
1

NVIDIA OpenGL
Extension Specifications for the

GeForce 8 Series Architecture (G8x)

February 14, 2008

OpenGL Extension Specifcations for GeForce 8 Series

NVIDIA Proprietary 2

Copyright NVIDIA Corporation, 2005-2007.

This document is protected by copyright and contain s information
proprietary to NVIDIA Corporation.

This document is an abridged collection of OpenGL e xtension
specifications limited to those extensions for new OpenGL functionality
introduced by the GeForce 8 Series (G8 x) architecture. See the
unabridged document “NVIDIA OpenGL Extension Specif ications” for a
complete collection.

NVIDIA-specific OpenGL extension specifications, po ssibly more up-to-
date, can be found at:

 http://developer.nvidia.com/view.asp?IO=nvidia_ope ngl_specs

Other OpenGL extension specifications can be found at:

 http://oss.sgi.com/projects/ogl-sample/registry/

Corrections? Email opengl-specs@nvidia.com

http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs
http://oss.sgi.com/projects/ogl-sample/registry/

 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 3

Table of Contents

Table of NVIDIA OpenGL Extension Support 4
EXT_bindable_uniform............................... 9
EXT_draw_buffers2.................................. 22
EXT_draw_instanced................................. 28
EXT_framebuffer_sRGB............................... 31
EXT_geometry_shader4............................... 42
EXT_gpu_shader4.................................... 89
EXT_packed_float................................... 131
EXT_texture_array.................................. 145
EXT_texture_buffer_object.......................... 168
EXT_texture_compression_latc....................... 181
EXT_texture_compression_rgtc....................... 194
EXT_texture_integer................................ 208
EXT_texture_shared_exponent........................ 222
NV_conditional_render.............................. 236
NV_depth_buffer_float.............................. 242
NV_fragment_program4............................... 252
NV_framebuffer_multisample_coverage................ 267
NV_geometry_program4............................... 273
NV_geometry_shader4................................ 309
NV_gpu_program4.................................... 314
NV_parameter_buffer_object......................... 423
NV_transform_feedback...................... Error! Bookmark not defined.
NV_vertex_program4................................. 457

OpenGL Extension Specifcations for GeForce 8 Series Table of NVIDIA OpenGL Extension Support

