords

used as the "c" value on
fixed functionality

he fragment in eye space is
geometry shader should

er be an integral constant
by the shader with a

ds. Using indexes close to
ing resources.

EXT_geometry shader4

The following input varying variables are avail
geometry shader.

varying in vec4 gl_FrontColorin[gl_VerticesIn
varying in vec4 gl_BackColorin[gl_VerticesIn]
varying in vec4 gl_FrontSecondaryColorin[gl_V
varying in vec4 gl_BackSecondaryColorin[gl_Ve
varying in vec4 gl_TexCoordIn[gl_VerticesIn][

varying in float gl_FogFragCoordIn[gl_Vertice
varying in vec4 gl_Positionin[gl_VerticesIn];
varying in float gl_PointSizeln[gl_VerticesIn
varying in vec4 gl_ClipVertexIn[gl_VerticesIn

All built-in variables are one-dimensional arra
gl_TexCoordIn, which is a two-dimensional array
one-dimensional array, or the first index of a
corresponds to a vertex of the primitive being
their value from the equivalent vertex output v
section 4.3.6.

The following varying variables are available t
shader. The gl_Color and gl_SecondaryColor name
attributes passed to the vertex shader. However
conflict, because attributes are visible only i
following are only visible in a fragment shader

varying vec4 gl_Color;

varying vec4 gl_SecondaryColor;

varying vec4 gl_TexCoord([]; // at most will b
varying float gl_FogFragCoord;

The values in gl_Color and gl_SecondaryColor wi
by the system from gl_FrontColor, gl_BackColor,
and gl_BackSecondaryColor. This selection proce
2.14.1 of the OpenGL 2.0 Specification. If fixe
vertex processing, then gl_FogFragCoord will ei
the fragment in eye space, or the interpolation
described in section 3.10 of the OpenGL 1.4 Spe
gl_TexCoord][] values are the interpolated gl_Te
vertex or geometry shader or the texture coordi
based vertex functionality.

Indices to the fragment shader gl_TexCoord arra
the vertex and geometry shader text.

Change section 8.7 "Texture Lookup Functions"
Change the first paragraph to:

Texture lookup functions are available to verte
shaders. However, level of detail is not comput

for vertex or geometry shaders, so there are so
between texture lookups. The functions.

75

OpenGL Extension Specifications for GeForce 8 Series

able to read from in a

]_;

erticeslIn];
rticesIn];
]; // at most will be
/I gl_MaxTextureCoords
sinj;

I
l;

ys, except for

. Each element of a
two-dimensional array,
processed and receives
arying variables. See also

o read from in a fragment
s are the same names as
, there is no name

n vertex shaders and the

e gl_MaxTextureCoords

Il be derived automatically
gl_FrontSecondaryColor,
ss is described in section
d functionality is used for
ther be the z-coordinate of
of the fog coordinate, as
cification. The

xCoord[] values from a
nates of any fixed pipeline

y are as described above in

X, geometry and fragment
ed by fixed functionality
me differences in operation

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Change the third and fourth paragraphs to:

In all functions below, the bias parameter is o
shaders. The bias parameter is not accepted in
shader. For a fragment shader, if bias is prese
calculated level of detail prior to performing
operation. If the bias parameter is not provide
automatically selects level of detail: For a te
mip-mapped, the texture is used directly. If it

in a fragment shader, the LOD computed by the i
the texture lookup. If it is mip- mapped and ru
geometry shader, then the base LOD of the textu

The built-ins suffixed with "Lod" are allowed o
shader. For the "Lod" functions, lod is directl
detail.

Change section 8.9 Noise Functions
Change the first paragraph to:

Noise functions are available to the vertex, ge
shaders. They are...

Add a section 8.10 Geometry Shader Functions
This section contains functions that are geomet
Syntax:

void EmitVertex(); // Geometry only
void EndPrimitive(); // Geometry only

Description:

The function EmitVertex() specifies that a vert
is added to the current output primitive using
varying output variables and the current values
output variables gl_PointSize, gl_ClipVertex, g
gl_PrimitivelD. The values of any unwritten ou
undefined. The values of all varying output var
built-in output variables are undefined after a
geometry shader, in one invocation, emits more

GEOMETRY_VERTICES_OUT_EXT, these emits may have

The function EndPrimitive() specifies that the
completed and a new output primitive (of the sa
started. This function does not emit a vertex.
EndPrimitive() is roughly equivalent to calling
Begin, where the primitive mode is taken from t

GEOMETRY_OUTPUT_TYPE_EXT. If the output primiti

EndPrimitive() is optional.

A geometry shader starts with an output primiti
vertices. When a geometry shader terminates, th
is automatically completed. It is not necessary
the geometry shader writes only a single primit

NVIDIA Proprietary 76

EXT_geometry_shader4

ptional for fragment

a vertex or geometry

nt, it is added to the

the texture access

d, then the implementation
xture that is not

is mip- mapped and running
mplementation is used to do
nning on the vertex or

re is used.

nly in a vertex or geometry
y used as the level of

ometry and fragment

ry language specific.

ex is completed. A vertex
the current values of the
of the special built-in
|_Layer, gl_Position and
tput variables are

iables and the special
call to EmitVertex(). If a
vertices than the value
no effect.

current output primitive is

me type) should be

The effect of

End followed by a new

he program object parameter
ve type is POINTS, calling

ve containing no

e current output primitive
to call EndPrimitive() if
ive.

EXT_geometry shader4

Add/Change section 9 (Shading language grammar)

init_declarator_list:
single_declaration
init_declarator_list COMMA IDENTIFIER
init_declarator_list COMMA IDENTIFIER array
init_declarator_list COMMA IDENTIFIER EQUAL

single_declaration:
fully_specified_type
fully_specified_type IDENTIFIER
fully_specified_type IDENTIFIER array_decla
fully_specified_type IDENTIFIER EQUAL initi

array_declarator_suffix:
LEFT_BRACKET RIGHT_BRACKET
LEFT_BRACKET constant_expression RIGHT_BRAC
LEFT_BRACKET RIGHT_BRACKET array_declarator
LEFT_BRACKET constant_expression RIGHT _BRAC
array_declarator_suffix

type_qualifier:
CONST
ATTRIBUTE // Vertex only
VARYING
VARYING IN /I Geometry only
VARYING OUT /I Geometry only
UNIFORM

NVIDIA Implementation Details
Because of a hardware limitation, some GeForce

odd vertex of an incomplete TRIANGLE_STRIP_ADJA
as a replacement adjacency vertex rather than i

Issues

1. How do geometry shaders fit into the existing

RESOLVED: The following diagram illustrates
into the "vertex processing" portion of the G
2.0 Specification).

First, vertex attributes are specified via im
through vertex arrays. They can be conventio
glVertex, glColor, glTexCoord) or generic (nu

Vertices are then transformed, either using a
fixed-function vertex processing. Fixed-func
includes position transformation (modelview a
lighting, texture coordinate generation, and
results of either method are a "transformed v
position (in clip coordinates), front and bac
coordinates, generic attributes (vertex shade
that on many current GL implementations, vert
by executing a "fixed function vertex shader"

77

OpenGL Extension Specifications for GeForce 8 Series

_declarator_suffix
initializer

rator_suffix
alizer

KET
_suffix
KET

8 series chips use the
CENCY_EXT primitive
gnoring it.

GL pipeline?

how geometry shaders fit
L (Chapter 2 of the OpenGL

mediate-mode commands or
nal attributes (e.g.,
mbered) attributes.

vertex shader or

tion vertex processing

nd projection matrices),
other calculations. The
ertex", which has a

k colors, texture

r only), and so on. Note
ex processing is performed
generated by the driver.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

After vertex transformation, vertices are ass
according to the topology (e.g., TRIANGLES, Q
call to gIBegin(). Primitives are points, li
polygons. Many GL implementations do not dir
polygons, but instead decompose them into tri
spec.

After initial primitive assembly, a geometry
individual point, line, or triangle primitive

read the attributes of each transformed verte
computations, and emit new transformed vertic
are themselves assembled into primitives acco
primitive type of the geometry shader.

Then, the colors of the vertices of each prim
(if color clamping is enabled), and flat shad
taking the color from the provoking vertex of

Each primitive is clipped to the view volume,
user-defined clip planes. Color, texture coo
attribute values are computed for each new ve

clipping.

After clipping, the position of each vertex (
converted to normalized device coordinates in
(divide by w) step, and to window coordinates
transformation step.

At the same time, color values may be convert
fixed-point values according to the "Final Co
the specification.

After the vertices of the primitive are trans
coordinate, the GL determines if the primitiv
That information is used for two-sided color
set of colors is selected from either the fro
associated with each transformed vertex.

When all this is done, the final transformed
and secondary), and other attributes are used
3 in the OpenGL 2.0 Specification).

When the raster position is specified (via gl

the entire vertex processing pipeline as thou
However, geometry shaders are never run on th

NVIDIA Proprietary 78

EXT_geometry_shader4

embled into primitives,
UAD_STRIP) provided by the
nes, triangles, quads, or
ectly support quads or
angles as permitted by the

shader is executed on each
, if one is active. It can

X, perform arbitrary

es. These emitted vertices
rding to the output

itive are clamped to [0,1]
ing may be performed by
the primitive.

and to any enabled
rdinate, and other
rtex introduced by

in clip coordinates) is
the perspective division
in the viewport

ed to normalized
lor Processing" portion of

formed to window

e is front- or back-facing.
selection, where a single
nt or back colors

position, colors (primary
for rasterization (Chapter

RasterPos), it goes through
gh it were a point.
e raster position.

EXT_geometry shader4

[vertex
|attributes

OpenGL Extension Specifications for GeForce 8 Series

generic |conventional

[vert
|attr

V'V \Y
vertex fixed-funct
shader vertex

| processing

|position, color,
|other vertex data

I
Vv

primitive geometry

------ > assembly ----->shader ----

| color
s > clamping ----

clipping
I

| perspective
oo > divide ---->

final f
R > color dete
processing

VvV
two-sided
coloring

|11
VVV

rasterizati

I
Vv

79

ex
ibutes

ion

Output
Primitive
Type
I
I

primitive |
> assembly <-+

flat
> shading

viewport
transform

SR —
\Y I

acing |
rmination |

on

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

2. Why is this called GL_EXT_geometry_shader4?
versions of this extension, let alone three?

RESOLVED: To match its sibling, EXT_gpu_shad
version NV_gpu_program4. This is the fourth g
functionality, hence the "4" in the name.

3. Should the GL produce errors at Begin time if
primitive mode that is "incompatible" with th
example, if the geometry shader operates on t
application sends a POINTS primitive?

RESOLVED: Yes. Mismatches of app-specified
geometry shader input primitive types appear
produce weird and wonderful effects.

4. Can the input primitive type of a geometry sh
time?

RESOLVED: No. Each geometry shader has a sin
and vertices are presented to the shader in a
that type.

5. Can the input primitive type of a geometry sh

DISCUSSION: The input primitive type is a pro
object. A change of the input primitive type

will need to be re-linked. It would be nice i

was known at compile time, so that the compil
the type and the number of vertices being acc
we allow multiple compilation units to form o
not clear how to achieve that. Therefore, th
property of the program object, and not of a

RESOLVED: Yes, but each change means the prog
re-linked.

6. Can the output primitive type of a geometry s
at run time?

RESOLVED: Not in this extension.
7. Can the output primitive type of a program ob

RESOLVED: Yes, but the program object will ha
for the change to have effect on program exec

8. Must the output primitive type of a geometry
input primitive type in any way?

RESOLVED: No, you can have a geometry shader
triangles or triangles out of points. Some ¢

to existing OpenGL operations: reading trian

line strips can be used to emulate a subset o
functionality. Reading points and writing tr

to emulate point sprites.

NVIDIA Proprietary 80

EXT_geometry_shader4

There aren't any previous

er4 and the assembly
eneration of shading

an application specifies a
e geometry shader? For
riangles and the

primitive types and
to be errors and would

ader be determined at run

gle input primitive type,
specific order based on

ader be changed?

perty of the program
means the program object
f the input primitive type

er can do error checking of
essed by the shader. Since
ne geometry shader, it is

e input primitive type is a
shader object.

ram object will have to be

hader be determined

ject be changed?

ve to be re-linked in order
ution.

shader match the

generate points out of
ombinations are analogous
gles and writing points or

f PolygonMode

iangle strips can be used

EXT_geometry shader4

9. Are primitives emitted by a geometry shader p
OpenGL primitive?

RESOLVED: Yes. Antialiasing, stippling, pol
culling, two-sided lighting and color selecti
operations, and fragment processing all work

One limitation is that the only output primit
points, line strips, and triangle strips, non
support edge flags that are sometimes used in
and LINE polygon modes. Edge flags are always
triangle strips.

10. Should geometry shaders support additional in

RESOLVED: Possibly in a future extension. |
to build a future extension to support geomet
quads. Other primitive types might be more d
with adjacency would require 12 vertices per
polygons may require even more, since there i
number of vertices in a polygon.

11. Should geometry shaders support additional ou

RESOLVED: Possibly in a future extension. A
(e.g., independent lines, line loops, triangl
useful in the future; triangle fans/polygons

12. How are adjacency primitives processed by the

RESOLVED: The primitive type of an adjacent p
mode parameter. Any vertex of an adjacency pr
a regular vertex, and processed by a vertex s
geometry shader. The geometry shader cannot o
thus processing stops with the geometry shade
not active, the GL ignores the "adjacent" ver
primitive.

13. Should we provide additional adjacency primit
used inside a Begin/End?

RESOLVED: Not in this extension. It may be

primitive types (e.g., TRIANGLE_FAN_ADJACENCY

14. How do geometry shaders interact with RasterP

RESOLVED: Geometry shaders are ignored when
position.

15. How do geometry shaders interact with pixel p
(DrawPixels, Bitmap)?

RESOLVED: They do not.

81

OpenGL Extension Specifications for GeForce 8 Series

rocessed like any other

ygon offset, polygon mode,
on, point sprite
as expected.

ive types supported are

e of which meaningfully
conjunction with the POINT
ignored for line-mode

put primitive types?

t should be straightforward

ry shaders that operate on
emanding on hardware. Quads
shader execution. General

s no fixed bound on the

tput primitive types?
dditional output types

e fans, polygons) may be
seem particularly useful.
GL?

rimitive is set as a Begin
imitive will be treated as
hader as well as the

utput adjacency primitives,

r. If a geometry shader is
tices in the adjacency

ive types that can be
desirable to add new
) in a future extension.
0s?

specifying the raster

rimitives

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

16. Is there a limit on the number of vertices th at can be emitted by
a geometry shader?

RESOLVED: Unfortunately, yes. Besides pract ical hardware limits, there
may also be practical performance advantages when applications guarantee
a tight upper bound on the number of vertices a geometry shader will
emit. GPUs frequently excecute programs in p arallel, and there are
substantial implementation challenges to para llel execution of geometry
threads that can write an unbounded number of results, particular given
that all the primitives generated by the firs t geometry shader
invocation must be consumed before any of the primitives generated by

the second program invocation. Limiting the amount of data a geometry
shader can write substantially eases the impl ementation burden.

A program object, holding a geometry shader, must declare a maximum
number of vertices that can be emitted. There is an
implementation-dependent limit on the total n umber of vertices a program
object can emit (256 minimum) and the product of the number of vertices
emitted and the number of components of all a ctive varying variables

(21024 minimum).

It would be ideal if the limit could be infer red from the instructions

in the shader itself, and that would be possi ble for many shaders,
particularly ones with straight-line flow con trol. For shaders with

more complicated flow control (subroutines, d ata- dependent looping, and
so on), it would be impossible to make such a n inference and a "safe"
limit would have to be used with adverse and possibly unexpected

performance consequences.

The limit on the number of EmitVertex() calls that can be issued can not
always be enforced at compile time, or even a t Begin time. We specify
that if a shader tries to emit more vertices than allowed, emits that
exceed the limit may or may not have any effe ct.
17. Should it be possible to change the limit GEO METRY_VERTICES OUT_EXT, the
number of vertices emitted by a geometry shad er, after the program

object, containing the shader, is linked?

RESOLVED: NO. See also issue 31. Changing thi s limit might require a
re-compile and/or re-link of the shaders and program object on certain
implementations. Pretending that this limit ¢ an be changed without

re-linking does not reflect reality.

18. How do user clipping and geometry shaders int eract?
RESOLVED: Just like vertex shaders and user ¢ lipping interact. The
geometry shader needs to provide the (eye) po sition gl_ClipVertex.
Primitives are clipped after geometry shader execution, not before.
19. How do edge flags interact with adjacency pri mitives?
RESOLVED: If geometry programs are disabled, adjacency primitives are
still supported. For TRIANGLES ADJACENCY_EXT , edge flags will apply as
they do for TRIANGLES. Such primitives are r endered as independent
triangles as though the adjacency vertices we re not provided. Edge
flags for the "real" vertices are supported. For all other adjacency

primitive types, edge flags are irrelevant.

NVIDIA Proprietary 82

EXT_geometry shader4

20. Now that a third shader object type is added,

GLSL, assembly (ARB or NV) low level and fixe
to support?

DISCUSSION: With the addition of the geometry
combinations the GL pipeline could support do
fixed-function geometry shading). Possible ¢

vertex geometry fragment
fffASM/GLSL none/ASM/GLSL ff/ASM/GLSL

for a total of 3 x 3 x 3 is 27 combinations.
was added, the number of combinations was 9,
support. We have a choice on the other 18.

RESOLUTION: It makes sense to draw a line at
pipeline. The 'north' side of this line cover
shaders, the 'south’ side fragment shaders. W
that states that if a program object contains
line, the north side will be 100% GLSL. This

a) GLSL program objects with a vertex shader
shader and not an assembly geometry program.
program is enabled, it is bypassed. This als
GLSL program object with a vertex and a fragm
together. Injecting an assembly geometry sha
time won't work well.

b) GLSL program objects with a geometry shade
(cannot be ARB/NV or fixed-function vertex sh

The 'south’ side in this program object still
fffARB/NV/GLSL.

21. How do geometry shaders interact with color ¢

RESOLVED: Geometry shader execution occurs p
the pipeline. This means the colors written
clamped to [0,1] before they are read by geom
clamping is enabled, any vertex colors writte

will have their components clamped to [0,1].

22. What is a primitive ID and a vertex ID? | am

DISCUSSION: A vertex shader can read a built-
ID of the current vertex it is processing. Se

for more information on vertex ID. If the geo
to a vertex ID as well, it can be passed as a
variable. A geometry shader can read a built-
holds the ID of the current primitive it is p
ability to write to a built-in output primiti
communicate the primitive ID to a fragment sh
can read a built-in attribute that holds the

it is processing. A primitive ID will be gene
shader is active.

83

OpenGL Extension Specifications for GeForce 8 Series

what combinations of
d-function do we want

shader, the number of
ubled (there is no
ombinations now are:

Before the geometry shader
and those we need to

raster in the GL

s vertex and geometry
e now add a simple rule
anything north of this
means that:

can only use a geometry

If an assembly geometry
0 avoids a tricky case -- a
ent program linked

der in the middle at run

r must have a vertex shader
ading).

can be any of

lamping?

rior to color clamping in
by vertex shaders are not
etry shaders. If color

n by the geometry shader

confused.

in attribute that holds the

e the EXT_gpu_shader4 spec
metry shader needs access
user-defined varying

in varying variable that
rocessing. It also has the

ve ID variable, to

ader. A fragment shader

ID of the current primitive
rated even if no geometry

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

23. After a call to EmitVertex(), should the valu

variables be retained or be undefined?

DISCUSSION: There is not a clear answer to th
HW mechanism is as follows. An array of outpu
store vertices that make up primitives. Afte
pointer into that array is incremented. The

to the previous set of values. This argues t
varying variables should be undefined after a
shader is responsible for writing values to a
wants to emit, for each emit. The counter arg

is not a nice model for GLSL to program in. T
varying outputs in a temp register and preser
EmitVertex() calls, at the cost of increased

RESOLUTION: For now, without being a clear wi
with the undefined option. The shader is resp
to all varying variabvles it wants to emit, f

24. How to distinguish between input and output "

DISCUSSION: Geometry shader outputs are varyi
with the existing definition of varying (used
fragment processing stage). Geometry inputs a
shader writing to its varying variable output

called "varying", to match with the vertex sh
"attributes" to match the vertex shader input
attributes).

RESOLUTION: We'll call input variables "varyi
"attributes”. To distinguish between input an
further qualified with the words "in" and "ou
example:

varying in float foo;
varying out vec4 barf];

25. What is the syntax for declaring varying inpu

DISCUSSION: We need a way to distinguish betw
input primitive. Suggestions:

1. Declare each input varying variable as a
is inferred by the linker based on the o

2. Declare each input varying variable as a
does not match the output primitive type

3. Have an array of structures, where the s
attributes for each vertex.

RESOLUTION: Option 1 seems simple and solves
a clear winner over the other two. To aid the

out the size of each array, a new built-in co
defined that holds the number of vertices for
primitive type.

NVIDIA Proprietary 84

EXT_geometry_shader4

es of the output varying

is question .The underlying
t registers is set aside to

r each EmitVertex() a
shader no longer has access
hat the values of output

n EmitVertex() call. The

Il varying variables it
ument to this is that this

he compiler can store

ve their values across
register pressure.

nner, we've decided to go
onsible for writng values
or each emit.

varying" variables?

ng variables consistent
to communicate to the
re received from a vertex
s. The inputs could be
ader, or could be called
s (which are called

ng", and not
d output, they will be
t" resulting in, for

t variables?

een the vertices of the
n unsized array. Its size
utput primitive type.

sized array. If the size
, a link error occurs.

tructure contains the

the problem, but it is not
shader writer in figuring
nstant, gl_VerticeslIn, is
the current input

EXT_geometry shader4 OpenGL Extension Specifications for GeForce 8 Series

26. Does gl_PointSize, gl_Layer, gl_ClipVertex co unt agains the
MAX_GEOMETRY_VARYING_COMPONENTS limit?
RESOLUTION: Core OpenGL 2.0 makes a distincti on between varying
variables, output from a vertex shader and in terpolated over a
primitive, and 'special built-in variables' t hat are outputs, but not
interpolated across a primitive. Only varying variables do count against
the MAX_VERTEX_VARYING_COMPONENTS limit. gl_ PointSize, gl_Layer,
gl_ClipVertex and gl_Paosition are 'special bu ilt-in' variables, and
therefore should not count against the limit. If HW does need to take
components away to support those, that is ok. The actual spec language
does mention possible implementation dependen cies.

27. Should writing to gl_Position be optional?

DISCUSSION: Before this extensions, the OpenG L Shading Language required
that gl_Position be written to in a vertex sh ader. With the addition of
geometry shaders, it is not necessary anymore for a vertex shader to

output gl_Position. The geometry shader can d 0 so. With the addition of
transform-feedback (see the transform feedbac k specification) it is not
necessary useful for the geometry shader to w rite out gl_Position

either.

RESOLUTION: Yes, this should be optional.

28. Should geometry shaders be able to select a | ayer of a 3D texture, cube
map texture, or array texture at run time? | f so, how?
RESOLVED: See also issue 32. This extension p rovides a per-vertex output
called "gl_Layer", which is an integer specif ying the layer to render
to. In order to get defined results, the valu e of gl_Layer needs to be
constant for each primitive (point, line or t riangle) being emitted by a
geometry shader. This layer value is used for all fragments generated by

that primitive.

The EXT_framebuffer_object (FBO) extension is used for rendering to
textures, but for cube maps and 3D textures, it only provides the

ability to attach a single face or layer of s uch textures.

This extension generalizes FBO by creates new entry points to bind an
entire texture level (FramebufferTextureEXT) or a single layer of a
texture level (FramebufferTextureLayerEXT) or a single face of a level

of a cube map texture (FramebufferTextureFace EXT) to an attachment
point. The existing FBO binding functions, F ramebufferTexture[123]DEXT
are retained, and are defined in terms of the more general new
functions.

The new functions do not have a dimension in the function name or a
<textarget> parameter, which can be inferred from the provided

texture.

When an entire texel level of a cube map, 3D, or array texture is
attached, that attachment is considered layer ed. The framebuffer is
considered layered if any attachment is layer ed. When the framebuffer
is layered, there are three additional comple teness requirements:

85 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

* all attachments must be layered
* all color attachments must be from textur
* all attachments must have the same number

We expect subsequent versions of the FBO spec
that all attachments must have the same width
relax the similar requirement for layer count

When rendering to a layered framebuffer, laye
geometry shader that writes (statically assin
gl_Layer. When rendering to a non-layered fra
gl_Layer is ignored and the set of single-ima
When reading from a layered framebuffer (e.qg.
is always used. When clearing a layered fram
cleared to the corresponding clear values.

Several other approaches were considered, inc
FBO attachment functions and requiring the us
with a <zoffset> of zero to make a framebuffe
(attaching layer zero means that the attachme
layered- or non- layered rendering). Whether
not could either be inferred from the active

a new property of the framebuffer object. Th
FramebufferParameter API to set a property of
have been necessary to create new set/query A
chosen.

29. How should per-vertex point size work with ge

RESOLVED: The value of the existing VERTEX_PR
control the point size behavior of a vertex s
geometry shaders. Specifically, If a geometr

point size is taken from the point size outpu

vertex shader, regardless of the value of VER

30. Geometry shaders don't provide a QUADS or gen

primitive type. In this extension, what happ

provides QUADS, QUAD_STRIP, or POLYGON primit

RESOLVED: Not all vendors supporting this ex
guads and polygon primitives as input, so suc
provided in this extension. This extension r
provided to the GL must match the input primi
geometry shader (if any). QUADS, QUAD_STRIP,
considered not to match any input primitive t
INVALID_OPERATION error will result.

The NV_geometry _shader4 extension (built on t
applications to provide quads or general poly
geometry shader with an input primitive type
primitives are decomposed into triangles, and
on each triangle independently.

NVIDIA Proprietary 86

EXT_geometry_shader4

es of identical type
of layers

to relax the requirement
and height, and plan to
at that time.

r zero is used unless a
gs, to be precise) to
mebuffer, the value of

ge attachments are used.
, ReadPixels), layer zero
ebuffer, all layers are

luding leveraging existing
e of FramebufferTexture3D
r attachment "layerable"

nt could be used for either
rendering was layered or
geometry shader, or set as
ere is presently no

a framebuffer, so it would
Pls if this approach were

ometry shaders?

OGRAM_POINT_SIZE enable, to
hader, does not affect

y shader is active, the

t gl_PointSize of the
TEX_PROGRAM_POINT_SIZE.

eric POLYGON input
ens if an application
ives?

tension were able to accept

h functionality was not
equires that primitives

tive type of the active

and POLYGON primitives are
ype, so an

op of this one) allows
gon primitives to a

of TRIANGLES. Such

a geometry shader is run

EXT_geometry shader4

31. Geometry shaders provide a limit on the numbe
emitted. Can this limit be changed at dynami

RESOLVED: See also issue 17. Not in this ext
was not provided because it would be an expen
implementations of this extension. The NV_ge
(layered on top of this one) does allow appli
limit dynamically.

An application can change the vertex output |
for the possibility of dynamic changes (as in
not require it, a limit change is not guarant
the program object is re-linked. However, th
such limit changes will not take effect immed

32. See also issue 28. Each vertex emitted by a g

a layer to render to using the output variabl
LINE_STRIP and TRIANGLE_STRIP output primitiv
layer is used?

RESOLVED: The vertex from which the layer is
undefined. In practice, some implementations
extract the layer number from the first verte
others will extract it from the last (provoki
geometry shader extension may choose to defin
the other.

To get portable results, the layer number sho
vertices in any single primitive emitted by t
EndPrimitive() built-in function available in
new primitive, and the layer number emitted ¢
EndPrimitive() is called.

33. The grammar allows "varying", "varying out",
type-qualifiers for geometry shaders. What d
or "out" mean for a geometry shader?

RESOLVED: The "varying" type qualifier in a

followed by "in" or "out" means the same as "

This is consistent with the specification say

be able to insert or remove a geometry shader
the rules, names and types of the output buil
user-defined varying variables are the same a

Revision History

Rev. Date Author Changes

17 05/22/07 mijk Clarify that "varying
"varying out" in a ge

16 01/10/07 pbrown Specify that the tota
enforced at LinkProgr

87

OpenGL Extension Specifications for GeForce 8 Series

r of vertices that can be
cally?

ension. This functionality
sive operation on some
ometry_shader4 extension
cations to change this

imit at any time. To allow
NV_geometry shader4) but
eed to take effect unless
ere is no guarantee that
iately.

eometry shader can specify
e "gl_Layer". For
e types, which vertex's

extracted is unfortunately
of this extension will

x of the output primitive;
ng) vertex. A future

e this behavior one way or

uld be the same for all

he geometry shader. The
a geometry shader starts a
an be safely changed after

and "varying in" as
oes "varying" without "in"

geometry shader not
varying out".

ing: "In order to seamlessly
from a program object,

t-in varying variables and

s for the vertex shader."

" means the same as
ometry shader.

| component limit is
am time.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

15 12/15/06 pbrown Documented that the' #extension' token
for this extension sh ould begin with "GL_",
as apparently called for per convention.

14 - Pre-release revisions

NVIDIA Proprietary 88

EXT_gpu_shader4

Name
EXT_gpu_shader4
Name Strings
GL_EXT_gpu_shader4
Contact

Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at'
Pat Brown, NVIDIA (pbrown 'at' nvidia.com)

Status
Multi vendor extension

Shipping for GeForce 8 Series (November 2006)

Version
Last Modified Date: 02/04/2008
Author revision: 12

Number
326

Dependencies
OpenGL 2.0 is required.

This extension is written against the OpenGL 2.
1.10.59 of the OpenGL Shading Language specific

This extension trivially interacts with ARB_tex
This extension trivially interacts with GL_EXT _
This extension trivially interacts with GL_EXT _
This extension trivially interacts with GL_EXT _
This extension trivially interacts with GL_EXT _
NV_primitive_restart trivially affects the defi

ARB_color_buffer_float affects the definition o
EXT_draw_instanced affects the definition of th

Overview
This extension provides a set of new features t
Language and related APIs to support capabiliti

particular, this extension provides the followi

* New texture lookup functions are provided

OpenGL Extension Specifications for GeForce 8 Series

nvidia.com)

0 specification and version
ation.

ture_rectangle.
texture_array.
texture_integer.
geometry_shader4
texture_buffer_object.
nition of this extension.

f this extension.
is extension.

o the OpenGL Shading
es of new hardware. In
ng functionality:

that allow shaders to

89 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

access individual texels using integer coo
texel location and level of detail. No fil
functions allow applications to use textur
three-dimensional arrays.

* New texture lookup functions are provided
the dimensions of a specific level-of-deta
object.

* New texture lookup functions variants are
to pass a constant integer vector used to
used during the lookup to assist in custom
operations.

* New texture lookup functions are provided
access one- and two-dimensional array text
coordinate is used to select the layer of

* New "Grad" texture lookup functions are pr
to explicitely pass in derivative values w
compute the level-of-detail when performin

* A new texture lookup function is provided

* The existing absolute LOD texture lookup f
restricted to the vertex shader only.

* The ability to specify and use cubemap tex
DEPTH_COMPONENT internal format. This also
cubemaps. The 'q' coordinate is used as th
comparisons. A set of new texture lookup f
lookup into shadow cubemaps.

* The ability to specify if varying variable
non-perspective correct manner, if they ar
multi-sampling, if centroid sampling shoul

* Full signed integer and unsigned integer s
Shading Language:

- Integers are defined as 32 bit value

- Unsigned integers and vectors thereo

- New texture lookup functions are pro
values. These functions are to be us
texture formats whose components are
than integers that encode a floating
these lookup functions, new integer
sampler types are introduced.

- Integer bitwise operators are now en

- Several built-in functions and opera
integers or vectors of integers.

NVIDIA Proprietary 90

EXT_gpu_shader4

rdinates referring to the
tering is performed. These
es as one-, two-, and

that allow shaders to query
il image of a texture

provided that allow shaders
offset the texel locations
texture filtering

that allow shaders to
ures. The second, or third,
the array to access.

ovided that allow shaders
hich are used by the GL to

g a texture lookup.

to access a buffer texture.
unctions are no longer

tures with a

enables shadow mapping on

e reference value for
unctions is provided to

s are interpolated in a
e flat shaded or, if
d be performed.

upport in the OpenGL

s using two's complement.
f are added.

vided that return integer
ed in conjunction with new
actual integers, rather
-point value. To support
and unsigned-integer

abled.

tors now operate on

EXT_gpu_shader4

- New vertex attribute functions are a
attribute data and can be referenced
integer data.

- New uniform loading commands are add
data.

- Varying variables can now be (unsign
as such, they have to be flat shaded

- Fragment shaders can define their ow
declare them to be of type floating-
integer. These variables are bound t
with the new APl command BindFragDat
to buffers using the existing DrawBu
commands.

* Added new built-in functions truncate() an
language.

* A new built-in variable accessible from wi
holds the index <i> implicitly passed to A
vertex. This is called the vertex ID.

* A new built-in variable accessible from wi
shaders that hold the index of the current
primitive. This is called the primitive ID

This extension also briefly mentions a new shad
shader. A geometry shader is run after vertices
before clipping. A geometry shader begins with
line, triangle. It can read the attributes of a
primitive and use them to generate new primitiv
fixed output primitive type (point, line strip,

emits vertices to define a new primitive. Geome

in detail in the GL_EXT_geometry_shader4 specif

New Procedures and Functions

void VertexAttribl LIEXT(uint index, int x);

void VertexAttribI2iEXT (uint index, int x, int
void VertexAttribISiIEXT(uint index, int x, int
void VertexAttribl4iEXT(uint index, int x, int

void VertexAttribl LUIEXT (uint index, uint x);

void VertexAttribl2uiEXT (uint index, uint x, ui

void VertexAttribI3uiEXT(uint index, uint x, ui

void VertexAttribl4uiEXT (uint index, uint x, ui
uint w);

void VertexAttribl LivEXT (uint index, const int
void VertexAttribl2ivEXT (uint index, const int
void VertexAttribI3ivEXT (uint index, const int
void VertexAttribl4ivEXT (uint index, const int

91

OpenGL Extension Specifications for GeForce 8 Series

dded that load integer
in a vertex shader as

ed to load unsigned integer
ed) integers. If declared

n output variables, and

point, integer or unsigned

o a fragment color index
alLocationEXT(), and directed
ffer or DrawBuffers API

d round() to the shading

thin vertex shaders that
rrayElement to specify the

thin fragment and geometry
ly processed

er type, called a geometry
are transformed, but

a single primitive (point,

ny of the vertices in the

es. A geometry shader has a
or triangle strip) and

try shaders are discussed
ication.

y);
y, int 2);
y, int z, int w);

nty);
nty, uint z);
nty, uint z,

*V) :
*V) :
*V) :
*V) :

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

void VertexAttribl LuivEXT (uint index, const uin
void VertexAttribl2uivEXT (uint index, const uin
void VertexAttribl3uivEXT (uint index, const uin
void VertexAttribl4uivEXT (uint index, const uin

void VertexAttribl4bvEXT(uint index, const byte
void VertexAttribl4svEXT (uint index, const shor
void VertexAttribl4ubvEXT (uint index, const uby
void VertexAttribl4usvEXT (uint index, const ush

void VertexAttriblIPointerEXT(uint index, int si
sizei stride, const

void GetVertexAttriblivEXT(uint index, enum pna
void GetVertexAttribluivEXT(uint index, enum pn
uint *params);

void Uniform1uiEXT(int location, uint v0);

void Uniform2uiEXT(int location, uint vO, uint

void Uniform3uiEXT(int location, uint vO, uint

void Uniform4uiEXT(int location, uint v0, uint
uint v3);

void Uniform1uivEXT(int location, sizei count,
void Uniform2uivEXT(int location, sizei count,
void Uniform3uivEXT(int location, sizei count,
void Uniform4uivEXT(int location, sizei count,
void GetUniformuivEXT (uint program, int locatio
void BindFragDatalocationEXT(uint program, uint
const char *name);
int GetFragDatal ocationEXT(uint program, const
New Tokens
Accepted by the <pname> parameters of GetVertex
GetVertexAttribfv, GetVertexAttribiv, GetVertex
GetVertexAttriblivEXT:

VERTEX_ATTRIB_ARRAY_INTEGER_EXT

NVIDIA Proprietary 92

EXT_gpu_shader4

t *v);
t *v);
t *v);
t *v);

*V) ’
t *v);
te *v);
ort *v);

ze, enum type,
void *pointer);

me, int *params);
ame,

v1);
v1, uint v2);
vl, uint v2,

const uint *value);
const uint *value);
const uint *value);
const uint *value);
n, uint *params);
colorNumber,

char *name);

Attribdv,
AttribluivEXT and

0x88FD

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

Returned by the <type> parameter of GetActiveUn iform:
SAMPLER_1D_ARRAY_EXT 0x8DCO
SAMPLER_2D_ARRAY_EXT 0x8DC1
SAMPLER_BUFFER_EXT 0x8DC2
SAMPLER_1D_ARRAY_SHADOW_EXT 0x8DC3
SAMPLER_2D_ARRAY_SHADOW_EXT 0x8DC4
SAMPLER_CUBE_SHADOW_EXT 0x8DC5
UNSIGNED_INT 0x1405
UNSIGNED_INT_VEC2_EXT 0x8DC6
UNSIGNED_INT_VEC3_EXT 0x8DC7
UNSIGNED_INT_VEC4_EXT 0x8DC8
INT_SAMPLER_1D_EXT 0x8DC9
INT_SAMPLER_2D_EXT 0x8DCA
INT_SAMPLER_3D_EXT 0x8DCB
INT_SAMPLER_CUBE_EXT 0x8DCC
INT_SAMPLER_2D_RECT_EXT 0x8DCD
INT_SAMPLER_1D_ARRAY_EXT 0x8DCE
INT_SAMPLER_2D_ARRAY_EXT 0x8DCF
INT_SAMPLER_BUFFER_EXT 0x8DDO0
UNSIGNED_INT_SAMPLER_1D_EXT 0x8DD1
UNSIGNED_INT_SAMPLER_2D_EXT 0x8DD2
UNSIGNED_INT_SAMPLER_3D_EXT 0x8DD3
UNSIGNED_INT_SAMPLER_CUBE_EXT 0x8DD4
UNSIGNED_INT_SAMPLER_2D_RECT_EXT 0x8DD5
UNSIGNED_INT_SAMPLER_1D_ARRAY_EXT 0x8DD6
UNSIGNED_INT_SAMPLER_2D_ARRAY_EXT 0x8DD7
UNSIGNED_INT_SAMPLER_BUFFER_EXT 0x8DD8

Accepted by the <pname> parameter of GetBoolean v, Getlntegerv, GetFloatyv,

and GetDoublev:

MIN_PROGRAM_TEXEL_OFFSET_EXT 0x8904

MAX_PROGRAM_TEXEL_OFFSET_EXT 0x8905
Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL
Operation)

Modify Section 2.7 "Vertex Specification", p.20

Insert before last paragraph, p.22:

The VertexAttrib* commands described so far sho uld not be used to load
data for vertex attributes declared as signed o r unsigned integers or
vectors thereof in a vertex shader. If they are used to load signed or
unsigned integer vertex attributes, the value i n those attributes are

undefined. Instead use the commands

void VertexAttribl[1234{i,ui}EXT (uint index, T values);

void VertexAttribl[1234[{i,ui}vEXT (uint index , T values);

void VertexAttribl4{b,s,ub,us}vEXT(uint index , T values);
to specify fixed-point attributes that are not converted to
floating-point. These attributes can be accesse d in vertex shaders that
declare attributes as signed or unsigned intege rs or vectors. The
VertexAttribl4* commands extend the data passed in to a full signed or
unsigned integer. If a VertexAttribl* command i s used that does not match

93 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

the type of the attribute declared in a vertex
attributes are undefined. This means that the u
VertexAttribl* commands need to be used to load
vertex attributes or vectors, and the signed ve
VertexAttribl* commands for signed integer vert
vectors. Note that this also means that the Ver
not be used to load data for a vertex attribute
vector or matrix, otherwise their values are un

Insert at end of function list, p.24:

void VertexAttriblIPointerEXT(uint index, int si
sizei stride, const

(modify last paragraph, p.24) The <index> param
VertexAttribPointer and VertexAttriblPointerEXT
generic vertex attribute array being described.
generated if <index> is greater than or equal t
MAX_VERTEX_ATTRIBS. Generic attribute arrays wi
can be handled in one of three ways: converted
[0,1] or [-1,1] as specified in table 2.9, conv

left as integers. Data for an array specified b

be converted to floating-point by normalizing i
parameter is TRUE, and converted directly to fl
otherwise. Data for an array specified by Verte
always be left as integer values.

(modify Table 2.4, p. 25)

Integer
Command Sizes Handling
VertexPointer 2,3,4 cast
NormalPointer 3 normalize
ColorPointer 3,4 normalize
SecondaryColorPointer 3 normalize
IndexPointer 1 cast
FogCoordPointer 1 n/a
TexCoordPointer 1,2,3,4 cast
EdgeFlagPointer 1 integer

VertexAttribPointer 1,2,3,4 flag
VertexAttribIPointerEXT 1,2,3,4 integer

Table 2.4: Vertex array sizes (values per vert
"integer handling" column indicates how fixed-p
handled: "cast" means that they converted to fl
"normalize" means that they are converted to fl
to [0,1] (for unsigned types) or [-1,1] (for si
means that they remain as integer values, and "
"cast" or "normalized" applies, depending on th
<normalized> flag in VertexAttribPointer.

NVIDIA Proprietary 94

EXT_gpu_shader4

shader, the values in the
nsigned versions of the

data for unsigned integer
rsions of the

ex attributes or

texAttribl* commands should
declared as a float, float
defined.

ze, enum type,
void *pointer);

eter in the

commands identify the

The error INVALID_VALUE is
o}

th integer <type> arguments
to float by normalizing to
erted directly to float, or

y VertexAttribPointer will

f the <normalized>
oating-point
xAttribIPointerEXT will

byte, ubyte,
short, ushort,
int, uint

ex) and data types. The
oint data types are
oating-point directly,
oating-point by normalizing
gned types), “integer"

flag" means that either

e setting of the

EXT_gpu_shader4

(modify end of pseudo-code, pp. 27-28)

for (j = 1; j < genericAttributes; j++) {
if (generic vertex attribute j array enable
if (generic vertex attribute j array is a

VertexAttribl[size][type]lVEXT(j, generi
array e
} else if (generic vertex attribute j arr
flag is set and <type> is not
VertexAttrib[size]N[type]v(j, generic v

array ele
}else {
VertexAttrib[size][type]v(j, generic ve
array elem
}
}
}

if (generic vertex attribute 0 array enabled)
if (generic vertex attribute O array isa p
VertexAttribl[size][type]vEXT(O, generic
array ele
} else if (generic vertex attribute O array
is set and <type> is not FLOAT o
VertexAttrib[size]N[type]v(0, generic vere
array elemen
}else {
VertexAttrib[size][type]v(0, generic vere
array elemen
}

}
Modify section 2.14.7, "Flatshading", p. 69

Add a new paragraph at the end of the section o

If a vertex or geometry shader is active, the f
described so far applies to the built-in varyin
gl_BackColor, gl_FrontSecondaryColor and gl_Bac
the OpenGL Shading Language varying qualifier f
can be flagged to be flat-shaded. See the OpenG
Specification section 4.3.6 for more informatio

Modify section 2.14.8, "Color and Associated Da
Add to the end of this section:

For vertex shader varying variables specified t
perspective correction (using the noperspective

used to obtain the varying value associated wit
produce results that vary linearly in screen sp

95

OpenGL Extension Specifications for GeForce 8 Series

d) {

pure integer array)

c vertex attribute j
lement i);

ay normalization
FLOAT or DOUBLE) {
erex attribute j

ment i);

rex attribute j
enti);

{

ure integer array) {
verex attribute O
ment i);
normalization flag
r DOUBLE) {

X attribute O

ti);

X attribute 0
ti);

n p. 70 as follows:

lat shading control

g variables gl_FrontColor,
kSecondaryColor. Through
lat any vertex attribute

L Shading Language

n.

ta Clipping", p. 71

0 be interpolated without
keyword), the value of t
h P will be adjusted to
ace.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

Modify section 2.15.3, "Shader Variables", page 75
Add the following new return types to the descr iption of GetActiveUniform
on p. 81.