NVIDIA Proprietary 4

 Table of NVIDIA OpenGL Extension Support

Extension NV1x NV2 x NV3x NV4x G8x Notes
ARB_color_buffer_float R75 X
ARB_depth_texture R25+ X X X 1.4 functionality
ARB_draw_buffers R75 X 2.0 functionality
ARB_fragment_program X X X
ARB_fragment_program_shadow R55 X X
ARB_fragment_shader R60 X X 2.0 functionality, GL SL
ARB_half_float_pixel R75 R75 X
ARB_imaging R10 X X X X 1.2 imaging subset
ARB_multisample X X X X 1.3 functionality
ARB_multitexture X X X X X 1.3 functionality
ARB_occlusion_query R50 R50 R50 X 1.5 functionalit y
ARB_pixel_buffer_object R80 R80 R80 R80 X 2.1 funct ionality
ARB_point_parameters R35 R35 X X X 1.4 functionalit y
ARB_point_sprite R50 R50 R50 X X
ARB_shader_objects R60 R60 R60 X X 2.0 functionalit y, GLSL
ARB_shading_language_100 R60 R60 R60 X X 2.0 functi onality, GLSL
ARB_shadow R25+ X X X 1.4 functionality
ARB_texture_border_clamp X X X X 1.3 functionality
ARB_texture_compression X X X X X 1.3 functionality
ARB_texture_cube_map X X X X X 1.3 functionality
ARB_texture_env_add X X X X X 1.3 functionality
ARB_texture_env_combine X X X X X 1.3 functionality
ARB_texture_env_crossbar see explanation
ARB_texture_env_dot3 X X X X X 1.3 functionality
ARB_texture_mirrored_repeat R40 R40 X X X 1.4, same as IBM
ARB_texture_non_power_of_two X X 2.0 functionali ty
ARB_texture_rectangle R62 R60+ R62 R62 X
ARB_transpose_matrix X X X X X 1.3 functionality
ARB_vertex_buffer_object R65 R65 R65 R65 X 1.5 func tionality
ARB_vertex_program R40+ R40+ X X X
ARB_vertex_shader R60 R60 R60 R60 X 2.0 functionali ty, GLSL
ARB_window_pos R40 R40 X X X 1.4 functionality
ATI_draw_buffers X X
ATI_texture_float X X
ATI_texture_mirror_once X X use EXT_texture_mirr or_clamp
EXT_abgr X X X X X
EXT_bgra X X X X X 1.2 functionality
EXT_bindable_uniform X GLSL extension
EXT_blend_color X X X X X 1.4 functionality
EXT_blend_equation_separate R60 X 2.0 functional ity
EXT_blend_func_separate X X X 1.4 functionality
EXT_blend_minmax X X X X X 1.4 functionality
EXT_blend_subtract X X X X X 1.4 functionality
EXT_Cg_shader R60 R60 R60 R60 X Cg through GLSL API
EXT_clip_volume_hint R20+
EXT_compiled_vertex_array X X X X X
EXT_depth_bounds_test R50 X X NV35, NV36, NV4x in hw only
EXT_draw_buffers2 X ARB_draw_buffers extension
EXT_draw_instanced X
EXT_draw_range_elements R20 R20 X X X 1.2 functiona lity
EXT_fog_coord X X X X X 1.4 functionality
EXT_framebuffer_blit R95 R95 X
EXT_framebuffer_multisample R95 R95 X
EXT_framebuffer_object R75 R75 X
EXT_framebuffer_sRGB X
EXT_geometry_shader4 X GLSL extension
EXT_gpu_program_parameters R95 R95 R95 R95 X
EXT_gpu_shader4 X GLSL extension
EXT_multi_draw_arrays R25 R25 X X X 1.4 functionali ty
EXT_packed_depth_stencil R80 X X
EXT_packed_float X
EXT_packed_pixels X X X X X 1.2 functionality

Table of NVIDIA OpenGL Extension Support OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 5

Extension NV1x NV2 x NV3x NV4x G8x Notes
EXT_paletted_texture X X X no NV4x hw support
EXT_pixel_buffer_object R55 R55 R55 X X 2.1 functio nality
EXT_point_parameters X X X X X 1.4 functionality
EXT_rescale_normal X X X X X 1.2 functionality
EXT_secondary_color X X X X X 1.4 functionality
EXT_separate_specular_color X X X X X 1.2 functiona lity
EXT_shadow_funcs R25+ X X X 1.5 functionality
EXT_shared_texture_palette X X X no NV4x hw suppo rt
EXT_stencil_clear_tag R70 NV44 only
EXT_stencil_two_side X X X 2.0 functionality
EXT_stencil_wrap X X X X X 1.4 functionality
EXT_texture3D sw X X X X 1.2 functionality
EXT_texture_array X
EXT_texture_buffer_object X
EXT_texture_compression_latc X
EXT_texture_compression_rgtc X
EXT_texture_compression_s3tc X X X X X
EXT_texture_cube_map X X X X X 1.2 functionality
EXT_texture_edge_clamp X X X X X 1.2 functionality
EXT_texture_env_add X X X X X 1.3 functionality
EXT_texture_env_combine X X X X X 1.3 functionality
EXT_texture_env_dot3 X X X X X 1.3 functionality
EXT_texture_filter_anisotropic X X X X X
EXT_texture_integer X
EXT_texture_lod X X X X X 1.2 functionality; no spe c
EXT_texture_lod_bias X X X X X 1.4 functionality
EXT_texture_mirror_clamp X X
EXT_texture_object X X X X X 1.1 functionality
EXT_texture_shared_exponent X
EXT_texture_sRGB X X 2.1 functionality
EXT_timer_query R80 R80 R80 X
EXT_vertex_array X X X X X 1.1 functionality
EXT_vertex_weighting X X Discontinued
KTX_buffer_region X X X X X
HP_occlusion_test R25 X X X
IBM_rasterpos_clip R40+ R40+ R40+ X X
IBM_texture_mirrored_repeat X X X X X 1.4 functiona lity
KTX_buffer_region X X X X X use ARB_buffer_region
NV_blend_square X X X X X 1.4 functionality
NV_conditional_render X
NV_copy_depth_to_color R20 X X X
NV_depth_buffer_float X
NV_depth_clamp R25+ X X X
NV_evaluators R10 X Discontinued
NV_fence X X X X X
NV_float_buffer X X X
NV_fog_distance X X X X X
NV_fragment_program X X X
NV_fragment_program_option R55 X X NV_fp features for ARB_fp
NV_fragment_program2 X X
NV_fragment_program4 X See NV_gpu_program4
NV_framebuffer_multisample_coverage Nf Nf X FBO e xtension
NV_geometry_program4 X See NV_gpu_program4
NV_geometry_shader4 X
NV_gpu_program4 X
NV_half_float X X X
NV_light_max_exponent X X X X X
NV_multisample_filter_hint X X X X
NV_occlusion_query R25 X X X
NV_packed_depth_stencil R10+ R10+ X X X
NV_parameter_buffer_object X See NV_gpu_program 4
NV_pixel_data_range R40 R40 X X X
NV_point_sprite R35+ R25 X X X
NV_primitive_restart X X X

OpenGL Extension Specifcations for GeForce 8 Series Table of NVIDIA OpenGL Extension Support

NVIDIA Proprietary 6

Extension NV1x NV2 x NV3x NV4x G8x Notes
NV_register_combiners X X X X X
NV_register_combiners2 X X X X
NV_texgen_emboss X Discontinued
NV_texgen_reflection X X X X X use 1.3 functionalit y
NV_texture_compression_vtc X X X X
NV_texture_env_combine4 X X X X X
NV_texture_expand_normal X X X
NV_texture_rectangle X X X X X
NV_texture_shader X X X X
NV_texture_shader2 X X X X
NV_texture_shader3 R25 X X X only NV25 and up in H W
NV_transform_feedback X
NV_vertex_array_range X X X X X
NV_vertex_array_range2 R10 R10 X X X
NV_vertex_program R10 X X X X
NV_vertex_program1_1 R25 R25 X X X
NV_vertex_program2 X X X
NV_vertex_program2_option R55 X X
NV_vertex_program3 X X
NV_vertex_program4 X See NV_gpu_program4
S3_s3tc X X X X X no spec; use EXT_t_c_s3tc
SGIS_generate_mipmap R10 X X X X 1.4 functionality
SGIS_multitexture X X use 1.3 version
SGIS_texture_lod X X X X X 1.2 functionality
SGIX_depth_texture X X X X use 1.4 version
SGIX_shadow X X X X use 1.4 version
SUN_slice_accum R50 R50 R50 X X accelerated on NV3x /NV4x
WGL_ARB_buffer_region X X X X X Win32
WGL_ARB_extensions_string X X X X X Win32
WGL_ARB_make_current_read R55 R55 R55 X X
WGL_ARB_multisample X X X X see ARB_multisample
WGL_ARB_pixel_format R10 X X X X Win32
WGL_ARB_pbuffer R10 X X X X Win32
WGL_ARB_render_texture R25 R25 X X X Win32
WGL_ATI_pixel_format_float X X Win32
WGL_EXT_extensions_string X X X X X Win32
WGL_EXT_swap_control X X X X X Win32
WGL_NV_float_buffer X X X Win32, see NV_float_buf fer
WGL_NV_render_depth_texture R25 X X X Win32
WGL_NV_render_texture_rectangle R25 R25 X X X Win32
WIN_swap_hint X X X X X Win32, no spec