SAMPLER_1D_ARRAY_EXT,
SAMPLER_2D_ARRAY_EXT,
SAMPLER_1D_ARRAY_SHADOW_EXT,
SAMPLER_2D_ARRAY_SHADOW_EXT,
SAMPLER_CUBE_SHADOW_EXT,
SAMPLER_BUFFER_EXT,

INT_SAMPLER_1D_EXT,
INT_SAMPLER_2D_EXT,
INT_SAMPLER_3D_EXT,
INT_SAMPLER_CUBE_EXT,
INT_SAMPLER_2D_RECT_EXT,
INT_SAMPLER_1D_ARRAY_EXT,
INT_SAMPLER_2D_ARRAY_EXT,
INT_SAMPLER_BUFFER_EXT,

UNSIGNED_INT,

UNSIGNED_INT_VEC2_EXT,
UNSIGNED_INT_VEC3_EXT,
UNSIGNED_INT_VEC4_EXT,
UNSIGNED_INT_SAMPLER_1D_EXT,
UNSIGNED_INT_SAMPLER_2D_EXT,
UNSIGNED_INT_SAMPLER_3D_EXT,
UNSIGNED_INT_SAMPLER_CUBE_EXT,
UNSIGNED_INT_SAMPLER_2D_RECT_EXT,
UNSIGNED_INT_SAMPLER_1D_ARRAY_EXT,
UNSIGNED_INT_SAMPLER_2D_ARRAY_EXT,
UNSIGNED_INT_SAMPLER_BUFFER_EXT.

Add the following uniform loading command proto types on p. 81 as follows:
void Uniform{1234}uiEXT(int location, T value);
void Uniform{1234}uivEXT(int location, sizei count, T value);
(add the following paragraph to the description of the above
commands)
The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an
unsigned integer vector, an array of unsigned i ntegers or an array of

unsigned integer vectors.

(change the first sentence of the last paragrap h as follows)

When loading values for a uniform declared as a Boolean, the Uniform*i{v},
Uniform*ui{v} and Uniform*f{v} set of commands can be used to load boolean
values.

NVIDIA Proprietary 96

EXT_gpu_shader4

Modify section 2.15.4 Shader execution, p. 84.

Add a new section "2.15.4.1 Shader Only Texturi
section "Texture Access" on p. 85

This section describes texture functionality th
through vertex, geometry or fragment shaders. A
Shading Language Specification, section 8.7 and
2.0 specification.

Note: For unextended OpenGL 2.0 and the OpenGL
1.20, all supported texture internal formats st

but return floating-point results in the range
unsigned "normalized" integers. The ARB_textur
introduces floating-point internal format where

and returned as floating-point values, and are
EXT_texture_integer extension introduces format

or unsigned integer values.

This extension defines additional OpenGL Shadin
functions, see section 8.7 of the OpenGL Shadin
either signed or unsigned integer values if the
texture is signed or unsigned, respectively.

Texel Fetches

The OpenGL Shading Language texel fetch functio
extract a single texel from a specified texture
coordinates passed to the texel fetch functions
texel coordinates (i, j, k) into the texture im

texture image is point-sampled (no filtering is

The level of detail accessed is computed by add
level-of-detail parameter <lod> to the base lev
level_base.

The texel fetch functions can not perform depth
maps. Unlike filtered texel accesses, texel fet
clamping or any texture wrap mode, and require
filter to access any level of detail other than

The results of the texel fetch are undefined:

* if the computed LOD is less than the textu
(level_base) or greater than the maximum |

* if the computed LOD is not the texture's b
minification filter is NEAREST or LINEAR,

* if the layer specified for array textures
the number of layers in the array texture,

97

OpenGL Extension Specifications for GeForce 8 Series

ng" before the sub-

at is only accessible
Iso refer to the OpenGL
Section 3.8 of the OpenGL

Shading Language version
ore unsigned integer values
[0, 1] and are considered
e_float extension
components are both stored
not clamped. The

s that store either signed

g Language texture lookup
g Language, that return
internal format of the

ns provide the ability to
image. The integer

are used directly as the
age. This in turn means the
performed).

ing the specified

el of the texture,

comparisons or access cube
ches do not support LOD

a mipmapped minification
the base level.

re's base level
evel (level_max),

ase level and the texture's

is negative or greater than

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

* if the texel at (i,j,k) coordinates refer
the defined extents of the specified LOD,

i<-b_s,j<-b_s,k<-b_s,
i>=w s-b s, j>h_s-b_s,or

where the size parameters (w_s, h_s, d_s,
width, height, depth, and border size of t
3.15, 3.16, and 3.17, or

. if the texture being accessed is not compl
cubemaps).

Texture Size Query

The OpenGL Shading Language texture size functi
query the size of a texture image. The LOD valu
argument to the texture size functions is added
texture to determine a texture image level. Th
level, excluding a possible border, are then re
texture image level is outside the range [level
results are undefined. When querying the size o
the dimensions and the layer index are returned
do not support mipmapping, therefore the previo
apply to buffer textures

Make the section "Texture Access" a subsection
Modify the first paragraph on p. 86 as follows:

Texture lookups involving textures with depth c
return the depth data directly or return the re

the R value (see section 3.8.14) used to perfor
comparison operation is requested in the shader
sampler and in the texture using the TEXTURE CO
requests must be consistent; the results of a t

if:

* The sampler used in a texture lookup funct
shadow sampler types, and the texture obje

DEPTH COMPONENT, and the TEXTURE COMPARE M

* The sampler used in a texture lookup funct
sampler types, and the texture object's in

COMPONENT, and the TEXTURE COMPARE MODE is

* The sampler used in a texture lookup funct
sampler types, and the texture object's in
COMPONENT.

Add a new section "2.15.4.2 Shader Inputs" befo
Invariance" on p. 86

Besides having access to vertex attributes and
vertex shaders can access the read-only built-i
gl_VertexID and gl_InstancelD. The gl_VertexID
integer index <i> implicitly passed to ArrayEle

NVIDIA Proprietary 98

EXT_gpu_shader4

to a border texel outside
where

k>=d s-b_s,

and b_s) refer to the
he image, as in equations

ete (or cube complete for

ons provide the ability to

e <lod> passed in as an

to the level_base of the

e dimensions of that image
turned. If the computed
_base, level_max], the

f an array texture, both

. Note that buffer textures
us lod discussion does not

of 2.154.1

omponent data can either

sults of a comparison with

m the lookup. The

by using any of the shadow
MPARE MODE parameter. These
exture lookup are undefined

ion is not one of the
ct's internal format is
ODE is not NONE.

ion is one of the shadow
ternal format is DEPTH
NONE.

ion is one of the shadow
ternal format is not DEPTH

re "Position

uniform variables,
n variables
variable holds the
ment() to specify

EXT_gpu_shader4

the vertex. The variable gl_InstancelD holds th
the current primitive in an instanced draw call
7.1 of the OpenGL Shading Language Specificatio

Add a new section "2.15.4.3 Shader Outputs”

A vertex shader can write to built-in as well a
variables. These values are expected to be inte
primitive it outputs, unless they are specified

to section 2.15.3 and the OpenGL Shading Langua
4.3.6, 7.1 and 7.6 for more detail.

The built-in output variables gl_FrontColor, gl
gl_FrontSecondaryColor, and gl_BackSecondaryCol
colors for the primary and secondary colors for

The built-in output variable gl_TexCoord[] is a
of texture coordinates for the current vertex.

The built-in output variable gl_FogFragCoord is
described in section 3.10 "Fog" of the OpenGL 2

The built-in special variable gl_Position is in
homogeneous vertex position. Writing gl_Positio

The built-in special variable gl_ClipVertex hol
used in the clipping stage, as described in sec
OpenGL 2.0 specification.

The built in special variable gl_PointSize, if
the point to be rasterized, measured in pixels.

Number section "Position Invariance", "Validati
Behavior" as sections 2.15.4.4, 2.15.4.5, and 2

Additions to Chapter 3 of the OpenGL 2.0 Specificat

Modify Section 3.8.1, Texture Image Specificati

(modify 4th paragraph, p. 151 -- add cubemaps t

targets that can be used with DEPTH_COMPONENT t

Textures with a base internal format of DEPTH_C
texture image specification commands only if <t

OpenGL Extension Specifications for GeForce 8 Series

e integer index of
. See also section
n.

s user-defined varying
rpolated across the

to be flat shaded. Refer
ge specification sections

_BackColor,

or hold the front and back
the current vertex.

n array and holds the set
used as the "c" value, as

.0 specification.

tended to hold the
n is optional.

ds the vertex coordinate
tion 2.12 "Clipping" of the
written, holds the size of
on" and "Undefined
.15.4.6 respectively.

ion (Rasterization)
on, p. 150

o the list of texture
extures)

OMPONENT are supported by
arget> is TEXTURE_1D,

TEXTURE_2D, TEXTURE_CUBE_MAP, TEXTURE_RECTANGLE ARB, PROXY_TEXTURE_1D,

PROXY_TEXTURE_2D, PROXY_TEXTURE_CUBE_MAP, or
PROXY_TEXTURE_RECTANGLE_ARB. Using this format

other target will result in an INVALID_OPERATIO
Modify Section 3.8.8, Texture Minification:
(replace the last paragraph, p. 171): Let s(X,

associates an s texture coordinate with each se
(x,y) that lie within a primitive; define t(x,y

99

in conjunction with any
N error.

y) be the function that
t of window coordinates
) and r(x,y) analogously.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Let

u(x,y) = w_t*s(x,y)
v(x,y) =h_t*t(x,y) (3.20a)
w(x,y) = d_t*r(x,y)

where w_t, h_t, and d_t are as defined by equat
with w_s, h_s, and d_s equal to the width, heig

array whose level is level_base. For a one-dime
v(x,y) == 0 and w(x,y) == 0; for two-dimensiona

(start a new paragraph with "For a polygon, rho
with window coordinates...", and then continue
text.)

(replace text starting with the last paragraph
continuing to the end of p. 174)

The (u,v,w) coordinates are then modified, as f

u'(x,y) = u(x,y) + offsetu_shader,
V'(x,y) = v(x,y) + offsetv_shader,
w'(X,y) = w(x,y) + offsetw_shader

where (offsetu_shader, offsetv_shader, offsetw_
specified in the OpenGL Shading Language textur
support offsets. If the texture function used d

for fixed-function texture accesses, all three

be zero.

The (u',v',w") coordinates are then further mod
wrap modes, as specified in Table X.19, to gene

coordinates (u",v",w").

NVIDIA Proprietary 100

EXT_gpu_shader4

ions 3.15, 3.16, and 3.17
ht, and depth of the image
nsional texture, define

| textures, define w(x,y)

is given at a fragment
with the original spec

onp.172,

ollows:

shader) is the texel offset
e lookup functions that
oes not support offsets, or
shader offsets are taken to

ified according the texture
rate a new set of

EXT_gpu_shader4

TEXTURE_WRAP_S Coordinate Transf

CLAMP u" = clamp(u'’, 0

if NEAREST

clamp(u', 0

otherwise
CLAMP_TO_EDGE u" = clamp(u’, 0
CLAMP_TO_BORDER u" = clamp(u’, -
REPEAT u" = clamp(fmod(
MIRROR_CLAMP_EXT u" = clamp(fabs(

if NEAREST

= clamp(fabs(

otherwise

MIRROR_CLAMP_TO_EDGE_EXT u" = clamp(fabs(

MIRROR_CLAMP_TO_BORDER_EXT u" = clamp(fabs(

OpenGL Extension Specifications for GeForce 8 Series

ormation

, w_t-0.5),
filtering,
, W_t),

.5, w_t-0.5)

0.5, w_t+0.5)

u', w_t), 0.5, w_t-0.5)
u’), 0.5, w_t-0.5),
filtering, or

u’), 0.5, w_t),

u’), 0.5, w_t-0.5)
u’), 0.5, w_t+0.5)

MIRRORED_REPEAT u'=w_t-
clamp(fabs(w_t - fmod(u’, 2*w_t)),
0.5, w _t-0.5)
Table X.19: Texel coordinate wrap mode application. clamp(a, b,c)

returns b if a<b, c if a>c, and a otherwise.
b*floor(a/b), and fabs(a) returns the absolut

and w coordinates, TEXTURE_WRAP_T and h_t, an
respectively, are used.

When lambda indicates minification, the value a
TEXTURE_MIN_FILTER is used to determine how the
fragment is selected.

When TEXTURE_MIN_FILTER is NEAREST the texel in
level_base that is nearest (in Manhattan distan
obtained. The coordinate (i,j,k) is then comput

floor(v"), floor(w")).

For a three-dimensional texture, the texel at |
texture value. For a two-dimensional texture,
texel at location (i,j) becomes the texture val
texture, j and k are irrelevant, and the texel
texture value.

If the selected (i,j,k), (i,j), or i location r
that satisfies any of the following conditions:

i<-b_s,

j<-b_s,
k<-b_s,
i>=w_|l+b_s,
j>=h_l+b_s,or
j>=d_l+b_s,

then the border values defined by TEXTURE_BORDE
of the non-existent texel. If the texture conta

values of TEXTURE_BORDER_COLOR are interpreted
the texture's internal format in a manner consi

the texture contains depth components, the firs
TEXTURE_BORDER_COLOR is interpreted as a depth

101

fmod(a,b) returns a-
e value of a. Forthev
d TEXTURE_WRAP_R and d_t,

ssigned to
texture value for a

the image array of level
ce) to (u",v",.w") is
ed as (floor(u"),

ocation (i,j,k) becomes the
k is irrelevant, and the

ue. For a one-dimensional
at location i becomes the

efers to a border texel

R_COLOR are used in place
ins color components, the
as an RGBA color to match
stent with table 3.15. If

t component of

value.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

When TEXTURE_MIN_FILTER is LINEAR, a 2x2x2 cube
array of level level_base is selected. Let:

i_0 =floor(u"-0.5),
ji_0 =floor(v"-0.5),
k 0 =floor(w"-0.5),
il =i 0+1,

i1 =j0+1,

k1 =k 0+1,

alpha = frac(u" - 0.5),
beta = frac(v" - 0.5), and
gamma = frac(w" - 0.5),

For a three-dimensional texture, the texture va

(replace last paragraph, p.174) For any texel i
refers to a border texel outside the defined ra
value is taken from the texture border color as

Rename section 3.8.9 "Texture Magnification" to

modify the first paragraph of section 3.8.8 "Te
Magnification" as follows:

When lambda indicates magnification, the value
TEXTURE_MAG_FILTER determines how the texture v
two possible values for TEXTURE_MAG_FILTER: NEA
behaves exactly as NEAREST for TEXTURE_MIN_FILT
exactly as LINEAR for TEXTURE_MIN_FILTER, as de
section, including the wrapping calculations. T
level_base texture array is always used for mag

modify the last paragraph of section 3.8.8, p.

The rules for NEAREST or LINEAR filtering are t
array. Specifically, the coordinate (u,v,w) is
3.20a, with w_s, h_s, and d_s equal to the widt
image array whose level is 'd".

Modify the second paragraph on p. 176

The rules for NEAREST or LINEAR filtering are t
selected arrays, yielding two corresponding tex
Tau?2. Specifically, for level d1, the coordinat
equation 3.20a, with w_s, h_s, and d_s equal to
depth of the image array whose level is 'd1'. F
(u', v', w') is computed as in equation 3.20a,
equal to the width, height, and depth of the im
'd2".

Modify Section 3.8.14, Texture Comparison Modes

(modify 2nd paragraph, p. 188, indicating that
used for depth comparisons on cubemap textures)

Let D_t be the depth texture value, in the rang
fixed-function texture lookups, let R be the in

NVIDIA Proprietary 102

EXT_gpu_shader4

of texels in the image

lue tau is found as...

n the equation above that
nge of the image, the texel
with NEAREST filtering.

section 3.8.8

xture

assigned to

alue is obtained. There are
REST and LINEAR. NEAREST
ER and LINEAR behaves
scribed in the previous

he level-of-detail

nification.

175, as follows:

hen applied to the selected
computed as in equation
h, height, and depth of the

hen applied to each of the
ture valutes Taul and

e (u,v,w) is computed as in
the width, height, and

or level d2 the coordinate
withw_s, h_s,andd_s
age array whose level is

(p. 185)

the Q texture coordinate is

e [0, 1]. For
terpolated <r> texture

EXT_gpu_shader4

coordinate, clamped to the range [0, 1]. Fort

an OpenGL Shading Language lookup function, let
for depth comparisons provided in the lookup fu

1]. Then the effective texture value L_t, |_t,
follows:

Modify section 3.11, Fragment Shaders, p. 193
Modify the third paragraph on p. 194 as follows

Additionally, when a vertex shader is active, i
varying variables (see section 2.15.3 and the O
Specification). These values are, if not flat s

the primitive being rendered. The results of th
available when varying variables of the same na
fragment shader.

Add the following paragraph to the end of secti

A fragment shader can also write to varying out
to these variables are used in the subsequent p
Varying out variables can be used to write floa
unsigned integer values destined for buffers at
object, or destined for color buffers attached
framebuffer. The subsection 'Shader Outputs' of
API how to direct these values to buffers.

Add a new paragraph at the beginning of the sec
Access", p. 194

Section 2.15.4.1 describes texture lookup funct
vertex shader. The texel fetch and texture size
described there also applies to fragment shader

Modify the second paragraph on p. 195 as follow

Texture lookups involving textures with depth ¢
return the depth data directly or return the re

the R value (see section 3.8.14) used to perfor
comparison operation is requested in the shader
sampler and in the texture using the TEXTURE CO
requests must be consistent; the results of a t

if:

* The sampler used in a texture lookup funct
shadow sampler types, and the texture obje
DEPTH COMPONENT, and the TEXTURE COMPARE M

* The sampler used in a texture lookup funct
sampler types, and the texture object's in
COMPONENT, and the TEXTURE COMPARE MODE is

* The sampler used in a texture lookup funct

sampler types, and the texture object's in
COMPONENT.

103

OpenGL Extension Specifications for GeForce 8 Series

exture lookups generated by
R be the reference value
nction, also clamped to [0,
or A_tis computed as

t may define one or more
penGL Shading Language
haded, interpolated across
ese interpolations are

me are defined in the

on 3.11.1, p. 194

variables. Values written
er-fragment operations.
ting-point, integer or
tached to a framebuffer

to the default

the next section describes

tion "Texture

ionality accessible to a
query functionality
s.

S.

omponent data can either

sults of a comparison with

m the lookup. The

by using any of the shadow
MPARE MODE parameter. These
exture lookup are undefined

ion is not one of the
ct's internal format is
ODE is not NONE.

ion is one of the shadow
ternal format is DEPTH
NONE.

ion is one of the shadow
ternal format is not DEPTH

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Add the following paragraph to the section Shad

If a geometry shader is active, the built-in va
contains the ID value emitted by the geometry s
vertex. If no geometry shader is active, gl_Pri
number of primitives processed by the rasterize
was called (directly or indirectly via vertex a
primitive generated after a Begin is numbered z
counter is incremented after every individual p
primitive is processed. For polygons drawn in
primitive ID counter is incremented only once,

or lines may be drawn. For QUADS and QUAD_STRI
decomposed into triangles, the primitive ID is
complete quad is processed. For POLYGON primit
counter is undefined. The primitive ID is unde
generated by DrawPixels or Bitmap. Restarting a
the primitive restart index has no effect on th

Modify the first paragraph of the section Shade
follows

The OpenGL Shading Language specification descr
output by a fragment shader. These outputs are
categories. User-defined varying out variables
built-in variables are gl_FragColor, gl_FragDat
fragment clamping is enabled, the final fragmen
fragment data values or the final varying out v
fragment shader are clamped to the range [0,1]
to fixed-point as described in section 2.14.9.
out variables declared as a floating-point type
converted. If fragment clamping is disabled, th
values or the final fragment data values or the
variable values are not modified. The final fra

Modify the second paragraph of the section Shad
as follows

...A fragment shader may not statically assign
gl_FragColor, gl_FragData or any user-defined v
this case, a compile or link error will result.

Add the following to the end of the section Sha

The values of user-defined varying out variable
buffer in a two step process. First the varying
fragment color by using its number. The GL will
varying out variable, unless overridden by the
BindFragDatal ocationEXT(). The number of the fr
each user-defined varying out variable can be g
GetFragDatalocationEXT(). Next, the DrawBuffer
section 4.2.1) direct each fragment color to a

The binding of a user-defined varying out varia
number can be specified explicitly. The command

void BindFragDatal.ocationEXT(uint program,
const char *na

NVIDIA Proprietary 104

EXT_gpu_shader4

er Inputs, p. 196

riable gl_PrimitivelD
hader for the provoking
mitivelD is filled with the

r since the last time Begin
rray functions). The first
ero, and the primitive ID
oint, line, or polygon
point or line mode, the
even though multiple points
P primitives that are
incremented after each
ives, the primitive ID
fined for fragments
primitive topology using
e primitive ID counter.

r Outputs, p. 196 as

ibes the values that may be
split into two

and built-in variables. The
a[n], and gl_FragDepth. If

t color values or the final
ariable values written by a
and then may be converted
Only user-defined varying
are clamped and may be
e final fragment color

final varying output

gment depth written...

er Outputs, p. 196

values to more than one of
arying output variable. In
A shader statically...

der Outputs, p. 197

s are directed to a color

out variable is bound to a
assign a number to each
command

agment color assigned for
ueried with

or DrawBuffers commands (see
particular buffer.

ble to a fragment color

uint colorNumber,
me);

EXT_gpu_shader4

specifies that the varying out variable name in
fragment color colorNumber when the program is
bound previously, its assigned binding is repla

must be a null terminated string. The error IN
colorNumber is equal or greater than MAX_DRAW_B
BindFragDatalocationEXT has no effect until the
particular, it doesn't modify the bindings of v

program that has already been linked. The error
generated if name starts with the reserved "gl_

When a program is linked, any varying out varia
specified through BindFragDatal ocationEXT will
fragment colors by the GL. Such bindings can be
GetFragDatalocationEXT. LinkProgram will fail
varying out variable would cause the GL to refe
fragment color number (one greater than or equa
LinkProgram will also fail if more than one var

to the same number. This type of aliasing is no

BindFragDatalocationEXT may be issued before an
attached to a program object. Hence it is allow

a name starting with "gl_") to a color number,

never used as a varying out variable in any fra
object. Assigned bindings for variables that do

After a program object has been linked successf
varying out variable names to color numbers can

int GetFragDatalocationEXT(uint program, co

returns the number of the fragment color that t
name was bound to when the program object progr
must be a null terminated string. If program ha
linked, the error INVALID OPERATION is generate
out variable, or if an error occurs, -1 will be

Additions to Chapter 4 of the OpenGL 2.0 Specificat
Operations and the Frame Buffer)

Modify Section 4.2.1, Selecting a Buffer for Wr

(modify next-to-last paragraph, p. 213) If a fr
gl_FragColor, DrawBuffers specifies a set of dr
single fragment color defined by gl_FragColor i
shader writes to gl_FragData or a user-defined
DrawBuffers specifies a set of draw buffers int
multiple output colors defined by these variabl

If a fragment shader writes to neither gl_FragC
any user-defined varying out variables, the val
following shader execution are undefined, and m
color.

105

OpenGL Extension Specifications for GeForce 8 Series

program should be bound to
next linked. If name was

ced with colorNumber. name
VALID_VALUE is generated if
UFFERS.

program is linked. In

arying out variables in a
INVALID OPERATION is

" prefix.

bles without a binding
automatically be bound to
gueried using the command
if the assigned binding of a
rence a non-existant

| to MAX DRAW_BUFFERS).
ying out variable is bound

t allowed.

y shader objects are

ed to bind any name (except
including a name that is
gment shader

not exist are ignored.

ully, the bindings of
be queried. The command

nst char *name);

he varying out variable
am was last linked. name
s not been successfully
d. If name is not a varying
returned.

ion (Per-Fragment

iting (p. 212)

agment shader writes to
aw buffers into which the
s written. If a fragment
varying out variable,

o which each of the

es are separately written.
olor, nor gl FragData, nor
ues of the fragment colors
ay differ for each fragment

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Additions to Chapter 5 of the OpenGL 2.0 Specificat
Change section 5.4 Display Lists, p. 237
Add the commands VertexAttriblPointerEXT and Bi
the list of commands that are not compiled into

executed immediately, under "Program and Shader

Additions to Chapter 6 of the OpenGL 2.0 Specificat
Requests)

Modify section 6.1.14 "Shader and Program Queri
Modify 2nd paragraph, p.259:
Add the following to the list of GetVertexAttri

void GetVertexAttriblivEXT(uint index, enum p
void GetVertexAttribluivEXT (uint index, enum

obtain the... <pname> must be one of VERTEX_AT

EXT_gpu_shader4

ion (Special Functions)

ndFragDatalLocationEXT to
a display list, but
Objects", p. 241

ion (State and State

es", p. 256

b* commands:

name, int *params);
pname, uint *params);

TRIB_ARRAY_ENABLED ,.,

VERTEX_ATTRIB_ARRAY_NORMALIZED, VERTEX_ATTRIB_A RRAY_INTEGER_EXT, or

CURRENT_VERTEX_ATTRIB. ...
Split 3rd paragraph, p.259

... The size, stride, type, normalized flag, an

are set by the commands VertexAttribPointer and
The normalized flag is always set to FALSE by b
The unconverted integer flag is always set to F
and TRUE by VertexAttriblPointerEXT.

The query CURRENT_VERTEX_ATTRIB returns the cur

attribute <index>. GetVertexAttribdv and GetVe
return the current attribute values as floating
GetVertexAttribiv reads them as floating-point

to integer values; GetVertexAttriblivEXT reads
integers; GetVertexAttribluivEXT reads and retu
integers. The results of the query are undefin
values are read using one data type but were sp
one. The error INVALID_OPERATION is generated i

Change the prototypes in the first paragraph on
follows:

void GetUniformfv(uint program, int location,
void GetUniformiv(uint program, int location,
void GetUniformuivEXT (uint program, int locat
Additions to Appendix A of the OpenGL 2.0 Specifica
None.

Additions to the AGL/GLX/WGL Specifications

None.

NVIDIA Proprietary 106

d unconverted integer flag
VertexAttriblPointerEXT.

y VertexAttribIPointerEXT.
ALSE by VertexAttribPointer

rent value for the generic
rtexAttribfv read and
-point values;

values and converts them
and returns them as

rns them as unsigned

ed if the current attribute
ecified using a different

f <index> is zero.

page 260 as

float *params);
int *params);

ion, uint *params);

tion (Invariance)

EXT_gpu_shader4

Interactions with GL_ARB_color_buffer_float

If the GL_ARB_color_buffer_float extension is n
reference to fragment clamping in section 3.11.
to be deleted.

Interactions with GL_ARB_texture_rectangle

If the GL_ARB_texture_rectangle extension is no
references to texture lookup functions with 'Re
deleted.

Interactions with GL_EXT _texture_array

If the GL_EXT _texture_array extension is not su
one- and two-dimensional array texture sampler
samplerlDArray, sampler2DArray) and the texture
them need to be deleted.

Interactions with GL_EXT_geometry_shader4

If the GL_EXT_geometry_shader4 extension is not
to a geometry shader need to be deleted.

Interactions with GL_NV_ primitive_restart

The spec describes the behavior that primitive
primitive ID counter, including for POLYGON pri
argue that the restart index starts a new primi
reset the count). If NV_primitive_restart is no
that extension in the discussion of the primiti
removed.

If NV_primitive_restart is supported, index val
restart are not considered as specifying an End
another Begin. Primitive restart is therefore n
immediately update material properties when a v
spec language on p.64 of the OpenGL 2.0 specifi
not guaranteed to update material parameters, d
the following End command."

Interactions with EXT_texture_integer

If the EXT_texture_integer spec is not supporte
this spec in section 2.15.4.1 needs to be remov
functions that return integers or unsigned inte
section 8.7 of the OpenGL Shading Language spec
removed.

Interactions with EXT_texture_buffer_object
If EXT_texture_buffer_object is not supported,

textures, as well as the texelFetchBuffer and t
functions and samplerBuffer types, need to be r

107

OpenGL Extension Specifications for GeForce 8 Series

ot supported then any
2 "Shader Execution" needs

t supported then all
ct' in the name need to be

pported, all references to

types (e.g.,
lookup functions that use

supported, all references

restart does not affect the
mitives (where one could
tive without a new Begin to
t supported, references to
ve ID counter should be

ues causing a primitive
command, followed by

ot guaranteed to

ertex shader is active. The
cation says "changes are
efined in table 2.11, until

d, the discussion about
ed. All texture lookup
gers, as discussed in
ification, also need to be

references to buffer
exelSizeBuffer lookup
emoved.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

Interactions with EXT_draw_instanced

If EXT_draw_instanced is not supported, the val ue of gl_InstancelD
is always zero.

Errors
The error INVALID_VALUE is generated by BindFra gDatalocationEXT() if
colorNumber is equal or greater than MAX_DRAW_B UFFERS.
The error INVALID OPERATION is generated by Bin dFragDatalocationEXT() if
name starts with the reserved "gl_" prefix.
The error INVALID_OPERATOIN is generated by Bin dFragDatal ocationEXT() or
GetFragDatalocationEXT if program is not the na me of a program object.
The error INVALID_OPERATION is generated by Get FragDataLocationEXT() if

program has not been successfully linked.
New State

(add to table 6.7, p. 268)

In itial
Get Value Type GetCommand Va lue Description Sec. Atfribute
VERTEX_ATTRIB_ARRAY 16+xB GetVertexAttib FA LSE vertexatrbaray 28 vertex-amay
INTEGER EXT has unconverted ints

New Implementation Dependent State
Minimum

GetValue Type GetCom mand Vaue Desaipion Sec. Att b

MIN_PROGRAM TEXEL OFFSET EXT Z Getinte gev 8 minmumitexeloffset 2x44 -
alowed inlookup

MAX_ PROGRAM TEXEL OFFSET EXT Z Gelirte gev +7 maximumiexeloffset 2x44 -
alowed inlookup

Modifications to The OpenGL Shading Language Specif ication, Version 1.10.59

Including the following line in a shader can be used to control the
language features described in this extension:

#extension GL_EXT_gpu_shader4 : <behavior>

where <behavior> is as specified in section 3.3

A new preprocessor #define is added to the Open GL Shading Language:
#define GL_EXT_gpu_shader4 1

Add to section 3.6 "Keywords"

Add the following keywords:
noperspective, flat, centroid

Remove the unsigned keyword from the list of ke ywords reserved for future

NVIDIA Proprietary 108

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

use, and add it to the list of keywords.

The following new vector types are added:
uvec2, uvec3, uvecd

The following new sampler types are added:

samplerlDArray, sampler2DArray, samplerlDArra yShadow,
sampler2DArrayShadow, samplerCubeShadow

isamplerlD, isampler2D, isampler3D, isamplerC ube, isampler2DRect,

isampler1DArray, isampler2DArray

usamplerlD, usampler2D, usampler3D, usamplerC ube, usampler2DRect,

usamplerlDArray, usampler2DArray
samplerBuffer, isamplerBuffer, usamplerBuffer
Add to section 4.1 "Basic Types"

ables. The first table
types". It includes the

Break the table in this section up in several t
4.1.1 is named "scalar, vector and matrix data
first row through the 'mat4" row.

Add the following to the first section of this table:
unsigned int An unsigned integer
uvec2 A two-component unsign ed integer vector
uvec3 A three-component unsi gned integer vector
uvecsd A four-component unsig ned integer vector

Break out the sampler types in a separate table
"default sampler types". Add the following samp
table:

samplerlDArray handle for accessing a

sampler2DArray handle for accessing a

samplerlDArrayShadow handle for accessing a
with comparison

sampler2DArrayShadow handle for accessing a
with comparison

samplerBuffer handle for accessing a

Add a table 4.1.3 called "integer sampler types

isamplerlD handle for accessing a
isampler2D handle for accessing a
isampler3D handle for accessing a
isamplerCube handle for accessing a
isampler2DRect handle for accessing a
isampler1DArray handle for accessing a
isampler2DArray handle for accessing a
isamplerBuffer handle for accessing a

109

, and name that table 4.1.2
ler types to this new

1D array texture
2D array texture
1D array depth texture

2D array depth texture

buffer texture

n integer 1D texture

n integer 2D texture

n integer 3D texture

n integer cube map texture
n integer rectangle texture
n integer 1D array texture

n integer 2D array texture

n integer buffer texture

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Add a table 4.1.4 called "unsigned integer samp

usamplerlD handle for accessing a
1D texture

usampler2D handle for accessing a
2D texture

usampler3D handle for accessing a
3D texture

usamplerCube handle for accessing a
cube map texture

usampler2DRect handle for accessing a
rectangle texture
usamplerlDArray handle for accessing a

array texture
usampler2DArray handle for accessing a
array texture
usamplerBuffer handle for accessing a
buffer texture

Change section 4.1.3 "Integers"
Remove the first two paragraphs and replace wit

Signed, as well as unsigned integers, are fully
whole numbers. Integers have at least 32 bits o
sign bit. Signed integers are stored using a tw
representation.

Integers are declared and optionally initialize
as in the following example:

inti, j=42;
unsigned int k = 3u;

Literal integer constants can be expressed in d
(base 8), or hexadecimal (base 16) as follows.

integer-constant:
decimal-constant integer-suffix_opt
octal-constant integer-suffix_opt
hexadecimal-constant integer-suffix

integer-suffix: one of
uu

Change section 4.3 "Type Qualifiers"
Change the "varying" and "out" qualifier as fol

varying - linkage between a vertex shader and f
a fragment shader and the back end of the OpenG

out - for function parameters passed back out o
initialized for use when passed in. Also for ou
(fragment only).

NVIDIA Proprietary 110

EXT_gpu_shader4

ler types":

n unsigned integer

n unsigned integer

n unsigned integer

n unsigned integer

n unsigned integer

n unsigned integer 1D
n unsigned integer 2D

n unsigned integer

h the following:
supported. Integers hold

f precision, including a
0's complement

d with integer expressions

ecimal (base 10), octal

_opt

lows:

ragment shader, or between
L pipeline.

f a function, but not
tput varying variables

EXT_gpu_shader4

In the qualifier table, add the following sub-q
qualifier;

flat varying
noperspective varying
centroid varying

Change section 4.3.4 "Attribute”
Change the sentence:

The attribute qualifier can be used only with t
vec3, vec4, mat2, mat3, and mat4.

To:

The attribute qualifier can be used only with t
ivec3, ivec4, unsigned int, uvec2, uvec3, uvec4
mat2, mat3, and mat4.

Change the fourth paragraph to:

It is expected that graphics hardware will have
locations for passing vertex attributes. Theref
language defines each non-matrix attribute vari
to four integer or floating-point values (i.e.,
uvecd). There is an implementation dependent li
attribute variables that can be used and if thi

a link error. (Declared attribute variables tha
against this limit.) A scalar attribute counts

this limit as a vector of size four, so applica
packing groups of four unrelated scalar attribu
to better utilize the capabilities of the under
attribute will...

Change section 4.3.6 "Varying"
Change the first paragraph to:

Varying variables provide the interface between
fragment shader, and the fixed functionality be
fragment shader, as well as the interface from
back-end of the OpenGL pipeline.

The vertex shader will compute values per verte
coordinates, etc.) and write them to variables
qualifier. A vertex shader may also read varyin
the same values it has written. Reading a varyi
shader returns undefined values if it is read b

The fragment shader will compute values per fra
variables declared with the varying out qualifi
also read varying variables, getting back the s
written. Reading a varying variable in a fragme
values if it is read before being written.

111

OpenGL Extension Specifications for GeForce 8 Series

ualifiers under the varying

he data types float, vec2,

he data types int, ivec2,
, float, vec2, vec3, vec4,

a small number of fixed
ore, the OpenGL Shading
able as having space for up
a vec4, ivec4 or

mit on the number of

s is exceeded it will cause
t are not used do not count
the same amount against
tions may want to consider
tes together into a vector
lying hardware. A mat4

the vertex shader, the
tween the vertex and
the fragment shader to the

X (such as color, texture
declared with the varying
g variables, getting back
ng variable in a vertex
efore being written.

gment and write them to

er. A fragment shader may
ame result it has

nt shader returns undefined

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Varying variables may be written more than once
assigned is the one used.

Change the second paragraph to:

Varying variables that are set per vertex are i
perspective-correct manner over the primitive b
varying is further qualified with noperspective
perspective correct manner is specified in equa
OpenGL 2.0 specification. When noperspective is
must be linear in screen space, as described in
approximation that follows equation 3.8.

If single-sampling, the value is interpolated t
the centroid qualifier, if present, is ignored.
varying is not qualified with centroid, then th
interpolated to the pixel's center, or anywhere
one of the pixel's samples. If multi-sampling a
with centroid, then the value must be interpola
both the pixel and in the primitive being rende
pixel's samples that falls within the primitive

[NOTE: Language for centroid sampling taken fro
specification]

Varying variables, set per vertex, can be compu
basis (flat shading), or interpolated over a li
(smooth shading). By default, a varying variabl
the varying is further qualified with flat. Whe
varying is interpolated over the primitive. Whe
is constant over the primitive, and is taken fr
vertex of the primitive, as described in Sectio
specification.

Change the fourth paragraph to:

The type and any qualifications (flat, noperspe
variables with the same name declared in both t
shaders must match, otherwise the link command
built-in varying variables, which have names st
be further qualified with flat, noperspective o
keyword cannot be used together with either the
keywords to further qualify a single varying va
error will occur. When using the keywords centr
it must immediately precede the varying keyword
and noperspective keywords, either one can be s
varying variables used (i.e. read) in the frag

to by the vertex shader; declaring superfluous
vertex shader is permissible. Varying out varia
not be further qualified with flat, noperspecti

Fragment shaders output values to the back-end
using either user-defined varying out variables
described in section 7.2, unless the discard ke
back-end of the OpenGL pipeline consumes a user
variable and an execution of a fragment shader
that variable, then the value consumed is undef

NVIDIA Proprietary 112

EXT_gpu_shader4

. If so, the last value

nterpolated by default in a
eing rendered, unless the
. Interpolation in a

tions 3.6 and 3.8 in the
specified, interpolation
equation 3.7 and the

o the pixel's center, and

If multi-sampling, and the
e value must be

within the pixel, or to

nd the varying is qualified
ted to a point that lies in
red, or to one of the

m the GLSL 1.20.4

ted on a per-primitive

ne or polygon primitive

e is smooth shaded, unless
n smooth shading, the

n flat shading, the varying
om the single provoking

n 2.14.7 of the OpenGL 2.0

ctive, centroid) of varying
he vertex and fragment

will fail. Note that

arting with "gl_", can not

r centroid. The flat
noperspective or centroid
riable, otherwise a compile
oid, flat or noperspective,

. When using both centroid
pecified first. Only those
ment shader must be written
varying variables in the
bles, set per fragment, can
ve or centroid.

of the OpenGL pipeline
or built-in variables, as
yword is executed. If the
-defined varying out
does not write a value to
ined. If the back-end of

EXT_gpu_shader4

the OpenGL pipeline consumes a varying out vari
either writes values into less components of th
variable is declared to have less components, t
the missing component(s) are undefined. The Ope
3.x.x, describes API to route varying output va

Add the following examples:

noperspective varying float temperature;

flat varying vec3 myColor;

centroid varying vec2 myTexCoord;

centroid noperspective varying vec2 myTexCoor
varying out ivec3 foo;

Change the third paragraph on p. 25 as follows:

The "varying" qualifier can be used only with t
vec3, vec4, mat2, mat3, and mat4, int, ivec2, i
uvec2, uvec3, uvec4 or arrays of these. Struct
the varying is declared as one of the integer o
type variants, then it has to also be qualified
otherwise a compile error will occur.

The "varying out" qualifier can be used only wi
vec2, vec3, vecd, int, ivec2, ivec3, ivec4, uns
uvecd. Structures or arrays cannot be declared

Change section 5.1 "Operators"

Remove the "reserved" qualifications from the f
precedence table entries:

Precedence Operator class
3 (tilde is reserved)
4 (modulus reserved)
6 bit-wise shift (reserved)
9 bit-wise and (reserved)
10 bit-wise exclusive or (re
11 bit-wise inclusive or (re
16 (modulus, shift, and bit-

Change section 5.8 "Assignments”
Change the first bullet from:

* The arithmetic assignments add into (+=)..
To:

* The arithmetic assignments add into (+=),
=), multiply into (*=), and divide into (/
assignments modulus into (%=), left shift
shift by (>>=), and into (&=), inclusive o

exclusive or into (*=). The expression

Delete the last bullet in this paragraph.

113

OpenGL Extension Specifications for GeForce 8 Series

able and a fragment shader
e variable, or if the

han needed, the values of
nGL specification, section
riables to color buffers.

he data types float, vec2,
vec3, ivec4, unsigned int,
ures cannot be varying. If
r unsigned integer data
as being flat shaded,

th the data types float,
igned int, uvec2, uvec3 or
as varying out.

ollowing operator

served)
served)
wise are reserved)

subtract from (-
=) as well as the
by (<<=), right
rinto (|=),

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Remove the second bullet in the section startin
modulus into..

Change section 5.9 "Expressions"

Change the bullet: The operator modulus (%) is
use to:

* The arithmetic operator % that operates on si
typed expressions (including vectors). The tw
same type, or one can be a signed or unsigned
other a signed or unsigned integer vector. |
zero, results are undefined. If one operand i
vector, the scalar is applied component-wise
the same type as the vector. If both operands
remainder is non-negative. Results are undefi
operands are negative.

Change the last bullet: "Operators and (&), or
(=), right-shift (>>), left shift (<<). These o
future use." To the following bullets:

* The one's complement operator ~. The operand
unsigned integer (including vectors), and the
complement of its operand. If the operand is
applied component-wise to the vector. If the
result is computed by subtracting the value f
integer value. If the operand is signed, the
converting the operand to an unsigned integer
converting back to a signed integer.