Table of NVIDIA OpenGL Extension Support OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 7

Key for table entries:

X = supported

sw = supported by software rasterization (expect poo r performance)

Nf = Extension advertised but rendering functionality not available

R10 = introduced in the Release 10 OpenGL driver (not supported by earlier
drivers)

R20 = introduced in the Detanator XP (also known as Re lease 20) OpenGL driver
(not supported by earlier drivers)

R20+ = introduced after the Detanator XP (also known as Release 20) OpenGL
driver (not supported by earlier drivers)

R25 = introduced in the GeForce4 launch (also known as Release 25) OpenGL driver
(not supported by earlier drivers)

R25+ = introduced after the GeForce4 launch (also known as Release 25) OpenGL
driver (not supported by earlier drivers)

R35 = post-GeForce4 launch OpenGL driver release (not supported by earlier
drivers)

R40 = Detonator 40 release, August 2002.

R40+ = introduced after the Detanator 40 (also known as Release 40) OpenGL
driver (not supported by earlier drivers)

R50 = Detonator 50 release

R55 = Detonator 55 release

R60 = Detonator 60 release, May 2004

R65 = Release 65

R70 = Release 70

R80 = Release 80

R95 = Release 95

no spec = no suitable specification available

Discontinued = earlier drivers (noted by 25% gray entries) suppo rted this
extension but support for the extension is disconti nued in current and future
drivers

OpenGL Extension Specifcations for GeForce 8 Series Table of NVIDIA OpenGL Extension Support

NVIDIA Proprietary 8

Notices:

Emulation: While disabled by default, older GPUs can support e xtensions
supported in hardware by newer GPUs through a proce ss called emulation though
any functionality unsupported by the older GPU must be emulated via software.
For more details see: http://developer.nvidia.com/object/nvemulate.html

Warning: The extension support columns are based on the late st & greatest
NVIDIA driver release (unless otherwise noted). Ch eck your GL_EXTENSIONS string
with glGetString at run-time to determine the speci fic supported extensions for
a particular driver version.

Discontinuation of support: NVIDIA drivers from release 95 no longer support
NV1x- and NV2x-based GPUs.

http://developer.nvidia.com/object/nvemulate.html

EXT_bindable_uniform OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 9

Name

 EXT_bindable_uniform

Name String

 GL_EXT_bindable_uniform

Contact

 Pat Brown, NVIDIA (pbrown 'at' nvidia.com)
 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 12/13/2007
 Author revision: 13

Number

 342

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 2. 0 specification and version
 1.10.59 of the OpenGL Shading Language specific ation.

 This extension interacts with GL_EXT_geometry_s hader4.

Overview

 This extension introduces the concept of bindab le uniforms to the OpenGL
 Shading Language. A uniform variable can be de clared bindable, which
 means that the storage for the uniform is not a llocated by the
 compiler/linker anymore, but is backed by a buf fer object. This buffer
 object is bound to the bindable uniform through the new command
 UniformBufferEXT(). Binding needs to happen af ter linking a program
 object.

 Binding different buffer objects to a bindable uniform allows an
 application to easily use different "uniform da ta sets", without having to
 re-specify the data every time.

 A buffer object can be bound to bindable unifor ms in different program
 objects. If those bindable uniforms are all of the same type, accessing a
 bindable uniform in program object A will resul t in the same data if the
 same access is made in program object B. This provides a mechanism for
 'environment uniforms', uniform values that can be shared among multiple
 program objects.