* The shift operators << and >>. For both opera
of type signed or unsigned integer (including
operand is a scalar, the second operand has t
result is undefined if the right operand is n
equal to the number of bits in the left expre
E1l << E2 s E1 (interpreted as a bit pattern)
bits. The value of E1 >> E2 is E1 right-shift
El is a signed integer, the right-shift will
is an unsigned integer, the right-shift will

* The bitwise AND operator &. The operands must
unsigned integer (including vectors). The two
same type, or one can be a signed or unsigned
other a signed or unsigned integer vector. If
and the other a vector, the scalar is applied
vector, resulting in the same type as the vec
bitwise AND function of the operands.

* The bitwise exclusive OR operator *. The oper
or unsigned integer (including vectors). The
same type, or one can be a signed or unsigned
other a signed or unsigned integer vector. If
and the other a vector, the scalar is applied
vector, resulting in the same type as the vec
bitwise exclusive OR function of the operands

NVIDIA Proprietary 114

EXT_gpu_shader4

g with: The assignments

reserved for future

gned or unsigned integer
0 operands must be of the
integer scalar and the

f the second operand is

s scalar and the other is a
to the vector, resulting in
are non-negative, then the
ned if one, or both,

(D), exclusive or ("), not
perators are reserved for

must be of type signed or
result is the one's

a vector, the operator is
operand is unsigned, the
rom the largest unsigned
result is computed by

, applying ~, and

tors, the operands must be
vectors). If the first

0 be a scalar as well. The
egative, or greater than or
ssion's type. The value of
left-shifted by E2

ed by E2 bit positions. If
extend the sign bit. If E1
zero-extend.

be of type signed or
operands must be of the
integer scalar and the
one operand is a scalar
component-wise to the
tor. The result is the

ands must be of type signed
two operands must be of the
integer scalar and the

one operand is a scalar
component-wise to the

tor. The result is the

EXT_gpu_shader4

* The bitwise inclusive OR operator |. The oper
or unsigned integer (including vectors). The
same type, or one can be a signed or unsigned
other a signed or unsigned integer vector. If
and the other a vector, the scalar is applied
vector, resulting in the same type as the vec
bitwise inclusive OR function of the operands

Change Section 7.1 "Vertex Shader Special Varia
Add the following definition to the list of bui

int gl_VertexID // read-only
int gl_InstancelD // read-only

Add the following paragraph at the end of the s

The variable gl_VertexID is available as a read
vertex shaders and holds the integer index <i>
ArrayElement() to specify the vertex. The value
if and only if:

* the vertex comes from a vertex array comman
primitive (e.g. DrawArrays, DrawElements),

* all enabled vertex arrays have non-zero buf

* the vertex does not come from a display lis
was compiled using DrawArrays / DrawElement
buffer objects.

The variable gl_InstancelD is availale as a rea
vertex shaders and holds holds the integer inde
in an instanced draw call (DrawArraysinstancedE
DrawElementsinstancedEXT). If the current primi
instanced draw call, the value of gl_InstancelD

Change Section 7.2 "Fragment Shader Special Var
Change the 8th and 9th paragraphs on p. 43 as f

If a shader statically assigns a value to gl_Fr

a value to any element of gl_FragData nor to an
output variable (section 4.3.6). If a shader st
any element of gl_FragData, it may not assign a
to any user-defined varying output variable. Th
values to either gl_FragColor, gl_FragData, or
output variable, but not to a combination of th

If a shader executes the discard keyword, the f

the values of gl_FragDepth, gl_FragColor, gl_Fr
varying output variables become irrelevant.

115

OpenGL Extension Specifications for GeForce 8 Series

ands must be of type signed
two operands must be of the
integer scalar and the

one operand is a scalar
component-wise to the

tor. The result is the

bles"

It-in variable definitions:

ection:

-only variable from within
implicitly passed to
of gl_VertexID is defined

d that specifies a complete

fer object bindings, and

t, even if the display list
s with data sourced from

d-only variable from within
x of the current primitive
XT,

tive does not come from an
is zero.

iables"
ollows:

agColor, it may not assign
y user-defined varying
atically writes a value to
value to gl_FragColor nor
at is, a shader may assign
any user-defined varying
e three options.

ragment is discarded, and
agData and any user-defined

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Add the following paragraph to the top of p. 44

The variable gl_PrimitivelD is available as ar

within fragment shaders and holds the id of the
primitive. Section 3.11, subsection "Shader Inp
specification describes what value it holds bas

Add the following prototype to the list of buil
from a fragment shader:

int gl_PrimitivelD;
Change Chapter 8, sixth paragraph on page 50:
Change the sentence:

When the built-in functions are specified below
(and corresponding output)can be float, vec2, v
used as the argument.

To:

When the built-in functions are specified below
(and corresponding output) can be float, vec2,
used as the argument. Where the input arguments
can be int, ivec2, ivec3 or ivec4, genlType is

the input arguments (and corresponding output)
uvec3, or uvec4, genUType is used as the argume

Add to section 8.3 "Common functions"

Add integer versions of the abs, sign, min, max
follows:

Syntax:
genlType abs(geniType x)
genlType sign(geniType x)

genlType min(geniType X, geniType y)
genlType min(geniType X, inty)

genUType min(genUType X, genUType y)
genUType min(genUType X, unsigned int y)

genlType max(genlType X, geniType y)
genlType max(genlType X, inty)

genUType max(genUType X, genUType y)
genUType max(genUType X, unsigned int y)

genlType clamp(genlType X, genlType minval, g

genlType clamp(genlType X, int minval, int ma

genUType clamp(genUType x, genUType minval, g

genUType clamp(genUType X, unsigned int minva
unsigned int maxval)

NVIDIA Proprietary 116

EXT_gpu_shader4

ead-only variable from
currently processed
uts" of the OpenGL 2.0
ed on the primitive type.

t-in variables accessible

, where the input arguments
ec3, or vec4, genType is

, Where the input arguments
vec3, or vec4, genType is
(and corresponding output)
used as the argument. Where
can be unsigned int, uvec2,
nt.

and clamp functions, as

enlType maxval)
xval)

enUType maxval)
l,

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

Add the following new functions:
Syntax:

genType truncate(genType X)
Description:

Returns a value equal to the integer closest
is not larger than the absolute value of x.

Syntax:
genType round(genType X)
Description:
Returns a value equal to the closest integer
portion of the operand is 0.5, the nearest ev
example, round (1.0) returns 1.0. round(-1.5
and round (4.5) both return 4.0.
Add to section 8.6 "Vector Relational Functions
Change the sentence:
Below, "bvec" is a placeholder for one of bvec2
is a placeholder for one of ivec2, ivec3, or iv
placeholder for vec2, vec3, or vec4.
To:
Below, "bvec" is a placeholder for one of bvec2
is a placeholder for one of ivec2, ivec3, or iv
placeholder for one of uvec2, uvec3 or uvec4 an

for vec2, vec3, or vec4.

Add uvec versions of all but the any, all and n
in this section, as follows:

bvec lessThan(uvec x, uvec y)
bvec lessThanEqual(uvec X, uvec y)

bvec greaterThan(uvec x, uvec y)
bvec greaterThanEqual(uvec x, uvec y)

bvec equal(uvec x, uvecy)
bvec notEqual(uvec x, uvec y)

Add to section 8.7 "Texture Lookup Functions"
Remove the first sentence in the last paragraph

"The built-ins suffixed with "Lod" are allowed

117

to x whose absolute value

to x. If the fractional
en integer is returned. For
) returns -2.0. round(3.5)

, bvec3, or bvec4, "ivec"
ec4, and "vec" is a

, bvec3, or bvec4, "ivec"
ec4, "uvec"is a
d "vec" is a placeholder

ot functions to the table

only in a vertex shader.".

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Add to this section:

Texture data can be stored by the GL as floatin
normalized integer, unsigned integer or signed
determined by the type of the internal format o
lookups on unsigned normalized integer and floa
floating point values in the range [0, 1]. See

the OpenGL specification.

Texture lookup functions are provided that can
floating point, unsigned integer or signed inte
sampler type passed to the lookup function. Car
right sampler type for texture access. Table 8.
combinations of sampler types and texture inter

texture
internal default (float) integer uns
format sampler sampler sam
float vec4d n/a n/
normalized vec4 n/a n/
signed int n/a ivecd n/
unsigned int n/a n/a uv
Table 8.xxx

texture and the type of the sampler used to acc
in the table indicates the type of the return v
lookup. N/a means this combination is not suppo
using a n/a combination will return undefined v
this table are the "textureSize" lookup functio
integer or integer vector, regardless of the sa

If a texture with a signed integer internal for
signed integer sampler types must be used. If a
integer internal format is accessed, one of the
types must be used. Otherwise, one of the defau
must be used. If the types of a sampler and the
internal format do not match, the result of a t

If an integer sampler type is used, the result
ivec4. If an unsigned integer sampler type is u
texture lookup is a uvec4. If a default sampler

of a texture lookup is a vec4, where each compo
1].

Integer and unsigned integer functions of all t
described in this section are also provided, ex
versions, using function overloading. Their pro
listed separately. These overloaded functions u
unsigned-integer versions of the sampler types
an uvec4 respectively, except for the "textureS
always return an integer, or integer vector. Re
for valid combinations of texture internal form
example, for the texturelD function, the comple

NVIDIA Proprietary

Valid combinations of the type of the internal for

118

EXT_gpu_shader4

g point, unsigned
integer data. This is

f the texture. Texture
ting point data return
also section 2.15.4.1 of

return their result as

ger, depending on the

e must be taken to use the
xxx lists the supported

nal formats.

igned integer
pler

a

a

a

ecd

mat of a
ess the texture. Each cell
alue of a texture
rted. A texture lookup
alues. The exceptions to
ns, which will return an
mpler type.

mat is accessed, one of the
texture with an unsigned
unsigned integer sampler
It (float) sampler types
corresponding texture
exture lookup is undefined.

of a texture lookup is an
sed, the result of a

type is used, the result
nent is in the range [0,

he texture lookup functions
cept for the "shadow"
totypes, however, are not
se the integer or

and will return an ivec4 or
ize" functions, which will
fer also to table 8.xxxx

ats and sampler types. For
te set of prototypes is:

EXT_gpu_shader4

vec4 texturelD(samplerlD sampler, float coor
[, float bias])

ivec4 texturelD(isamplerlD sampler, float co
[, float bias])

uvec4 texturelD(usamplerlD sampler, float co
[, float bias])

Add the following new texture lookup functions:
Syntax:

vec4 texelFetchlD(samplerlD sampler, int coor
vec4 texelFetch2D(sampler2D sampler, ivec2 co
vec4 texelFetch3D(sampler3D sampler, ivec3 co
vecd texelFetch2DRect(sampler2DRect sampler,
vecd texelFetch1DArray(samplerlDArray sampler
vecd texelFetch2DArray(sampler2DArray sampler

Description:

Use integer texture coordinate <coord> to looku
level-of-detail <lod> on the texture bound to <
section 2.15.4.1 of the OpenGL specification "T
"array" versions, the layer of the texture arra
coord.t or coord.p, depending on the use of the
lookup, respectively. Note that texelFetch2DRec
level-of-detail input.

Syntax:
vec4 texelFetchBuffer(samplerBuffer sampler,
Description:

Use integer texture coordinate <coord> to looku
bound to <sampler>.

Syntax:

int textureSizeBuffer(samplerBuffer sampler)

int textureSizelD(samplerlD sampler, int lod)
ivec2 textureSize2D(sampler2D sampler, int lo
ivec3 textureSize3D(sampler3D sampler, int lo
ivec2 textureSizeCube(samplerCube sampler, in
ivec2 textureSize2DRect(sampler2DRect sampler
ivec2 textureSizelDArray(samplerlDArray sampl
ivec3 textureSize2DArray(sampler2DArray sampl

Description:

Returns the dimensions, width, height, depth, a
level <lod> for the texture bound to <sampler>,
2.15.4.1 of the OpenGL specification section "T
textureSize1DArray function, the first (".x") c
vector is filled with the width of the texture
component with the number of layers in the text
textureSize2DArray function, the first two comp

119

OpenGL Extension Specifications for GeForce 8 Series

d

ord

ord

d, int lod)
ord, int lod)
ord, int lod)

ivec2 coord)
, ivec2 coord, int lod)
, ivec3 coord, int lod)

p a single texel from the
sampler> as described in
exel Fetches". For the

y to access is either

1D or 2D texel fetch

t does not take a

int coord)

p into the buffer texture

d)

d)

t lod)

, int lod)
er, int lod)
er, int lod)

nd number of layers, of

as described in section
exture Size Query". For the
omponent of the returned
image and the second

ure array. For the

onents (".x" and ".y") of

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

the returned vector are filled with the width a
image respectively. The third component (".z")
of layers in the texture array.

Syntax:

vecd texturelDArray(samplerlDArray sampler, v
[, float bias])
vecd texturelDArraylLod(samplerlDArray sampler
float lod)

Description:

Use the first element (coord.s) of texture coor
texture lookup in the layer indicated by the se
the 1D texture array currently bound to sampler
computed by layer = max (0, min(d - 1, floor (c
the depth of the texture array.

Syntax:

vecd texture2DArray(sampler2DArray sampler, v
[, float bias])
vecd texture2DArraylLod(sampler2DArray sampler
float lod)
Description:

Use the first two elements (coord.s, coord.t) o
to do a texture lookup in the layer indicated b
coord.p of the 2D texture array currently bound
access is computed by layer = max (0, min(d - 1
where 'd' is the depth of the texture array.

Syntax:

vec4 shadowlDArray(samplerlDArrayShadow sampl
[float bias])
vec4 shadowlDArraylLod(samplerlDArrayShadow sa
vec3 coord, float lod)
Description:

Use texture coordinate coord.s to do a depth co
layer of the depth texture bound to sampler, as
3.8.14 of version 2.0 of the OpenGL specificati
indicated by the second coordinate coord.t and
(0, min(d - 1, floor (coord.t + 0.5)) where 'd’
texture array. The third component of coord (co
value. The texture bound to sampler must be a d
are undefined.

Syntax:

vec4 shadow2DArray(sampler2DArrayShadow sampl

NVIDIA Proprietary 120

EXT_gpu_shader4

nd height of the texture
is filled with the number

ec2 coord

, vec2 coord,

dinate coord to do a

cond coordinate coord.t of
. The layer to access is
oord.t + 0.5)) where 'd' is

ec3 coord

, vec3 coord,

f texture coordinate coord
y the third coordinate

to sampler. The layer to

, floor (coord.p + 0.5))

er, vec3 coord,

mpler,

mparison lookup on an array
described in section

on. The layer to access is

is computed by layer = max
is the depth of the

ord.p) is used as the R

epth texture, or results

er, vec4 coord)

EXT_gpu_shader4

Description:

Use texture coordinate (coord.s, coord.t) to do
on an array layer of the depth texture bound to
section 3.8.14 of version 2.0 of the OpenGL spe
access is indicated by the third coordinate coo
layer = max (0, min(d - 1, floor (coord.p + 0.5

of the texture array. The fourth component of ¢
the R value. The texture bound to sampler must
results are undefined.

Syntax:
vec4 shadowCube(samplerCubeShadow sampler,
Description:

Use texture coordinate (coord.s, coord.t, coord
comparison lookup on the depth cubemap bound to
section 3.8.14. The direction of the vector (co

used to select which face to do a two-dimension
described in section 3.8.6 of the OpenGL 2.0 sp
component of coord (coord.q) is used as the R v
sampler must be a depth cubemap, otherwise resu

Syntax:

vecd texturelDGrad(samplerlD sampler, float ¢
float ddx, float ddy);

vec4 texturelDProjGrad(samplerlD sampler, vec
float ddx, float ddy);

vec4 texturelDProjGrad(samplerlD sampler, vec
float ddx, float ddy);

vecd texturelDArrayGrad(samplerlDArray sample
float ddx, float ddy)

vecd texture2DGrad(sampler2D sampler, vec2 co
vec2 ddx, vec2 ddy);

vecd texture2DProjGrad(sampler2D sampler, vec
vec2 ddx, vec2 ddy);

vecd texture2DProjGrad(sampler2D sampler, vec
vec2 ddx, vec2 ddy);

vecd texture2DArrayGrad(sampler2DArray sample
vec2 ddx, vec2 ddy);

vec4 texture3DGrad(sampler3D sampler, vec3 co
vec3 ddx, vec3 ddy);
vec4 texture3DProjGrad(sampler3D sampler, vec
vec3 ddx, vec3 ddy);

vecd textureCubeGrad(samplerCube sampler, vec
vec3 ddx, vec3 ddy);

121

OpenGL Extension Specifications for GeForce 8 Series

a depth comparison lookup
sampler, as described in
cification. The layer to

rd.p and is computed by

)) where 'd' is the depth
oord (coord.q) is used as
be a depth texture, or

vec4 coord)

.p) to do a depth

sampler, as described in
ord.s, coord.t, coord.p) is
al texture lookup in, as
ecification. The fourth
alue. The texture bound to
Its are undefined.

oord,
2 coord,
4 coord,

r, vec2 coord,

ord,
3 coord,
4 coord,

r, vec3 coord,

ord,

4 coord,

3 coord,

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

vec4 shadowlDGrad(samplerlDShadow sampler, ve
float ddx, float ddy);
vec4 shadowl1DProjGrad(samplerlDShadow sampler
float ddx, float ddy);
vec4 shadowlDArrayGrad(samplerlDArrayShadow s
float ddx, float ddy);

vec4 shadow2DGrad(sampler2DShadow sampler, ve
vec2 ddx, vec2 ddy);
vec4 shadow2DProjGrad(sampler2DShadow sampler
vec2 ddx, vec2 ddy);
vec4 shadow2DArrayGrad(sampler2DArrayShadow s
vec2 ddx, vec2 ddy);

vecd texture2DRectGrad(sampler2DRect sampler,
vec2 ddx, vec2 ddy);
vecd texture2DRectProjGrad(sampler2DRect samp
vec2 ddx, vec2 ddy
vecd texture2DRectProjGrad(sampler2DRect samp
vec2 ddx, vec2 ddy

vec4 shadow2DRectGrad(sampler2DRectShadow sam
vec2 ddx, vec2 ddy);
vec4 shadow2DRectProjGrad(sampler2DRectShadow
vec2 ddx, vec2 ddy)

vec4 shadowCubeGrad(samplerCubeShadow sampler
vec3 ddx, vec3 ddy);

Description:

The "Grad" functions map the partial derivative
dt/dx, dr/dx, and ds/dy, dt/dy, dr/dy respectiv
coordinate "coord" to do a texture lookup as de
"Grad" counterparts. The derivatives ddx and dd
derivate of "coord" with respect to window x an
are used to compute lambda_base(x,y) as in equa
specification. For the "Proj" versions, it is a
derivatives ddx and ddy are already projected.
ddx and ddy represent d(s/q)/dx, d(t/q)/dx, d(r
d(t/q)/dy, d(r/qg)/dy respectively. For the "Cub
derivatives ddx and ddy are assumed to be in th
before texture coordinates are projected onto t
face. The partial derivatives of the post-proje
which are used for level-of-detail and anisotro
calculations, are derived from coord, ddx and d
implementation-dependent manner.

NOTE: Except for the "array" and shadowCubeGrad

functions are taken from the ARB_shader_texture
functionally equivalent.

NVIDIA Proprietary 122

EXT_gpu_shader4

c3 coord,
, vec4 coord,

ampler, vec3 coord,

c3 coord,
, vec4 coord,

ampler, vec4 coord,

vec2 coord,

ler, vec3 coord,
ler, vec4 coord,

)i
pler, vec3 coord,

sampler, vec4 coord,

, vec4 coord,

s ddx and ddy to ds/dx,

ely and use texture

scribed for their non

y are used as the explicit

d window y respectively and
tion 3.18 in the OpenGL 2.0
ssumed that the partial

l.e. the GL assumes that
/q)/dx and d(s/q)/dy,

e" versions, the partial

e coordinate system used
he appropriate cube

ction texture coordinates,
pic filtering

dyinan

() functions, these
_lod spec and are

EXT_gpu_shader4

Syntax:

vecd texture1DOffset(samplerlD sampler, float
int offset [,float bias]
vec4 texturelDProjOffset(samplerlD sampler, v
int offset [,float b
vec4 texturelDProjOffset(samplerlD sampler, v
int offset [,float b
vec4 texturelDLodOffset(samplerlD sampler, fl
float lod, int offset
vec4 texturelDProjLodOffset(samplerlD sampler
float lod, int of
vecd texture1DProjLodOffset(samplerlD sampler
float lod, int of

vecd texture2DOffset(sampler2D sampler, vec2
ivec2 offset [,float bia
vecd texture2DProjOffset(sampler2D sampler, v
ivec2 offset [,float
vec4 texture2DProjOffset(sampler2D sampler, v
ivec2 offset [,float
vecd texture2DLodOffset(sampler2D sampler, ve
float lod, ivec2 offs
vec4 texture2DProjLodOffset(sampler2D sampler
float lod, ivec2
vec4 texture2DProjLodOffset(sampler2D sampler
float lod, ivec2

vec4 texture3DOffset(sampler3D sampler, vec3
ivec3 offset [,float bia

vec4 texture3DProjOffset(sampler3D sampler, v
ivec3 offset [,float

vecd texture3DLodOffset(sampler3D sampler, ve
float lod, ivec3 offs

vec4 texture3DProjLodOffset(sampler3D sampler

float lod, ivec3

vec4 shadow1DOffset(samplerlDShadow sampler,

int offset [,float bias])

vec4 shadow2DOffset(sampler2DShadow sampler,

ivec2 offset [,float bias

vec4 shadowl1DProjOffset(samplerlDShadow sampl

int offset [,float bi

vec4 shadow2DProjOffset(sampler2DShadow sampl

ivec2 offset [,float

vec4 shadowlDLodOffset(samplerlDShadow sample

float lod, int offset)

vec4 shadow2DLodOffset(sampler2DShadow sample

float lod, ivec2 offse

vec4 shadowlDProjLodOffset(samplerlDShadow sa

float lod, int off

vec4 shadow2DProjLodOffset(sampler2DShadow sa

float lod, ivec2 o

123

coord,

ec2 coord,
ias])

ec4 coord,
ias])

oat coord,

)

, vec2 coord,
fset)

, vec4 coord,
fset)

coord,

s])

ec3 coord,
bias])

ec4 coord,
bias])

c2 coord,

et)

, vec3 coord,
offset)

, vec4 coord,
offset)

coord,

s])

ec4 coord,
bias])

c3 coord,

et)

, vec4 coord,
offset)

vec3 coord,

vec3 coord,

)

OpenGL Extension Specifications for GeForce 8 Series

er, vec4 coord,

as))

er, vec4 coord,

bias])
r, vec3 coord,

r, vec3 coord,

Y

mpler, vec4 coord,

set)

mpler, vec4 coord,

ffset)

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

vec4 texture2DRectOffset(sampler2DRect sample
ivec2 offset)
vec4 texture2DRectProjOffset(sampler2DRect sa
ivec2 offset)
vecd texture2DRectProjOffset(sampler2DRect sa
ivec2 offset)
vec4 shadow2DRectOffset(sampler2DRectShadow s
ivec2 offset)
vec4 shadow2DRectProjOffset(sampler2DRectShad
ivec2 offset)

vec4 texelFetch1DOffset(samplerlD sampler, in
int offset)
vecd texelFetch2DOffset(sampler2D sampler, iv
ivec2 offset)
vec4 texelFetch3DOffset(sampler3D sampler, iv
ivec3 offset)
vec4 texelFetch2DRectOffset(sampler2DRect sam
ivec2 offset)
vecd texelFetch1DArrayOffset(samplerlDArray s
int lod, int off
vecd texelFetch2DArrayOffset(sampler2DArray s
int lod, ivec2 o

vecd texturelDArrayOffset(samplerlDArray samp
int offset [, float

vecd texturelDArrayLodOffset(samplerlDArray s
float lod, int o

vecd texture2DArrayOffset(sampler2DArray samp
ivec2 offset [, flo

vecd texture2DArrayLodOffset(sampler2DArray s
float lod, ivec2

vec4 shadowlDArrayOffset(samplerlDArrayShadow
int offset, [float b

vec4 shadowlDArrayLodOffset(samplerlDArraySha
float lod, int of

vec4 shadow2DArrayOffset(sampler2DArrayShadow
vec4 coord, ivec2 of

vecd texturelDGradOffset(samplerlD sampler, f
float ddx, float ddy

vec4 texturelDProjGradOffset(samplerlD sample
float ddx, float

vec4 texturelDProjGradOffset(samplerlD sample
float ddx, float

vecd texturelDArrayGradOffset(samplerlDArray
float ddx, floa

NVIDIA Proprietary 124

EXT_gpu_shader4

r, vec2 coord,
mpler, vec3 coord,
mpler, vec4 coord,
ampler, vec3 coord,

ow sampler, vec4 coord,

t coord, int lod,

ec2 coord, int lod,
ec3 coord, int lod,
pler, ivec2 coord,

ampler, ivec2 coord,
set)

ampler, ivec3 coord,
ffset)

ler, vec2 coord,
bias])

ampler, vec2 coord,
ffset)

ler, vec3 coord,

at bias])

ampler, vec3 coord,
offset)

sampler, vec3 coord,
ias])

dow sampler, vec3 coord,
fset)

sampler,
fset)

loat coord,

, int offset);

r, vec2 coord,

ddy, int offset);

r, vec4 coord,

ddy, int offset);
sampler, vec2 coord,
t ddy, int offset);

EXT_gpu_shader4

vec4 texture2DGradOffset(sampler2D sampler, v
vec2 ddx, vec2 ddy,

vec4 texture2DProjGradOffset(sampler2D sample
vec2 ddx, vec2 d

vec4 texture2DProjGradOffset(sampler2D sample
vec2 ddx, vec2 d

vecd texture2DArrayGradOffset(sampler2DArray
vec2 ddx, vec2

vec4 texture3DGradOffset(sampler3D sampler, v
vec3 ddx, vec3 ddy,

vec4 texture3DProjGradOffset(sampler3D sample
vec3 ddx, vec3 d

vec4 shadowl1DGradOffset(samplerlDShadow sampl
float ddx, float ddy,

vec4 shadowl1DProjGradOffset(samplerlDShadow s
vec4 coord, float
int offset);

vec4 shadowlDArrayGradOffset(samplerlDArraySh
vec3 coord, floa
int offset);

vec4 shadow2DGradOffset(sampler2DShadow sampl
vec2 ddx, vec2 ddy, i
vec4 shadow2DProjGradOffset(sampler2DShadow s
vec2 ddx, vec2 dd
vec4 shadow2DArrayGradOffset(sampler2DArraySh
vec4 coord, vec2
ivec2 offset);

vecd texture2DRectGradOffset(sampler2DRect sa
vec2 ddx, vec2 d
vecd texture2DRectProjGradOffset(sampler2DRec
vec2 ddx, ve
vecd texture2DRectProjGradOffset(sampler2DRec
vec2 ddx, ve

vec4 shadow2DRectGradOffset(sampler2DRectShad
vec3 coord, vec2
ivec2 offset);
vec4 shadow2DRectProjGradOffset(sampler2DRect
vec4 coord, v
ivec2 offset)

Description:

The "offset" version of each function provides

which is added to the (u,v,w) texel coordinates

texel. The offset value must be a constant expr

of offset values are supported; the minimum and
implementation-dependent and given by MIN_PROGR

MAX_PROGRAM_TEXEL_OFFSET_EXT, respectively. Not

apply to the layer coordinate for texture array
detail in section 3.8.7 of the OpenGL Specifica
offsets are also not supported for cubemaps or

125

OpenGL Extension Specifications for GeForce 8 Series

ec2 coord,

ivec2 offset);

r, vec3 coord,

dy, ivec? offset);

r, vec4 coord,

dy, ivec?2 offset);
sampler, vec3 coord,
ddy, ivec? offset);

ec3 coord,

ivec3 offset);

r, vec4 coord,
dy, ivec3 offset);

er, vec3 coord,
int offset);
ampler,

ddx, float ddy,

adow sampler,
t ddx, float ddy,

er, vec3 coord,
vec? offset);
ampler, vec4 coord,
y, ivec2 offset);
adow sampler,

ddx, vec2 ddy,

mpler, vec2 coord,

dy, ivec? offset);

t sampler, vec3 coord,
c2 ddy, ivec2 offset);
t sampler, vec4 coord,
c2 ddy, ivec2 offset);

ow sampler,
ddx, vec2 ddy,

Shadow sampler,
ec2 ddx, vec2 ddy,

an extra parameter <offset>
before looking up each

ession. A limited range
maximum offset values are
AM_TEXEL_OFFSET_EXT and
e that <offset> does not

s. This is explained in

tion. Note that texel

buffer textures.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Add to section 9 "Grammar"

type_qualifer:
CONST
ATTRIBUTE // Vertex only
varying-modifier_opt VARYING
UNIFORM

varying-modifier:
FLAT
CENTROID
NOPERSPECTIVE

type_specifier:
VOID
FLOAT
INT
UNSIGNED_INT
BOOL

Issues

1. Should we support shorts in GLSL?

DISCUSSION:

RESOLUTION: UNRESOLVED

2. Do bitwise shifts, AND, exclusive OR and inc
combinations of scalars and vectors for each

DISCUSSION: It seems sense to support scalar O
and vector OP vector. But what about scalar OP
be promoted to a vector first?

RESOLUTION: RESOLVED. Yes, this should work es
operator. The scalar is applied to each compon

3. Which built-in functions should also operate
DISCUSSION: There are several that don't make
on integers at all, but the following can be d
the functions that use dot), cross.

RESOLUTION: RESOLVED. Integer versions of the
clamp functions are defined. Note that the mod
defined for integer operands.

4. Do we need to support integer matrices?

DISCUSSION:

RESOLUTION: RESOLVED No, not at the moment.

NVIDIA Proprietary 126

EXT_gpu_shader4

lusive OR support all
operand?

P scalar, vector OP scalar
vector? Should the scalar
sentially as the '+'

ent of the vector.

on integers?

sense to define to operate

ebated: pow, sqrt, dot (and

abs, sign, min, max and
ulus operator % has been

EXT_gpu_shader4

5. Which texture array lookup functions do we ne

DISCUSSION: We don't want to support lookup fu
four components passed as parameters. Componen
coordinates, layer selection, 'R' depth compar

for projection. However, texture projection mi
support through code-generation, thus we might
functions that need five components, as long a
projective texturing. Specifically, should we

vecd texture2DArrayProjLod(sampler2DArray sa
float lod)
vec4 shadowl1DArray(samplerlDArrayShadow samp
[float bias])
vec4 shadowlDArrayProj(samplerlDArrayShadow
[float bias])
vec4 shadowlDArrayLod(samplerlDArrayShadow s
float lod)
vec4 shadowl1DArrayProjLod(samplerlDArrayShad
vec4 coord, float
vec4d shadow2DArray(sampler2DArrayShadow samp
vec4 shadow2DArrayProj(sampler2DArrayShadow
float refValue)

RESOLUTION: RESOLVED, We'll support all but t
assembly spec (NV_gpu_program4) doesn't suppo
functionality, either.

6. How do we handle conversions between integer
integers?

DISCUSSION: Do we allow automatic type conver
unsigned integers?

RESOLUTION: RESOLVED. We will not add this un
been defined, and the implicit conversion rul

there. If we do this, we would likely only su

from int to unsigned int, just like C does.

7. Should varying modifiers (flat, noperspectiv
varying variables also?

DISCUSSION: There is API to control flat vs s
through glShadeModel(). There is also API to
interpolated perspective correct, or not, thr
commands apply to the built-in color varying
etc). If the varying modifiers in a shader al
built-ins, which has precedence?

RESOLUTION: RESOLVED. It is simplest and clea
varying modifiers to apply to user-defined va
behavior of the built-in color varying variab

through the API.

127

OpenGL Extension Specifications for GeForce 8 Series

ed to support?

nctions that need more than
ts can be used for texture

e and the 'q' coordinate

ght be relatively easy to

be able to support

s one of them is 'q’ for
support:

mpler, vec4 coord,
ler, vec3 coord,
sampler, vec4 coord,
ampler, vec3 coord,
ow sampler,

lod)

ler, vec4 coord)
sampler, vec4 coord,

he "Proj" versions. The
rt the equivalent

and unsigned

sions between signed and

til GLSL version 1.20 has
es have been established
pport implicit conversion

e) apply to built-in

mooth shading for colors
hint if colors should be
ough glHint(). These API
variables (gl_FrontColor
so apply to the color

nest to only allow the
rying variables. The
les can still be controlled

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

8. How should perspective-incorrect interpolati
and clipping interact?

RESOLVED: Primitives with attributes specifi
incorrect should be clipped so that the verti
should have attribute values consistent with
do not want to have large color shifts introd
perspective-incorrect attribute. For example
approaches, but doesn't cross, a frustum clip
much identical to a similar primitive that ju
plane.

Clipping perspective-incorrect interpolants t
very challenging. The attribute clipping equ
effectively projects all the original vertice
ignoring the X and Y frustum clip plane. As
projected X/Y window coordinates become extre
an edge with one vertex inside the frustum an
infinity (after projection, due to W approach
attribute for the entire visible portion of t

exactly match the attribute value of the visi

If an outlying vertex approaches and then goe
to go "to infinity and beyond" in screen spac
screen-linear interpolation is no longer obvi

of this specification. Rather than trying to
"right" answer is or if one even exists, the
edges is specified as undefined.

9. Do we need to support a non-MRT fragment sha
integer outputs?

DISCUSSION: Fragment shaders with only one fr
considered non-MRT shaders. This means that t
gets smeared across all color buffers attache
framebuffer. Fragment shaders with multiple f
shaders. Each output is directed to a color b

API (for gl_FragData) and a combination of th
and DrawBuffers API (for varying out variable

a non-MRT shader would write to gl_Color only
gl_FragData[] is a MRT shader. With the addi
variables in this extension, any shader writi
variable is a MRT shader. It is not possible
shader writing to varying out variables. Vary
declared to be of type integer or unsigned in

a non-MRT shader that can write to (unsigned)
define two new built-in variables:

ivec4 gl_FragColorint;
uvec4 gl_FragColorUint;

Or we could add a special rule stating that i
to exactly one varying out variable, it is co

RESOLUTION: NO. We don't care enough to suppo

NVIDIA Proprietary 128

EXT_gpu_shader4

on (linear in screen space)

ed to be perspective-

ces introduced by clipping
the interpolation mode. We
uced by clipping a

, a primitive that

plane should look pretty

st barely crosses the clip

hat cross the W==0 plane is
ation provided in the spec

s to screen space while

W approaches zero, the
mely large. When clipping
d the other out near

ing zero), the interpolated
he edge should almost

ble vertex.

s past W==0, it can be said
e. The correct answer for
ous, at least to the author
figure out what the

results of clipping such

der writing to (unsigned)

agment output are

he output of the shader

d to the

ragment outputs are MRT
uffer using the DrawBuffers
e BindFragDatalocationEXT
s). Before this extension,

. A shader writing to

tion of varying out

ng to a variable out

to construct a non-MRT

ing out variables can be
teger. In order to support
integer outputs, we could

f the program object writes
nsidered to be non-MRT.

rt this.

EXT_gpu_shader4

10. Is section 2.14.8, "Color and Associated Dat
specification still correct?

DISCUSSION: This section is in need of some u
variables can be interpolated without perspec
so precise) language has been added in the sp
the interpolation needs to be performed in su
results that vary linearly in screen space. H
exact interpolation method required to achiev
paragraph follows, but we'll leave updating s
edit of the core specification, not this exte

Replace Section 2.14.8, and rename it to "Ver

After lighting, clamping or masking and possi
attributes, including colors, texture and fog
varying variables, and point sizes computed o
clipped. Those attributes associated with a v
clip volume are unaffected by clipping. If a
however, the attributes assigned to vertices
produced by interpolating attributes along th

Let the attributes assigned to the two vertic
unclipped edge be a_1 and a_2. The value of
clipped point P is used to obtain the attribu

a=t*a l+(l-t)*ra 2

unless the attribute is specified to be inter
correction in a shader (using the noperspecti
the attribute associated with P is

a=t*a l+(L-th*a 2
where
t=(@*w 1)/ (t*w_1+(1-t)*w_2)

and w_1 and w_2 are the w clip coordinates of
respectively. If w_1 or w_2 is either zero or
associated attribute is undefined.

For a color index color, multiplying a color
multiplying the index by the scalar. For a ve
multiplying each vector component by the scal
create a clipped vertex along an edge of the
boundary. This situation is handled by noting
proceeds by clipping against one plane of the
a time. Attribute clipping is done in the sam
points always occur at the intersection of po
already clipped) with the clip volume's bound

11. When and where in the texture filtering proce

applied?

DISCUSSION: Texel offsets are applied to the
base level of the texture if the texture filt

129

OpenGL Extension Specifications for GeForce 8 Series

a Clipping" in the core

pdating, now that varying
tive correction. Some (not
ec body, suggesting that

ch a way as to produce
owever, we could define the
e this. A suggested updated
ection 2.14.8 to a future
nsion.

tex Attribute Clipping"

ble flatshading, vertex
coordinates, shader

n a per vertex basis, are
ertex that lies within the
primitive is clipped,
produced by clipping are
e clipped edge.

esP_landP_2ofan
t (section 2.12) for a
te associated with P as

polated without perspective
ve keyword). In that case,

P 1andP_2,
negative, the value of the

by a scalar means

ctor attribute, it means

ar. Polygon clipping may
clip volume's

that polygon clipping

clip volume's boundary at
e way, so that clipped
lygon edges (possibly
ary.

ss are texel offsets

(u,v,w) coordinates of the
er mode does not indicate

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

mipmapping. Otherwise, texel offsets are appl
coordinates of the mipmap level 'd’, as found
mipmap levels 'd1' and 'd2' as found by equat
specification. In other words, texel offsets
(u,v,w) coordinate of whatever mipmap level i

12. Why is writing to the built-in output variabl
shader now optional?

DISCUSSION: Before this specification, writin
vertex shader was mandatory. The GL pipeline
to be written in order to produce well-define
case if the GL pipeline indeed needs a vertex
fourth-generation programmable hardware there
pipeline no longer requires a vertex position
well-defined results. If a geometry shader is
does not need to write to gl_Position anymore
shader can compute a vertex position and writ
output. In case of transform-feedback, where
geometry shader is streamed to one or more bu
valid results can be obtained without either
geometry shader writing to gl_Position. The t
specification adds a new enable to discard pr
rasterization, making it potentially unnecess
gl_Paosition.

Revision History

Rev. Date Author Changes
12 02/04/08 pbrown Fix errors in texture
Added a missing clamp
in REPEAT mode. Fixe
weights for LINEAR fi

11 05/08/07 pbrown Add VertexAttribIPoin
commands that can't g

10 01/23/07 pbrown Fix prototypes for a
that were specified w

type.

9 12/15/06 pbrown Documented that the'
for this extension sh
as apparently called

8 -- Pre-release revisions

NVIDIA Proprietary 130

EXT_gpu_shader4

ied to the (u,v,w)

by equation 3.27 or to

ion 3.28 in the OpenGL 2.0
are applied to the

s accessed.

e "gl_Position" in a vertex

g to gl_Position in a
required a vertex position
d output. This is still the
position. However, with
are now cases where the GL
in order to produce
present, the vertex shader
. Instead, the geometry

e to its gl_Position

the output of a vertex or
ffer objects, perfectly

the vertex shader nor
ransform-feedback
imitives right before

ary to write to

wrap mode handling.

to avoid sampling border
d incorrectly specified
Itering.

terEXT to the list of
o in display lists.

variety of functions
ith an incorrect sampler

#extension' token
ould begin with "GL_",
for per convention.

EXT_packed_float

Name
EXT_packed_float
Name Strings
GL_EXT_packed_float
WGL_EXT_pixel_format_packed_float
GLX_EXT_fbconfig_packed_float
Contact
Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n
Status
Shipping for GeForce 8 Series (November 2006)

Version

Date: November 6, 2006
Revision: 0.4

Number
328

Dependencies
OpenGL 1.1 required
ARB_color_buffer_float affects this extension.
EXT_texture_shared_exponent trivially affects t
EXT_framebuffer_object affects this extension.
WGL_ARB_pixel_format is required for use with W
WGL_ARB_pbuffer affects WGL pbuffer support for
GLX 1.3 is required for use with GLX.

This extension is written against the OpenGL 2.
2004) specification.

Overview

This extension adds a new 3-component floating-
that fits within a single 32-bit word. This fo

of biased exponent per component in the same ma
floating-point formats, but rather than 10 mant
green, and blue components have 6, 6, and 5 bit
Each mantissa is assumed to have an implied lea
denorm exponent case. There is no sign bit so
values can be represented. Positive infinity,

131

OpenGL Extension Specifications for GeForce 8 Series

vidia.com)

his extension.

GL.

this extension.

0 (September 7,

point texture format
rmat stores 5 bits
nner as 16-bit

issa bits, the red,

s respectively.

ding one except in the
only non-negative
positive denorms,

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

and positive NaN values are representable. The
component returned by a texture fetch is always

This extension also provides support for render
floating-point rendering format with the assump
format described above could also be advertised
floating-point format for rendering.

The extension also provides a pixel external fo
packed float values directly.

New Procedures and Functions
None
New Tokens

Accepted by the <internalformat> parameter of T

Texlmage2D, Texlmage3D, CopyTexlmagelD, CopyTex

RenderbufferStorageEXT:
R11F_G11F_B10F_EXT

Accepted by the <type> parameter of DrawPixels,
TexlmagelD, Texlmage2D, GetTeximage, Texlmage3D
TexSublmage2D, TexSublmage3D, GetHistogram, Get
ConvolutionFilterlD, ConvolutionFilter2D, Convo
GetConvolutionFilter, SeparableFilter2D, GetSep
ColorTable, ColorSubTable, and GetColorTable:

UNSIGNED_INT_10F_11F 11F _REV_EXT

Accepted by the <pname> parameters of Getintege
GetDoublev:

RGBA_SIGNED_COMPONENTS_EXT
Accepted as a value in the <piAttriblList> and
parameter arrays of wglChoosePixelFormatARB, an
<piValues> parameter array of wglGetPixelFormat
<pfValues> parameter array of wglGetPixelFormat

WGL_TYPE_RGBA _UNSIGNED_FLOAT_EXT

Accepted as values of the <render_type> argumen
gIXCreateNewContext and gIXCreateContext functi

GLX_RGBA_UNSIGNED_FLOAT_TYPE_EXT
Returned by gIXGetFBConfigAttrib (when <attribu
GLX_RENDER_TYPE) and accepted by the <attrib_li
gIXChooseFBConfig (following the GLX_RENDER_TYP

GLX_RGBA_UNSIGNED_FLOAT_BIT_EXT

NVIDIA Proprietary 132

EXT_packed_float

value of the fourth
1.0.

ing into an unsigned

tion that the texture
as an unsigned

rmat for specifying

exlmagelD,
Image2D, and

0x8C3A
ReadPixels,
, TexSublmagelD,
Minmax,
lutionFilter3D,
arableFilter,

0x8C3B

rv, GetFloatv, and

0x8C3C
<pfAttribFList>
d returned in the
AttribivARB, and the
AttribfvARB:
0x20A8

ts in the
ons

0x20B1
te> is set to
st> parameter of
E token):

0x00000008

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

Additions to Chapter 2 of the 2.0 Specification (Op enGL Operation)

-- Add two new sections after Section 2.1.2, (page 6):

2.1.A Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no
exponent (E), and a 6-bit mantissa (M). The va
11-bit floating-point number (represented as an

integer N) is determined by the following:

0.0, fE==0and M =

2N-14 * (M] 64), fE==0and M !

2"(E-15) * (1 + M/64), if0<E < 31,

INF, ifE==31and M

NaN, if E==31and M
where

E = floor(N / 64), and
M =N mod 64.

Implementations are also allowed to use any of
alternative encodings:

0.0, fE==0and M !
2ME-15)* (1 + M/64) ifE==31and M
2ME-15)* (1 +M/64) ifE==31and M

When a floating-point value is converted to an
floating-point representation, finite values ar
representable finite value. While less accurat
are allowed to always round in the direction of
negative values are converted to zero. Likewis
values greater than 65024 (the maximum finite r
11-bit floating-point value) are converted to 6
negative infinity is converted to zero; positiv

to positive infinity; and both positive and neg

to positive NaN.

Any representable unsigned 11-bit floating-poin
as input to a GL command that accepts 11-bit fl
The result of providing a value that is not a f
(such as infinity or NaN) to such a command is
not lead to GL interruption or termination. Pr
number or negative zero to GL must yield predic

133

sign bit, a 5-bit
lue of an unsigned
11-bit unsigned

the following

=0

=0

unsigned 11-bit

e rounded to the closet
e, implementations
zero. This means

e, finite positive
epresentable unsigned
5024. Additionally:

e infinity is converted
ative NaN are converted

t value is legal
oating-point data.
loating-point number
unspecified, but must
oviding a denormalized
table results.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

2.1.B Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no
exponent (E), and a 5-bit mantissa (M). The va
10-hbit floating-point number (represented as an

integer N) is determined by the following:

0.0, ifE==0and M =

2714 * (M [32), fE==0and M !

2MNE-15) * (1 + M/32), ifO0<E <31,

INF, if E==31and M

NaN, if E==31and M
where

E = floor(N / 32), and
M =N mod 32.

When a floating-point value is converted to an
floating-point representation, finite values ar
representable finite value. While less accurat
are allowed to always round in the direction of
negative values are converted to zero. Likewis
values greater than 64512 (the maximum finite r
10-bit floating-point value) are converted to 6
negative infinity is converted to zero; positiv

to positive infinity; and both positive and neg

to positive NaN.

Any representable unsigned 10-bit floating-poin
as input to a GL command that accepts 10-bit fl
The result of providing a value that is not a f
(such as infinity or NaN) to such a command is
not lead to GL interruption or termination. Pr
number or negative zero to GL must yield predic

Additions to Chapter 3 of the 2.0 Specification (Ra
-- Section 3.6.4, Rasterization of Pixel Rectangle
Add a new row to Table 3.5 (page 128):

type Parameter Correspon
Token Name GL Data T

UNSIGNED_INT_10F_11F_11F REV_EXT uint
Add a new row to table 3.8: Packed pixel format

type Parameter GL Data
Token Name Type

UNSIGNED_INT_10F_11F 11F REV_EXT uint

NVIDIA Proprietary 134

EXT_packed_float

sign bit, a 5-bit
lue of an unsigned
10-bit unsigned

:O,
:O,

==0, or
=0,

unsigned 10-bit

e rounded to the closet
e, implementations
zero. This means

e, finite positive
epresentable unsigned
4512. Additionally:

e infinity is converted
ative NaN are converted

t value is legal
oating-point data.
loating-point number
unspecified, but must
oviding a denormalized
table results.

sterization)

S

ding Special
ype Interpretation

s (page 132):

Number of Matching
Components Pixel Formats

3 RGB

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

Add a new entry to table 3.11: UNSIGNED _INT for mats (page 134):

UNSIGNED_INT_10F_11F 11F REV_EXT:

31302928272625242322212019181 716151413121110987654321 0
+ + + —+
| 3d | 2nd | st |
+ + + —+
Add to the end of the 2nd paragraph starting "P ixels are draw using":

"If type is UNSIGNED_INT_10F_11F 11F REV_EXT an d format is not RGB

then the error INVALID _ENUM occurs."

Add UNSIGNED_INT_10F _11F 11F REV_EXT to the lis t of packed formats

in the 10th paragraph after the "Packing"” subse ction (page 130).

Add before the 3rd paragraph (page 135, startin g "Calling DrawPixels

with a type of BITMAP...") from the end of the "Packing" subsection:

"Calling DrawPixels with a type of UNSIGNED_INT _10F_11F 11F REV_EXT

and format of RGB is a special case in which th e data are a series

of GL uint values. Each uint value specifies 3 packed components

as shown in table 3.11. The 1st, 2nd, and 3rd components are

called f_red (11 bits), f_green (11 bits), and f blue (10 bits)

respectively.

f red and f_green are treated as unsigned 11-bi t floating-point values

and converted to floating-point red and green c omponents respectively

as described in section 2.1.A. f_blue is treat ed as an unsigned

10-bit floating-point value and converted to a floating-point blue

component as described in section 2.1.B."

-- Section 3.8.1, Texture Image Specification:

"Alternatively if the internalformat is R11F_G1 1F B10F_EXT, the red,
green, and blue bits are converted to unsigned 11-bit, unsigned

11-bit, and unsigned 10-bit floating-point valu es as described

in sections 2.1.A and 2.1.B. These encoded val ues can be later
decoded back to floating-point values due to te xture image sampling
or querying."

Add a new row to Table 3.16 (page 154).

Sized Base R GBALID
Intemal Format Intemal Format bit s bits bits bits bits bits bits
R11F G11F BI10F EXT RGB 11 11 10

135 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_packed_float

Additions to Chapter 4 of the 2.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

-- Modify Chapter 4 Introduction, (page 198)

Modify first sentence of third paragraph (page 198):

"Color buffers consist of either signed or unsi gned integer color
indices, R, G, B and optionally A signed or uns igned integer values,
or R, G, B, and optionally A signed or unsigned floating-point
values."

-- Section 4.3.2, Reading Pixels

Add a row to table 4.7 (page 224);

Component
type Parameter GL Data Type Conversion Formula
UNSIGNED_INT_10F_11F_11F_REV_EXT uint special
Replace second paragraph of "Final Conversion" (page 222) to read:
For an RGBA color, if <type> is not one of FLOA T,
UNSIGNED_INT_5_9 9 9 REV_EXT, or UNSIGNED_INT_1 OF_11F 11F REV_EXT,
or if the CLAMP_READ_COLOR_ARB is TRUE, or CLAM P_READ_COLOR_ARB
is FIXED_ONLY_ARB and the selected color (or te xture) buffer is
a fixed-point buffer, each component is first ¢ lamped to [0,1].
Then the appropriate conversion formula from ta ble 4.7 is applied
the component.”
Add a paragraph after the second paragraph of " Final Conversion"
(page 222):
"In the special case when calling ReadPixels wi th a type of
UNSIGNED_INT_10F 11F 11F REV_EXT and format of RGB, the conversion
is done as follows: The returned data are pack ed into a series of
GL uint values. The red, green, and blue compon ents are converted
to unsigned 11-bit floating-point, unsigned 11- bit floating-point,
and unsigned 10-bit floating point as described in section
2.1.Aand 2.1.B. The resulting red 11 bits, gr een 11 bits, and blue
10 bits are then packed as the 1st, 2nd, and 3r d components of the
UNSIGNED INT_10F_11F 11F REV_EXT format as show nin table 3.11."
Additions to Chapter 5 of the 2.0 Specification (Sp ecial Functions)
None
Additions to Chapter 6 of the 2.0 Specification (St ate and State Requests)
None
Additions to the OpenGL Shading Language specificat ion
None

NVIDIA Proprietary 136

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and
Errors)

Replace Section 3.3.3 (p.12) Paragraph 4 to:

The attribute GLX_RENDER_TYPE has as its value a mask indicating
what type of GLXContext a drawable created with the corresponding
GLXFBConfig can be bound to. The following bit settings are supported:
GLX_RGBA_BIT, GLX_RGBA_FLOAT_BIT, GLX_RGBA_UNSI GNED_FLOAT_BIT,
GLX_COLOR_INDEX_BIT. If combinations of bits a re set in the mask
then drawables created with the GLXFBConfig can be bound to those

corresponding types of rendering contexts.

Add to Section 3.3.3 (p.15) after first paragra ph:

Note that unsigned floating point rendering is only supported

for GLXPbuffer drawables. The GLX_DRAWABLE_TYP E attribute of

the GLXFBConfig must have the GLX_PBUFFER_BIT b it set and the
GLX_RENDER_TYPE attribute must have the GLX_RGB A_UNSIGNED_FLOAT_ BIT
set. Unsigned floating point rendering assumes the framebuffer
format has no sign bits so all component values are non-negative.
In contrast, conventional floating point render ing assumes signed
components.

Modify Section 3.3.7 (p.25 Rendering Contexts) remove period

at end of second paragraph and replace with:

; if render_type is set to GLX_RGBA_UNSIGNED_FL OAT _TYPE then a
context that supports unsigned floating point R GBA rendering is
created.

GLX Protocol
None.
Additions to the WGL Specification
Modify the values accepted by WGL_PIXEL_TYPE_AR B to:
WGL_PIXEL_TYPE_ARB
The type of pixel data. This can be set to WGL_TYPE_RGBA_ARB,

WGL_TYPE_RGBA_FLOAT_ARB, WGL_TYPE_RGBA_UNSI GNED_FLOAT_EXT,
or WGL_TYPE_COLORINDEX_ARB.

Add this explanation of unsigned floating point rendering:

"Unsigned floating point rendering assumes the framebuffer format has
no sign bits so all component values are non-ne gative. In contrast,
conventional floating point rendering assumes s igned components."

Dependencies on WGL_ARB_pbuffer

Ignore the "Additions to the WGL Specification" section if
WGL_ARB_pbuffer is not supported.

137 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Dependencies on WGL_ARB_pixel_format

The WGL_ARB_pixel_format extension must be used
pixel format with unsigned float components.

Dependencies on ARB_color_buffer_float

If ARB_color_buffer_float is not supported, rep
sentence from 4.3.2 above

For an RGBA color, if <type> is not one of FLOA

or if the CLAMP_READ_COLOR_ARB is TRUE, or CLAM

is FIXED_ONLY_ARB and the selected color (or te
a fixed-point buffer, each component is first ¢

with

"For an RGBA color, if <type> is not one of FLO

and the selected color buffer (or texture image
is a fixed-point buffer (or texture image for G
component is first clamped to [0,1]."

Dependencies on EXT_texture_shared_exponent

If EXT_texture_shared_exponent is not supported

Dependencies on EXT_framebuffer_object

If EXT_framebuffer_object is not supported, the
RenderbufferStorageEXT is not supported and the
internalformat is therefore not supported by Re

If EXT_framebuffer_object is supported, gIRende

accepts GL_RG11F B10F_EXT for its internalforma

GL_RG11F_B10F_EXT has a base internal format of

as color-renderable by the EXT_framebuffer_obje
Errors

Relaxation of INVALID_ENUM errors

TexlmagelD, Texlmage2D, Texlmage3D, CopyTeximag

and RenderbufferStorageEXT accept the new R11F_
for internalformat.

DrawPixels, ReadPixels, TeximagelD, Texlmage2D,

Texlmage3D, TexSublmagelD, TexSublmage2D, TexSu

GetHistogram, GetMinmax, ConvolutionFilterlD, C
ConvolutionFilter3D, GetConvolutionFilter, Sepa
GetSeparableFilter, ColorTable, ColorSubTable,

accept the new UNSIGNED_INT_10F_11F_11F REV_EXT

NVIDIA Proprietary 138

EXT_packed_float

to determine a

lace this amended

T,

OF_11F 11F_REV_EXT,
P_READ_COLOR_ARB
xture) buffer is

lamped to [0,1]."

AT,

OF _11F 11F_REV_EXT
for GetTexlmage)
etTexlmage), each

, delete the reference
2.

n
R11F_G11F_B10F_EXT
nderbufferStorageEXT.

rbufferStorageEXT

t parameter because
GL_RGB that is listed
ct specification.

elD, CopyTeximage2D,
G1l1F_B1OF_EXT token

GetTexlmage,
blmage3D,
onvolutionFilter2D,
rableFilter2D,
and GetColorTable

token for type.

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

New errors

INVALID_OPERATION is generated by DrawPixels, R
Texlmage2D, GetTexImage, Texlmage3D, TexSublmag
TexSublmage3D, GetHistogram, GetMinmax, Convolu
ConvolutionFilter2D, ConvolutionFilter3D, GetCo
SeparableFilter2D, GetSeparableFilter, ColorTab

and GetColorTable if <type>is UNSIGNED_INT_10F
<format> is not RGB.

New State

In table 6.17, Textures (page 278), increment t
by 1 for the R11F_G11F_B1OF_EXT format.

[NOTE: The OpenGL 2.0 specification actually sh
because of the 6 generic compressed internal fo

(modify table 6.33, p. 294)

eadPixels, TexlmagelD,
elD, TexSublmage2D,
tionFilterlD,
nvolutionFilter,

le, ColorSubTable,

_11F 11F REV_EXT and

he 42 in "n x Z42*"

ould read "n x Z48*"
rmats in table 3.18.]

Initel
GetValue Type GetCommand Value Descipion Sec. Attibute
RGBA_SIGNED_COMPONENTS EXT 4B Getintegerv - Treifrespective 4 -
R G,B,andA
componentsare
signed
New Implementation Dependent State
None
Issues
1) What should this extension be called?
RESOLVED: EXT_packed_float
This extension provides a new 3-component p acked float format
for use as a texture internal format, pixel external format,
and framebuffer color format.
"packed" indicates the extension is packing components
at reduced precisions (similar to EXT_packe d_pixels or
NV_packed_depth_stencil).
EXT_r11f g11f b10f float was considered but there's no precedent
for extension names to be so explicit (or ¢ ryptic?) about format
specifics in the extension name.
2) Should there be an rgb11f b10f framebuffer format?
RESOLVED: Yes. Unsigned floating-point re ndering formats for GLX
and WGL are provided. The assumption is th at this functionality
could be used to advertise a pixel format w ith 11 bits of unsigned
139 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

floating-point red, 11 bits of unsigned flo
and 10 bits of floating-point blue.

In theory, an implementation could advertis
other than 11/11/10 for an unsigned floatin
format but that is not expected.

3) Should there be GLX and WGL extension strin

RESOLVED: Yes, there are WGL and GLX token
support querying unsigned floating-point co
formats named WGL_EXT _pixel_format_packed_f
GLX_EXT_fbconfig_packed_float respectively.

4) Should there be an unequal distribution of
mantissa bits?

RESOLVED: Yes. A 6-bit mantissa for red a
with the 5-bit mantissa for blue, but this

a 32 bit word (6+6+5+3*5=32) to be used. T
chosen to have fewer bits because 1) it is
and 2) there's a belief that the human eye

to blue variations..

Developers should be aware that subtle yell
of gray-scale values is possible because of
mantissa in the red and green components.
5) Should there be an external format for r11f

RESOLVED: Yes. This makes it fast to load
textures without any translation by the dri

6) What is the exponent bias?

RESOLVED: 15, just like 16-bit half-precis
values.

7) Can s10e5 floating-point filtering be used
r11f g1if b10f values? If so, how?

RESOLVED: Yes. ltis easy to promote r11f
s10e5 components.

8) Should automatic mipmap generation be suppo
textures?

RESOLVED: Yes.

9) Should non-texture and non-framebuffer comm
pixel data accept the GL_UNSIGNED_INT_10F_1

RESOLVED: Yes.
Once the pixel path has to support the new

querying texture images, it might as well b

NVIDIA Proprietary 140

EXT_packed_float

ating-point green,

e other component sizes
g-point framebuffer

gs?

s added to
lor buffer
loat and

red, green, and blue

nd green is unbalanced
allows all the bits of

he blue component is
the third component,

is less sensitive

owing or bluing
the extra bit of

_gl1f _b10f?

GL_R11F_G11F_B10F_EXT

ver.

ion floating-point

to filter

_g11f b10fvaluesto

rted for r11f g11f b10f

ands for loading
1F_11F_REV_EXT type?

type/format combination
for specifying and
e supported for all

EXT_packed_float

commands that pack and unpack RGB pixel dat

The specification is written such that the
type/format parameters are accepted by glRe
glTexGetlmage, glTexlmage2D, and other comm
in terms of glDrawPixels.

10) Should non-texture internal formats (such a
convolution kernels, histogram bins, and mi
GL_R11F G11F B1OF_EXT format?

RESOLVED: No.

That's pointless. No hardware is ever like
GL_R11F G11F_B1OF_EXT internal formats for
textures and maybe color buffers in the fut

not interesting for color tables, convoluti

11) Should a format be supported with sign bits
RESOLVED: No. A sign bit for each of the
steal too many bits from the mantissa. Thi
for storing radiance and irradiance values
non-negative.

12) Should we support a non-REV version of the

GL_UNSIGNED_INT_10F 11F 11F_REV_EXT token?

RESOLVED: No. We don't want to promote di
of the bitfields for r11f g11f b10f values.

13) Can you use the GL_UNSIGNED_INT_10F 11F 11F
just any format?

RESOLVED: You can only use the

GL_UNSIGNED_INT_10F_11F_11F REV_EXT format

Otherwise, the GL generates an GL_INVALID_O
Just as the GL_UNSIGNED_BYTE_3_3 2 formatj

(or else the GL generates an GL_INVALID_OPE

should GL_UNSIGNED_INT_10F_11F 11F REV_EXT.

14) Should blending be supported for a packed f
format?

RESOLVED: Yes. Blending is required for o
framebuffer formats introduced by ARB_color
The equations for blending should be evalua
floating-point math but the result will hav
non-negative values to be stored back into
format of the color buffer.

15) Should unsigned floating-point framebuffers
differently from conventional (signed) floa
framebuffers?

RESOLVED: Yes. An existing application us
ARB_color_buffer_float can rightfully expec

141

OpenGL Extension Specifications for GeForce 8 Series

a.

glDrawPixels
adPixels,
ands that are specified

s for color tables,
n/max tables) accept

ly to support
anything other than
ure. This format is
on kernels, etc.

for each component?

three components would
s format is intended
that are physically

fferent arrangements

_REV_EXT format with

with GL_RGB.
PERATION error.

ust works with GL_RGB
RATION error), so

loat framebuffer

ther floating-point
_buffer_float.

ted with signed

e to be clamped to
the packed float

be queried
ting-point

ing
t a floating-point

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

color buffer format to provide signed compo
float format does not provide a sign bit.
float color buffer formats as floating-poin
existing applications that depend on a floa
signed.

For this reason, there are new WGL_TYPE_RGB
(for WGL) and GLX_RGBA_UNSIGNED_FLOAT_BIT_E
framebuffer format parameters.

16) What should giGet of GL_RGBA_FLOAT_MODE_ARB

float color buffer formats?

RESOLVED. GL_RGBA_FLOAT_MODE_ARB should re
float components are unsigned but still flo

17) Can you query with glGet to determine if th

unsigned float components?

RESOLVED: Yes. Call glGetintegerv

on GL_RGBA_SIGNED_COMPONENTS_EXT. The valu
a 4-element array. Element O corresponds t
corresponds to green, element 2 corresponds

3 corresponds to alpha. If a color compone
corresponding element is true (GL_TRUE). T

the GL_COLOR_WRITEMASK bits are formatted.

For the packed float format, all the elemen
the red, green, and blue components are uns
component is non-existent. All elements ar
conventional fixed-point color buffer forma
set for signed floating-point formats such

by ARB_color_buffer_float. If a component
zero bits, the component should not be cons
the bit for the respective component should

This generality allows a future extension t
color buffer formats that had a mixture of
floating-point components. However, this e
a packed float color format with all unsign

18) How many bits of alpha should GL_ALPHA_BITS

float color buffer format?

RESOLVED: Zero.

19) Can you render to a packed float texture wi

EXT_framebuffer_object functionality?
RESOLVED: Yes.

Potentially an implementation could return
GL_FRAMEBUFFER_UNSUPPORTED_EXT when gICheck
for a framebuffer object including a packed

but implementations are likely to support (

to support) the packed float format for use

object because the packed float format is e

NVIDIA Proprietary 142

EXT_packed_float

nents. The packed
Simply treating packed
t might break some

t color buffer to be

A_UNSIGNED_FLOAT_EXT
XT (for GLX)

return for unsigned

turn true. The packed
ating-point.

e color buffer has

e returned is

ored, element 1

to blue, and element
nt is signed, its

his is the same way

ts are zeroed since
igned and the alpha
e also zeroed for

ts. Elements are

as those introduced
(such as alpha) has
idered signed and so
be zeroed.

o specify float

signed and unsigned
xtension only provides
ed components.

return for the packed

th the

FramebufferStatusEXT
float color buffer,

and strongly encouraged
with a framebuffer
xpected to be a

EXT_packed_float

memory-efficient floating-point color forma
rendering, particularly rendering involving

20) This extension is for a particular packed f

new packed float formats come along?

RESOLVED: A new extension could be introdu
EXT_packed_float2, but at this time, no oth

are expected except for the EXT_texture_sha
extension. It simply hard to justify packi
components into a single 32-bit word in lot
since any approach is going to be a comprom
For two-component or one-component floating
existing ARB_texture_float formats fit nice

by simply using half precision floating-poi
allowed for a pixel, the GL_RGBA16F_ARB is

The packed float format is similar to the f

the EXT_texture_shared_exponent extension,
is not a pure packed float format. Unlike
format, the EXT_texture_shared_exponent for
exponent between the RGB components rather
an independent exponent for each component.
EXT_texture_shared_exponent uses fewer bits
values, more mantissa precision is provided

21) Should this extension provide pbuffer suppo

RESOLVED: Yes. Phuffers are core GLX 1.3
While using FBO is probably the preferred w
rl1f g11f b10f framebuffers but pbuffer sup
to provide. WGL should have r11f g11f b10f

22) Must an implementation support NaN, Infinit

RESOLVED: The preferred implementation is
Infinity, and denorms. Implementations are
denorms to zero, and treat NaN and Infinity
finite values.
This allowance flushes denorms to zero:
0.0, if E==0 and
This allowance treats Infinity as a finite
2/M16 if E==31an
This allowance treats NaN encodings as fini
2716 * (1 + M/64) if E==31an
The expectation is that mainstream GPUs wil
Infinity, and denorms while low-end impleme

OpenGL ES 2.0 will likely support denorms b
Infinity.

143

OpenGL Extension Specifications for GeForce 8 Series

t well-suited for
high-dynamic range.

loat format. What if

ced with a name like
er such extensions
red_exponent

ng three or more

s of different ways
ise of some sort.
-point formats, the
ly into 16 or 32 bits
nt. If 64 bits are

a good choice.

ormat introduced by

but that extension

the packed float

mat shares a single

than providing
Because the

to store exponent

re?

functionality.

ay to render to

port is natural
pbuffer support too.
y, and/or denorms?
to support NaN,

allowed to flush
values as large

M!=0

value:

dM==

te values:
dMI=0

| support NaN,

ntations such as for
ut neither NaN nor

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

There is not an indication of how these flo
values are treated (though an application ¢
implementation if necessary).

23) Should this extension interoperate with fra

RESOLVED: Definitely. No particular speci
required.

In particular, glRenderbufferStorageEXT sho
GL_R11F G11F_B10OF_EXT for its internalforma
because this extension adds a new format to

24) Are negative color components clamped to ze

an unsigned floating-point color buffer? |
say in the Blending or Dithering language t
components are clamped to zero?

RESOLVED: Yes, negative color components a
zero when written to an unsigned floating-p

No specification language is required for t

the ARB_color_buffer_float extension says

"In RGBA mode dithering selects, for each ¢
the most positive representable color value
color component) that is less than or equal
color component value, ¢, or the most negat
color value that is greater than or equal t

If dithering is disabled, then each incomin

c is replaced with the most positive repres
(for that particular component) that is les

or by the most negative representable value
value is less than or equal to c¢;"

The most negative representable value for u
floating-point values is zero. So the exis
ARB_color_buffer_float already indicates th
are clamped to zero for unsigned floating-p
No additional specification language is req

25) Prior texture internal formats have generic

GL_RGB) and corresponding sized formats (GL
etc.). Should we add a generic format corr
GL_R11F G11F B10OF_EXT?

RESOLVED: No. It's unlikely there will be
floating-point texture formats.

EXT_packed_float

ating-point special
ould test an

mebuffer objects?

fication language is

uld accept
t parameter (true
Table 3.16).

ro when written into
f so, do we need to
hat negative color

re clamped to
oint color buffer.
his behavior because

olor component, either
(for that particular

to the incoming

ive representable

oc.

g color component
entable color value
s than or equal to c,
, if no representable

nsigned

ting language from
at negative values
oint color buffers.
uired.

formats (example:

_RGBS8, GL_RGB10,
esponding to

any other unsigned

Revision History

None

NVIDIA Proprietary 144

EXT_texture_array

Name

EXT_texture_array
Name Strings

GL_EXT_texture_array
Contact

Pat Brown, NVIDIA Corporation (pbrown 'at' nvid
Status

Shipping for GeForce 8 Series (November 2006, R
Version

Last Modified Date: 02/04/2008
Author revision: 6

Number
329
Dependencies

This extension is written against the OpenGL 2.
1.10.59 of the OpenGL Shading Language specific

This extension is interacts with EXT_framebuffe
This extension interacts with NV_geometry _progr

This extension interacts with NV_gpu_program4 o
Language, which provide the mechanisms necessar

This extension interacts with EXT_texture_compr
NV_texture_compression_vtc.

Overview

This extension introduces the notion of one- an
textures. An array texture is a collection of
images of identical size and format, arranged i
one-dimensional array texture is specified usin
two-dimensional array texture is specified usin
(1D array) or depth (2D array) specify the numb

An array texture is accessed as a single unit i
using a single coordinate vector. A single lay
layer is then accessed as though it were a one-
texture. The layer used is specified using the
coordinate for 1D and 2D array textures, respec
coordinate is provided as an unnormalized float
range [0,<n>-1], where <n> is the number of lay
Texture lookups do not filter between layers, t

145

OpenGL Extension Specifications for GeForce 8 Series

ia.com)

elease 95)

0 specification and version
ation.

r_object.
am4.

r the OpenGL Shading
y to access array textures.

ession_s3tc and

d two-dimensional array
one- and two-dimensional
n layers. A

g TexImage2D; a

g Teximage3D. The height
er of layers in the image.

n a programmable shader,
er is selected, and that

or two-dimensional

"t" or "r" texture

tively. The layer

ing-point value in the

ers in the array texture.

hough such filtering can be

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

achieved using programmable shaders. When mipm
of an array texture has the same number of laye
number of layers is not reduced as the image si

Array textures can be rendered to by binding th
(EXT_framebuffer_object). A single layer of an
using normal framebuffer object mechanisms, or
be bound and rendered to using the layered rend
by NV_geometry program4.

This extension does not provide for the use of
fixed-function fragment processing. Such suppo

providing an additional extension allowing appl

target enumerants (TEXTURE_1D_ARRAY_EXT and TEX
Enable and Disable.

New Procedures and Functions

void FramebufferTextureLayerEXT(enum target, en
uint texture, i

New Tokens

Accepted by the <target> parameter of TexParame
TexParameterf, TexParameterfv, and BindTexture:

TEXTURE_1D_ARRAY_EXT
TEXTURE_2D_ARRAY_EXT

Accepted by the <target> parameter of Teximage3
CopyTexSubimage3D, CompressedTexlmage3D, and Co

TEXTURE_2D_ARRAY_EXT
PROXY_TEXTURE_2D_ARRAY_EXT

Accepted by the <target> parameter of Teximage2
CopyTeximage2D, CopyTexSublmage2D, CompressedTe
CompressedTexSublmage2D:

TEXTURE_1D_ARRAY_EXT
PROXY_TEXTURE_1D_ARRAY_EXT

Accepted by the <pname> parameter of GetBoolean
and GetFloatv:

TEXTURE_BINDING_1D_ARRAY_EXT

TEXTURE_BINDING_2D_ARRAY_EXT
MAX_ARRAY_TEXTURE_LAYERS_EXT

NVIDIA Proprietary 146

EXT_texture_array

apping is used, each level
rs as the base level; the
ze decreases.

em to a framebuffer object
array texture can be bound
an entire array texture can
ering mechanisms provided

array textures with

rt could be added by
ications to pass the new
TURE_2D_ARRAY_EXT) to

um attachment,
nt level, int layer);

teri, TexParameteriv,
0x8C18
0x8C1A

D, TexSublmage3D,

mpressedTexSublmage3D:
0x8C1B

D, TexSublmage2D,
xImage2D, and

0x8C19
v, GetDoublev, Getintegerv
0x8C1C

0x8C1D
Ox88FF

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

Accepted by the <param> parameter of TexParamet erf, TexParameteri,
TexParameterfv, and TexParameteriv when the <pn ame> parameter is
TEXTURE_COMPARE_MODE_ARB:

COMPARE_REF_DEPTH_TO_TEXTURE_EXT 0x884E
(Note: COMPARE_REF_DEPTH_TO_TEXTURE_EXT is sim ply an alias for the
existing COMPARE_R_TO_TEXTURE token in OpenGL 2 .0; the alternate name
reflects the fact that the R coordinate is not always used.)
Accepted by the <internalformat> parameter of T exlmage3D and
CompressedTexlmage3D, and by the <format> param eter of

CompressedTexSublmage3D:

COMPRESSED_RGB_S3TC_DXT1_EXT

COMPRESSED_RGBA_S3TC_DXT1_EXT
COMPRESSED_RGBA_S3TC_DXT3_EXT
COMPRESSED_RGBA_S3TC_DXT5_EXT

Accepted by the <pname> parameter of
GetFramebufferAttachmentParameterivEXT:

FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT 0x8CD4

(Note: FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER is simply an alias for the
FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXTdken provided in

EXT_framebuffer_object. This extension general izes the notion of

"<zoffset>" to include layers of an array textu re.)

Returned by the <type> parameter of GetActiveUn iform:
SAMPLER_1D_ARRAY_EXT 0x8DCO
SAMPLER_2D_ARRAY_EXT 0x8DC1
SAMPLER_1D_ARRAY_SHADOW_EXT 0x8DC3
SAMPLER_2D_ARRAY_SHADOW_EXT 0x8DC4

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

Modify section 2.15.3, "Shader Variables", page 75

Add the following new return types to the descr iption of GetActiveUniform

on p. 81.

SAMPLER_1D_ARRAY_EXT,
SAMPLER_2D_ARRAY_EXT,
SAMPLER_1D_ARRAY_SHADOW_EXT,
SAMPLER_2D_ARRAY_SHADOW_EXT

Modify Section 2.15.4, Shader Execution (p. 84)

(modify first paragraph, p. 86 -- two simple ed its:

(1) Change reference to the "r" coordinate to simply indicate that the
reference value for shadow mapping is pro vided in the lookup
function. It's still usually in the "r" coordinate, except for
two-dimensional array textures, where it' sin"q".

147 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

(2) Add new EXT_gpu_shader4 sampler types use

Texture lookups involving textures with depth ¢

return the depth data directly or return the re

a reference depth value specified in the coordi

lookup function, as described in section 3.8.14

is requested in the shader by using the shadow
(sampleriDShadow, sampler2DShadow, sampler1DArr
sampler2DArrayShadow) and in the texture using
parameter. ...

Additions to Chapter 3 of the OpenGL 2.0 Specificat
Modify Section 3.8, Texturing (p. 149).

(add new paragraph at the top of p. 150) Six ty
supported; each is a collection of images built
three-dimensional array of image elements refer
two-, and three-dimensional textures consist of
three-dimensional texel arrays. One- and two-d
are arrays of one- or two-dimensional images, ¢
layers. Finally, a cube map is a special two-d
with six layers that represent the faces of a c
map, the texture coordinates are projected onto

Modify Section 3.8.1, Texture Image Specificati
(modify first paragraph of section, p. 150) The

void TexImage3D(enum target, int level, int
sizei width, sizei height, s
enum format, enum type, void

is used to specify a three-dimensional texture

of TEXTURE_3D for a three-dimensional texture o

an two-dimensional array texture. Additionally
PROXY_TEXTURE_3D for a three-dimensional proxy

PROXY_TEXTURE_2D_ARRAY_EXT for a two-dimensiona

(modify the fourth paragraph on p. 151) Texture
format of DEPTH_COMPONENT are supported by text
commands only if target is TEXTURE_1D, TEXTURE_

EXT_texture_array

d for array textures.)

omponent data can either

sults of a comparison with

nates passed to the texture

. The comparison operation
sampler types

ayShadow, or

the TEXTURE_COMPARE_MODE

ion (Rasterization)

pes of texture are

from one-, two-, or

red to as texels. One-,

a one-, two-, or

imensional array textures
onsisting of one or more
imensional array texture

ube. When accessing a cube
one of the six faces.

on (p. 150).
command

internalformat,
izei depth, int border,
*data);

image. target must be one

r TEXTURE_2D_ARRAY_EXT for
, target may be either

texture, or

| proxy array texture. ...

s with a base internal
ure image specification
2D, TEXTURE_1D_ARRAY_EXT,

TEXTURE_2D_ARRAY_EXT, PROXY_TEXTURE_1D, PROXY_TEXTURE_2D,
PROXY_TEXTURE_1D_ARRAY_EXT, or PROXY_TEXTURE_2D ARRAY_EXT. Using this

format in conjunction with any other target wil
OPERATION error.

(modify the first paragraph on p. 153 -- In par
h_b, and d_b to represent border width, height,
single border size term b_s. Subsequent equati
be modified to refertow_b, h_b,and d_b, as a

NVIDIA Proprietary 148

| result in an INVALID

ticular, add new terms w_b,
or depth, instead of a

ons referring to b_s should
ppropriate.)

EXT_texture_array

... Counting from zero, each resulting Nth texe
integer coordinates (i, j, k), where

i = (N mod width) -w_b
j = (floor(N/width) mod height) - h_b
k = (floor(N/(width*height)) mod depth) -d_b

and w_b, h_b, and d_b are the specified border
w_b and h_b are the specified <border> value; d
<border> value if <target> is TEXTURE_3D or zer
TEXTURE_2D_ARRAY_EXT. ...

(modify equations 3.15-3.17 and third paragraph

ws=wt+2*w b (3.15
h.s=h_t+2*h_b (3.16
ds=dt+2*d_b (3.17

... If <border> is less than zero, or greater t
INVALID_VALUE is generated.

(modify the last paragraph on p. 1550nto p. 1

The maximum allowable width, height, or depth o
three-dimensional texture is an implementation
level-of-detail and internal format of the resu

be at least 2*(k-lod) + 2 * b_t for image array
through k, where k is the log base 2 of MAX_3D_
level-of-detail of the image array, and b_tis

It may be zero for image arrays of any level-of
error INVALID VALUE is generated if the specifi
stored under any conditions.

In a similar fashion, the maximum allowable wid
one- or two-dimensional, or one- or two-dimensi
maximum allowable height of a two-dimensional o
texture, must be at least 2*(k-lod) + 2 *b_tf
through k, where k is the log base 2 of MAX_TEX
allowable width and height of a cube map textur
must be at least 2*(k-lod) + 2 * b_t for image
where k is the log base 2 of MAX_CUBE_MAP_TEXTU
number of layers for one- and two-dimensional a
depth, respectively) must be at least MAX_ARRAY
levels.

(modify the fourth paragraph on p. 156) The com

void TexImage2D(enum target, int level,
int internalformat, sizei wi
int border, enum format, enu

is used to specify a two-dimensional texture im
TEXTURE_2D for a two-dimensional texture, TEXTU
one-dimensional array texture, or one of TEXTUR

OpenGL Extension Specifications for GeForce 8 Series

| is assigned internal

width, height, and depth.
_b is the specified
o if <target> is

of p. 155)

)

)

)

han b_t, then the error

56)

f a texel array for a
dependent function of the
Iting image array. It must
s of level-of-detail O
TEXTURE_SIZE, lod is the
the maximum border width.
-detail greater than k. The
ed image is too large to be

th of a texel array for a

onal array texture, and the

r two-dimensional array

or image arrays of level 0
TURE_SIZE. The maximum

e must be the same, and

arrays level 0 through k,
RE_SIZE. The maximum

rray textures (height or
_TEXTURE_LAYERS_EXT for all

mand

dth, sizei height,

m type, void *data);

age. target must be one of

RE_1D_ARRAY_EXT for a
E_CUBE_MAP_POSITIVE_X,

TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_PSITIVE_Y,
TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_PSITIVE_Z, or

TEXTURE_CUBE_MAP_NEGATIVE_Z for a cube map text

149

ure. Additionally, target

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

may be either PROXY_TEXTURE_2D for a two-dimens
PROXY_TEXTURE_1D_ ARRAY_EXT for a one-dimensiona
PROXY TEXTURE_CUBE_MAP for a cube map proxy tex
discussed in section 3.8.11. The other paramet

parameters of TexImage3D.

For the purposes of decoding the texture image,
to calling Texlmage3D with corresponding argume
that

* The border depth, d_b, is zero, and the dep
regardless of the value of border.

* The border height, h_b, is zero if <target>
and <border> otherwise.

* Convolution will be performed on the image
and height) if SEPARABLE 2D or CONVOLUTION

* UNPACK SKIP IMAGES is ignored.

(modify the fourth paragraph on p. 157) For the
texture image, TexImagelD is equivalent to call
corresponding arguments and height of 1, except

* The border height and depth (h_b and d_b) a
of the value of <border>.

* Convolution will be performed on the image
width) only if CONVOLUTION 1D is enabled.

(modify the last paragraph on p. 157 and the fi
changing the phrase "texture array" to "texel a
with array textures. All subsequent references
specification should also be changed to "texel

We shall refer to the (possibly border augmente
texel array. A three-dimensional texel array h
ws, hs, and ds as defined respectively in equat
3.17. A two-dimensional texel array has depth d
width ws as above, and a one-dimensional texel
height hs = 1, and width ws as above.

An element (i,j,k) of the texel array is called
two-dimensional texture or one-dimensional arra
for a one-dimensional texture, j and k are both
value used in texturing a fragment is determine
associated (s,t,r) coordinates, but may not cor
texel. See figure 3.10.

NVIDIA Proprietary 150

EXT_texture_array

ional proxy texture,

| proxy array texture, or

ture in the special case

ers match the corresponding

Texlmage2D is equivalent
nts and depth of 1, except

th of the image is always 1

is TEXTURE_1D_ARRAY_EXT,

(possibly changing its width
2D is enabled.

purposes of decoding the
ing Texlmage2D with
that

re always zero, regardless

(possibly changing its

rst paragraph of p. 158 --
rray" to avoid confusion
to "texture array" in the
array".)

d) decoded image as the
as width, height, and depth
ions 3.15, 3.16, and

s = 1, with height hs and
array has depth ds =1,

a texel (for a

y texture, k is irrelevant;
irrelevant). The texture
d by that fragment’s
respond to any actual

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

Modify Section 3.8.2, Alternate Texture Image S pecification Commands
(p. 159)
(modify second paragraph, p. 159 -- allow 1D ar ray textures) The command

void CopyTeximage2D(enum target, int level,

enum internalformat, int X, int 'y, sizei width,
sizei height, int border);
defines a two-dimensional texture image in exac tly the manner of
Texlmage2D, except that the image data are take n from the framebuffer
rather than from client memory. Currently, targ et must be one of

TEXTURE_2D, TEXTURE_1D_ARRAY_EXT, TEXTURE_CUBE_ MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE MAP_FOSITIVE_Y,
TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_PSITIVE_Z, or
TEXTURE_CUBE_MAP_NEGATIVE_Z.

(modify last paragraph, p. 160) ... Currently t he target arguments of
TexSublmagelD and CopyTexSublmagelD must be TEX TURE_1D, the target
arguments of TexSublmage2D and CopyTexSublmage?2 D must be one of

TEXTURE_2D, TEXTURE_1D_ARRAY_EXT, TEXTURE_CUBE_ MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_PSITIVE_Y,
TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_PSITIVE_Z, or

TEXTURE_CUBE_MAP_NEGATIVE_Z, and the target arg uments of TexSublmage3D and
CopyTexSublmage3D must be TEXTURE_3D or TEXTURE _2D_ARRAY_EXT. ...

(modify last paragraph, p. 161 and subsequent i nequalities)

Negative values of xoffset, yoffset, and zoffse t correspond to the

coordinates of border texels, addressed as in f igure 3.10. Taking w_s,

h_s,d s,w_b, h b, and d_b to be the specified width, height, depth, and
border width, height, and depth of the texture array, and taking x, vy, z,

w, h, and d to be the xoffset, yoffset, zoffset , width, height, and depth
argument values, any of the following relations hips generates the error

INVALID VALUE:

X<-w_b
X+w>w s-w b
y<-h b
y+h>h_s-h_b
z<-d b
z+d>d_s-d_b

Modify Section 3.8.4, Texture Parameters (p. 16 6)
(modify first paragraph of section, p. 166) Var ious parameters control how

the texel array is treated when specified or ch anged, and when applied to
a fragment. Each parameter is set by calling

void TexParameter{if}(enum target, enum pnam e, T param);
void TexParameter{ifjv(enum target, enum pna me, T params);
target is the target, either TEXTURE_1D, TEXTUR E_ 2D, TEXTURE_3D,

TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or TEXT URE_2D_ARRAY_EXT.

151 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Modify Section 3.8.8, Texture Minification (p.

(modify first paragraph, p. 172) ... For a one-
one-dimensional array texture, define v(x, y) =
two-dimensional, two-dimensional array, or cube

y)==0. ...

(modify second paragraph, p. 173) For one-dimen
array textures, j and k are irrelevant; the tex

the texture value. For two-dimensional, two-dim
textures, k is irrelevant; the texel at locatio
texture value. For one- and two-dimensional ar
obtained from image layer |, where

| = clamp(floor(t + 0.5), 0, h_t-1), for one-
clamp(floor(r + 0.5), 0, d_t-1), for two-

(modify third paragraph, p. 174) For a two-dim
array, or cube map texture,

tau = ...
where tau_ij is the texel at location (i, j) in
texture image. For two-dimensional array textu
obtained from layer |, where
| = clamp(floor(r + 0.5), 0, d_t-1).
And for a one-dimensional or one-dimensional ar
tau = ...
where tau_i is the texel at location i in the o
For one-dimensional array textures, both texels
where

| = clamp(floor(t + 0.5), 0, h_t-1).

(modify first two paragraphs of "Mipmapping", p

values NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_L
LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR

mipmap. A mipmap is an ordered set of arrays re
each array has a resolution lower than the prev

If the image array of level level_base, excludi
dimensions, w_t x h_t x d_t, then there are flo
levels in the mipmap, where

for one-dimen
array texture
max(w_t, h_t), for two-dimen
array, and cu
max(w_t, h_t, d_t), forthree dim

maxsize = w_t,

NVIDIA Proprietary 152

EXT_texture_array

170)

dimensional or
=0 and w(x, y) == 0; for a
map texture, define w(x,

sional or one-dimensional
el at location i becomes
ensional array, or cube map
n (i, j) becomes the

ray textures, the texel is

dimensional array textures,
dimensional array textures.

ensional, two-dimensional

the two-dimensional
res, all texels are

ray texture,

ne-dimensional texture.
are obtained from layer |,

. 175) TEXTURE_MIN_FILTER

INEAR,

each require the use of a
presenting the same image;
ious one.

ng its border, has
or(log2(maxsize)) + 1

sional and one-dimensional
S,

sional, two-dimensional

be map textures

ensional textures.