OpenGL Extension Specifcations for GeForce 8 Series EXT_bindable_uniform

NVIDIA Proprietary 10

New Procedures and Functions

 void UniformBufferEXT(uint program, int locatio n, uint buffer);
 int GetUniformBufferSizeEXT(uint program, int l ocation);
 intptr GetUniformOffsetEXT(uint program, int lo cation);

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 MAX_VERTEX_BINDABLE_UNIFORMS_EXT 0x8DE2
 MAX_FRAGMENT_BINDABLE_UNIFORMS_EXT 0x8DE3
 MAX_GEOMETRY_BINDABLE_UNIFORMS_EXT 0x8DE4
 MAX_BINDABLE_UNIFORM_SIZE_EXT 0x8DED
 UNIFORM_BUFFER_BINDING_EXT 0x8DEF

 Accepted by the <target> parameters of BindBuff er, BufferData,
 BufferSubData, MapBuffer, UnmapBuffer, GetBuffe rSubData, and
 GetBufferPointerv:

 UNIFORM_BUFFER_EXT 0x8DEE

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify section 2.15.3 "Shader Variables", page 75.

 Add the following paragraph between the second and third paragraph on page
 79, "Uniform Variables"

 Uniform variables can be further characterized into bindable
 uniforms. Storage for bindable uniforms does no t come out of the,
 potentially limited, uniform variable storage d iscussed in the previous
 paragraph. Instead, storage for a bindable unif orm is provided by a buffer
 object that is bound to the uniform variable. Binding different buffer
 objects to a bindable uniform allows an applica tion to easily use
 different "uniform data sets", without having t o re-specify the data every
 time. A buffer object can be bound to bindable uniforms in different
 program objects. If those bindable uniforms are all of the same type,
 accessing a bindable uniform in program object A will result in the same
 data if the same access is made in program obje ct B. This provides a
 mechanism for 'environment', uniform values tha t can be shared among
 multiple program objects.

 Change the first sentence of the third paragrap h, p. 79, as follows:

 When a program object is successfully linked, a ll non-bindable active
 uniforms belonging to the program object are in itialized to zero (FALSE
 for Booleans). All active bindable uniforms hav e their buffer object
 bindings reset to an invalid state. A successfu l link will also generate a
 location for each active uniform, including act ive bindable uniforms. The
 values of active uniforms can be changed using this location and the
 appropriate Uniform* command (see below). For b indable uniforms, a buffer
 object has to be first bound to the uniform bef ore changing its
 value. These locations are invalidated.

EXT_bindable_uniform OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 11

 Change the second to last paragraph, p. 79, as follows:

 A valid name for a non-bindable uniform cannot be a structure, an array of
 structures, or any portion of a single vector o r a matrix. A valid name
 for a bindable uniform cannot be any portion of a single vector or
 matrix. In order to identify a valid name, ...

 Change the fifth paragraph, p. 81, as follows:

 The given values are loaded into the uniform va riable location identified
 by <location>. The parameter <location> cannot identify a bindable uniform
 structure or a bindable uniform array of struct ures. When loading data for
 a bindable uniform, the data will be stored in the appropriate location of
 the buffer object bound to the bindable uniform (see UniformBufferEXT
 below).

 Add the following bullets to the list of errors on p. 82:

 - If <location> refers to a bindable uniform structure or a bindable
 uniform array of structures.

 - If <location> refers to a bindable uniform that has no buffer object
 bound to the uniform.

 - If <location> refers to a bindable uniform and the bound buffer object
 is not of sufficient size. This means that the buffer object is
 smaller than the size that would be returne d by
 GetUniformBufferSizeEXT for the bindable un iform.

 - If <location> refers to a bindable uniform and the buffer object is
 bound to multiple bindable uniforms in the currently active program
 object.

 Add a sub-section called "Bindable Uniforms" ab ove the section "Samplers",
 p. 82:

 The number of active bindable uniform variables that can be supported by a
 vertex shader is limited and specified by the i mplementation dependent
 constant MAX_VERTEX_BINDABLE_UNIFORMS_EXT. The minimum supported number
 of bindable uniforms is eight. A link error wil l be generated if the
 program object contains more active bindable un iform variables.