EXT_texture_array

Numbering the levels such that level level_base
array has dimensions

max(1, floor(w_t/w_d)) x max(1, floor(h_t/h_d)

where
w d=2"i
h_d = 1, for one-dimensional array textures an

2 i, otherwise; and
d_d =1, for two-dimensional array textures an
2 i, otherwise,

until the last array is reached with dimension

Each array in a mipmap is defined using Texlmag
CopyTeximage2D, TexlmagelD, or CopyTexlmagelD;
indicated with the level-of-detail argument lev

proceed from level_base for the original textur
floor(log2(maxsize)) + level_base with each uni

array of half the dimensions of the previous on

integer if fractional) as already described. A

through g = min{p, level_max} must be defined,

3.8.10.

(modify third paragraph in the "Mipmap Generati

The contents of the derived arrays are computed
reduction of the level_base array. For one- an
textures, each layer is filtered independently.

Modify Section 3.8.10, Texture Completeness (p.

(modify second paragaph of section, p. 177) For
three-dimensional textures and one- or two-dime
texture is complete if the following conditions

Modify Section 3.8.11, Texture State and Proxy

(modify second and third paragraphs, p. 179, ad
making minor wording changes)

In addition to image arrays for one-, two-, and
textures, one- and two-dimensional array textur
arrays for the cube map texture, partially inst
maintained for one-, two-, and three-dimensiona
two-dimensional array textures. Additionally,

is maintained for the cube map texture. Each p
width, height, depth, border width, and interna

well as state for the red, green, blue, alpha,
component resolutions. Proxy image arrays do no
do they include texture properties. When Texlma
target specified as PROXY_TEXTURE_3D, the three
values of the specified level-of-detail are rec

image array would not be supported by Teximage3
TEXTURE 3D, no error is generated, but the prox
border width, and component resolutions are set

153

OpenGL Extension Specifications for GeForce 8 Series

is the Oth level, the ith

) x max(1, floor(d_t/d_d))

1x1x1.

e3D, Texlmage2D,

the array being set is

el. Level-of-detail numbers
e array through p =

t increase indicating an

e (rounded down to the next
Il arrays from level_base

as discussed in section

on" section, p. 176)

by repeated, filtered
d two-dimensional array

177)

one-, two-, or
nsional array textures, a
all hold true: ...

State (p. 178)

ding array textures and

three-dimensional

es, and the six image
antiated image arrays are
| textures and one- and

a single proxy image array
roxy image array includes
| format state values, as
luminance, and intensity

t include image data, nor
ge3D is executed with
-dimensional proxy state
omputed and updated. If the
D called with target set to
y width, height, depth,

to zero. If the image

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

array would be supported by such a call to Texl mage3D, the proxy state
values are set exactly as though the actual ima ge array were being
specified. No pixel data are transferred or pro cessed in either case.
Proxy arrays for one- and two-dimensional textu res and one- and
two-dimensional array textures are operated on in the same way when
TexlmagelD is executed with target specified as PROXY_TEXTURE_1D,
Texlmage2D is executed with target specified as PROXY_TEXTURE_2D or

PROXY_TEXTURE_1D_ARRAY_EXT, or Texlmage3D is ex ecuted with target
specified as PROXY_TETXURE_2D_ARRAY_EXT.

Modify Section 3.8.12, Texture Objects (p. 180)

(update most of the beginning of the section to allow array textures)

In addition to the default textures TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, and TEX TURE_2D_EXT, named one-,
two-, and three-dimensional, cube map, and one- and two-dimensional array
texture objects can be created and operated upo n. The name space for

texture objects is the unsigned integers, with zero reserved by the GL.

A texture object is created by binding an unuse d name to TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTU RE_1D_ARRAY_EXT, or
TEXTURE_2D_ARRAY_EXT. The binding is effected b y calling

void BindTexture(enum target, uint texture) ;

with <target> set to the desired texture target and <texture> set to the
unused name. The resulting texture object is a new state vector,
comprising all the state values listed in secti on 3.8.11, set to the same
initial values. If the new texture object is bo und to TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTU RE_1D_ARRAY_EXT, or
TEXTURE_2D ARRAY_EXT, itis and remains a one-, two-, three-dimensional,
cube map, one- or two-dimensional array texture respectively until it is
deleted.

BindTexture may also be used to bind an existin g texture object to either

TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_CUB E_MAP,
TEXTURE_1D_ARRAY_EXT, or TEXTURE_2D_ARRAY_EXT. The error INVALID_OPERATION

is generated if an attempt is made to bind a te xture object of different
dimensionality than the specified target. If th e bind is successful no
change is made to the state of the bound textur e object, and any previous

binding to target is broken.

While a texture object is bound, GL operations on the target to which it
is bound affect the bound object, and queries o f the target to which it is
bound return state from the bound object. If te xture mapping of the
dimensionality of the target to which a texture object is bound is
enabled, the state of the bound texture object directs the texturing
operation.

In the initial state, TEXTURE_1D, TEXTURE_2D, T EXTURE_3D,
TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, and TEX TURE_2D_ARRAY_EXT have
one-, two-, three-dimensional, cube map, and on e- and two-dimensional
array texture state vectors respectively associ ated with them. In order
that access to these initial textures not be lo st, they are treated as
texture objects all of whose names are 0. The i nitial one-, two-,

NVIDIA Proprietary 154

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

three-dimensional, cube map, one- and two-dimen sional array textures are
therefore operated upon, queried, and applied a s TEXTURE_1D, TEXTURE_2D,
TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTURE_1D ARRAY_EXT, and
TEXTURE_2D_ARRAY_EXT respectively while 0 is bo und to the corresponding
targets.

(modify second paragraph, p. 181) ... If a tex ture that is currently

bound to one of the targets TEXTURE_1D, TEXTURE _ 2D, TEXTURE_3D,
TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or TEXT URE_2D_ARRAY_EXT is
deleted, it is as though BindTexture had been e xecuted with the same

target and texture zero. ...

(modify second paragraph, p. 182) The texture o bject name space, including
the initial one-, two-, and three dimensional, cube map, and one- and
two-dimensional array texture objects, is share d among all texture

units. ...

Modify Section 3.8.14, Texture Comparison Modes (p- 185)

(modify second through fourth paragraphs, p. 18 8, reflecting that the

texture coordinate used for depth comparisons v aries, including a new enum
name)

Let D_t be the depth texture value, in the rang e [0, 1]. For

fixed-function texture lookups, let R be the in terpolated <r> texture
coordinate, clamped to the range [0, 1]. Fort exture lookups generated by
a program instruction, let R be the reference v alue for depth comparisons
provided in the instruction, also clamped to [0 , 1]. Then the effective
texture value L_t, |_t, or A_tis computed as f ollows: ...

If the value of TEXTURE_COMPARE_MODE is NONE, t hen

r =Dt
If the value of TEXTURE_COMPARE_MODE is COMPARE _REF_DEPTH_TO_TEXTURE_EXT),
then r depends on the texture comparison functi on as shown in table 3.27.
Modify Section 3.11.2, Shader Execution (p. 194)

(modify second paragraph, p. 195 -- two simple edits:

(1) Change reference to the "r" coordinate to simply indicate that the
reference value for shadow mapping is pro vided in the lookup
function. It's still usually in the "r" coordinate, except for
two-dimensional array textures, where it' sin"q".

(2) Add new EXT_gpu_shader4 sampler types use d for array textures.)
Texture lookups involving textures with depth ¢ omponent data can either
return the depth data directly or return the re sults of a comparison with
a reference depth value specified in the coordi nates passed to the texture
lookup function. The comparison operation is r equested in the shader by
using the shadow sampler types (samplerlDShadow , sampler2DShadow,
samplerlDArrayShadow, and sampler2DArrayShadow) and in the texture using

the TEXTURE COMPARE MODE parameter. ...

155 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series
Additions to Chapter 4 of the OpenGL 2.0 Specificat
Operations and the Frame Buffer)

None.
Additions to Chapter 5 of the OpenGL 2.0 Specificat
Modify Section 5.4, Display Lists (p. 237)

(modify first paragraph, p. 242) Texlmage3D, Te
Histogram, and ColorTable are executed immediat

corresponding proxy arguments PROXY_TEXTURE_3D

EXT_texture_array

ion (Per-Fragment

ion (Special Functions)

xImage2D, TexlmagelD,
ely when called with the
or

PROXY_TEXTURE_2D_ARRAY_EXT; PROXY_TEXTURE_2D, PROXY_TEXTURE_CUBE_MAP, or
PROXY_TEXTURE_1D_ARRAY_EXT; PROXY_TEXTURE_1D; PROXY_HISTOGRAM; and
PROXY_COLOR_TABLE, PROXY_POST_CONVOLUTION_COLORABLE, or

PROXY_POST_COLOR_MATRIX_COLOR_TABLE.

Additions to Chapter 6 of the OpenGL 2.0 Specificat
State Requests)

Modify Section 6.1.3, Enumerated Queries (p. 24
(modify second paragraph, p. 247)

GetTexParameter parameter <target> may be one o

ion (State and

6)

f TEXTURE_1D, TEXTURE_2D,

TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or

TEXTURE_2D_ARRAY_EXT, indicating the currently
three-dimensional, cube map, or one- or two-dim
GetTexLevelParameter parameter target may be on

bound one-, two-,
ensional array texture.
e of TEXTURE_1D,

TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP_POSITI VE_X,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_PSITIVE_Y,
TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_PSITIVE_Z,
TEXTURE_CUBE_MAP_NEGATIVE_Z, TEXTURE_1D_ARRAY_EXT, TEXTURE_2D_ARRAY_EXT,
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D,
PROXY_TEXTURE_CUBE_MAP, PROXY_TEXTURE_1D_ARRAYor PROXY_TEXTURE_2D_ARRAY,

indicating the one-, two-, or three-dimensional
distinct 2D images making up the cube map textu
two-dimensional array texture, or the one-, two
map, or one- or two-dimensional array proxy sta

Modify Section 6.1.4, Texture Queries (p. 248)
(modify first three paragraphs of section, p. 2

void GetTexlmage(enum tex, int lod, enum for
enum type, void *img);

is used to obtain texture images. It is somewha
get commands; tex is a symbolic value indicatin
face in the case of a cube map texture target n

TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_

TEXTURE_2D_ARRAY_EXT indicate a one-, two-, or
or one- or two-dimensional array texture, respe
TEXTURE_CUBE_MAP_POSITIVE_X, ...

GetTexlmage obtains... from the first image to
three-dimensional textures. One- and two-dimen

NVIDIA Proprietary 156

texture, one of the six

re, the one- or

-, three-dimensional, cube
te vector. ...

48) The command

mat,

t different from the other
g which texture (or texture
ame) is to be obtained.
ARRAY_EXT, and
three-dimensional texture,
ctively.

the last for
sional array textures are

EXT_texture_array

treated as two- and three-dimensional images, r
layers are treated as rows or images. These gr

For three-dimensional and two-dimensional array
operations are applied as if the image were two
the additional pixel storage state values PACK _
PACK_SKIP_IMAGES are applied. ...

Additions to Appendix A of the OpenGL 2.0 Specifica
None.

Additions to the AGL/GLX/WGL Specifications
None.

GLX Protocol
None.

Dependencies on EXT_framebuffer_object
If EXT_framebuffer_object is supported, a singl
can be bound to a framebuffer attachment point,

generation support is extended to include array

Several modifications are made to the EXT_frame
specification. First, the token identifying th

OpenGL Extension Specifications for GeForce 8 Series

espectively, where the
oups are then...

textures, pixel storage
-dimensional, except that
IMAGE_HEIGHT and

tion (Invariance)

e layer of an array texture
and manual mipmap
textures.

buffer_object
e attached layer of a 3D

texture, FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFF SET_EXT, is renamed to
FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT. This is done because this

extension generalizes the "z offset" concept to

a layer of a multi-layer texture, which is appl
three-dimensional and array textures. All refe
EXT_framebuffer_object should be changed to the
to "z offset” in the specification text should
appropriate. Additional edits follow.

(modify "Manual Mipmap Generation" in edits to
Mipmaps can be generated manually with the comm

void GenerateMipmapEXT(enum target);

where <target> is one of TEXTURE_1D, TEXTURE_2D
TEXTURE_3D, TEXTURE_1D_ARRAY, or TEXTURE_2D_ARR

affects the texture image attached to <target>.

(modify Section 4.4.2.3, Attaching Texture Imag
to the end of the section)

The command

void FramebufferTextureLayerEXT(enum target,
uint texture,

operates identically to FramebufferTexture3aDEXT
single layer of a three-dimensional texture or

157

become notion of attaching
icable for both

rences to this token in

new token, and references
be replaced with "layer" as

Section 3.8.8)

and

, TEXTURE_CUBE_MAP,
AY. Mipmap generation

es to a Framebuffer -- add

enum attachment,
int level, int layer);

, except that it attaches a
a one- or two-dimensional

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

array texture. <layer> is an integer indicatin
treated identically to the <zoffset> parameter

The error INVALID_VALUE is generated if <layer>
INVALID_OPERATION is generated if <texture> is
name of a three dimensional texture or one- or
texture. Unlike FramebufferTexture3D, no <text
accepted.

If <texture> is non-zero and the command does n
framebuffer attachment state corresponding to <
in the other FramebufferTexture commands, excep

EXT_texture_array

g the layer number, and is

in FramebufferTexture3DEXT.
is negative. The error
non-zero and is not the
two-dimensional array

arget> parameter is

ot result in an error, the
attachment> is updated as
t that

FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is set to <layer>.

(modify Section 4.4.4.1, Framebuffer Attachment

The framebuffer attachment point <attachment> i
attachment complete” if ...

* If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i

Completeness)

s said to be "framebuffer

s TEXTURE and

FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a one- or two-dimensional

array texture, then FRAMEBUFFER_ATTACHMENT _
smaller than the number of layers in the te

(modify Section 6.1.3, Enumerated Queries)

If <pname> is FRAMEBUFFER_ATTACHMENT_TEXTUR
object named FRAMEBUFFER_ATTACHMENT_OBJECT _

three-dimensional texture or a one- or two-
then <params> will contain the number of te
attachment point. Otherwise, <params> will

Dependencies on NV_geometry_program4

NV_geometry program4 provides additional modifi
EXT_framebuffer_object to support layered rende
applications to bind entire three-dimensional,

to a single attachment point, and select a laye

a layer number written by the geometry program.

The framebuffer object modifications provided i
more extensive than the more limited support pr
The edits in this spec are a functional subset
NV_geometry program4. All of the modifications
to EXT_framebuffer_object are superseded by NV_
for the minor language changes made to Generate

Dependencies on NV_gpu_program4 and the OpenGL Shad

If NV_gpu_program4, EXT_gpu_shader4, and the Op
(GLSL) are not supported, and no other mechanis
texture lookups into array textures, this exten

that it provides no fixed-function mechanism to

NVIDIA Proprietary 158

TEXTURE_LAYER_EXT must be
xture.

E_LAYER_EXT and the texture
NAME_EXT is a

dimensional array texture,
xture layer attached to the
contain the value zero.

cations to

ring, which allows

cube map, or array textures
r to render to according to

n NV_geometry_program4 are
ovided for array textures.

of the edits in

that this extension makes
geometry_program4, except
MipmapsEXT().

ing Language (GLSL)

enGL Shading Language
m is provided to perform
sion is pointless, given
access texture arrays.

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

If GLSL is supported, the language below descri
the shading language to support array textures.
EXT_gpu_shader4 provides a broader set of shadi
that include array texture lookup functions des

of additional functions.

If GLSL is not supported, the shading language
SAMPLER_{1D,2D} ARRAY_EXT and SAMPLER_{1D,2D} _A
should be removed.

Dependencies on EXT_texture_compression_s3tc and NV

S3TC texture compression is supported for two-d
When <target> is TEXTURE_2D_ARRAY_EXT, each lay
as a compressed two-dimensional textures. When
compressed images using one of the S3TC formats
and/or returned as a series of two-dimensional
consecutively in memory, with the layer closest

For array textures, images are not arranged in

the three-dimensional compression format provid
EXT_texture_compression_vtc extension. Pixel s
those specific to three-dimensional images, are
image data are provided or returned, as in the
EXT_texture_compression_s3tc extension.

S3TC compression is not supported for one-dimen
EXT_texture_compression_s3tc, and is not suppor
array textures in this extension. If compresse

are needed, use a two-dimensional texture with

As with NV_texture_compression_vtc, this extens
four S3TC internal format types in Texlmage3D,
CompressedTexSublmage3D calls. Unlike NV_textu
textures), compressed sub-image updates are all
along the Z axis. The language describing Comp
edited by EXT_texture_compression_s3tc (allowin
for 2D textures) and NV_texture_compression_vtc
boundaries for 3D textures) is updated as follo

"If the internal format of the texture image

bes the modifications to
The extension

ng language modifications

cribed here, plus a number

below and references to the
RRAY_SHADOW _EXT tokens

_texture_compression_vtc

imensional array textures.
er is stored independently
specifying or querying

, the images are provided
textures stored

to zero specified first.
Ax4x4 or 4x4x2 blocks as in
ed in the

tore parameters, including
ignored when compressed

sional texture targets in
ted for one-dimensional
d one-dimensional arrays
a height of one.

ion allows the use of the
CompressedTexlmage3D, and
re_compression_vtc (for 3D
owed at arbitrary locations
ressedTexSubimage* APIs,

g updates at 4x4 boundaries
(allowing updates at 4x4x4
WS

being modified is

COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBAS3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the

texture is stored using one of several S3TC o

image formats. Since these algorithms suppor
CompressedTexSublmagelDARB produces an INVALI
an S3TC/VTC format. Since S3TC/VTC images ar
4x4x1, or 4x4x4 texel boundaries, the limitat
CompressedTexSublmage2D and CompressedTexSubl
CompressedTexSublmage2D and CompressedTexSubl
INVALID_OPERATION error only if one of the fo

159

r VTC compressed texture

t only 2D and 3D images,
D_ENUM error if <format> is
e easily edited along 4x4,
ions on

mage3D are relaxed.
mage3D will result in an
llowing conditions occurs:

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

* <width> is not a multiple of four or equa | to TEXTURE_WIDTH.

* <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.

* <xoffset> or <yoffset> is not a multiple of four.

* <depth> is not a multiple of four or equa | to TEXTURE_DEPTH, and

<target>is TEXTURE_3D.

* <zoffset> is not a multiple of four and < target> is TEXTURE_3D."
(Note: The original version of this specificati on incorrectly failed to
allow compressed subimage updates of array text ures via
CompressedTexSublmage3D, except at 4x4x4 bounda ries/sizes. This
undesirable behavior was also implemented by al | NVIDIA OpenGL drivers
published prior to February 2008.)

Errors
None. Some error conditions are removed, due t o the ability to use the

new TEXTURE_1D_ARRAY_EXT and TEXTURE_2D_ARRAY_E XT enums.

New State

(add to table 6.15, p. 276)

Inital
GetValue Type GetComman d ValueDescription Sec. Attribute
TEXTURE _BINDING_1D ARRAY_EXT 2*xZ+ Getinteger v 0 texture objectbound 3812 texture
D TEXTURE 1D ARRAY
TEXTURE_BINDING_2D ARRAY_EXT 2*xZ+ Getinteger v 0 texture objectbound 3812 texture

10 TEXTURE 2D _ARRAY

New Implementation Dependent State

(add to Table 6.32, p. 293)

Minimum
GetValue Type GetCommand Value Description Sec. Attribute
MAX_TEXTURE_ARRAY LAYERS EXT Z+ Getintegerv 64 maximumnumberof 381 -
layers for texture
arays
Modifications to The OpenGL Shading Language Specif ication, Version 1.10.59
(This section describes additions to GLSL to al low shaders to access array
textures. This is a subset of the new shading language provided by the
EXT_gpu_shader4 extension, limited to array te xture support. Itis
provided here in case implementations choose t 0 support EXT_texture_array
without supporting EXT_gpu_shader4 or equivale nt functionality.
Note that if the EXT_gpu_shader4 extension is enabled in a shader via an
"#extension" line, there is no need to separat ely enable
EXT _texture_array.)
Including the following line in a shader can be used to control the

language features described in this extension:
#extension GL_EXT _texture_array : <behavior>

where <behavior> is as specified in section 3.3

NVIDIA Proprietary 160

EXT_texture_array

A new preprocessor #define is added to the Open
#define GL_EXT _texture_array 1

Add to section 3.6 "Keywords"

The following new sampler types are added:

samplerlDArray, sampler2DArray, samplerlDArra
sampler2DArrayShadow

Add to section 4.1 "Basic Types"
Add the following entries to the type table:

samplerlDArray handle for accessing a

sampler2DArray handle for accessing a

samplerlDArrayShadow handle for accessing a
with comparison

sampler2DArrayShadow handle for accessing a
with comparison

Add to section 8.7 "Texture Lookup Functions"
Add new functions to the set of allowed texture
Syntax:

vecd texturelDArray(samplerlDArray sampler, v
[, float bias])
vecd texturelDArrayLod(samplerlDArray sampler
float lod)

Description:

Use the first element (coord.s) of texture coor
texture lookup in the layer indicated by the se
the 1D texture array currently bound to sampler
computed by layer = max (0, min(d - 1, floor (c
the depth of the texture array.

Syntax:

vecd texture2DArray(sampler2DArray sampler, v
[, float bias])
vecd texture2DArrayLod(sampler2DArray sampler
float lod)
Description:

Use the first two elements (coord.s, coord.t) o
to do a texture lookup in the layer indicated b
coord.p of the 2D texture array currently bound
access is computed by layer = max (0, min(d - 1
where 'd' is the depth of the texture array.

161

OpenGL Extension Specifications for GeForce 8 Series

GL Shading Language:

yShadow,

1D array texture
2D array texture
1D array depth texture

2D array depth texture

lookup functions:

ec2 coord

, vec2 coord,

dinate coord to do a

cond coordinate coord.t of
. The layer to access is
oord.t + 0.5)) where 'd' is

ec3 coord

, vec3 coord,

f texture coordinate coord
y the third coordinate

to sampler. The layer to

, floor (coord.p + 0.5))

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Syntax:

vec4 shadowlDArray(samplerlDArrayShadow sampl

[float bias])

vec4 shadowlDArrayLod(samplerlDArrayShadow sa

vec3 coord, float lod)
Description:

Use texture coordinate coord.s to do a depth co
layer of the depth texture bound to sampler, as
3.8.14 of version 2.0 of the OpenGL specificati
indicated by the second coordinate coord.t and
(0, min(d - 1, floor (coord.t + 0.5)) where 'd’
texture array. The third component of coord (co
value. The texture bound to sampler must be a d
are undefined.

Syntax:

vec4 shadow2DArray(sampler2DArrayShadow sampl

Description:

Use texture coordinate (coord.s, coord.t) to do
on an array layer of the depth texture bound to
section 3.8.14 of version 2.0 of the OpenGL spe
access is indicated by the third coordinate coo
layer = max (0, min(d - 1, floor (coord.p + 0.5

of the texture array. The fourth component of ¢
the R value. The texture bound to sampler must
results are undefined.

Issues

(1) Should this extension generalize the notion
be arrays of 1D or 2D images, or simply int

RESOLVED: Introduce new targets.

It would have been possible to simply extend
textures, and allow applications to pass TEXT
arrays) or TEXTURE_2D to Texlmage3D (2D array
avoided introducing a new set of texture targ

and a "default texture" (object zero) for eac

It is desirable to have a distinction between
textures in programmable shaders, so compiler
appropriate to the texture type. For "normal
requires two component texture coordinates, w
requires three. Without a distinction betwee
textures, implementations must choose between
most general form (2D arrays) or recompiling
usage. Texture lookups with shadow mapping,
have additional complexity, and the interpret
vector may need to depend on whether the text
non-array texture.

NVIDIA Proprietary 162

EXT_texture_array

er, vec3 coord,

mpler,

mparison lookup on an array
described in section

on. The layer to access is

is computed by layer = max
is the depth of the

ord.p) is used as the R

epth texture, or results

er, vec4 coord)

a depth comparison lookup
sampler, as described in
cification. The layer to

rd.p and is computed by

)) where 'd' is the depth
oord (coord.q) is used as
be a depth texture, or

of 1D and 2D textures to
roduce new targets?

the notion of 1D and 2D
URE_1D to TexImage2D (1D
s). This would have

ets (and proxy targets),

h new target.

array and non-array

S can generate code

" textures, a 2D texture

hile a 2D array texture

n array and non-array
compiling shaders to the
shaders based on texture
LOD bias, or per-pixel LOD
ation of a coordinate

ure was an array or

EXT_texture_array

It would be possible to limit the distinction
non-array textures to the shaders, but it cou
responsibility of the application developer t
with multiple layers is used when an "array |
that a single-layer texture is used when a "n
performed. That begs the question of what th
"array texture" and a "non-array texture" is.
distinctions have been identified: one vs. m
call used to specify the texture (Texlmage3D
texture, Teximage2D == non-array texture). T
for the possibility of single-layer array tex
that application developers want to use a gen
array textures, but there may be cases where
be provided. The latter approach allows for
textures, but the distinction is now based on

Adding separate targets eliminates the need f

"Array lookups" refer to the TEXTURE_1D_ARRAY
TEXTURE_2D_ARRAY_EXT targets; "non-array look
TEXTURE_2D. There is never a case where the

be used, as TEXTURE_1D_ARRAY_EXT and TEXTURE_

always arrays by definition.

This distinction should also be helpful if an
fragment processing is supported; the enabled
generate an internal fragment shader using th
There would be no need to recompile shaders d
enabled texture is an "array texture" or not.

(2) Should texture arrays be supported for fixe
processing?

RESOLVED: No; it's not believed to be worth
fragment processing could be easily supported
to enable or disable TEXTURE_1D_ARRAY_EXT or

Note that for fixed-function fragment process
with texture lookups of two-dimensional array
mapping. Given that all texture lookups are
coordinate components would be required (s, t

(3) If fixed-function were supported, should th
divided by Q in projective texture lookups?

RESOLVED: It doesn't need to be resolved in
would be a problem. There are probably cases
want the divide (handle R more-or-less like S
other cases where the divide would not be wan
care, and may not even know what the Q coordi
default of 1.0 allows applications that don't
lookups to simply ignore that fact.

For programmable fragment shading, an applica
and use non-projective lookups. To the exten
projective lookups is "free" or "cheap" on Op
may be able to recognize a projective pattern
coordinates and generate code appropriately.

163

OpenGL Extension Specifications for GeForce 8 Series

between array and

Id then become the

o0 ensure that a texture

ookup" is performed, and

on-array lookup" is

e distinction between an
At least two possible

ultiple layers, or the API

with TEXTURE_2D == array

he former does not allow

tures; it may be the case

eral shader supporting

only a single layer might

single-layer array

the API call.

or such a distinction.

_EXTor

ups" refer to TEXTURE_1D or
wrong kind of texture can
2D_ARRAY_EXT textures are

d when fixed-function

texture target is used to
e proper "array lookup".
epending on whether an

d-function fragment

the effort. Fixed-function
by allowing applications
TEXTURE_2D_ARRAY_EXT.

ing, there would be issues
textures with shadow
projective, a total of five

, layer, depth, q).

e layer number (T or R) be

this extension, but it

where an application would
IT); there are probably

ted. Many developers won't
nate is used for! The

care about projective

tion can code it either way
t that the divide by Q for
enGL hardware, compilers
in the computed

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

(4) Should DEPTH_COMPONENT textures be supporte
RESOLVED: Yes; multi-layer shadow maps are u

(5) How should shadow mapping in texture arrays
shaders, and fixed-function shaders (if eve

RESOLVED: The layer number is in the "next"
normal 1D or 2D coordinate. That's the "t" ¢
the "r" coordinate for 2D arrays. For shadow
as the "r" coordinate is generally used as th
This is resolved by instead taking the depth

g" coordinate.

For some programmable texture lookups (explic
projective), "too many" coordinates are requi
possible with four-component vectors; it woul
parameters to perform such operations.

For fixed-function shading, it is recommended
lookups in two-dimensional array textures be
even though all other lookups would be projec

g" coordinate should be used for the depth r
case.

(6) How do texture borders interact with array

RESOLVED: Each individual layer of an array
as though it were a normal one- or two-dimens
there are no "border layers".

(7) How does mipmapping work with array texture

RESOLVED: Level <N+1> is half the size of le
height, but the number of layers is always th
layer <M> of level <N+1> is expected to be a
<M> of the higher mipmap levels. This behavi
consistency rules for array textures.

(8) Are compressed textures supported for array

RESOLVED: Yes; they may be loaded via normal
CompressedTexlmage2D and CompressedTexlmage3D
textures are treated as arrays of compressed

(9) Should these things be called "array textur

RESOLVED: "Array textures", mostly because i
Calling them "array textures" also seems like
there are several different things that can b
arrays":

* the array of texture levels (mipmapping)

* the array of texture layers (array textur
* the array of texels in each image

NVIDIA Proprietary 164

EXT_texture_array

d for texture arrays?
seful.

work with programmable
r supported)?

coordinate following the
oordinate for 1D arrays and
maps, this is a problem,
e depth reference value.
reference value from the

it LOD, LOD bias,
red. Such lookups are not
d require at least two

that shadow mapping
treated as non-projective,
tive. Additionally, the
eference value in this

textures?

texture can have a border,
ional texture. However,

s?

vel <N> in width and/or
e same for each level --
filtered version of layer
or impacts the texture

textures?

Texlmage APIs, as well as
. Compressed array

1D or 2D images.

es" or "texture arrays"?

t was easier spec wording.

better disambiguation;
e thought of as "texture

es)

EXT_texture_array

This spec changes the use of "texture array”
(which means the array of texels) to instead

(10) If they're called "array textures", why do
include "texture_array"?

RESOLVED: Because this is primarily a textur
extensions start with "texture".

(11) Should new functions be provided for loadi
textures?

RESOLVED: No. Existing Texlmage2D (1D array
arrays), plus corresponding TexSublmage, Copy
CopyTexSubimage calls are sufficient.

(12) should ARB_imaging functionality to be ext
two-dimensional array textures?

RESOLVED: No. Convolution is rarely used wh
defined, and is even less likely for array te
addressed via a separate extension if the nee
operations could be defined for 3D textures a

Note that with the API chosen, one-dimensiona
convolution applied (if enabled), because ima
normal two-dimensional image.

(13) What if an application wants to populate a
separate mipmap chains a layer at a time r
layers of a given mipmap level at once?

RESOLVED: For 2D array textures, call Texima
pointer for each level to establish the texel
TexSublmage3D for each layer/mipmap level to

(14) Should we provide a way to query a single

RESOLVED: No; we don't expect this to be an
GetTexlmage() will return a two- or three-dim
two-dimensional arrays, including all levels.

as an important need, a follow-on extension c
future.

(15) How is the LOD (lambda) computed for array
RESOLVED: LOD is computed in the same manner
textures as it is for normal 1D and 2D textur
has no effect on LOD computations.

(16) What's the deal with this new "COMPARE_REF
RESOLVED: It's a new name for the existing e
"COMPARE_R_TO_TEXTURE". This alternate name

fact that it's not always the R coordinate th
comparisons.

165

OpenGL Extension Specifications for GeForce 8 Series

in the core specification
refer to "texel array".

es the extension name

e extension, and all such

ng or modifying array

s) and Teximage3D (2D
Texlmage, and

ended to support

en texture images are

ture images. This could be
d were identified, and such
s well at that time.

| array textures do have

ge data is treated as a

n array texture using
ather than specifying all

ge3D once with a NULL image
array sizes. Then, call
define individual images.

layer of an array texture?
issue in practice.
ensional image for one- and
If this were identified
ould be added in the
textures?
for 1D and 2D array
es. The layer coordinate
_DEPTH_TO_TEXTURE_EXT"?
numerant

is provided to reflect the
at is used for depth

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

(17) How do array textures work with framebuffe
(EXT_framebuffer_object extension, also kn

RESOLVED: A new function, FramebufferTexture
attach a single layer of a one- or two-dimens
framebuffer attachment point. That new funct
attach a layer of a three-dimensional texture

In addition to supporting FBO attachments, th
support provided by glGenerateMipmapEXT is ex
Mipmap generation applies to each layer of th
independently, as is the case with the GENERA
parameter.

This support provided here a limited subset o
NV_geometry program4, which additionally prov
an entire level of a three-dimensional, cube
When such attachments are performed, a geomet
select a layer to render each emitted primiti

(18) Should array texture targets be supported
buffers"?

RESOLVED: No. These are inherently two-dime

(19) Should we provide a mipmap generation func
for only a single layer of an array textur

RESOLVED: Not in this extension. We conside
end of the development of this extension, but
because this mipmap generation function would
requirements from the GenerateMipmapEXT funct
EXT_framebuffer_object.

The existing GenerateMipmapEXT function repla
below the base level with generated mipmaps.
unpopulated or inconsistent with the base lev
overwritten with a generated image that is co
level. If we were to provide a function to g

single layer, all other layers of non-base le
preserved. However, since there are not sepa
level, this form of mipmap generation would r
levels be present and consistent with the bas
generation wouldn't work.

We expect that future revisions of the GL wil
of mipmapped textures in

(20) This extension allows the use of S3TC text

Texlmage3D and CompressedTexlmage3D. Does

now supported for 3D textures?

RESOLVED: No. With this extension alone, Te
CompressedTexlmage3D only support S3TC compre

of TEXTURE_2D_ARRAY_EXT. The S3TC tokens wer

internal formats supported by TexImage3D and

NVIDIA Proprietary 166

EXT_texture_array

r objects
own as "FBO")?

LayerEXT(), is provided to
ional array texture to an
ion can also be used to

e manual mipmap generation
tended to array textures.

e array texture
TE_MIPMAPS texture

f the FBO support added by
ides the ability to attach
map, or array texture.

ry program can be used to
ve to.

for creation of "render

nsional images.

tion to generate mipmaps
e?

red adding this toward the
decided not to add it
have very different

ion provided by

ces all levels of detall

If those mipmap levels are
el, they are completely
nsistent with the base
enerate mipmaps for only a
vels would need to be

rate formats or sizes per
equire that all non-base

e level, or mipmap

| change the specification

ure internal formats in
this mean that they are

xImage3D and

ssed formats with a target
e added to the list of
friends because

EXT_texture_array

two-dimensional array textures are specified
TexIlmage functions.

The existing extension NV_texture_compression
for S3TC-style compressed 3D textures.

Revision History

Rev. Date Author Changes
6 02/04/08 pbrown Added a missing inter
compression spec allo
2D array textures alo
previously inherited
4x4x4).

5 12/15/06 pbrown Documented thatthe'
for this extension sh
as apparently called

4 -- Pre-release revisions

OpenGL Extension Specifications for GeForce 8 Series

167

using the three-dimensional

_vtc does provides support

action with the VTC texture
wing updates of compressed
ng 4x4x1 boundaries (we
the VTC restriction of

#extension' token
ould begin with "GL_",
for per convention.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Name
EXT_texture_buffer_object
Name Strings
GL_EXT _texture_buffer_object
Contact
Pat Brown, NVIDIA Corporation (pbrown 'at' nvid
Status

Shipping for GeForce 8 Series (November 2006, R

Version
Last Modified Date: 10/30/2007
NVIDIA Revision: 4

Number
330

Dependencies
OpenGL 2.0 is required.
NV_gpu_program4 is required.
This extension is written against the OpenGL 2.
This extension depends trivially on EXT_texture
This extension depends trivially on NV_texture
This extension depends trivially on EXT_texture
This extension depends trivially on ARB_texture
This extension depends trivially on ARB_half fl
Overview
This extension provides a new texture type, cal
Buffer textures are one-dimensional arrays of t
from an attached buffer object. When a buffer
texture, a format is specified, and the data in
treated as an array of texels of the specified
The use of a buffer object to provide storage a
be specified in a number of different ways: vi
(BufferData), direct CPU writes (MapBuffer), fr
(EXT_pixel_buffer_object extension). A buffer

by transform feedback (NV_transform_feedback ex
selected transformed attributes of vertices pro

NVIDIA Proprietary 168

EXT_texture_buffer_object

ia.com)

elease 95)

0 specification.
_array.
shader.
_integer.
_float.

oat_pixel.

led a buffer texture.

exels whose storage comes
object is bound to a buffer
the buffer object is

format.

llows the texture data to

a buffer object loads
amebuffer readbacks
object can also be loaded
tension), which captures
cessed by the GL. Several

EXT_texture_buffer_object

of these mechanisms do not require an extra dat
required when using conventional Texlmage-like

Buffer textures do not support mipmapping, text
floating-point texture coordinates, and texture

may not be used in fixed-function fragment proc
accessed via single texel fetch operations in p
assembly shaders (NV_gpu_program4), the TXF ins
GLSL, a new sampler type and texel fetch functi

While buffer textures can be substantially larg
one-dimensional textures; the maximum texture s
textures in the initial implementation of this
versus 213 (8192) texels for otherwise equival
textures. When a buffer object is attached to

not specified; rather, the number of texels in
dividing the size of the buffer object by the s

New Procedures and Functions
void TexBufferEXT(enum target, enum internalfor
New Tokens

Accepted by the <target> parameter of BindBuffe
BufferSubData, MapBuffer, BindTexture, UnmapBuf
GetBufferParameteriv, GetBufferPointerv, and Te
the <pname> parameter of GetBooleanv, GetDouble
Getintegerv:

TEXTURE_BUFFER_EXT

Accepted by the <pname> parameters of GetBoolea
GetFloatv, and Getintegerv:

MAX_TEXTURE_BUFFER_SIZE_EXT
TEXTURE_BINDING_BUFFER_EXT
TEXTURE_BUFFER_DATA_STORE_BINDING_EXT
TEXTURE_BUFFER_FORMAT_EXT

Additions to Chapter 2 of the OpenGL 2.0 Specificat
None.
Additions to Chapter 3 of the OpenGL 2.0 Specificat

(Insert new Section 3.8.4, Buffer Textures. Re
sections.)

In addition to one-, two-, and three-dimensiona
described in previous sections, one additional
supported. A buffer texture is similar to a on
However, unlike other texture types, the texel
of the texture. Instead, a buffer object is at
and the texel array is taken from the data stor
object. When the contents of a buffer object's
those changes are reflected in the contents of

169

OpenGL Extension Specifications for GeForce 8 Series

a copy, which would be
entry points.

ure lookups with normalized
filtering of any sort, and
essing. They can be
rogrammable shaders. For
truction is used. For

on are used.

er than equivalent

ize supported for buffer
extension is 227 texels,
ent one-dimensional

a buffer texture, a size is
the texture is taken by
ize of each texel.

mat, uint buffer);

r, BufferData,

fer, GetBufferSubData,
xBufferEXT, and

v, GetFloatv, and

0x8C2A

nv, GetDoublev,

0x8C2B
0x8C2C
0x8C2D
0x8C2E

ion (OpenGL Operation)

ion (Rasterization)

number subsequent

| and cube map textures
type of texture is
e-dimensional texture.
array is not stored as part
tached to a buffer texture
e of an attached buffer
data store are modified,
any buffer texture to which

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

the buffer object is attached. Also unlike oth
textures do not have multiple image levels; onl
available.

The command
void TexBufferEXT(enum target, enum internalf

attaches the storage for the buffer object name
buffer texture, and specifies an internal forma

in the attached buffer object. If <buffer> is
attached to the buffer texture is detached, and
attached. If <buffer> is non-zero, but is not

buffer object, the error INVALID_OPERATION is g

TEXTURE_BUFFER_EXT. <internalformat> specifies

must be one of the sized internal formats found

When a buffer object is attached to a buffer te
data store is taken as the texture's texel arra
the buffer texture's texel array is given by

floor(<buffer_size> / (<components> * sizeof(

where <buffer_size> is the size of the buffer o
units and <components> and <base_type> are the
type for elements, as specified in Table X.1.

texel array is then clamped to the implementati

MAX_TEXTURE_BUFFER_SIZE_EXT. When a buffer tex

shader, the results of a texel fetch are undefi
number is greater than or equal to the clamped
texel array.

When a buffer texture is accessed in a shader,
indicate the texel number being accessed. If n
the buffer texture, the results of the texel ac
Otherwise, the attached buffer object's data st
array of elements of the GL data type correspon
Each texel consists of one to four elements tha
components (R, G, B, A, L, and I). Element <m>
is taken from element <n> * <components> + <m>
object's data store. Elements and texels are b
zero. For texture formats with normalized comp
values are converted to floating-point values a
components of the texture are then converted to
according to Table X.21, and returned to the sh
result vector with components of the appropriat
texture's internal format. The base data type,
normalized component information, and mapping o
texture components is specified in Table X.1.

NVIDIA Proprietary 170

EXT_texture_buffer_object

er textures, buffer
y a single data store is

ormat, uint buffer);

d <buffer> to the active

t for the texel array found
zero, any buffer object

no new buffer object is

the name of an existing
enerated. <target> must be
the storage format, and

in Table X.1.

xture, the buffer object's
y. The number of texels in

<base_type>)),

bject, in basic machine
element count and base data
The number of texels in the
on-dependent limit

ture is accessed in a

ned if the specified texel
number of texels in the

an integer is provided to

o buffer object is bound to
cess are undefined.

ore is interpreted as an
ding to <internalformat>.

t are mapped to texture

of the texel numbered <n>
of the attached buffer

oth numbered starting with
onents, the extracted
ccording to Table 2.9. The
an (R,G,B,A) vector

ader as a four-component
e data type for the
component count,

f data store elements to

EXT_texture_buffer_object OpenGL Extension Specifications for GeForce 8 Series

Component
Sized Internal Format Base Type Componen ts Norm 0123
ALPHAS ubyte 1 Y A..
ALPHA16 ushort 1 Y A..
ALPHA16F_ARB half 1 N A..
ALPHA32F_ARB float 1 N A..
ALPHASI_EXT byte 1 N A..
ALPHAL6l_EXT short 1 N A..
ALPHA32I_EXT int 1 N A..
ALPHAS8UI_EXT ubyte 1 N A..
ALPHA16UI_EXT ushort 1 N A..
ALPHA32UI_EXT uint 1 N A..
LUMINANCES ubyte 1 Y L..
LUMINANCE16 ushort 1 Y L..
LUMINANCE16F_ARB half 1 N L..
LUMINANCE32F_ARB float 1 N L..
LUMINANCESI_EXT byte 1 N L..
LUMINANCE16I_EXT short 1 N L..
LUMINANCE32I_EXT int 1 N L..
LUMINANCESUI_EXT ubyte 1 N L..
LUMINANCE16UI_EXT ushort 1 N L..
LUMINANCE32UI_EXT uint 1 N L.
LUMINANCES_ALPHAS ubyte 2 Y LA..
LUMINANCE16_ALPHA16 ushort 2 Y LA..
LUMINANCE_ALPHA16F_ARB half 2 N LA..
LUMINANCE_ALPHA32F_ARB float 2 N LA..
LUMINANCE_ALPHAS8I_EXT byte 2 N LA..
LUMINANCE_ALPHA16I_EXT short 2 N LA..
LUMINANCE_ALPHA32I_EXT int 2 N LA..
LUMINANCE_ALPHAS8UI_EXT ubyte 2 N LA..
LUMINANCE_ALPHA16UI_EXT ushort 2 N LA..
LUMINANCE_ALPHA32UI_EXT uint 2 N LA..
INTENSITYS8 ubyte 1 Y |..
INTENSITY16 ushort 1 Y |I..
INTENSITY16F_ARB half 1 N I...
INTENSITY32F_ARB float 1 N ...
INTENSITYS8I_EXT byte 1 N I...
INTENSITY16l_EXT short 1 N A..
INTENSITY32I_EXT int 1 N A..
INTENSITY8UI_EXT ubyte 1 N A..
INTENSITY16UI_EXT ushort 1 N A.
INTENSITY32UI_EXT uint 1 N A.
RGBAS8 ubyte 4 Y RGBA
RGBA16 ushort 4 Y RGBA
RGBA16F_ARB half 4 N RGBA
RGBA32F_ARB float 4 N RGBA
RGBASI_EXT byte 4 N RGBA
RGBA16I_EXT short 4 N RGBA
RGBA32I_EXT int 4 N RGBA
RGBASUI_EXT ubyte 4 N RGBA
RGBA16UI_EXT ushort 4 N RGBA
RGBA32UI_EXT uint 4 N RGBA

Table X.1, Internal Formats for Buffer Textures. For each fo rmat, the

data type of each element is indicated in the "Base Type" column and the
element count is in the "Components" column. The "Norm" column
indicates whether components should be treate d as normalized
floating-point values. The "Component 0, 1, 2, and 3" columns indicate
the mapping of each element of a texel to tex ture components.

171 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

In addition to attaching buffer objects to text

bound to the buffer object target named TEXTURE
specify, modify, or read the buffer object's da

object bound to TEXTURE_BUFFER_EXT has no effec
object is bound to TEXTURE_BUFFER_EXT by callin
set to TEXTURE_BUFFER_EXT. If no corresponding
is initialized as defined in section 2.9.

The commands BufferData, BufferSubData, MapBuff
be used with <target> set to TEXTURE_BUFFER_EXT
commands operate in the same fashion as describ

the buffer currently bound to the TEXTURE_BUFFE

Modify Section 3.8.11, Texture State and Proxy

(insert into the first paragraph of the section
compressed size, and zero-sized components). T
contains an integer identifying the buffer obje
provided the data store for the texture, initia
identifying the internal format of the texture,

Next, there are the two sets of texture propert

Modify Section 3.8.12, Texture Objects (p. 180)

(modify first paragraphs of section, p. 180, si
buffer textures, which are treated as texture

In addition to the default textures TEXTURE_1D,

TEXTURE_CUBE_MAP, and TEXTURE_BUFFER_EXT, named

three-dimensional, cube map, and buffer texture
operated upon. The name space for texture objec
integers, with zero reserved by the GL.

A texture object is created by binding an unuse

TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, or TE

binding is effected by calling
void BindTexture(enum target, uint texture)

with target set to the desired texture target a
unused name. The resulting texture object is a
comprising all the state values listed in secti
initial values. If the new texture object is bo

TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, or TE

remains a one-, two-, three-dimensional, cube m
respectively until it is deleted.

BindTexture may also be used to bind an existin

TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_CUB
TEXTURE_BUFFER_EXT. The error INVALID_OPERATION

is made to bind a texture object of different d
specified target. If the bind is successful no
of the bound texture object, and any previous b

NVIDIA Proprietary 172

EXT_texture_buffer_object

ures, buffer objects can be
_BUFFER_EXT, in order to
ta store. The buffer

t on rendering. A buffer

g BindBuffer with <target>

buffer object exists, one

er, and UnmapBuffer may all
. In this case, these

ed in section 2.9, but on
R_EXT target.

State (p. 178)

, p. 178) ... a zero

he buffer texture target
ct that buffer that

lly zero, and an integer
initially LUMINANCES.
ies; ...

mply adding references to
objects)

TEXTURE_2D, TEXTURE_3D,
one-, two-, and

objects can be created and

ts is the unsigned

d name to TEXTURE_1D,
XTURE_BUFFER_EXT. The

nd texture set to the

new state vector,

on 3.8.11, set to the same

und to TEXTURE_1D,
XTURE_BUFFER_EXT, itis and
ap, or buffer texture

g texture object to either
E_MAP, or

is generated if an attempt
imensionality than the
change is made to the state
inding to target is broken.

EXT_texture_buffer_object

OpenGL Extension Specifications for GeForce 8 Series

In the initial state, TEXTURE_1D, TEXTURE_2D, T

TEXTURE_CUBE_MAP, and TEXTURE_BUFFER_EXT have o
three-dimensional, cube map, and buffer texture

associated with them. In order that access to t

be lost, they are treated as texture objects al

initial one-, two-, three-dimensional, cube map

therefore operated upon, queried, and applied a

TEXTURE_3D, TEXTURE_CUBE_MAP, or TEXTURE_BUFFER

is bound to the corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures

textures contains n names of texture objects to

texture object is deleted, it has no contents o

name is again unused. If a texture that is curr

targets TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEX

TEXTURE_BUFFER_EXT is deleted, it is as though

executed with the same target and texture zero.
are silently ignored, as is the value zero.

(modify second paragraph, p. 182, adding buffer
textures, which is an oversight in the core spe

The texture object name space, including the in
three-dimensional, cube map, and buffer texture
all texture units. A texture object may be boun
unit simultaneously. After a texture object is
that target object affect any other texture uni

texture object is bound.

Additions to Chapter 4 of the OpenGL 2.0 Specificat

Operations and the Frame Buffer)

None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat
Modify Section 5.4, Display Lists (p. 237)

(modify "Vertex buffer objects" portion of the

commands, p. 241)

Buffer objects: GenBuffers, DeleteBuffers, Bi
BufferSubData, MapBuffer, UnmapBuffer, and Te

Additions to Chapter 6 of the OpenGL 2.0 Specificat

State Requests)

Modify Section 6.1.13, Buffer Object Queries (p
(modify the first paragraph on p. 256) The comm

void GetBufferSubData(enum target, intptr of

sizeiptr size, void *d

173

EXTURE_3D,

ne-, two-,

state vectors respectively

hese initial textures not

| of whose names are 0. The

, and buffer texture is

s TEXTURE_1D, TEXTURE_2D,
_EXT respectively while 0

)i

be deleted. After a

r dimensionality, and its
ently bound to one of the
TURE_CUBE_MAP, or

BindTexture had been
Unused names in textures

textures, plus cube map
cification)

itial one-, two-, and
objects, is shared among
d to more than one texture

bound, any GL operations on
ts to which the same

ion (Per-Fragment

ion (Special Functions)

list of non-listable

ndBuffer, BufferData,
xBufferEXT.

ion (State and

. 255)
and

fset,
ata);

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

queries the data contents of a buffer object. t

ELEMENT_ARRAY_BUFFER, or TEXTURE_BUFFER_EXT. ..

(modify the last paragraph of the section, p. 2
a buffer object is mapped, the pointer to the d
calling

void GetBufferPointerv(enum target, enum pna

with target set to ARRAY_BUFFER, ELEMENT_ARRAY_
TEXTURE_BUFFER_EXT, and pname set to BUFFER MAP

Additions to Appendix A of the OpenGL 2.0 Specifica
None.
Additions to the AGL/GLX/WGL Specifications
None.
Dependencies on EXT_texture_array
If EXT_texture_array is supported, the introduc
buffer textures should acknowledge the existenc
than that, there are no dependencies between th
Dependencies on NV_texture_shader
If NV_texture_shader is not supported, referenc
internal formats provided by that extension sho
formats may not be passed to TexBufferEXT.
Dependencies on EXT_texture_integer
If EXT_texture_integer is not supported, refere
unsigned integer internal formats provided by t
removed, and such formats may not be passed to
Dependencies on ARB_texture_float
If ARB_texture_float is not supported, referenc
internal formats provided by that extension sho
formats may not be passed to TexBufferEXT.
Dependencies on ARB_half float pixel
If ARB_texture_float is not supported, referenc
floating-point internal formats provided by ARB
removed, and such formats may not be passed to
implementation supports ARB_texture_float, but
ARB_half_float_pixel, 16-bit floating-point tex
available using normal texture mechanisms, but

Errors

INVALID_OPERATION is generated by TexBufferEXT
is not the name of an existing buffer object.

NVIDIA Proprietary 174

EXT_texture_buffer_object

arget is ARRAY_BUFFER,

56) While the data store of
ata store can be queried by

me, void **params);

BUFFER, or
POINTER.

tion (Invariance)

tory language describing
e of array textures. Other
e two extensions.

es to the signed normalized
uld be removed, and such

nces to the signed and
hat extension should be
TexBufferEXT.

es to the floating-point
uld be removed, and such

es to the 16-bit
_texture_float should be
TexBufferEXT. If an
does not support

ture formats may be

not with buffer textures.

if <buffer> is non-zero and

EXT_texture_buffer_object OpenGL Extension Specifications for GeForce 8 Series

New State
(add to table 6.15, Texture State Per Texture U nit/Binding Point p. 276)
Inital
GetVaue Type Get Command Value Description Sec. Attrbute
TEXTURE BINDING BUFFER EXT ~ 2%Z+ Get Integerv O Textureobjectboundto 3812 texture
TEXTURE_BUFFER EXT
(add to table 6.16, Texture State Per Texture O bject, p. 276)
Inital
GetValue Type Get Command Value Description Sec. Attrboute
TEXTURE BUFFER DATA STORE . nxZ+ Get Integerv O Bufferobjectboundas 3812 texture
BINDING_EXT the data store forthe
activeimage units buffer
texture
TEXTURE BUFFER FORMAT EXT rxZ+ Get Integerv LUMIN- Intemal formetforthe - 38.12 texture
ANCESB adtiveimage units buffer
texture
(add to table 6.37, Miscellaneous State, p. 298)
Inital
GetVaue Type Get Command Value Description Sec. Attrbute
TEXTURE BUFFER EXT 7+ Get Integerv O Bufferobjectboundto 3812 texture
the generic buffer texture
binding point
New Implementation Dependent State
(modify Table 6.32, p. 293)
Minimum
GetValue Type GetCommand Value Description Sec. Attribute
MAX TEXTURE BUFFER SIZE EXT Z+ Getintegerv 65536 number ofaddressable 384 -
texels for buffer
textures
Issues
(1) Buffer textures are potentially large one-d imensional arrays that can
be accessed with single-texel fetches. How should this functionality
be exposed?
RESOLVED: Several options were considered. The final approach creates
a new type of texture object, called a buffer texture, whose texel array
is taken from the data store from a buffer ob ject. The combined set of
extensions using buffer objects provides nume rous locations where the GL
can read and write data to a buffer object:
EXT_vertex_buffer_object allows vertex attr ibutes to be pulled from a
buffer object.
EXT_pixel_buffer_object allows pixel operat ions (DrawPixels,
ReadPixels, Texlmage) to read or write data to a buffer object.

175 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

EXT_parameter_buffer_object and EXT_bindabl
vertex, fragment, and geometry programs, an
program parameter / uniform data from a buf

EXT_texture_buffer_object allows programs t
buffer object.

NV _transform_feedback allows programs to wr
attributes to a buffer object.

When combined, interesting feedback paths are
arrays of data can be generated by the GPU an
multi-pass algorithms, using the buffer objec
intermediate data. This allows applications
algorithms on the GPU without necessarily pul
for additional processing.

Given that buffer object memory is visible to

uses of the memory must have well-defined dat
PBO, those formats are explicitly given by ca
Texlmage2D, or ReadPixels. When used as a bu
necessary to specify an internal format with
buffer object's data store are interpreted.

Another option considered was to greatly incr
size for 1D texture. This has the advantage
mechanisms. However, there are a couple limi
First, conventional textures have their own s
accessible elsewhere, which limits some of th
described above. Second, buffer textures do
hardware implementations than 1D textures. |
"normal” 1D textures can be mipmapped and fil
size that is considerably smaller than that s
textures. If both texture types used the sam

be necessary to reprogram texture hardware an
the size of the textures used. This will inc
determine if such reprogramming is necessary
reprogramming if so.

(2) Since buffer textures borrow storage from b
storage is visible to applications, a forma
bytes of the buffer object. What texture f
buffer objects?

RESOLVED: All sized one-, two-, and four-com
with 8-, 16-, and 32-bit components are suppo
formats, and sized formats with other compone
supported. Three-component (RGB) formats are
hardware limitations.

All component data types supported for normal
supported for buffer textures. This includes
components (e.g., RGBABS), floating-point comp
ARB_texture_float (e.g., RGBA32F_ARB), signed
components from EXT _texture_integer (e.g., RG

NVIDIA Proprietary 176

EXT_texture_buffer_object

e_uniform allows assembly
d all GLSL shaders to read
fer object.

o read texture data from a

ite transformed vertex

possible, where large

d the consumed by it in

t's storage to hold

to run complicated

ling data back to host CPU

users as raw memory, all
a formats. For VBO and
lls such as VertexPointer,
ffer texture, it is

which the bytes of the

ease the maximum texture
of not requiring new
tations of this approach.
torage that is not

e sharing opportunities
have slightly different

n the hardware of interest,
tered, but have a maximum
upported for buffer

e APl mechanism, it might
d/or shaders depending on
ur CPU overhead to

and to perform the

uffer objects, whose
t must be imposed on the
ormats are supported for

ponent internal formats
rted. Unsized internal
nt sizes are also not
not supported due to

textures are also
unsigned [0,1] normalized
onents from

and unsigned integer

BASI_EXT, RGBA16UI_EXT),

EXT_texture_buffer_object

and signed [-1,+1] normalized components from
SIGNED_RGBA8_NV).

(3) How can arrays of three-component vectors b
RESOLVED: Several approaches are possible.

First, the vectors can be padded out to four
extra unused component for each texel. This
properties: it adds 33% to the required stor
component may require reformatting of origina
application. However, the data in this forma
single 32-, 64-, or 128-bit lookup.

Alternately, the buffer texture can be define
and a shader can perform three lookups to sep
3*N+1, and 3*N+2, combining the resultin a t
representing "RGB" texel N. This doesn't req
reformatting and doesn't require additional b
fetches. But it does require additional shad
each texel.

(4) Does this extension support fixed-function
somehow allowing buffer textures to be acce
shaders?

RESOLVED: No. We expect that it would be di
a buffer texture and combine the returned tex
texture data, given the extremely limited pro
fixed-function fragment processing.

Note also that the single-precision floating-
commonly used by current graphics hardware is
to exactly represent all texels in a large bu

it is not possible to represent 2°24+1 using
floating-point representation.

(5) What happens if a buffer object is deleted
to a buffer texture?

RESOLVED: BufferData is allowed to be used to
has already been bound to a texture with TexB
is not guaranteed to affect the texture until
texture image unit. When DeleteBuffers is ca
bound to a texture is removed from the names

it is bound to a texture. The buffer is full
unbinds it or when the texture buffer object

(6) Should applications be able to modify the d
object while it is bound to a buffer textur

RESOLVED: An application is allowed to update
object when the buffer object is bound to a t

177

OpenGL Extension Specifications for GeForce 8 Series

NV _texture_shader (e.g.,

e accessed by applications?

components (RGBA), with an
has a couple undesirable
age and adding the extra

| data generated by the

t can be retrieved with a

d using a single component,
arately fetch texels 3*N,
hree-component vector

uire extra storage or
andwidth for texture

er instructions to obtain

fragment processing,
ssed without programmable

fficult to properly access
el with other color or
gramming model provided by

point representation

not sufficiently precise
ffer texture. For example,
the 32-bit IEEE

or respecified when bound

update a buffer object that
uffer. The update to the data
next time it is bound to a
lled, any buffer that is

array, but remains as long as
y removed when the texture
is deleted.

ata store of a buffer
e?

the data store for a buffer
exture.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

(7) Do buffer textures support texture paramete
gueries (GetTexParameter, GetTexLevelParame

RESOLVED: No. None of the existing paramete
textures, and this extension doesn't introduc
ones. Buffer textures have no levels, and th
implicit (based on the data store). Given th

are obtained from a buffer object, it seems m
such data with buffer object queries. The on
texture is the internal format, which is spec
buffer object is bound.

Note that the spec edits above don't add expl

of these cases. That is because each of the

of valid <target> parameters. Not editing th
TEXTURE_BUFFER_EXT in these cases means that
INVALID_ENUM error should be generated.

(8) What about indirect rendering with a mix of
clients? If components are 16- or 32-bit,

RESOLVED: Buffer object data are interpreted
representation of the server. If the server
endianness, applications must perform byte sw
the server's representation. No mechanism is
byte swapping on buffer object updates or whe

The same problem also exists when buffer obje

arrays (VBO). For buffer objects used for pi
(ARB_pixel_buffer_object), the PixelStore byt
(PACK_SWAP_BYTES, UNPACK_SWAP_BYTES) would pr
used to perform the necessary byte swapping.

(9) Should the set of formats supported for buf
or should the extension instead nominally s
accept only an implementation-dependent sub

RESOLVED: Provide a specified set of support
extension simply enumerates all 8-, 16-, and
with 1, 2, or 4 components, and specifies the
buffer object data to texture components. A

be done to support 3-component texels when be
support is available.

Other than 3-component texels, the set of for
compehensive. We expect that buffer textures
computational tasks, where there is little ne
components (e.g., RGBA4444). Such formats ar
natively on CPUs today. With the general com

by NV_gpu_program4 and EXT_gpu_shader4, it wo
such "packed" formats as larger single-compon
with a small number of shader instructions.

If and when double-precision floats or 64-bit

basic types usable by shaders, we would expec
add new texture internal formats with 64-bit

NVIDIA Proprietary 178

EXT_texture_buffer_object

rs (TexParameter) or
ter, GetTeximage)?

rs apply to buffer

e the need for any new

e size in texels is

at the texels themselves
ore appropriate to retrieve
ly "parameter" of a buffer
ified at the same time the

icit error language for any
functions enumerate the set
e spec to allow

target is not legal, and an

big- and little-endian
how are they interpreted?

according to the native
and client have different
apping as needed to match
provided to perform this

n texels are fetched.

cts are used for vertex

xel packing and unpacking

e swapping parameters
esumably apply and could be

fer textures be enumerated,
upport all formats, but
set?

ed formats. This

32-byte internal formats
mapping of unformatted
follow-on extension could
tter native hardware

mats supported seems pretty
would be used for general
ed for formats with smaller

e generally not supported
putational model provided
uld be possible to treat

ent formats and unpack them

integers are supported as
t that an extension would
components and that those

EXT_texture_buffer_object

formats would also be supported for general-p
textures as well.

(10) How are buffer textures supported in GLSL?

RESOLVED: Create a new sampler type (sampler
and add a new lookup function (texelFetchBuff
them using texture hardware.

Other possibilities considered included exten
uniforms to support uniforms whose correspond
bound to texture resources (e.g., "texture bi
"bindable uniform™). We also considered auto
bindable uniforms to texture or shader resour
that the restrictions, size limits, and perfo

buffer textures and parameter buffers (NV_par
differ. Automatic handling of uniforms adds
tend to hide performance characteristics sinc
resource would be used for what variable. Ad
require shader recompilation if the size of a
and the hardware resource used depended on th

In the end, the texture approach seemed the s
It might be worth doing something more comple

(11) What is the TEXTURE_BUFFER_EXT buffer obje

RESOLVED: It can be used for loading data in
mapping and unmapping buffers, both without d
points. Otherwise, it has no effect on GL op
objects are bound to textures using the TexBu
not affect the buffer object binding point.

Buffer object binding points have mixed usage
EXT_vertex_buffer_object extension (OpenGL 1.

points. The ELEMENT_ARRAY_BUFFER has a direc

it modifies DrawElements() calls. The effect
more indirect; it is only used to affect subs
(e.g., VertexPointer) and has no direct effec
for this is that the API was retrofitted on t
APIs. If a new vertex array APl were created
required the use of buffer objects, it seems
object would be included in the calls equival
VertexPointer() call.

(12) How is the various buffer texture-related

RESOLVED: There are three pieces of state th
texture object bound to buffer texture bindin
texture image unit, (b) the buffer object who
that texture object, and (c) the buffer objec
TEXTURE_BUFFER_EXT binding point.

All three are queried with Getintegerv, becau
trouble to add one or more new query function
(b), the texture queried is the one bound to
active texture image unit.

179

OpenGL Extension Specifications for GeForce 8 Series

urpose textures and buffer

Buffer) for buffer textures
er) to explicitly access

ding the notion of bindable
ing buffer objects can be
ndable uniform" instead of
matically assigning

ces as appropriate. Note
rmance characterstics of
ameter_buffer_object)
driver complexity and may
e itisn't clear what
ditionally, it could

uniform array is variable,
e size.

implest, and we chose that.
x in the future.

ct binding point good for?

to buffer objects, and for
isturbing other binding
erations, since buffer
fferEXT() command that does

. Inthe

5), there are two binding

t effect on rendering, as

of ARRAY_BUFFER is much
equent vertex array calls

t on rendering. The reason
op of existing vertex array
that emphasized or even
likely that the buffer

ent to today's

state queried?

at can be queried: (a) the
g point for the active

se data store was used by
t bound to the

se it didn't seem worth the
s. Note that for (a) and
TEXTURE_BUFFER_EXT on the

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

(13) Should we provide a new set of names for t
textures introduced in NV_texture_shader t
used for floating-point and integer textur

RESOLVED: No.

(14) Can a buffer object be attached to more th
once?

RESOLVED: Multiple buffer textures may attach
simultaneously.

(15) How does this extension interact with disp
RESOLVED: Buffer object commands can't be co
The new command in this extension uses buffer
that it also can't be compiled into a display

Revision History
Rev. Date Author Changes

4 10/30/07 ewerness Add resolutions to va

3 -- Pre-release revisions

NVIDIA Proprietary 180

EXT_texture_buffer_object

he signed normalized
hat match the convention
es?

an one buffer texture at

to the same buffer object

lay lists?

mpiled into a display list.
objects, so we specify
list.

rious issues

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

Name
EXT_texture_compression_latc
Name Strings

GL_EXT_texture_compression_latc
GL_NV_texture_compression_latc (legacy)

Contributors

Mark J. Kilgard, NVIDIA

Pat Brown, NVIDIA

Yanjun Zhang, S3
Contact

Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n
Status

Shipping for GeForce 8 Series (November 2006)

Version

Last Modified Date: 1/21/2008
Revision: 1.2

Number
331
Dependencies
OpenGL 1.3 or ARB_texture_compression required

This extension is written against the OpenGL 2.
2004) specification.

Overview

This extension introduces four new block-based
formats suited for unsigned and signed luminanc
textures (hence the name "latc” for Luminance-A
Compression).

These formats are designed to reduce the storag
memory bandwidth required for luminance and lum
by a factor of 2-to-1 over conventional uncompr
luminance-alpha textures with 8-bit components
GL_LUMINANCES_ALPHAS).

The compressed signed luminance-alpha format is
for storing compressed normal maps.

181

vidia.com)

0 (September 7,

texture compression
e and luminance-alpha
Ipha Texture

e requirements and
inance-alpha textures
essed luminance and
(GL_LUMINANCES and

reasonably suited

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

New Procedures and Functions
None.
New Tokens
Accepted by the <internalformat> parameter of T

CopyTeximage2D, and CompressedTexlmage2D and th
of CompressedTexSublmage2D:

eximage2D,
e <format> parameter

COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT 0x8C71
COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72

COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT 0x8C73
Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)
None.
Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)
-- Section 3.8.1, Texture Image Specification
Add to Table 3.17 (page 155): Specific compres sed internal formats
Base Internal Format

LUMINANCE

Compressed Internal Format

COMPRESSED_LUMINANCE_LATC1_EXT
COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT LUMINANCE

COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT LUMINANCE_ALPHA
COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT LUMINANCE_ALPHA

-- Section 3.8.2, Alternative Texture Image Specif ication Commands

Add to the end of the section (page 163):

"If the internal format of the texture image be ing modified is
COMPRESSED_LUMINANCE_LATC1_EXT, COMPRESSED_SIGED LUMINANCE_LATC1_ EXT,
COMPRESSED_LUMINANCE_ALPHA LATC2_EXT, or
COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT, the texture is stored

using one of the two LATC compressed texture im
appendix). Such images are easily edited along

so the limitations on TexSublmage2D or CopyTexS
are relaxed. TexSublmage2D and CopyTexSublmage
an INVALID_OPERATION error only if one of the f
occurs:

* <width> is not a multiple of four or equa
unless <xoffset> and <yoffset> are both z
* <height> is not a multiple of four or equ
unless <xoffset> and <yoffset> are both z
* <xoffset> or <yoffset> is not a multiple

The contents of any 4x4 block of texels of an L

image that does not intersect the area being mo
during valid TexSublmage2D and CopyTexSublmage2

NVIDIA Proprietary 182

age encodings (see
4x4 texel boundaries,
ublmage2D parameters
2D will result in
ollowing conditions

| to TEXTURE_WIDTH,
ero.

al to TEXTURE_HEIGHT,
ero.

of four.

ATC compressed texture
dified are preserved
D calls."

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

-- Section 3.8.3, Compressed Texture Images

Add after the 4th paragraph (page 164) at the e nd of the
CompressedTexlmage discussion:

"If <internalformat> is COMPRESSED_ LUMINANCE_LA TC1 EXT,
COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
COMPRESSED_LUMINANCE_ALPHA LATC2_EXT, or
COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT, the compressed texture is

stored using one of several LATC compressed tex ture image formats.
The LATC texture compression algorithm supports only 2D images
without borders. CompressedTexlmagelD and Comp ressedTexlmage3D
produce an INVALID_ENUM error if <internalforma t>is an LATC format.
CompressedTexlmage2D will produce an INVALID_OP ERATION error if

<border> is non-zero.

Add to the end of the section (page 166) at the end of the
CompressedTexSublmage discussion:

"If the internal format of the texture image be ing modified is
COMPRESSED_LUMINANCE_LATC1_EXT, COMPRESSED_SIGED _LUMINANCE_LATC1_EXT,
COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
COMPRESSED_SIGNED_LUMINANCE_ALPHA LATC2_EXT, the texture is stored

using one of the several LATC compressed textur e image formats.
Since the LATC texture compression algorithm su pports only 2D images,
CompressedTexSublmagelD and CompressedTexSubima ge3D produce an
INVALID_ENUM error if <format> is an LATC forma t. Since LATC images
are easily edited along 4x4 texel boundaries, t he limitations on
CompressedTexSublmage2D are relaxed. Compresse dTexSublmage2D will
result in an INVALID_OPERATION error only if on e of the following
conditions occurs:
* <width> is not a multiple of four or equa [to TEXTURE_WIDTH.
* <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
* <xoffset> or <yoffset> is not a multiple of four.
The contents of any 4x4 block of texels of an L ATC compressed texture
image that does not intersect the area being mo dified are preserved
during valid TexSublmage2D and CopyTexSublmage?2 D calls."
Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)
None.
Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)
None.
Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)
None.
Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)
None.

183 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

Additions to the AGL/GLX/WGL Specifications
None.

GLX Protocol
None.

Dependencies on ARB_texture_compression

If ARB_texture_compression is supported, all th e

errors and accepted tokens for CompressedTexlma gelD,
CompressedTexlmage2D, CompressedTexlmage3D, Com pressedTexSublmagelD,
CompressedTexSublmage2D, and CompressedTexSublm age3D also apply
respectively to the ARB-suffixed CompressedTexI magelDARB,
CompressedTexlmage2DARB, CompressedTexlmage3DAR B,
CompressedTexSublmagelDARB, CompressedTexSublma ge2DARB, and
CompressedTexSublmage3DARB.

Errors

INVALID_ENUM is generated by CompressedTexlmage 1D

or CompressedTexlmage3D if <internalformat> is

COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGED_LUMINANCE_LATC1_EXT,
COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT.

INVALID_OPERATION is generated by CompressedTex
if <internalformat> is COMPRESSED LUMINANCE_LAC
COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT and<border> is not
equal to zero.

Image2D
T1_EXT,

INVALID_ENUM is generated by CompressedTexSublm
or CompressedTexSubimage3D if <format> is
COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGED LUMINANCE_LATC1_ EXT,
COMPRESSED_LUMINANCE_ALPHA LATC2_EXT, or
COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT.

agelD

INVALID_OPERATION is generated by TexSublmage2D CopyTexSublmage2D,

or CompressedTexSublmage2D if TEXTURE_INTERNAL _ FORMAT is
COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGED_LUMINANCE_LATC1_EXT,
COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT andany of the following

apply: <width> is not a multiple of four or equ
<height> is not a multiple of four or equal to
<xoffset> or <yoffset> is not a multiple of fou

The following restrictions from the ARB_texture
specification do not apply to LATC texture form
modification is straightforward as long as the
aligned.

NVIDIA Proprietary

al to TEXTURE_WIDTH;
TEXTURE_HEIGHT,
r.

_compression
ats, since subimage
subimage is properly

184

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

DELETE: INVALID_OPERATION is generated by TexSu
DELETE: TexSublmage3D, CopyTexSublmagelD, CopyT

bimagelD, TexSublmage2D,
exSublmage2D, or

DELETE: CopyTexSublmage3D if the internal forma
DELETE: compressed and <xoffset>, <yoffset>, or
DELETE: -b, where b is value of TEXTURE_BORDER.

DELETE: INVALID_VALUE is generated by Compresse
DELETE: CompressedTexSublmage2D, or CompressedT

DELETE: entire texture image is not being edite
DELETE: <yoffset>, or <zoffset> is greater than
DELETE: less than w+b, <yoffset> + <height> is
DELETE: + <depth> is less than d+b, where b is

DELETE: TEXTURE_BORDER, w is the value of TEXTU

DELETE: TEXTURE_HEIGHT, and d is the value of T

See also errors in the GL_ARB_texture_compressi

New State

4 new state values are added for the per-textur
GL_TEXTURE_INTERNAL_FORMAT state.

In the "Textures" state table(page 278), incre

TEXTURE_INTERNAL_FORMAT subscript for Z by 4 in

[NOTE: The OpenGL 2.0 specification actually sh
because of the 6 generic compressed internal fo

New Implementation Dependent State

None

Appendix

LATC Compressed Texture Image Formats

Compressed texture images stored using the LATC
encodings are represented as a collection of 4x
where each block contains 64 or 128 bits of tex

is encoded as a normal 2D raster image in which
treated as a single pixel. If an LATC image ha

less than four, the data corresponding to texel

are irrelevant and undefined.

When an LATC image with a width of <w>, height
size of <blocksize> (8 or 16 bytes) is decoded,
image size (in bytes) is:

ceil(<w>/4) * ceil(<h>/4) * blocksize.
When decoding an LATC image, the block containi
(<x>, <y>) begins at an offset (in bytes) relat
image of:

blocksize * (ceil(<w>/4) * floor(<y>/4) + f

185

t of the texture image is
<zoffset> does not equal

dTexSubimagelD,
exSublmage3D if the

d: if <xoffset>,

-b, <xoffset> + <width> is
less than h+b, or <zoffset>
the value of

RE_WIDTH, h is the value of
EXTURE_DEPTH.

on specification.

e object

ment the
the "Type" row.

ould read "n x Z48*"
rmats in table 3.18.]

compressed image
4 texel blocks,

el data. The image
each 4x4 block is
s a width or height
s outside the image

of <h>, and block
the corresponding
ng the texel at offset

ive to the base of the

loor(<x>/4)).

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series
The data corresponding to a specific texel (<x>
from a 4x4 texel block using a relative (x,y) v
(<x> modulo 4, <y> modulo 4).

There are four distinct LATC image formats:

EXT_texture_compression_latc

, <y>) are extracted
alue of

COMPRESSED_LUMINANCE_LAT(ach 4x4 block of texels consists of

64 bits of unsigned luminance image data.

Each luminance image data block is encoded as a
called (in order of increasing address):

lumO, lum1, bits_0, bits_1, bits_2, bit

The 6 "bits_*" bytes of the block are decod
vector:

bits =bits 0 +
256 * (bits_1 +
256 * (bits_2 +
256 * (bits_3 +
256 * (bi
25

lumO and lum1 are 8-bit unsigned integers t
luminance values LUMO and LUM1 as though th
a <format> of LUMINANCE and a type of UNSIG
bits is a 48-bit unsigned integer, from whi
code is extracted for a texel at location (
using:

code(x,y) = bits[3*(4*y+X)+2..3*(4*y+X)

where bit 47 is the most significant and bi
significant bit.

NVIDIA Proprietary 186

sequence of 8 bytes,

s_3, bits_4, bits 5

ed into a 48-bit bit

ts 4+
6 * bits_5))))

hat are unpacked to
ey were pixels with
NED_BTYE.

ch a three-bit control
X,y) in the block

+0]

t 0 is the least

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

The luminance value L for a texel at locati on (x,y) in the block

is given by:
LUMO, if lumO > lum1 and ¢ ode(x,y) ==0
LUM1, if lumO > lum1 and ¢ ode(x,y) == 1
(6*LUMO+ LUM1)/7, if lumO > luml and c ode(x,y) == 2
(5*LUMO+2*LUM1)/7, if lumO > lum1 and ¢ ode(x,y) == 3
(4*LUMO+3*LUM1)/7, if lumO > luml1 and ¢ ode(x,y) == 4
(3*LUMO+4*LUM1)/7, if lumO > luml1 and ¢ ode(x,y) ==5
(2*LUMO+5*LUM1)/7, if lumO > lum1 and ¢ ode(x,y) == 6
(LUMO+6*LUM1)/7, if lumO > luml and ¢ ode(x,y) == 7
LUMO, if lumO <= lum1 and code(x,y) ==
LUM1, if lumO <= lum1 and code(x,y) ==
(4*LUMO+ LUM1)/5, if lumO <= lum1 and code(x,y) == 2
(3*LUMO+2*LUM1)/5, if lumO <= lum1 and code(x,y) == 3
(2*LUMO+3*LUM1)/5, if lum0O <= lum1 and code(x,y) ==4
(LUMO+4*LUM1)/5, if lumO <= lum1 and code(x,y) ==
MINLUM, if lumO <= lum1 and code(x,y) ==
MAXLUM, if lumO <= lum1 and code(x,y) ==7

MINLUM and MAXLUM are 0.0 and 1.0 respectiv ely.

Since the decoded texel has a luminance format, the resulting RGBA

value for the texel is (L,L,L,1).

COMPRESSED_SIGNED_LUMINANCE_LAT®&hch 4x4 block of texels consists

of 64 bits of signed luminance image data. The luminance values of
a texel are extracted in the same way as COMPRE SSED LUMINANCE_LATC1
except lumO, luml, LUMO, LUM1, MINLUM, and MAXL UM are signed values

defined as follows:
lumO and lum1 are 8-bit signed (two's compl ement) integers.

{lum0 / 127.0, lum0 > -128

LUMO = {
{-1.0, lum0 == -128
{lum1/127.0, luml >-128
LUM1 = {
{-1.0, luml ==-128
MINLUM =-1.0
MAXLUM = 1.0
CAVEAT for signed lum0 and lum1 values: the exp ressions "lum0 >
lum1" and "lum0O <= lum1" above are considered u ndefined (read: may
vary by implementation) when lumO0 equals -127 a nd luml equals -128,
This is because if lumO were remapped to -127 p rior to the comparison
to reduce the latency of a hardware decompresso r, the expressions
would reverse their logic. Encoders for the si gned LA formats should
avoid encoding blocks where lumO0 equals -127 an d lum1l equals -128.

187 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

COMPRESSED_LUMINANCE_ALPHA LATE&&ach 4x4 block of texels consists
of 64 bits of compressed unsigned luminance ima ge data followed by
64 bits of compressed unsigned alpha image data

The first 64 bits of compressed luminance are d ecoded exactly like
COMPRESSED_LUMINANCE_LATC1 above.

The second 64 bits of compressed alpha are deco ded exactly like
COMPRESSED_LUMINANCE_LATC1 above except the dec oded value L for this
second block is considered the resulting alpha value A.

Since the decoded texel has a luminance-alpha f ormat, the resulting

RGBA value for the texel is (L,L,L,A).

COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATEAach 4x4 block of texels

consists of 64 bits of compressed signed lumina nce image data followed
by 64 bits of compressed signed alpha image dat a.
The first 64 bits of compressed luminance are d ecoded exactly like

COMPRESSED_SIGNED_LUMINANCE_LATCL1 above.

The second 64 bits of compressed alpha are deco ded exactly like
COMPRESSED_SIGNED_LUMINANCE_LATC1 above except the decoded value L
for this second block is considered the resulti ng alpha value A.
Since this image has a luminance-alpha format, the resulting RGBA

value is (L,L,L,A).
Issues
1) What should these new formats be called?
RESOLVED: "latc" for Luminance-Alpha Textur e Compression.

2) How should the uncompressed and filtered te xels be returned by
texture fetches?

RESOLVED: Luminance values show up as they do conventionally as
(L,L,L,1) where the luminance value L is re plicated in the red,
green, and blue components and alpha is for cedto 1. Likewise,
luminance-alpha values show up as (L,L,L,A) where A is the alpha
value.

Alternatively, prior extensions such as NV_ float_buffer and

NV _texture_shader have introduced formats s uch as GL_FLOAT_R_NV
and GL_DSDT_NV where one- and two-component texture formats show
up as (X,0,0,1) or (X,Y,0,1) RGBA texels. Such formats have
not proven popular. In particular, they in teract awkwardly with
the pixel path and conventional texture env ironment modes.

The (X,Y,0,1) convention, particularly with signed components,
is nice for normal maps because a normalize d vector can be
formed by a shader program by computing sqr t(abs(1-X*X-Y*Y))

for the Z component. However, this nicenes s is mostly conceptual
however since the same effect can be accomp lished with swizzling

as shown in this GLSL code:

NVIDIA Proprietary 188

EXT_texture_compression_latc

vec2 texLA = texture2D(samplerLA, gl T
vec3 normal = vec3(texLA.x,

texLA.y,

sqrt(abs(1-texLA.x*t

The most important reason to make these new
show up identically to conventional luminan
texels is to allow applications to seamless

the new compressed formats for existing GL_
GL_LUMINANCE_ALPHA textures. Alternative c
would make it more cumbersome for existing
over luminance and luminance-alpha textures
formats.

3) Should luminance and luminance-alpha compre
signed components be introduced when the co
lacked uncompressed luminance and luminance

RESOLVED: Yes, signed luminance and lumina
formats should be added.

Signed luminance-alpha formats are suited f
maps. Compressed normal maps may well be t
this extension.

Unsigned luminance-alpha formats require an
operation to convert [0,1] to [-1,+1]. Dir
luminance-alpha formats avoids this step in

4) Should there be a mix of signed luminance a
vice versa?

RESOLVED: No.

NV _texture_shader provided an internal form

(GL_SIGNED_RGB_UNSIGNED_ALPHA_NV) with mixe

components. The format saw little usage.

think a GL_SIGNED_LUMINANCE_UNSIGNED_ALPHA

more useful or popular.
5) How are signed integer values mapped to flo

RESOLVED: A signed 8-bit two's complement
a floating-point value Xf with the formula:

{X1127.0, X > -128
Xf ={
{-1.0, ==-128

This conversion means -1, 0, and +1 are all
however -128 and -127 both map to -1.0. Ma
avoids the numerical awkwardness of have a
slightly more negative than -1.0.

189

OpenGL Extension Specifications for GeForce 8 Series

exCoord[0]).xw;

exLA.x-texLA.y*texLA.y)));

compressed formats

ce and luminance-alpha
ly substitute
LUMINANCE and
omponent arrangements
applications to switch

to these compressed

ssion formats with
re specification
-alpha texture formats?

nce-alpha compression

or compressed normal
he dominant use of

extra "expand normal"
ect support for signed
a shader program.

nd unsigned alpha or

at

d signed and unsigned
There's no reason to
format would be any

ating-point values?

value X is computed to

exactly representable,
pping -128 to -1.0
representable value

NVIDIA Proprietary

This conversion is intentionally NOT the "b
in Table 2.9 for component conversions. Th

Xf = (2*X + 1) / 255.0

The Table 2.9 conversion is incapable of ex
zero.

6) How will signed components resulting from
GL_COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT an
GL_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_

interact with fragment coloring?

RESOLVED: The specification language for t
about clamping behavior leaving this to the
and other extensions. The clamping or lack
to the core specification and other extensi

For assembly program extensions supporting

OpenGL Extension Specifcations for GeForce 8 Series

(ARB_fragment_program, EXT_fragment_program

etc.) or the OpenGL Shading Language, these
appear as expected with unclamped signed co
of a texture fetch instruction.

If ARB_color_buffer_float is supported, its
will apply.

NV_texture_shader extension, if supported,
fixed-point textures with signed components
fixed-function texture environment clamping
NV _texture_shader extension is supported, i
for the texture environment applies where i
are clamped to [-1,1] unless stated otherwi
of explicitly clamped to [0,1] for GL_COMBI
linear interpolation weight to [0,1] for GL

Otherwise, the conventional core texture en
incoming, intermediate, and output color co

This implies that the conventional texture
functionality of unextended OpenGL 1.5 or O
using GLSL (and with none of the extensions
is unable to make proper use of the signed
by this extension because the conventional
requires texture source colors to be clampe
filtering of these signed formats would be
negative values generated post-filtering wo
zero by the core texture environment functi
expectation is clearly that this extension

with one of the previously referred to exte
GLSL for the new signed formats to be usefu

7) Should a specific normal map compression fo

RESOLVED: No.

It's probably short-sighted to design a for

NVIDIA Proprietary

190

EXT_texture_compression_latc

yte" conversion listed
at conversion says:

actly representing

d
EXT texture fetches

his extension is silent
core specification

of clamping is left
ons.

texture fetches

, EXT_vertex_program3,
signed formats will
mponents as a result

clamping controls

adds support for

and relaxed the
appropriately. If the

ts specified behavior
ntermediate values

se as in the case

NE. or clamping the
_DECAL and GL_BLEND.

vironment clamps
mponents to [0,1].

environment

penGL 2.0 without
referred to above)
texture formats added
texture environment
dto [0,1]. Texture
still signed, but

uld be clamped to
onality. The

would be co-implemented
nsions or used with

l.

rmat be added?

mat just for normal

EXT_texture_compression_latc

maps. Indeed, NV_texture_shader added a GL
format with exactly the kind of "hemisphere
normal maps and the format went basically u
this extension provides the mechanism for ¢
based on the more conventional luminance-al

The GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT
GL_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_

sufficient for normal maps with additional
used to generate the 3rd component.

8) Should uncompressed signed luminance and lu

be added by this extension?

RESOLVED: No, this extension is focused on
texture formats.

The NV_texture_shader extension adds such u
texture formats. A distinct multi-vendor e
fixed-point texture formats could provide a

the signed fixed-point uncompressed texture
by NV _texture_shader.

9) What compression ratios does this extension

The LATC1 formats are 8 bytes (64 bits) per
A 4x4 block of GL_LUMINANCES data requires
per texel). This is a 2-to-1 compression r

The LATC2 formats are 16 bytes (128 bhits) p
A 4x4 block of GL_LUMINANCES8_ALPHAS data re
(2 bytes per texel). This is again a 2-to-

In contrast, the comparable compression rat
formats is 4-to-1.