 To query the minimum size needed for a buffer o bject to back a given
 bindable uniform, use the command:

 int GetUniformBufferSizeEXT(uint program, int location);

 This command returns the size in basic machine units of the smallest
 buffer object that can be used for the bindable uniform given by
 <location>. The size returned is intended to be passed as the <size>
 parameter to the BufferData() command. The erro r INVALID_OPERATION will be
 generated if <location> does not correspond to an active bindable uniform
 in <program>. The parameter <location> has to be location corresponding
 to the name of the bindable uniform itself, oth erwise the error
 INVALID_OPERATION is generated. If the bindabl e uniform is a structure,
 <location> can not refer to a structure member. If it is an array,
 <location> can not refer to any array member ot her than the first one. If

OpenGL Extension Specifcations for GeForce 8 Series EXT_bindable_uniform

NVIDIA Proprietary 12

 <program> has not been successfully linked, the error INVALID_OPERATION is
 generated.

 There is an implementation-dependent limit on t he size of bindable uniform
 variables. LinkProgram will fail if the storag e required for the uniform
 (in basic machine units) exceeds MAX_BINDABLE_U NIFORM_SIZE_EXT.

 To bind a buffer object to a bindable uniform, use the command:

 void UniformBufferEXT(uint program, int locat ion, uint buffer)

 This command binds the buffer object <buffer> t o the bindable uniform
 <location> in the program object <program>. Any previous binding to the
 bindable uniform <location> is broken. Before c alling UniformBufferEXT the
 buffer object has to be created, but it does no t have to be initialized
 with data nor its size set. Passing the value zero in <buffer> will
 unbind the currently bound buffer object. The e rror INVALID_OPERATION is
 generated if <location> does not correspond to an active bindable uniform
 in <program>. The parameter <location> has to correspond to the name of
 the uniform variable itself, as described for G etUniformBufferSizeEXT,
 otherwise the error INVALID_OPERATION is genera ted. If <program> has not
 been successfully linked, or if <buffer> is not the name of an existing
 buffer object, the error INVALID_OPERATION is g enerated.

 A buffer object cannot be bound to more than on e uniform variable in any
 single program object. However, a buffer object can be bound to bindable
 uniform variables in multiple program objects. Furthermore, if those
 bindable uniforms are all of the same type, acc essing a scalar, vector, a
 member of a structure, or an element of an arra y in program object A will
 result in the same data if the same scalar, vec tor, structure member, or
 array element is accessed in program object B. Additionally the structures
 in both program objects have to have the same m embers, specified in the
 same order, declared with the same data types a nd have the same name. If
 the buffer object bound to the uniform variable is smaller than the
 minimum size required to store the uniform vari able, as reported by
 GetUniformbufferSizeEXT, the results of reading the variable (or any
 portion thereof) are undefined.

 If LinkProgram is called on a program object th at has already been linked,
 any buffer objects bound to the bindable unifor ms in the program are
 unbound prior to linking, as though UniformBuff erEXT were called for each
 bindable uniform with a <buffer> value of zero.

 Buffer objects used to store uniform variables may be created and
 manipulated by buffer object functions (e.g., B ufferData, BufferSubData,
 MapBuffer) by calling BindBuffer with a <target > of UNIFORM_BUFFER_EXT.
 It is not necessary to bind a buffer object to UNIFORM_BUFFER_EXT in order
 to use it with an active program object.

 The size and layout of a bindable uniform varia ble in buffer object
 storage is not defined. However, the values of signed integer, unsigned
 integer, or floating-point uniforms may be upda ted by modifying the
 underying buffer object storage using either Ma pBuffer or BufferSubData.
 The command

 intptr GetUniformOffsetEXT(uint program, int location);

EXT_bindable_uniform OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 13

 returns the offset (in bytes) of the uniform in <program> whose location
 returned by GetUniformLocation is <location>. The error INVALID_VALUE is
 generated if the object named by <program> does not exist. The error
 INVALID_OPERATION is generated if <program> is not a program object, if
 <program> was not linked successfully, or if <l ocation> refers to a
 uniform that was not declared as bindable. The memory layout of matrix,
 boolean, or boolean vector uniforms is not defi ned, and the error
 INVALID_OPERATION will be generated if <locatio n> refers to a boolean,
 boolean vector, or matrix uniform. The value - 1 is returned by
 GetUniformOffsetEXT if an error is generated.