Arguably, the lower compression ratio allow
quality particularly because the LATC forma
component separately.

10) How do these new formats compare with the e
GL_LUMINANCE4_ALPHA4, and GL_LUMINANCE6_ALP

RESOLVED: The existing GL_LUMINANCE4, GL_L
and GL_LUMINANCE6_ALPHA?Z internal formats p
2-to-1 compression ratio but mandate a unif

for all components. In contrast, this exte
compression format with 3-bit quantization

min/max range that can vary per 4x4 texel t

Additionally, many OpenGL implementations d

the GL_LUMINANCE4, GL_LUMINANCE4_ALPHA4, an
internal formats but rather silently promot

to store 8 bits per component, thereby elim
storage/bandwidth advantage for these forma

191

OpenGL Extension Specifications for GeForce 8 Series

_SIGNED_HILO_NV
remap" useful for
nused. Instead,
ompressed normal maps
pha format.

and
EXT formats are
shader instructions

minance-alpha formats

just adding compressed

ncompressed signed
xtension for signed

Il or a subset of
formats introduced

provide?

4x4 pixel block.
16 bytes (1 byte
atio.

er 4x4 pixel block.
quires 32 bytes
1 compression ratio.

io for the S3TC

s better compression
ts compress each

xisting GL_LUMINANCE4,
HA2 internal formats?

UMINANCE4_ALPHA4,
rovide a similar

orm quantization

nsion provides a

over a specifiable

ile.

0 not natively support

d GL_LUMINANCEG6_ALPHA2
e these formats

inating any

ts.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

11) Does this extension require EXT_texture_com
RESOLVED: No.

As written, this specification does not rel
EXT_texture_compression_s3tc extension. Fo
discussion added to Sections 3.8.2 and 3.8.

to corresponding EXT_texture_compression_s3

12) Should anything be said about the precision
for these new formats?

RESOLVED: No precision requirements are pa
language since OpenGL extensions typically
details to the implementation.

Realistically, at least 8-bit filtering pre
from implementations (and probably more).

13) Should these formats be allowed to specify
when NV_texture_compression_vtc is supporte

RESOLVED: The NV_texture_compression_vtc st
4x4x4 bricks. It may be more desirable to
3D textures as simply slices of 4x4 blocks.

However the NV_texture_compression_vtc exte
data passed to the glCompressedTexlmage com
rather than blocked slices.

14) Why is GL_NV_texture_compression_latc also
section?

The very first GeForce 8800 driver shipped
designated as NV before EXT-ization with S3
Subsequent NVIDIA drivers will rename the e
name only.

15) Should the the generic formats

GL_COMPRESSED_LUMINANCE and GL_COMPRESSED_L

correspond to COMPRESSED_LUMINANCE_LATC1_EX

COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT respec

extension is supported?

RESOLVED: Yes. While no generic compressi
required for an implementation and there mi
compression schemes for luminance and lumin
in the future, an application should reason
implementation that supports EXT_texture_co
also use these formats for the generic comp
luminance-alpha formats.

The COMPRESSED_LUMINANCE_LATC1_EXT and

COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT are ge

respective luminance and luminance-alpha be
compression formats are acceptable generic
for luminance and luminance-alpha generic ¢

NVIDIA Proprietary 192

EXT_texture_compression_latc

pression_s3tc?

y on wording of the
r example, certain
3 is quite similar

tc language.

of texture filtering

rt of the specification
leave precision

cision can be expected

3D texture images
d?

acks 4x4 blocks into
represent compressed

nsion expects
mands to be "bricked"

listed in the Name Strings

with the extension
was agreed.
xtension to its EXT

UMINANCE_ALPHA
T and
itively when this

on is strictly

ght exist superior
ance-alpha textures
ably expect that an
mpression_latc will
ressed luminance and

neric enough in their
havior that these

compressed formats
ompressed formats.

EXT_texture_compression_latc

GL_COMPRESSED_TEXTURE_FORMATS queries retur
RESOLVED: No.

The OpenGL 2.1 specification says "The only

by this query [GL_COMPRESSED_TEXTURE_FORMAT
corresponding to formats suitable for gener

The renderer will not enumerate formats wit

need to be specifically understood prior to

Historically, OpenGL implementation have ad
RGBA versions of the S3TC extensions compre
through this mechanism.

The specification is not sufficiently clear

for general-purpose usage" means. Historic

unsigned RGB or unsigned RGBA. The DXT1 fo
(GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) is not e
least for NVIDIA drivers) because the alpha

when it is 0.0 when RGB is required to be b

limits itself to true linear RGB or RGBA fo

not including EXT_texture_sRGB's sSRGB S3TC

Adding luminance and luminance-alpha textur
certainly signed versions of luminance and
formats!) invites potential comptaibility p
applications using this mechanism since old
unlikely to expect non-RGB or non-RGBA form
through this mechanism. However no specifi
with old applications is known.

Applications that seek to use the LATC form
by looking for this extension's name in the
glGetString(GL_EXTENSIONS) rather than

what GL_NUM_COMPRESSED_TEXTURE_FORMATS and

GL_COMPRESSED_TEXTURE_FORMATS return.

Revision History

Revision 1.1, April 24, 2007: mjk

- Add caveat about how signed LA decompres
lumO equals -127 and lum1 equals -128.
a decoding allowance in DirectX 10.

Revision 1.2, January 21, 2008: mjk

- Add issues #15 and #16.

193

OpenGL Extension Specifications for GeForce 8 Series

16) Should the GL_NUM_COMPRESSED_TEXTURE_FORMAT S and

n the LATC formats?

values returned
S"] are those
al-purpose usage.
h restrictions that
use."

vertised the RGB and
ssed format tokens

about what "suitable
ally that seems to mean
rmat supporting alpha
xposed in the list (at

is always 1.0 expect
lack. NVIDIA's even
rmats, specifically
compressed formats.

e formats (and
luminance-alpha
roblems with old
applications are
ats to be advertised
C misinteractions

ats should do so
string returned by

sion happens when
This caveat matches

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Name
EXT_texture_compression_rgtc
Name Strings
GL_EXT_texture_compression_rgtc
Contributors
Mark J. Kilgard, NVIDIA
Pat Brown, NVIDIA
Yanjun Zhang, S3
Attila Barsi, Holografika
Contact
Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n
Status
Shipping for GeForce 8 Series (November 2006, R

Version

Date: January 21, 2008
Revision; 1.2

Number
332
Dependencies
OpenGL 1.3 or ARB_texture_compression required

This extension is written against the OpenGL 2.
2004) specification.

Overview

This extension introduces four new block-based
formats suited for unsigned and signed red and
(hence the name "rgtc" for Red-Green Texture Co

These formats are designed to reduce the storag
and memory bandwidth required for red and red-g
a factor of 2-to-1 over conventional uncompress
luminance-alpha textures with 8-bit components
GL_LUMINANCES_ALPHAS).

The compressed signed red-green format is reaso
storing compressed normal maps.

This extension uses the same compression format

EXT_texture_compression_latc extension except t
in the red and green components rather than lum

NVIDIA Proprietary 194

EXT_texture_compression_rgtc

vidia.com)

elease 95)

0 (September 7,

texture compression
red-green textures
mpression).

e requirements

reen textures by

ed luminance and
(GL_LUMINANCES and

nably suited for

as the
he color data is stored
inance and alpha.

EXT_texture_compression_rgtc

Representing compressed red and green component
the BC4 and BC5 compressed formats supported by

New Procedures and Functions
None.
New Tokens
Accepted by the <internalformat> parameter of T
CopyTeximage2D, and CompressedTexlmage2D and th
of CompressedTexSublmage2D:
COMPRESSED_RED_RGTC1_EXT
COMPRESSED_SIGNED_RED_RGTC1_EXT
COMPRESSED_RED_GREEN_RGTC2_EXT
COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT
Additions to Chapter 2 of the OpenGL 2.0 Specificat
None.
Additions to Chapter 3 of the OpenGL 2.0 Specificat
-- Section 3.8.1, Texture Image Specification

Add to Table 3.17 (page 155): Specific compres

Compressed Internal Format

COMPRESSED_RED_RGTC1_EXT
COMPRESSED_SIGNED_RED_RGTC1_EXT
COMPRESSED_RED_GREEN_RGTC2_EXT
COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT

-- Section 3.8.2, Alternative Texture Image Specif
Add to the end of the section (page 163):

"If the internal format of the texture image
being modified is COMPRESSED_RED RGTC1_EXT,

OpenGL Extension Specifications for GeForce 8 Series

s is consistent with
DirectX 10.

eximage2D,
e <format> parameter

0x8DBB
0x8DBC
0x8DBD
0x8DBE

ion (OpenGL Operation)

ion (Rasterization)

sed internal formats

Base Internal Format

ication Commands

COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_REBREEN_RGTC2_EXT,

or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the t

using one of the two RGTC compressed texture im
appendix). Such images are easily edited along

so the limitations on TexSublmage2D or CopyTexS
are relaxed. TexSublmage2D and CopyTexSublmage
an INVALID_OPERATION error only if one of the f
occurs:

* <width> is not a multiple of four or equa
unless <xoffset> and <yoffset> are both z
* <height> is not a multiple of four or equ
unless <xoffset> and <yoffset> are both z
* <xoffset> or <yoffset> is not a multiple

195

exture is stored

age encodings (see
4x4 texel boundaries,
ublmage2D parameters
2D will result in
ollowing conditions

| to TEXTURE_WIDTH,
ero.

al to TEXTURE_HEIGHT,
ero.

of four.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

The contents of any 4x4 block of texels of an R
image that does not intersect the area being mo
during valid TexSublmage2D and CopyTexSublmage?2

Section 3.8.3, Compressed Texture Images

Add after the 4th paragraph (page 164) at the e
CompressedTexlmage discussion:

"If <internalformat> is COMPRESSED_RED RGTC1_EX

EXT_texture_compression_rgtc

GTC compressed texture
dified are preserved
D calls.”

nd of the

T!

COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_REBREEN_RGTC2_EXT,
or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the ¢ ompressed texture is

stored using one of several RGTC compressed tex
The RGTC texture compression algorithm supports
without borders. CompressedTexlmagelD and Comp
produce an INVALID_ENUM error if <internalforma
CompressedTexlmage2D will produce an INVALID_OP
<border> is non-zero.

Add to the end of the section (page 166) at the
CompressedTexSublmage discussion:

"If the internal format of the texture image
being modified is COMPRESSED_RED_RGTC1_EXT,

ture image formats.
only 2D images
ressedTexlmage3D
t>is an RGTC format.
ERATION error if

end of the

COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_REBREEN_RGTC2_EXT,

or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the t

using one of the several RGTC compressed textur
Since the RGTC texture compression algorithm su

CompressedTexSublmagelD and CompressedTexSubima

INVALID_ENUM error if <format> is an RGTC forma
are easily edited along 4x4 texel boundaries, t
CompressedTexSublmage2D are relaxed. Compresse
result in an INVALID_OPERATION error only if on
conditions occurs:

* <width> is not a multiple of four or equa
* <height> is not a multiple of four or equ
* <xoffset> or <yoffset> is not a multiple

The contents of any 4x4 block of texels of an R
image that does not intersect the area being mo
during valid TexSublmage2D and CopyTexSublmage2

Section 3.8.8, Texture Minification

Add a sentence to the last paragraph (page 174)
"Mipmapping" subheading:

"If the texture's internal format lacks compone

the texture's base internal format, such compon

zero when the texture border color is sampled.

RGB base internal format of the COMPRESSED RED _

COMPRESSED_SIGNED_RED_RGTC1_EXT formats, the gr

components of the texture border color are alwa

zero. Likewise for the COMPRESSED_RED_GREEN_RG
COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT formats,

is always considered zero.)"

NVIDIA Proprietary 196

exture is stored

e image formats.
pports only 2D images,
ge3D produce an

t. Since RGTC images
he limitations on
dTexSubimage2D will
e of the following

| to TEXTURE_WIDTH.
al to TEXTURE_HEIGHT.
of four.

GTC compressed texture
dified are preserved
D calls."

just prior to the

nts that exist in
ents are considered
(So despite the
RGTC1_EXT and
een and blue

ys considered
TC2_EXT, and

the blue component

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

Additions to Chapter 4 of the OpenGL 2.0 Specificat
Operations and the Frame Buffer)

None.
Additions to Chapter 5 of the OpenGL 2.0 Specificat
None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat
State Requests)

None.

Additions to Appendix A of the OpenGL 2.0 Specifica
None.

Additions to the AGL/GLX/WGL Specifications
None.

GLX Protocol
None.

Dependencies on ARB_texture_compression
If ARB_texture_compression is supported, all th
errors and accepted tokens for CompressedTexlma
CompressedTexlmage2D, CompressedTexlmage3D, Com
CompressedTexSublmage2D, and CompressedTexSublm
respectively to the ARB-suffixed CompressedTexI
CompressedTexlmage2DARB, CompressedTexlmage3DAR
CompressedTexSublmagelDARB, CompressedTexSublma
CompressedTexSublmage3DARB.

Errors

INVALID_ENUM is generated by CompressedTexlmage
or CompressedTeximage3D if <internalformat> is

ion (Per-Fragment

ion (Special Functions)

ion (State and

tion (Invariance)

e
gelD,
pressedTexSublmagelD,
age3D also apply
magelDARB,

B,

ge2DARB, and

1D

COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGED_RED_RGTC1_EXT,

COMPRESSED_RED_GREEN_RGTC2_EXT, or
COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT.

INVALID_OPERATION is generated by CompressedTex
if <internalformat> is COMPRESSED_ LUMINANCE_LAC

Image2D
T1 EXT,

COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_REBREEN_RGTC2_EXT,
or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT and <b order> is not equal

to zero.

INVALID_ENUM is generated by CompressedTexSublm
or CompressedTexSublmage3D if
<format> is COMPRESSED_LUMINANCE_LACT1_EXT,

agelD

COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_REBREEN_RGTC2_EXT,

or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT.

197

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

INVALID_OPERATION is generated by TexSublmage2D
CopyTexSublmage2D, or CompressedTexSublmage2D i

EXT_texture_compression_rgtc

f

TEXTURE_INTERNAL_FORMAT is COMPRESSED_LUMINANCE LACT1_EXT,
COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_REBREEN_RGTC2_EXT,
or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT and an y of the following

apply: <width> is not a multiple of four or equ
<height> is not a multiple of four or equal to
<xoffset> or <yoffset> is not a multiple of fou

The following restrictions from the ARB_texture
specification do not apply to RGTC texture form
modification is straightforward as long as the
aligned.

DELETE: INVALID_OPERATION is generated by TexSu
DELETE: TexSublmage3D, CopyTexSublmagelD, CopyT
DELETE: CopyTexSublmage3D if the internal forma
DELETE: compressed and <xoffset>, <yoffset>, or
DELETE: -b, where b is value of TEXTURE_BORDER.

DELETE: INVALID_VALUE is generated by Compresse
DELETE: CompressedTexSublmage2D, or CompressedT
DELETE: entire texture image is not being edite

DELETE: <yoffset>, or <zoffset> is greater than

DELETE: less than w+b, <yoffset> + <height> is
DELETE: + <depth> is less than d+b, where b is
DELETE: TEXTURE_BORDER, w is the value of TEXTU
DELETE: TEXTURE_HEIGHT, and d is the value of T

See also errors in the GL_ARB_texture_compressi

New State

4 new state values are added for the per-textur
GL_TEXTURE_INTERNAL_FORMAT state.

In the "Textures" state table(page 278), incre
TEXTURE_INTERNAL_FORMAT subscript for Z by 4 in

[NOTE: The OpenGL 2.0 specification actually sh
because of the 6 generic compressed internal fo

New Implementation Dependent State

None

Appendix

RGTC Compressed Texture Image Formats

Compressed texture images stored using the RGTC
encodings are represented as a collection of 4x
where each block contains 64 or 128 bits of tex

is encoded as a normal 2D raster image in which
treated as a single pixel. If an RGTC image ha

NVIDIA Proprietary 198

al to TEXTURE_WIDTH;
TEXTURE_HEIGHT,
r.

_compression
ats, since subimage
subimage is properly

bimagelD, TexSublmage2D,
exSublmage2D, or

t of the texture image is
<zoffset> does not equal

dTexSublmagelD,
exSublmage3D if the

d: if <xoffset>,

-b, <xoffset> + <width> is
less than h+b, or <zoffset>
the value of

RE_WIDTH, h is the value of
EXTURE_DEPTH.

on specification.

e object

ment the
the "Type" row.

ould read "n x Z48*"
rmats in table 3.18.]

compressed image
4 texel blocks,

el data. The image
each 4x4 block is
s a width or height

EXT_texture_compression_rgtc

less than four, the data corresponding to texel
are irrelevant and undefined.

When an RGTC image with a width of <w>, height
size of <blocksize> (8 or 16 bytes) is decoded,
image size (in bytes) is:

ceil(<w>/4) * ceil(<h>/4) * blocksize.
When decoding an RGTC image, the block containi
(<x>, <y>) begins at an offset (in bytes) relat
image of:

blocksize * (ceil(<w>/4) * floor(<y>/4) + f

The data corresponding to a specific texel (<x>
from a 4x4 texel block using a relative (x,y) v

(<x> modulo 4, <y> modulo 4).

There are four distinct RGTC image formats:

OpenGL Extension Specifications for GeForce 8 Series

s outside the image

of <h>, and block
the corresponding

ng the texel at offset
ive to the base of the
loor(<x>/4)).

, <y>) are extracted
alue of

COMPRESSED_RED_RGT®Each 4x4 block of texels consists of

64 bits of unsigned red image data.

Each red image data block is encoded as a seque
(in order of increasing address):

redO, redl, bits_0, bits_1, bits_2, bit

The 6 "bits_*" bytes of the block are decod
vector:

bits = bits 0 +
256 * (bits_1 +
256 * (bits_2 +
256 * (bits_3 +
256 * (bi
25

red0 and red1 are 8-bit unsigned integers t
values REDO and RED1 as though they were pi
of LUMINANCE and a type of UNSIGNED_BTYE.

bits is a 48-bit unsigned integer, from whi
code is extracted for a texel at location (
using:

code(x,y) = bits[3*(4*y+X)+2..3*(4*y+X)

where bit 47 is the most significant and bi
significant bit.

The red value R for a texel at location (X,
given by:

199

nce of 8 bytes, called

s_3, bits_4, bits 5

ed into a 48-bit bit

ts 4+
6 * bits_5))))

hat are unpacked to red
xels with a <format>

ch a three-bit control
X,y) in the block

+0]

t 0 is the least

y) in the block is

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

REDO, if red0 > red1 and c

RED1, if red0 > red1 and c

(6*REDO+ RED1)/7, if redO >red1 and c
(5*REDO+2*RED1)/7, if red0 > red1 and c
(4*REDO+3*RED1)/7, if red0 > red1 and c
(3*REDO+4*RED1)/7, if red0 > red1 and c
(2*REDO+5*RED1)/7, if red0 > red1 and c
(REDO+6*RED1)/7, if red0 >red1 and c

REDO, if red0 <=red1 and
RED1, if red0 <=red1 and
(4*REDO+ RED1)/5, if red0 <=red1 and
(3*REDO+2*RED1)/5, if red0 <=red1 and
(2*REDO+3*RED1)/5, if red0 <=red1 and
(REDO+4*RED1)/5, if red0 <=red1 and
MINRED, if red0 <=red1 and
MAXRED, if red0 <=red1 and

MINRED and MAXRED are 0.0 and 1.0 respectiv

Since the decoded texel has a red format, the r
for the texel is (R,0,0,1).

EXT_texture_compression_rgtc

ode(x,y) ==0
ode(x,y) == 1
ode(x,y) == 2
ode(x,y) == 3
ode(x,y) == 4
ode(x,y) ==5
ode(x,y) == 6
ode(x,y) ==7

code(x,y) ==0
code(x,y) ==1
code(x,y) == 2
code(x,y) ==

code(x,y) ==

code(x,y) ==5
code(x,y) == 6
code(x,y) ==7

ely.

esulting RGBA value

COMPRESSED_SIGNED_RED_RGT&hch 4x4 block of texels consists of

64 bits of signed red image data. The red valu
extracted in the same way as COMPRESSED _RED RGT
REDO, RED1, MINRED, and MAXRED are signed value

red0 and red1 are 8-bit signed (two's compl

{red0/127.0, red0 > -128
REDO ={
{-1.0, red0 == -128

{redl1/127.0, redl > -128
RED1 = {
{-1.0, redl ==-128

MINRED = -1.0
MAXRED = 1.0

CAVEAT for signed red0 and red1 values: the exp
redl" and "redO <= red1" above are considered u
vary by implementation) when red0 equals -127 a
This is because if red0 were remapped to -127 p
to reduce the latency of a hardware decompresso
would reverse their logic. Encoders for the si
avoid encoding blocks where red0 equals -127 an

es of a texel are
C1 except redO, redl,
s defined as follows:

ement) integers.

ressions "red0 >
ndefined (read: may

nd red1 equals -128,
rior to the comparison

r, the expressions

gned LA formats should
d redl equals -128.

COMPRESSED_RED_GREEN_RGTE&ch 4x4 block of texels consists of

64 bits of compressed unsigned red image data f
of compressed unsigned green image data.

NVIDIA Proprietary 200

ollowed by 64 bits

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

The first 64 bits of compressed red are decoded
COMPRESSED_RED_RGTC1 above.

The second 64 bits of compressed green are deco
COMPRESSED_RED_RGTC1 above except the decoded v
second block is considered the resulting green

Since the decoded texel has a red-green format,
value for the texel is (R,G,0,1).

exactly like

ded exactly like
alue R for this
value G.

the resulting RGBA

COMPRESSED_SIGNED_RED_GREEN_RGTEzZh 4x4 block of texels consists

of 64 bits of compressed signed red image data
of compressed signed green image data.

The first 64 bits of compressed red are decoded
COMPRESSED_SIGNED_RED_RGTC1 above.

The second 64 bits of compressed green are deco
COMPRESSED_SIGNED_RED_RGTC1 above except the de
for this second block is considered the resulti

Since this image has a red-green format, the re
(R,G,0,1).

Issues
1) What should these new formats be called?
RESOLVED: "rgtc" for Red-Green Texture Comp

2) How should the uncompressed and filtered te
texture fetches?

RESOLVED: Red values show up as (R,0,0,1)
value, green and blue are forced to 0, and
Likewise, red-green values show up as (R,G,
green value.

Prior extensions such as NV _float_buffer an
have introduced formats such as GL_FLOAT R_
one- and two-component texture formats show
(X,Y,0,1) RGBA texels. The RGTC formats mi
formats.

The (X,Y,0,1) convention, particularly with

is nice for normal maps because a normalize
formed by a shader program by computing sqr
for the Z component.

While GL_RED is a valid external format, co

no GL_RED_GREEN external format. Applicati
GL_RGB or GL_RGBA and pad out the blue and

or use the two-component GL_LUMINANCE_ALPHA
use the color matrix functionality to swizz

alpha values into red and green respectivel

201

followed by 64 bits

exactly like

ded exactly like
coded value R
ng green value G.

sulting RGBA value is

ression.

xels be returned by

where R is the red
alpha is forced to 1.
0,1) where G is the

d NV_texture_shader

NV and GL_DSDT_NV where

up as (X,0,0,1) or

mic these two-component

signed components,
d vector can be
t(abs(1-X*X-Y*Y))

re OpenGL provides
ons can either use
alpha components,
color format and

le the luminance and

y.

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

3) Should red and red-green compression format

components be introduced when the core spec
uncompressed red and red-green texture form

RESOLVED: Yes, signed red and red-green co
should be added.

Signed red-green formats are suited for com
Compressed normal maps may well be the domi
extension.

Unsigned red-green formats require an extra
operation to convert [0,1] to [-1,+1]. Dir
red-green formats avoids this step in a sha

4) Should there be a mix of signed red and uns

vice versa?
RESOLVED: No.

NV _texture_shader provided an internal form
(GL_SIGNED_RGB_UNSIGNED_ALPHA_NV) with mixe
components. The format saw little usage.

think a GL_SIGNED_RED_UNSIGNED_GREEN format
useful or popular.

5) How are signed integer values mapped to flo

RESOLVED: A signed 8-bit two's complement
a floating-point value Xf with the formula:

{X1127.0, X > -128
Xf={
{-1.0, ==-128

This conversion means -1, 0, and +1 are all
however -128 and -127 both map to -1.0. Ma
avoids the numerical awkwardness of have a
slightly more negative than -1.0.

This conversion is intentionally NOT the "b
in Table 2.9 for component conversions. Th

Xf = (2*X + 1) / 255.0

The Table 2.9 conversion is incapable of ex
zero.

EXT_texture_compression_rgtc

s with signed
ification lacked
ats?

mpression formats

pressed normal maps.
nant use of this

"expand normal"
ect support for signed
der program.

igned green or

at

d signed and unsigned
There's no reason to
would be any more

ating-point values?

value X is computed to

exactly representable,
pping -128 to -1.0
representable value

yte" conversion listed
at conversion says:

actly representing

6) How will signed components resulting

from GL_COMPRESSED_SIGNED_RED_RGTC1_EXT and

GL_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT te xture fetches interact

with fragment coloring?

RESOLVED: The specification language for t his extension is silent
about clamping behavior leaving this to the core specification
and other extensions. The clamping or lack of clamping is left
to the core specification and other extensi ons.

NVIDIA Proprietary 202

EXT_texture_compression_rgtc

For assembly program extensions supporting

OpenGL Extension Specifications for GeForce 8 Series

(ARB_fragment_program, NV_fragment_program,

etc.) or the OpenGL Shading Language, these
appear as expected with unclamped signed co
of a texture fetch instruction.

If ARB_color_buffer_float is supported, its
will apply.

NV _texture_shader extension, if supported,
fixed-point textures with signed components
fixed-function texture environment clamping
NV_texture_shader extension is supported, i
for the texture environment applies where i
are clamped to [-1,1] unless stated otherwi
of explicitly clamped to [0,1] for GL_COMBI
linear interpolation weight to [0,1] for GL

Otherwise, the conventional core texture en
incoming, intermediate, and output color co

This implies that the conventional texture
functionality of unextended OpenGL 1.5 or O
using GLSL (and with none of the extensions
is unable to make proper use of the signed
by this extension because the conventional
requires texture source colors to be clampe
filtering of these signed formats would be
negative values generated post-filtering wo
zero by the core texture environment functi
expectation is clearly that this extension

with one of the previously referred to exte
GLSL for the new signed formats to be usefu

7) Should a specific normal map compression fo

RESOLVED: No.

It's probably short-sighted to design a for

maps. Indeed, NV_texture_shader added a GL

format with exactly the kind of "hemisphere
normal maps and the format went basically u
this extension provides the mechanism for ¢
based on the more conventional red-green fo

The GL_COMPRESSED_RED_GREEN_RGTC2_EXT and
GL_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT fo

for normal maps with additional shader inst
generate the 3rd component.

8) Should uncompressed signed red and red-gree

by this extension?

RESOLVED: No, this extension is focused on
texture formats.

203

texture fetches
NV_vertex_program3,
signed formats will
mponents as a result

clamping controls

adds support for

and relaxed the
appropriately. If the

ts specified behavior
ntermediate values

se as in the case

NE. or clamping the
_DECAL and GL_BLEND.

vironment clamps
mponents to [0,1].

environment

penGL 2.0 without
referred to above)
texture formats added
texture environment

d to [0,1]. Texture
still signed, but

uld be clamped to
onality. The

would be co-implemented
nsions or used with

l.

rmat be added?

mat just for normal
_SIGNED_HILO_NV
remap" useful for
nused. Instead,
ompressed normal maps
rmat.

rmats are sufficient
ructions used to

n formats be added

just adding compressed

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

The NV_texture_shader extension adds such u
texture formats. A distinct multi-vendor e
fixed-point texture formats could provide a

the signed fixed-point uncompressed texture
by NV_texture_shader.

9) What compression ratios does this extension

The RGTCL1 formats are 8 bytes (64 bits) per
A 4x4 block of GL_LUMINANCES data requires
per texel). This is a 2-to-1 compression r

The RGTC2 formats are 16 bytes (128 bits) p
A 4x4 block of GL_LUMINANCES8_ALPHAS data re
(2 bytes per texel). This is again a 2-to-

In contrast, the comparable compression rat
formats is 4-to-1.

Arguably, the lower compression ratio allow
quality particularly because the RGTC forma
component separately.

10) How do these new formats compare with the e

GL_LUMINANCE4_ALPHA4, and GL_LUMINANCE6_ALP

RESOLVED: The existing GL_LUMINANCE4, GL_L
and GL_LUMINANCEG6_ALPHA?Z internal formats p
2-to-1 compression ratio but mandate a unif

for all components. In contrast, this exte
compression format with 3-bit quantization

min/max range that can vary per 4x4 texel t

Additionally, many OpenGL implementations d

the GL_LUMINANCE4, GL_LUMINANCE4_ALPHA4, an
internal formats but rather silently promot

to store 8 bits per component, thereby elim
storage/bandwidth advantage for these forma

11) Does this extension require EXT_texture_com

RESOLVED: No.

As written, this specification does not rel
EXT_texture_compression_s3tc extension. Fo
discussion added to Sections 3.8.2 and 3.8.

to corresponding EXT_texture_compression_s3

12) Should anything be said about the precision

for these new formats?

RESOLVED: No precision requirements are pa
language since OpenGL extensions typically
details to the implementation.

Realistically, at least 8-bit filtering pre
from implementations (and probably more).

NVIDIA Proprietary 204

EXT_texture_compression_rgtc

ncompressed signed
xtension for signed

Il or a subset of
formats introduced

provide?

4x4 pixel block.
16 bytes (1 byte
atio.

er 4x4 pixel block.
quires 32 bytes
1 compression ratio.

io for the S3TC

s better compression
ts compress each

xisting GL_LUMINANCEA4,
HA2 internal formats?

UMINANCE4_ALPHA4,
rovide a similar

orm quantization

nsion provides a

over a specifiable

ile.

0 not natively support

d GL_LUMINANCEG6_ALPHA2
e these formats

inating any

ts.

pression_s3tc?

y on wording of the
r example, certain
3 is quite similar

tc language.

of texture filtering

rt of the specification
leave precision

cision can be expected

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

13) Should these formats be allowed to specify
when NV_texture_compression_vtc is supporte

RESOLVED: The NV_texture_compression_vtc st
4x4x4 bricks. It may be more desirable to
3D textures as simply slices of 4x4 blocks.

However the NV_texture_compression_vtc exte
passed to the glCompressedTexlmage commands
rather than blocked slices.

14) How is the texture border color handled for
of an RGTC2 texture and the green and blue
RGTC1 texture?

RESOLVED: The base texture format is RGB f
RGTC2 texture formats. This would mean tab
used to determine how the texture border co
and which components are considered.

However since only red or red/green compone
RGTC1 and RGTC2 formats, it makes little se
the blue component be supplied by the textu
hence be involved (meaningfully only when t
in texture filtering.

For this reason, a statement is added to se

if a texture's internal format lacks compon

the texture's base internal format, such co
zero (ignoring the texture's corresponding
component value) when the texture border co

So the green and blue components of the fil
RGTCL1 texture are always zero, even when th
Similarly the blue component of the filtere
texture is always zero, even when the borde

15) What should glGetTexLevelParameter return f
GL_TEXTURE_GREEN_SIZE and GL_TEXTURE_BLUE_S
formats? What should glGetTexLevelParamete
GL_TEXTURE_BLUE_SIZE for the RGTC2 formats?

RESOLVED: Zero bits.

These formats always return 0.0 for these r
and have no bits devoted to these component

Returning 8 bits for red size of RGTC1 and

sizes of RGTC2 makes sense because that's t
precision for the uncompressed texels.

205

3D texture images
d?

acks 4x4 blocks into
represent compressed

nsion expects data
to be "bricked"

the blue component
components of an

or the RGTC1 and
le 3.15 would be
lor is interpreted

nts exist for the

nse to require

re border color and
he border is sampled)

ction 3.8.8 says that
ents that exist in
mponents contain
texture border color
lor is sampled.

tered result of a

e border is sampled.
d result of a RGTC2
ris sampled.

or

IZE for the RGTC1
r return for

espective components
s.

the red and green
he maximum potential

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_rgtc

16) Should the token names contain R and RG or RED and RED_GREEN?

RESOLVED: RED and RED_GREEN.

Saying RGB and RGBA makes sense for three- and four-component
formats rather than spelling out the compon ent names because
RGB and RGBA are used so commonly and spell ing out the names it
too wordy.

But for 1- and 2-component names, we follow the precedent by
GL_LUMINANCE and GL_LUMINANCE_ALPHA. This extension spells out
the component names of 1- and 2-component n ames.

Another reason to avoid R and RG is the exi sting meaning of
the GL_R and GL_RED tokens. GL_RED already exists as a token
name for a single-component external format . GL_R also already
exists as a token name but refers to the R texture coordinate,

not the red color component.

17) Can you use the GL_RED external format with glTexlmage2D and other
such commands to load textures with the
GL_COMPRESSED_RED_RGTC1_EXT or GL_COMPRESSE D_SIGNED_RED_RGTC1_EXT
internal formats?

RESOLVED: Yes.

GL_RED has been a valid external format par ameter to glTexlmage
and similar commands since OpenGL 1.0.

18) Should any of the generic compression GL_CO MPRESSED_* tokens in
OpenGL 2.1 map to RGTC formats?
RESOLVED: No. The RGTC formats are missin g color components
so are not adequate implementations for any of the generic

compression formats.

19) Should the GL_NUM_COMPRESSED_TEXTURE_FORMAT S and
GL_COMPRESSED_TEXTURE_FORMATS queries retur n the RGTC formats?

RESOLVED: No.

The OpenGL 2.1 specification says "The only values returned

by this query [GL_COMPRESSED TEXTURE_FORMAT S"] are those
corresponding to formats suitable for gener al-purpose usage.
The renderer will not enumerate formats wit h restrictions that
need to be specifically understood prior to use."

Compressed textures with just red or red-gr een components are
not general-purpose so should not be return ed by these queries

because they have restrictions.

Applications that seek to use the RGTC form ats should do so
by looking for this extension's hame in the string returned by
glGetString(GL_EXTENSIONS) rather than

what GL_NUM_COMPRESSED_TEXTURE_FORMATS and
GL_COMPRESSED_TEXTURE_FORMATS return.

NVIDIA Proprietary 206

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

Revision History

Revision 1.1, April 24, 2007: mjk
- Add caveat about how signed LA decompres sion happens when
lumO equals -127 and lum1 equals -128. This caveat matches
a decoding allowance in DirectX 10.

Revision 1.2, January 21, 2008: mjk
- Add issues #18 and #19.

207 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Name

EXT_texture_integer
Name Strings

GL_EXT _texture_integer
Contact

Michael Gold, NVIDIA Corporation (gold ‘at' nvi
Pat Brown, NVIDIA Corporation (pbrown 'at' nvid

Status
Shipping for GeForce 8 Series (November 2006)
Version

Last Modified Date: 07/15/2006
NVIDIA Revision: 5

Number
343

Dependencies
OpenGL 2.0 is required.
NV_gpu_program4 or EXT_gpu_shader4 is required.
ARB_texture_float affects the definition of thi
ARB_color_buffer_float affects the definition o
EXT_framebuffer_object affects the definition o
This extension is written against the OpenGL 2.

Overview
Fixed-point textures in unextended OpenGL have
but those values are taken to represent floatin
the range [0,1]. These integer components are
"normalized" integers. When such a texture is
shader or by fixed-function fragment processing
values are returned.
This extension provides a set of new "unnormali
formats. Formats with both signed and unsigned
these formats, the components are treated as tr
textures are accessed by a shader, actual integ
Pixel operations that read from or write to a t

buffer with unnormalized integer components fol
to that used for color index pixel operations,

NVIDIA Proprietary 208

EXT_texture_integer

dia.com)
ia.com)

s extension.
f this extension.
f this extension.

0 specification.

integer components,
g-point values in
considered
accessed by a

, floating-point

zed" integer texture
integers are provided. In
ue integers. When such
er values are returned.

exture or color
low a path similar
except that more

EXT_texture_integer

than one component may be provided at once. In
through the pixel processing pipe, and no pixel
operations are performed. Integer format enume
operations indicate unnormalized integer data.

Textures or render buffers with unnormalized in
attached to framebuffer objects to receive frag

by a fragment shader. Per-fragment operations
color components, including multisample alpha o
blending, and dithering, have no effect when th
written to an integer color buffer. The NV_gpu
EXT_gpu_shader4 extensions add the capability t
fragment shaders to write signed and unsigned i

This extension does not enforce type consistenc
between fragment shaders and the corresponding
The results of a texture lookup from an integer

* for fixed-function fragment processing, or

* for shader texture accesses expecting float

The color components used for per-fragment oper
color buffer are undefined:

* for fixed-function fragment processing with

* for fragment shaders that write floating-po
integer color buffer, or

* for fragment shaders that write integer col
buffer with floating point or normalized in

New Procedures and Functions

void ClearColorliEXT (intr, int g, int b, int

void ClearColorluiEXT (‘uint r, uint g, uint b,

void TexParameterlivEXT(enum target, enum pnam
void TexParameterluivEXT(enum target, enum pna
void GetTexParameterlivEXT (enum target, enum
void GetTexParameterluivEXT (enum target, enum
New Tokens

Accepted by the <pname> parameters of GetBoolea
GetFloatv, and GetDoublev:

RGBA_INTEGER_MODE_EXT

209

OpenGL Extension Specifications for GeForce 8 Series

teger values flow
transfer
rants used for such

teger formats may also be
ment color values written
that require floating-point
perations, alpha test,

e corresponding colors are
_program4 and

o fragment programs and
nteger output values.

y for texture accesses or

framebuffer attachments.
texture are undefined:

ing-point return values.

ations and written into a

an integer color buffer,

int color components to an

or components to a color
teger components.

a);

uinta);

e, int *params);

me, uint *params);
pname, int *params);
pname, uint *params);

nv, Getintegerv,

0x8D9E

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

Accepted by the <internalFormat> parameter of T exlmagelD,
Texlmage2D, and TexImage3D:

RGBA32UI_EXT 0x8D70
RGB32UI_EXT 0x8D71
ALPHA32UI_EXT 0x8D72
INTENSITY32UI_EXT 0x8D73
LUMINANCES32UI_EXT 0x8D74
LUMINANCE_ALPHA32UI_EXT 0x8D75
RGBA16UI_EXT 0x8D76
RGB16UI_EXT 0x8D77
ALPHA16UI_EXT 0x8D78
INTENSITY16UI_EXT 0x8D79
LUMINANCE16UI_EXT 0x8D7A
LUMINANCE_ALPHA16UI_EXT 0x8D7B
RGBAS8UI_EXT 0x8D7C
RGB8UI_EXT 0x8D7D
ALPHASBUI_EXT 0x8D7E
INTENSITY8UI_EXT 0x8D7F
LUMINANCESUI_EXT 0x8D80
LUMINANCE_ALPHA8UI_EXT 0x8D81
RGBA32I_EXT 0x8D82
RGB32I_EXT 0x8D83
ALPHAS32I_EXT 0x8D84
INTENSITY32I_EXT 0x8D85
LUMINANCES32I_EXT 0x8D86
LUMINANCE_ALPHA32I_EXT 0x8D87
RGBA16I_EXT 0x8D88
RGB16I_EXT 0x8D89
ALPHA16I_EXT O0x8D8A
INTENSITY16I_EXT 0x8D8B
LUMINANCE16I_EXT 0x8D8C
LUMINANCE_ALPHAL6I_EXT 0x8D8D
RGBAS8I_EXT 0x8D8E
RGBS8I_EXT 0x8D8F
ALPHASI_EXT 0x8D90
INTENSITY8I_EXT 0x8D91
LUMINANCESI_EXT 0x8D92
LUMINANCE_ALPHASI_EXT 0x8D93

NVIDIA Proprietary 210

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

Accepted by the <format> parameter of TexImagel D, Texlmage2D,
Texlmage3D, TexSublmagelD, TexSublmage2D, TexSu bimage3D,
DrawPixels and ReadPixels:
RED_INTEGER_EXT 0x8D94
GREEN_INTEGER_EXT 0x8D95
BLUE_INTEGER_EXT 0x8D96
ALPHA_INTEGER_EXT 0x8D97
RGB_INTEGER_EXT 0x8D98
RGBA_INTEGER_EXT 0x8D99
BGR_INTEGER_EXT O0x8D9A
BGRA_INTEGER_EXT 0x8D9B
LUMINANCE_INTEGER_EXT 0x8D9C
LUMINANCE_ALPHA INTEGER_EXT 0x8D9D
Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)
Modify Section 3.6.4 (Rasterization of Pixel Re ctangles), p. 126:

(modify the last paragraph, p. 126)
Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, void *data);

<format> is a symbolic constant indicating what the values in
memory represent. <width> and <height> are the width and height,
respectively, of the pixel rectangle to be draw n. <data> is a
pointer to the data to be drawn. These data are represented with
one of seven GL data types, specified by <type> . The
correspondence between the twenty type token va lues and the GL
data types they indicate is given in table 3.5. If the GL is in

color index mode and <format> is not one of COL OR_INDEX,
STENCIL_INDEX, or DEPTH_COMPONENT, then the err or
INVALID_OPERATION occurs. If the GL is in RGBA mode and the color
buffer is an integer format and no fragment sha der is active, the
error INVALID_OPERATION occurs. If <type>is B ITMAP and <format>
is not COLOR_INDEX or STENCIL_INDEX then the er ror INVALID_ENUM
occurs. If <format> is one of the integer comp onent formats as
defined in table 3.6, and <type> is FLOAT, then the error
INVALID_ENUM occurs. Some additional constrain ts on the
combinations of format and type values that are accepted is

discussed below.

211 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

(add the following to table 3.6, p. 129)

EXT_texture_integer

Format Name Element Meaning an d Order Target Buffer
RED_INTEGER_EXT iR Color
GREEN_INTEGER_EXT iG Color
BLUE_INTEGER_EXT iB Color
ALPHA_INTEGER_EXT iA Color
RGB_INTEGER_EXT iR, G, iB Color
RGBA_INTEGER_EXT iR, G, iB, iA Color
BGR_INTEGER_EXT iB, iG, iR Color
BGRA_INTEGER_EXT iB, iG, iR, iA Color
LUMINANCE_INTEGER_EXT iLuminance Color
LUMINANCE_ALPHA_INTEGER_EXT iLuminance, iA Color
Table 3.6: DrawPixels and ReadPixels formats. The second colu mn

gives a description of and the number and order
group. Unless specified as an index, formats yi
Components are floating-point unless prefixed w
which indicates they are integer.

(modify first paragraph, p. 129)

Data are taken from host memory as a sequence o

unsigned bytes (GL data types byte and ubyte),
short integers (GL data types short and ushort)
unsigned integers (GL data types int and uint),
values (GL data type float). These elements are
of one, two, three, or four values, depending o
form a group. Table 3.6 summarizes the format
from memory; it also indicates those formats th
and those that yield floating-point or integer

(modify the last paragraph, p. 135)
Conversion to floating-point

This step applies only to groups of floating-po
is not performed on indices or integer componen

(modify the third paragraph, p. 136)
Final Expansion to RGBA

This step is performed only for non-depth compo
group is converted to a group of 4 elements as
does not contain an A element, then A is added
integer components or 1.0 for floating-point co
R, G, or B is missing from the group, each miss
added and assigned a value of 0 for integer com
floating-point components.

(modify the last paragraph, p. 136)
Final Conversion

For a color index, final conversion consists of
of the index to the left of the binary point by
the number of bits in an index buffer. For flo
components, each element is clamped to [0, 1].
values are converted to fixed-point according t
in section 2.14.9 (Final Color Processing). Fo

NVIDIA Proprietary

212

of elements in a
eld components.
ith the letter 'i'

f signed or

signed or unsigned
, Signed or

or floating point
grouped into sets
n the format, to

of groups obtained
at yield indices
components.

int components. It
ts.

nent groups. Each
follows: if a group
and set to 1 for
mponents. If any of
ing element is
ponents or 0.0 for

masking the bits
2"n - 1, where n is
ating-point RGBA
The resulting

o the rules given

r integer RGBA

EXT_texture_integer

components, no conversion is applied. For a de
element is first clamped to [0, 1] and then con
fixed-point as if it were a window z value (see
Controlling the Viewport). Stencil indices are
where n is the number of bits in the stencil bu

Modify Section 3.6.5 (Pixel Transfer Operations

(modify last paragraph, p. 137)
The GL defines five kinds of pixel groups:

1. Floating-point RGBA component: Each group co
components in floating point format: red, gr
alpha.

2. Integer RGBA component: Each group comprises
components in integer format: red, green, bl

3. Depth component: Each group comprises a sing
4. Color index: Each group comprises a single ¢
5. Stencil index: Each group comprises a single

(modify second paragraph, p. 138)

Each operation described in this section is app
to each pixel group in an image. Many operation
to pixel groups of certain kinds; if an operati
applicable to a given group, it is skipped. No
operations defined in this section affect integ
pixel groups.

Modify Section 3.8 (Texturing), p. 149

(insert between the first and second paragraphs
The internal data type of a texture may be fixe
floating-point, signed integer or unsigned inte
the internalformat of the texture. The corresp
internalformat and the internal data type is gi
Fixed-point and floating-point textures return
value and integer textures return signed or uns
values. When a fragment shader is active, the
responsible for interpreting the result of a te
correct data type, otherwise the result is unde
functionality assumes floating-point data, henc
using fixed functionality with integer textures

Modify Section 3.8.1 (Texture Image Specificati

(modify second paragraph, p. 151) The selected
processed exactly as for DrawPixels, stopping j
conversion. If the <internalformat> of the tex

the components are clamped to the representable
internal format: for signed formats, this is [-

where n is the number of bits per component; fo
the range is [0, 2*n-1]. ForR, G, B, and A, i

213

OpenGL Extension Specifications for GeForce 8 Series

pth component, an
verted to

section 2.11.1,
masked by 2*n - 1,
ffer.

), p. 137

mprises four color
een, blue, and

four color
ue, and alpha.

le depth component.
olor index.

stencil index.

lied sequentially

s are applied only
on is not

ne of the

er RGBA component

, p- 150)

d-point,

ger, depending on
ondence between
ven in table 3.16.
a floating-point
igned integer
shader is

xture lookup as the
fined. Fixed

e the result of

is undefined.

on), p. 150

groups are

ust before final
ture is integer,
range of the
27(n-1), 27(n-1)-1]
r unsigned formats,
f the

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

<internalformat> of the texture is fixed-point,
clamped to [0, 1]. Otherwise, the components a

(insert between paragraphs five and six, p. 151
Textures with integer internal formats (table 3
integer data. The error INVALID_OPERATION is g
internal format is integer and <format> is not
formats listed in table 3.6, or if the internal

integer and <format> is an integer format, or i
integer format and <type> is FLOAT.

(add the following to table 3.16, p. 154)
Sized Base R
Internal Format Internal Format bits b

ALPHASI_EXT ALPHA
ALPHA8BUI_EXT ALPHA
ALPHA16I_EXT ALPHA
ALPHA16UI_EXT ALPHA
ALPHA32I_EXT ALPHA
ALPHA32UI_EXT ALPHA
LUMINANCESI_EXT LUMINANCE
LUMINANCESUI_EXT LUMINANCE
LUMINANCE16I_EXT LUMINANCE
LUMINANCE16UI_EXT LUMINANCE
LUMINANCE32I_EXT LUMINANCE
LUMINANCE32UI_EXT LUMINANCE

LUMINANCE_ALPHAS8I_EXT LUMINANCE_ALPHA

LUMINANCE_ALPHA8UI_EXT LUMINANCE_ALPHA
LUMINANCE_ALPHA1L6I_EXT LUMINANCE_ALPHA
LUMINANCE_ALPHA16UI_EXT LUMINANCE_ALPHA
LUMINANCE_ALPHA32I_EXT LUMINANCE_ALPHA
LUMINANCE_ALPHA32UI_EXT LUMINANCE_ALPHA

INTENSITYS8I_EXT INTENSITY
INTENSITY8UI_EXT INTENSITY
INTENSITY16I_EXT INTENSITY
INTENSITY16UI_EXT INTENSITY
INTENSITY32I_EXT INTENSITY
INTENSITY32UI_EXT INTENSITY
RGBS8I_EXT RGB i8
RGBS8UI_EXT RGB uig8
RGB16I_EXT RGB i16
RGB16UI_EXT RGB uilé u
RGB32I_EXT RGB i32
RGB32UI_EXT RGB ui32 u
RGBAS8I_EXT RGBA i8
RGBAS8UI_EXT RGBA ui8
RGBA16I_EXT RGBA i16
RGBALGUI_EXT RGBA uilé u
RGBA32I_EXT RGBA i32
RGBA32UI_EXT RGBA ui32 u

Table 3.16:

internal formats, internal data type and desire
resolutions for each sized internal format. Th
resolution prefix indicates the internal data t

NVIDIA Proprietary

214

EXT_texture_integer

the components are
re not modified.

.16) require
enerated if the
one of the integer
format is not

f <format> is an

G B A L I
its bits bits bits bits
i8
uis
i16
uilé
i32
ui32
i8
ui8
i16
uilé
i32
ui32
i8 i8
ui8 ui8
i16 i16
uilé uilé
i32 i32
ui32 ui32
i8
ui8
i16
uile
i32
ui32
i8 i8
ui8 ui8
i16 i16
i16 uil6
i32 32
i32 ui32
i8 i8 i8
ui8 ui8 ui8
i16 i16 i16
i16 uil6 uil6
i32 132 i32
i32 ui32 ui32

Correspondence of sized internal formats to base

d component
e component
ype: <f>is

EXT_texture_integer

floating point, <i> is signed integer, <ui> is
and no prefix is fixed-point.

Modify Section 3.8.2 (Alternate Texture Image S
Commands), p. 159:

(modify the second paragraph, p. 159)

The error INVALID_OPERATION is generated if dep
is required and no depth buffer is present, or

data is required and the format of the current
integer, or if floating-point or fixed-point RG

and the format of the current color buffer is i

Modify Section 3.8.4 (Texture Parameters), p. 1

Various parameters control how the texture arra
specified or changed, and when applied to a fra
parameter is set by calling

void TexParameter{if}(enum target, enum pn
void TexParameter{if}v(enum target, enum p
void TexParameterlivEXT(enum target, enum
void TexParameterluivEXT(enum target, enum

<target> is the target, either TEXTURE_1D, TEXT

or TEXTURE_CUBE_MAP. <pname> is a symbolic cons
parameter to be set; the possible constants and
parameters are summarized in table 3.19. In the
command, <param> is a value to which to seta s
parameter; in the second and third forms of the

is an array of parameters whose type depends on

being set.

If the value for TEXTURE_PRIORITY is specified
conversion for signed integers from table 2.9 i
convert the value to floating-point. The float
TEXTURE_PRIORITY is clamped to lie in [0, 1].

If the values for TEXTURE_BORDER_COLOR are spec
TexParameterlivEXT or TexParameterluivEXT, the
unmodified and stored with an internal data typ
specified with TexParameteriv, the conversion f

from table 2.9 is applied to convert these valu
floating-point. Otherwise the values are unmod
floating-point.

(modify table 3.19, p. 167)
Name Type Legal Values

TEXTURE_BORDER_COLOR 4 floats or any 4 values
4 ints or
4 uints

Table 3.19: Texture parameters and their values.

215

OpenGL Extension Specifications for GeForce 8 Series

unsigned integer,

pecification

th component data
if integer RGBA
color buffer is not
BA data is required
nteger.

66:

y is treated when
gment. Each

ame, T param);

name, T params);
pname, int *params);
pname, uint *params);

URE_2D, TEXTURE_3D,
tant indicating the
corresponding

first form of the
ingle-valued

command, <params>
the parameter

as an integer, the
s applied to
ing point value of

ified with

values are

e of integer. If

or signed integers
esto

ified and stored as

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Modify Section 3.8.8 (Texture Minification), p.
(modify last paragraph, p. 174)

... If the texture contains color components, t
TEXTURE_BORDER_COLOR are interpreted as an RGBA
texture's internal format in a manner consisten

The internal data type of the border values mus

with the type returned by the texture as descri

or the result is undefined. The border values

components stored as fixed-point values are cla

before they are used. If the texture contains

the first component of TEXTURE_BORDER_COLOR is
depth value

Modify Section 3.8.10 (Texture Completeness), p

(add to the requirements for one-, two-, or thr

textures)

If the internalformat is integer, TEXTURE_MAG_F
NEAREST and TEXTURE_MIN_FILTER must be NEAREST
NEAREST_MIPMAP_NEAREST.

Modify Section 3.11.2 (Shader Execution), p. 19

(modify Shader Outputs, first paragraph, p. 196
... These are gl_FragColor, gl_FragData[n], and
fragment clamping is enabled and the color buff
fixed-point or floating-point format, the final
values or the final fragment data values writte
shader are clamped to the range [0, 1]. If fra
disabled or the color buffer has an integer for
fragment color values or the final fragment dat
modified. The final fragment depth...

(insert between the first paragraph and second
"Shader Outputs”, p. 196)

Colors values written by the fragment shader ma
point, signed integer or unsigned integer. If

has a fixed-point format, the color values are
floating-point and are converted to fixed-point
section 2.14.9; otherwise no type conversion is
values written by the fragment shader do not ma
of the corresponding color buffer(s), the resul

Additions to Chapter 4 of the OpenGL 2.0 Specificat
Operations and the Frame Buffer)

Modify Chapter 4 Introduction, (p. 198)

(modify third paragraph, p. 198)

Color buffers consist of unsigned integer color
and optionally A floating-point components repr
fixed-point unsigned integer or floating-point

and optionally A integer components represented
unsigned integer values. The number of bitplan

NVIDIA Proprietary 216

EXT_texture_integer

170

he values of

color to match the
t with table 3.15.

t be consistent

bed in section 3.8,
for texture

mped to [0, 1]
depth components,
interpreted as a

L177:
ee-dimensional

ILTER must be
or

gl_FragDepth. If
er has a

fragment color

n by a fragment
gment clamping is
mat, the final

a values are not

paragraphs of

y be floating-
the color buffer
assumed to be
as described in
applied. If the
tch the format(s)
t is undefined.

ion (Per-Fragment

indices, R, G, B
esented as
values, orR, G, B
as signed or
€es...

EXT_texture_integer

Modify Section 4.1.3 (Multisample Fragment Oper

(modify the second paragraph in this section)

... f SAMPLE_ALPHA_TO_COVERAGE is enabled and
has a fixed-point or floating-point format, a t

value is generated ...

Modify Section 4.1.4 (Alpha Test), p. 201

(modify the first paragraph in this section)

This step applies only in RGBA mode and only if
has a fixed-point or floating-point format. In

if the color buffer has an integer format, proc
operation. The alpha test discards ...

Modify Section 4.1.8 (Blending), p. 205

(modify the second paragraph, p. 206)

... Blending is dependent on the incoming fragm
and that of the corresponding currently stored
applies only in RGBA mode and only if the color
fixed-point or floating-point format; in color

the color buffer has an integer format, it is b

Modify Section 4.2.3 (Clearing the Buffers), p.
void ClearColor(float r, float g, float b, f

sets the clear value for fixed-point and floati
buffers in RGBA mode. The specified components
floating-point values.

void ClearColorliEXT(int r, int g, int b, in
void ClearColorluiEXT(uint r, uint g, uint b

set the clear value for signed integer and unsi
buffers, respectively, in RGBA mode. The speci
stored as integer values.

(add to the end of first partial paragraph, p.
Clear directed at that buffer has no effect. W
RGBA color buffers are cleared, the clear color
to be floating-point and are clamped to [0,1] b
converted to fixed-point according to the rules
The result of clearing fixed-point or floating-

is undefined if the clear color was specified a
The result of when clearing integer color buffe
the clear color was specified as floating-point

Modify Section 4.3.2 (Reading Pixels), p. 219

(append to the last paragraph, p. 221)

The error INVALID_OPERATION occurs if <format>
format and the color buffer is not an integer f

color buffer is an integer format and <format>
INVALID_ENUM occurs if <format> is an integer f
FLOAT.

217

OpenGL Extension Specifications for GeForce 8 Series

ations), p. 200

the color buffer
emporary coverage

the color buffer
color index mode or
eed to the next

ent's alpha value
pixel. Blending
buffer has a
index mode or if
ypassed. ...

215
loat a);

ng-point color
are stored as

t a);
, uint a);

gned integer color
fied components are

217) ...thena

hen fixed-point
values are assumed
efore being

of section 2.14.9.
point color buffers

s integer values.

rs is undefined if
values.

is an integer

ormat, or if the

is not. The error
ormat and <type> is

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

(modify the first paragraph, p. 222)

... For a fixed-point color buffer, each elemen t is taken to be a
fixed-point value in [0, 1] with m bits, where m is the number of
bits in the corresponding color component of th e selected buffer
(see section 2.14.9). For an integer or floati ng-point color

buffer, the elements are unmodified.

(modify the section labeled "Conversion to L", p. 222)
This step applies only to RGBA component groups . If the format is
either LUMINANCE or LUMINANCE_ALPHA, a value L is computed as
L=R+G+B
otherwise if the format is either LUMINANCE_INT EGER_EXT or
LUMINANCE_ALPHA_INTEGER_EXT, L is computed as
L=R
where R, G, and B are the values of the R, G, a nd B
components. The single computed L component rep laces the R, G, and

B components in the group.

(modify the section labeled "Final Conversion”, p. 222)

For a floating-point RGBA color, each component is first clamped

to [0, 1]. Then the appropriate conversion form ula from table 4.7

is applied to the component. For an integer RG BA color, each

component is clamped to the representable range of <type>.
Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

Modify Section 6.1.3 (Enumerated Queries), p. 2 46

(insert in the list of query functions, p. 246)

void GetTexParameterlivEXT(enum target, enum v alue, int *data);

void GetTexParameterluivEXT(enum target, enum value, uint *data);

(modify the second paragraph, p. 247)

... For GetTexParameter, value must be either T EXTURE_RESIDENT, or
one of the symbolic values in table 3.19. Quer ying <value>
TEXTURE_BORDER_COLOR with GetTexParameterlivEXT or
GetTexParameterluivEXT returns the border color values as signed
integers or unsigned integers, respectively; ot herwise the values

are returned as described in section 6.1.2. If the border color

is queried with a type that does not match the original type with

which it was specified, the result is undefined . The <lod>

argument ...

(add to end of third paragraph, p. 247) Queries with a <value> of

TEXTURE_RED_TYPE_ARB, TEXTURE_GREEN_TYPE_ARB, TEXTURE_BLUE_TYPE_ARB,
TEXTURE_ALPHA TYPE_ARB, TEXTURE_LUMINANCE_TYPE_ARB,
TEXTURE_INTENSITY_TYPE_ARB, or TEXTURE_DEPTH_TY PE_ARB, return the data
type used to store the component. Values of NO NE,
UNSIGNED_NORMALIZED_ARB, FLOAT, INT, or UNSIGNE D_INT, indicate missing,

NVIDIA Proprietary 218

EXT_texture_integer

unsigned normalized integer, floating-point, si
and unsigned unnormalized integer components, r

GLX Protocol
TBD
Dependencies on ARB_texture_float

The following changes should be made if ARB_tex
supported:

The references to floating-point data types in
should be deleted.

The language in section 3.8.1 should indicate t
conversion always clamps when the internalforma

The description of table 3.16 should not mentio
floating-point formats.

Section 3.8.4 should indicate that border color
clamped to [0,1] before being stored, if not sp
the TexParameterl* functions.

Section 3.8.8 should not mention clamping borde
[0,1] for fixed-point textures, since this occu
TexParameter specification.

Dependencies on ARB_color_buffer_float

The following changes should be made if ARB_col
not supported:

Section 3.11.2, subsection "Shader Outputs: p.
mention fragment clamping or color buffers with
formats.

Chapter 4, p. 198 should not mention components
floating-point values.

Section 4.1.3, p. 200, section 4.1.4 p. 205, se
section 4.2.3 p. 215 and section 4.3.2 p. 222 s
color buffers with a floating-point format.

Section 4.2.3 p. 217 should not mention clampin
values to [0,1].

Errors

INVALID_OPERATION is generated by Begin, DrawPi
CopyPixels, or a command that performs an expli
color buffer has an integer RGBA format and no
active.

INVALID_ENUM is generated by DrawPixels, Texlma
SubTexImage* if <format> is one of the integer

219

OpenGL Extension Specifications for GeForce 8 Series

gned unnormalized integer,
espectively.

ture_float is not
section 3.8, p. 150
hat final

t is not integer.

n the <f>

values should be
ecified with one of

r color values to

rsin 3.8.4 at

or_buffer_float is

196 should not
floating-point

represented as

ction 4.1.8 p. 206,
hould not mention

g the clear color

xels, Bitmap,

cit Begin if the
fragment shader is

ge* and
component formats

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

described in table 3.6 and <type> is FLOAT.

INVALID_OPERATION is generated by Texlmage* and
the texture internalformat is an integer format

table 3.16 and <format> is not one of the integ

formats described in table 3.6, or if the inter

integer format and <format> is an integer forma

INVALID_OPERATION is generated by CopyTexlmage*
CopyTexSublmage* if the texture internalformat

format and the read color buffer is not an inte

the internalformat is not an integer format and

buffer is an integer format.

INVALID_ENUM is generated by ReadPixels if <for
format and <type> is FLOAT.

INVALID_OPERATON is generated by ReadPixels if
integer format and the color buffer is not an i

if <format> is not an integer format and the co
integer format.

New State

(modify table 6.33, p. 294)

EXT_texture_integer

SubTexImage* if
as described in
er component
nalformat is not an
t.

and

is an integer
ger format, or if
the read color

mat> is an integer

<format> is an
nteger format, or
lor buffer is an

Minimum

GetValue Type GetCommand

RGBA INTEGER MODE EXT B GetBoolearnv -

Issues

How should the integer pixel path be triggered:
type, new source types, or new source formats?

RESOLVED: New source formats, based on the
COLOR_INDEX and STENCIL_INDEX formats which
pixel path behavior with identical data typ

of the destination.

Should pixel transfer operations be defined for
path?

RESOLVED: No. Fragment shaders can achieve
with more flexibility. There is no need to
legacy mechanism.

What happens if a shader reads a float texel fr
texture or vice-versa?

RESOLVED: The result is undefined. The sha
knowledge of the texture internal data type

NVIDIA Proprietary 220

Value Descripion Sec. Attribute

TrueifRGBA 2.7 -
components are
integers

by the destination

precedence of
invoke distinct
es and independent

the integer pixel

similar results
aggrandize this

om an integer

der must have

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

How do integer textures behave in fixed functio
processing?

RESOLVED: The fixed function texture pipeli
return floating-point values, hence the ret
integer texture will not be in a meaningful

How does TEXTURE_BORDER_COLOR work with integer

RESOLVED: The internal storage of border va
becomes a union, and the returned values ar
the same type as the texture. New versions
allow specification of signed and unsigned
values.

How does logic op behave with RGBA mode renderi
color buffer?

RESOLVED: The color logic op operates when
rendering into integer color buffers.

Logic op operations make sense for integer
COLOR_LOGIC_OP enabile is respected when ren
color buffers.

Blending does not apply to RGBA mode render
into integer color buffers (as section 4.1.

The color logic op (described in section 4.
operation (though it does take priority ove

Revision History

Rev. Date Author Changes

5 07/15/07 pbrown Fix typo in GetTexPar
name in "New Procedur

4 -- Pre-release revisions

221

n fragment

ne assumes textures
urn value from an
format.

textures?

lues effectively

e interpreted as
of TexParameter
integer border

ng into integer

enabled when

color buffers so the
dering into integer

ing when rendering

8 is updated to say).
1.10) is not a blending
r the blending enable).

ameterluivEXT function
es and Functions".

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Name
EXT_texture_shared_exponent
Name Strings
GL_EXT_texture_shared_exponent
Contact
Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n
Contributors

Pat Brown
Jon Leech

Status
Shipping for GeForce 8 Series (November 2006)
Version

Date: February 6, 2007
Revision: 0.5

Number
333
Dependencies
OpenGL 1.1 required
ARB_color_buffer_float affects this extension.
EXT_framebuffer_object affects this extension.

This extension is written against the OpenGL 2.
2004) specification.

Overview

Existing texture formats provide either fixed-p
limited range and precision but with compact en
or fewer bits per multi-component texel), or fl
with tremendous range and precision but without
(typically 16 or 32 bits per component).

This extension adds a new packed format and new
format for encoding 3-component vectors (typica

a single 5-bit exponent (biased up by 15) and t

for each respective component. There is no sig
components must be non-negative. The fractiona
stored without an implied 1 to the left of the
Neither infinity nor not-a-number (NaN) are rep
shared exponent format.

NVIDIA Proprietary 222

EXT_texture_shared_exponent

vidia.com)

0 (September 7,

oint formats with

codings (allowing 32
oating-point formats
compact encodings

internal texture

lly RGB colors) with
hree 9-bit mantissas
n bit so all three

| mantissas are
decimal point.
resentable in this

EXT_texture_shared_exponent

This 32 bits/texel shared exponent format is pa
to high dynamic range (HDR) applications where
typically stored as non-negative red, green, an
with considerable range.

New Procedures and Functions
None

New Tokens

Accepted by the <internalformat> parameter of T

Teximage2D, Texlmage3D, CopyTeximagelD, CopyTex

RenderbufferStorageEXT:
RGB9_E5_EXT

Accepted by the <type> parameter of DrawPixels,

TeximagelD, Texlmage2D, GetTexlmage, Texlmage3D
TexSublmage2D, TexSublmage3D, GetHistogram, Get

ConvolutionFilter1D, ConvolutionFilter2D, Convo
GetConvolutionFilter, SeparableFilter2D, GetSep
ColorTable, ColorSubTable, and GetColorTable:

Accepted by the <pname> parameter of GetTexLeve

GetTexLevelParameteriv:
TEXTURE_SHARED_SIZE_EXT
Additions to Chapter 2 of the 2.0 Specification (Op
None
Additions to Chapter 3 of the 2.0 Specification (Ra
-- Section 3.6.4, Rasterization of Pixel Rectangle
Add a new row to Table 3.5 (page 128):

type Parameter
Token Name

Correspondin
GL Data Type

Add a new row to table 3.8: Packed pixel format

GL Data Num
Type Com

type Parameter
Token Name

223

OpenGL Extension Specifications for GeForce 8 Series

rticularly well-suited
light intensity is
d blue components

eximagelD,
Image2D, and
0x8C3D
ReadPixels,
, TexSublmagelD,
Minmax,
lutionFilter3D,
arableFilter,

0x8C3E

IParameterfv and

0x8C3F

enGL Operation)

sterization)

S

g Special
Interpretation

s (page 132):

ber of Matching
ponents Pixel Formats

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

Add a new entry to table 3.11: UNSIGNED _INT for mats (page 134):

31302928272625242322212019181 716151413121110987654321 0
+ + + + —+
l4h | 3d | 2nd | 1t |
+ + + +- —+
Add to the end of the 2nd paragraph starting "P ixels are draw using":

"If type is UNSIGNED_INT_5 9 9 9 REV_EXT and fo rmat is not RGB then

the error INVALID_ENUM occurs."

Add UNSIGNED_INT_5 9 9 9 REV_EXT to the list of packed formats in

the 10th paragraph after the "Packing" subsecti on (page 130).

Add before the 3rd paragraph (page 135, startin g "Calling DrawPixels

with a type of BITMAP...") from the end of the "Packing" subsection:

"Calling DrawPixels with a type of UNSIGNED_INT 59 9 9 REV_EXT and

format of RGB is a special case in which the da ta are a series of GL

uint values. Each uint value specifies 4 packe d components as shown

in table 3.11. The 1st, 2nd, 3rd, and 4th comp onents are called

p_red, p_green, p_blue, and p_exp respectively and are treated as

unsigned integers. These are then used to comp ute floating-point

RGB components (ignoring the "Conversion to flo ating-point" section

below in this case) as follows:

red =p_red *2"p_exp - B)
green = p_green * 2\(p_exp - B)
blue =p_blue *2*(p_exp - B)

where B is 15."
-- Section 3.8.1, Texture Image Specification:

"Alternatively if the internalformat is RGB9_E5 _EXT, the red, green,
and blue bits are converted to a shared exponen t format according
to the following procedure:

Components red, green, and blue are first clamp ed (in the process,
mapping NaN to zero) so:

red_c = max(0, min(sharedexp_max, red))
green_c = max(0, min(sharedexp_max, green))
blue_c = max(0, min(sharedexp_max, blue))

where sharedexp_max is (2*N-1)/2"N * 2" (Emax-B) , N is the number

of mantissa bits per component, Emax is the max imum allowed biased
exponent value (careful: not necessarily 2"E-1 when E is the number
of exponent bits), bits, and B is the exponent bias. For the
RGB9_E5_EXT format, N=9, Emax=30 (careful: not 31!), and B=15.

The largest clamped component, max_c, is determ ined:

max_c = max(red_c, green_c, blue_c)

NVIDIA Proprietary 224

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

A shared exponent is computed:

exp_shared = max(-B-1, floor(log2(max_c))) +1+B
These integers values in the range 0 to 2"N-1 a re then computed:
red_s =floor(red_c /2”(exp_shared - B +N) + 0.5)
green_s = floor(green_c / 2"(exp_shared - B +N) + 0.5)
blue_s =floor(blue_c /2"(exp_shared - B +N) + 0.5)
Then red_s, green_s, and blue_s are stored alon g with exp_shared in
the red, green, blue, and shared bits respectiv ely of the texture
image.

An implementation accepting pixel data of type

UNSIGNED_INT_5 9 9 9 REV_EXT with a format of R GB is allowed to store
the components "as is" if the implementation ca n determine the current
pixel transfer state act as an identity transfo rm on the components."
Add a new row and the "shared bits" column (bla nk for all existing

rows) to Table 3.16 (page 154).

Sized Base R G BAL I D shaed

Intemal Format Intemal Format bit s hits bits bits bits bits bits bits
RGB9_E5 EXT RGB 9 9 9 5

-- Section 3.8.x, Shared Exponent Texture Color Co nversion

Insert this section AFTER section 3.8.14 Textur e Comparison Modes
and BEFORE section 3.8.15 Texture Application (and after the "sRGB
Texture Color Conversion" if EXT_texture_sRGB i s supported).

"If the currently bound texture's internal form atis RGB9_E5 EXT, the
red, green, blue, and shared bits are converted to color components
(prior to filtering) using the following shared exponent decoding.
The components red_s, green_s, blue_s, and exp_ shared values (see
section 3.8.1) are treated as unsigned integers and are converted

to red, green, blue as follows:
red =red_s *2"(exp_shared - B)
green = green_s * 2°(exp_shared - B)
blue =blue_s *2"(exp_shared - B)"

Additions to Chapter 4 of the 2.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

-- Section 4.3.2, Reading Pixels

Add a row to table 4.7 (page 224);

Co mponent
type Parameter GL Data Type Co nversion Formula
UNSIGNED_INT_5_9 9 9 REV_EXT uint sp ecial

225 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

Replace second paragraph of "Final Conversion”

For an RGBA color, if <type> is not FLOAT or

TRUE, or CLAMP_READ_COLOR_ARB is FIXED_ONLY_ARB
color (or texture) buffer is a fixed-point buff

is first clamped to [0,1]. Then the appropriat

from table 4.7 is applied the component.

In the special case when calling ReadPixels wit

is done as follows: The returned data are pack

GL uint values. The red, green, and blue compon
tored_s, green_s, blue_s, and exp_shared integ
section 3.8.1 when the internalformat is RGB9_E
green_s, blue_s, and exp_shared are then packed
3rd, and 4th components of the UNSIGNED_INT_5_9
as shown in table 3.11."

Additions to Chapter 5 of the 2.0 Specification (Sp
None

Additions to Chapter 6 of the 2.0 Specification (St

-- Section 6.1.3, Enumerated Queries

Add TEXTURE_SHARED_SIZE_EXT to the list of quer
sentence of the fifth paragraph (page 247) so i

"For texture images with uncompressed internal
value of TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE,
TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE, TEX
TEXTURE_SHARED_SIZE_EXTT, and TEXTURE_INTENSITY
actual resolutions of the stored image array co
resolutions specified when the image array was

Additions to the OpenGL Shading Language specificat
None

Additions to the GLX Specification
None

GLX Protocol
None.

Dependencies on ARB_color_buffer_float

If ARB_color_buffer_float is not supported, rep
sentence from 4.3.2 above

"For an RGBA color, if <type> is not FLOAT or

CLAMP_READ_COLOR_ARB is FIXED_ONLY_ARB and the

NVIDIA Proprietary 226

EXT_texture_shared_exponent

(page 222) to read:

EAD_COLOR_ARB is
and the selected

er, each component

e conversion formula

h a type of

the conversion

ed into a series of
ents are converted
ers as described in
5 EXT. Thered_s,
as the 1st, 2nd,

9 9 REV_EXT format

ecial Functions)

ate and State Requests)

ies in the first
t reads:

formats, queries of
TEXTURE_BLUE_SIZE,
TURE_DEPTH_SIZE,

_SIZE return the

mponents, not the
defined."
ion

lace this amended

EAD_COLOR_ARB is TRUE, or
selected color buffer

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

(or texture image for GetTexIimage) is a fixed-p
image for GetTexImage), each component is first

with
"For an RGBA color, if <type> is not FLOAT or

texture image for GetTexImage) is a fixed-point
image for GetTexImage), each component is first

Dependencies on EXT_framebuffer_object
If EXT_framebuffer_object is not supported, the
RenderbufferStorageEXT is not supported and the
internalformat is therefore not supported by Re

Errors

Relaxation of INVALID_ENUM errors

TeximagelD, Texlmage2D, Texlmage3D, CopyTeximag
and RenderbufferStorageEXT accept the new RGB9_
internalformat.

DrawPixels, ReadPixels, TexImagelD, Texlmage2D,
Texlmage3D, TexSublmagelD, TexSublmage2D, TexSu
GetHistogram, GetMinmax, ConvolutionFilterlD, C
ConvolutionFilter3D, GetConvolutionFilter, Sepa
GetSeparableFilter, ColorTable, ColorSubTable,

GetTexLevelParameterfv and GetTexLevelParameter
TEXTURE_SHARED_SIZE_EXT token for <pname>.

New errors

INVALID_OPERATION is generated by DrawPixels, R
Texlmage2D, GetTexlmage, Texlmage3D, TexSublmag
TexSublmage3D, GetHistogram, GetMinmax, Convolu
ConvolutionFilter2D, ConvolutionFilter3D, GetCo
SeparableFilter2D, GetSeparableFilter, ColorTab

and GetColorTable if <type>is UNSIGNED_INT_5 9
and <format> is not RGB.

New State

In table 6.17, Textures (page 278), increment t
by 1 for the RGB9_E5 EXT format.

[NOTE: The OpenGL 2.0 specification actually sh
because of the 6 generic compressed internal fo

227

oint buffer (or texture
clamped to [0,1]."

olor buffer (or
buffer (or texture
clamped to [0,1]."

n
RGB9_E5 EXT
nderbufferStorageEXT.

elD, CopyTeximage2D,
E5 EXT token for

GetTexIimage,
bimage3D,
onvolutionFilter2D,
rableFilter2D,
and GetColorTable
en for type.

iv accept the new

eadPixels, TexlmagelD,
elD, TexSublmage2D,
tionFilterlD,
nvolutionFilter,

le, ColorSubTable,

9 9 REV_EXT

he 42 in "n x Z42*"

ould read "n x Z48*"
rmats in table 3.18.]

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

Add the following entry to table 6.17:

GetVale Type GetCommand Value Desaipion Sec. Attibute
TEXTURE_SHARED SIZE EXT nxZ+ GefTed_evelParamet e 0 xDtexdureimagelsshared exponent 38 -
fied sze

New Implementation Dependent State

None

Appendix
This source code provides ANSI C routines. It assumes the C "float"
data type is stored with the IEEE 754 32-bit fl oating-point format.
Make sure you define _ LITTLE_ENDIAN or _ BIG_E NDIAN appropriate

for your target system.

XXX: code below not tested on big-endian platfo rm...

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define__LITTLE_ENDIAN 1
#define _BIG_ENDIAN 2

#ifdef _WIN32

#define _ BYTE_ORDER __LITTLE_ENDIAN

#endif

#define RGB9E5_EXPONENT_BITS 5

#define RGB9E5_MANTISSA_BITS 9

#define RGB9E5_EXP_BIAS 15

#define RGB9E5_MAX_VALID_BIASED_EXP 31

#define MAX_RGB9E5_EXP (RGB9E5_MAX_VA LID_BIASED_EXP - RGB9E5_EXP_BIAS)
#define RGB9ES5_MANTISSA_VALUES (1<<RGB9E5_MAN TISSA_BITS)

#define MAX_RGB9E5_MANTISSA (RGB9E5_MANTIS SA_VALUES-1)

#define MAX_RGB9ES5 ((float)MAX_RGB9E5_MANTIS SA)/RGB9E5_MANTISSA_VALUES * (1<<MAX_RGB9E5_EXP))
#define EPSILON_RGB9ES ((1.0/RGB9E5_MANTIS SA_VALUES)/ (1<<RGB9E5_EXP_BIAS))
typedef struct {

#ifdef _ BYTE_ORDER

#if _ BYTE_ORDER == __BIG_ENDIAN

unsigned int negative:1;
unsigned int biasedexponent:8;
unsigned int mantissa:23;
#elif __ BYTE_ORDER == __LITTLE_ENDIAN
unsigned int mantissa:23;
unsigned int biasedexponent:8;
unsigned int negative:1;
#endif
#endif
} BitsOfIEEE754;

typedef union {
unsigned int raw;
float value;
BitsOfIEEE754 field;
} float754;

NVIDIA Proprietary 228

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

typedef struct {
#ifdef _ BYTE_ORDER
#if _ BYTE_ORDER == __BIG_ENDIAN
unsigned int biasedexponent:RGB9E5_EXPONENT_BITS;
unsigned int b:RGB9E5_MANTISSA_BITS;
unsigned int g:RGB9E5_MANTISSA_BITS;
unsigned int rRGB9E5_MANTISSA_BITS;
#elif __ BYTE_ORDER == __LITTLE_ENDIAN
unsigned int rRGB9E5_MANTISSA_BITS;
unsigned int g:RGB9E5_MANTISSA_BITS;
unsigned int b:RGBY9E5_MANTISSA_BITS;
unsigned int biasedexponent:RGB9E5_EXPONENT_BITS;
#endif
#endif
} BitsOfRGB9ES;

typedef union {
unsigned int raw;
BitsOfRGB9ES field,;
} rgb9e5;

float ClampRange_for_rgh9e5(float x)
{

if (x > 0.0) {
if (x >= MAX_RGB9ES5) {
return MAX_RGB9ES5;
}else {
return x;

}else {
/* NaN gets here too since comparisons with NaN always fail! */
return 0.0;
}
}

float MaxOf3(float x, float y, float z)

{
if (x >y) {
if (x>2){
return x;
}else {
return z;

}else {
it (y>2){
returny;
}else {
return z;
}
}
}

/* Ok, FloorLog2 is not correct for the denorm and zero values, but we
are going to do a max of this value with the min imum rgh9e5 exponent
that will hide these problem cases. */

int FloorLog2(float x)

{

float754 f;

f.value = x;
return (f.field.biasedexponent - 127);

}

int Max(int x, int'y)

{
if (x>y){
return x;
}else {
return y;
}
}

229 NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

rgh9e5 float3_to_rgh9e5(const float rgb[3])

rgh9e5 retval;
float maxrgb;
int rm, gm, bm;
float rc, gc, bc;
int exp_shared,;
double denom;

rc = ClampRange_for_rgb9e5(rgb[0]);
gc = ClampRange_for_rgh9e5(rgb[1]);
bc = ClampRange_for_rgh9e5(rgb[2]);

maxrgb = MaxOf3(rc, gc, bc);

exp_shared = Max(-RGB9E5_EXP_BIAS-1, FloorLog2(ma
assert(exp_shared <= RGB9E5_MAX_VALID_BIASED_EXP)
assert(exp_shared >= 0);

/* This pow function could be replaced by a table

denom = pow(2, exp_shared - RGB9E5_EXP_BIAS - RGB

rm = (int) floor(rc / denom + 0.5);
gm = (int) floor(gc / denom + 0.5);
bm = (int) floor(bc / denom + 0.5);

assert(rm <= MAX_RGB9E5_MANTISSA);
assert(gm <= MAX_RGB9E5_MANTISSA);
assert(bm <= MAX_RGB9E5_MANTISSA);
assert(rm >= 0);
assert(gm >= 0);
assert(bm >= 0);

retval field.r = rm;

retval.field.g = gm;

retval.field.b = bm;
retval.field.biasedexponent = exp_shared;

return retval;

}

void rgh9e5_to_float3(rgh9e5 v, float retval[3])

{
int exponent = v.field.biasedexponent - RGB9E5_EX
float scale = (float) pow(2, exponent);

retval[0] = v.field.r * scale;

retval[1] = v.field.g * scale;
retval[2] = v.field.b * scale;

Issues
1) What should this extension be called?
RESOLVED: EXT_texture_shared_exponent
The "EXT _texture" part indicates the extens
domain and "shared_exponent" indicates the
a new shared exponent formats.
EXT_texture_rgb9e5 was considered but there

extension names to be so explicit (or crypt
specifics in the extension name.

NVIDIA Proprietary

EXT_texture_shared_exponent

xrgh)) + 1 + RGBOE5_EXP_BIAS:;

L
9E5_MANTISSA_BITS);

P_BIAS - RGB9E5_MANTISSA_BITS;

ion is in the texture
extension is adding

's no precedent for
ic?) about format

230

EXT_texture_shared_exponent

2) There are many possible encodings for a sha

Which encoding does this extension specify?

RESOLVED: A single 5-bit exponent stored a
value biased by 15 and three 9-bit mantissa
components. There are no sign bits so all
must be non-negative. The fractional manti

0 left of the decimal point because having

1 is inconsistent with sharing the exponent
nor Not-a-Number (NaN) are representable in
format.

We chose this format because it closely mat
precision of the s10e5 half-precision float
in the ARB_half float pixel and ARB_texture

3) Why not an 8-bit shared exponent?

RESOLVED: Greg Ward's RGBE shared exponent
8-bit exponent (same as a single-precision
believe the rgh9e5 is more generally useful

An 8-bit exponent provides far more range t
required for graphics applications. Howeve

of precision for each component helps in si

high magnitude component dominates a low ma
Having an 8-bit shared exponent and 8-bit m

to CPUs that facilitate 8-bit sized reads a
aligned fields, but GPUs do not suffer from

Indeed GPUs with s10e5 texture filtering ca
filtering hardware for rgh9e5 textures.

However, future extensions could add other
so we name the tokens to indicate the

4) Should there be an external format and type

RESOLVED: Yes, hence the external format G

GL_RGB9_E5 EXT textures without any transla

5) Why is the exponent bias 15?

RESOLVED: The best technical choice of 15.
discussion sheds insight into the numerics
format in general.

With conventional floating-point formats, t
to a finite, non-denorm, non-zero floating-

value = -1"sgn * 2"\(exp-bias) * 1.frac
where sgn is the sign bit (so 1 for sgn neg
== -1 and 0 means positive because -1"0 ==

(unsigned) BIASED exponent and bias is the
to subtract to get the unbiased (possibly n

231

OpenGL Extension Specifications for GeForce 8 Series

red exponent format.

s an unsigned

s for each of 3

three components

ssas assume an implied
an implied leading

. Neither Infinity

this shared exponent

ches the range and
ing-point described
_float specifications.

encoding uses an
IEEE value) but we
than rgb8e8.

han is typically

r, an extra bit

tuations where a
gnitude component.
antissas are amenable
nd writes over non-byte
this issue.

n use that same

shared exponent formats

for rgh9e5?

L_RGB9 E5 EXT and
makes it fast to load
tion by the driver.

Hopefully, this
of the shared exponent

he number corresponding
point value is

ative because -1"-1
+1), exp is an
format's constant bias
egative) exponent;

NVIDIA Proprietary

OpenGL Extension Specifcations for GeForce 8 Series

and frac is the fractional portion of the m
"1." indicating an implied leading 1.

An exp value of zero indicates so-called de
(denorms). With conventional floating-poin
corresponding to a denorm floating-point va

value = -1"sgn * 2"\(exp-bias+1) * 0.fra

where the only difference between the denor
is the bias is one greater in the denorm ca
leading digit is a zero instead of a one.

Ideally, the rgh9e5 shared exponent format
roughly the same range of finite values as
specified by the ARB_texture_float extensio
has an exponent bias of 15.

While conventional floating-point formats c
leading 1 for non-denorm, finite values, a
cannot use an implied leading 1 because eac
a different magnitude for its most-signific

The implied leading 1 assumes we have the f
the mantissa and exponent together to ensur
That flexibility is not present when the ex

So the rgh9e5 format cannot assume an impli
Instead, an implied leading zero is assumed
conventional denorm case).

The rgh9e5 format eliminate support represe
Infinite, not-a-number (NaN), and denorm va

We've already discussed how the BIASED zero
encode denorm values (and zero) with conven
formats. The largest BIASED exponent (31 f
s23e8) indicates Infinity and NaN values.
extrema exponent values are "off limits" fo
values.

The numbers corresponding to a shared expon

value_r = 2"\(exp-bias) * 0.frac_r
value_g = 2(exp-bias) * 0.frac_g
value_b = 2”(exp-bias) * 0.frac_b

where there is no sgn since all values are
the (unsigned) BIASED exponent and bias is
bias to subtract to get the unbiased (possi
and frac_r, frac_g, and frac_b are the frac
the mantissas of the r, g, and b components
"0." indicating an implied leading O.

There should be no "off limits" exponents f

format since there is no requirement for re
or NaN values and denorm is not a special ¢

NVIDIA Proprietary 232

EXT_texture_shared_exponent

antissa with the

normalized values
t formats, the number
lue is

c

m and non-denorm case
se and the implied

would represent
the s10e5 format
n. The s10e5 format

leverly use an implied
shared exponent format
h component may have
ant binary digit.

lexibility to adjust

e an implied leading 1.
ponent is shared.

ed leading one.
(much like the

nting negative,
l