 The values of such uniforms may be changing by writing signed integer,
 unsigned integer, or floating-point values into the buffer object at the
 byte offset returned by GetUniformOffsetEXT. F or vectors, two to four
 integers or floating-point values should be wri tten to consecutive
 locations in the buffer object storage. For ar rays of scalar or vector
 variables, the number of bytes between individu al array members is
 guaranteed to be constant, but array members ar e not guaranteed to be
 stored in adjacent locations. For example, som e implementations may pad
 scalars, or two- or three-component vectors out to a four-component
 vector.

 Change the first paragraph below the sub-headin g 'Samplers', p. 82, as
 follows:

 Samplers are special uniforms used in the OpenG L Shading Language to
 identify the texture object used for each textu re lookup. Samplers cannot
 be declared as bindable in a shader. The value of a sampler indicates the
 texture image unit being accessed. Setting a sa mpler's value.

 Add the following bullets to the list of error conditions for Begin on
 p. 87:

 - There is one, or more, bindable uniform(s) i n the currently
 active program object that does not have a b uffer object
 bound to it.

 - There is one, or more, bindable uniform(s) i n the currently active
 program object that have a buffer object bou nd to it of insufficient
 size. This means that the buffer object is s maller than the size that
 would be returned by GetUniformBufferSizeEXT for the bindable uniform.

 - A buffer object is bound to multiple bindabl e uniforms in the currently
 active program object.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.11.1 "Shader Variables", p. 19 3

 Add a paragraph between the first and second pa ragraph, p. 194

 The number of active bindable uniform variables that can be supported by a
 fragment shader is limited and specified by the implementation dependent
 constant MAX_FRAGMENT_BINDABLE_UNIFORMS_EXT. Th e minimum supported number
 of bindable uniforms is eight. A link error wil l be generated if the
 program object contains more active bindable un iform variables.

OpenGL Extension Specifcations for GeForce 8 Series EXT_bindable_uniform

NVIDIA Proprietary 14

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 Change section 5.4 Display Lists, p. 237

 Add the command UniformBufferEXT to the list of commands that are not
 compiled into a display list, but executed imme diately, under "Program and
 Shader Objects", p. 241.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Interactions with GL_EXT_geometry_shader4

 If GL_EXT_geometry_shader4 is supported, a geom etry shader will also
 support bindable uniforms. The following paragr aph needs to be added to
 the section that discusses geometry shaders:

 "The number of active bindable uniform variable s that can be supported by
 a geometry shader is limited and specified by t he implementation dependent
 constant MAX_GEOMETRY_BINDABLE_UNIFORMS_EXT. Th e minimum supported number
 of bindable uniforms is eight. A link error wil l be generated if the
 program object contains more active bindable un iform variables."

 The implementation dependent value MAX_GEOMETRY _BINDABLE_UNIFORMS_EXT will
 need to be added to the state tables and assign ed an enum value.

Errors

 The error INVALID_VALUE is generated by Uniform BufferEXT,
 GetUniformBufferSize, or GetUniformOffsetEXT if <program> is not the name
 of a program or shader object.

 The error INVALID_OPERATION is generated by Uni formBufferEXT,
 GetUniformBufferSize, or GetUniformOffsetEXT if <program> is the name of a
 shader object.

 The error INVALID_OPERATION is generated by the Uniform* commands if
 <location> refers to a bindable uniform structu re or an array of such
 structures.

 The error INVALID_OPERATION is generated by the Uniform* commands if

EXT_bindable_uniform OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 15

 <location> refers to a bindable uniform that ha s no buffer object bound.

 The error INVALID_OPERATION is generated by the Uniform* commands if
 <location> refers to a bindable uniform and the bound buffer object is not
 of sufficient size to store data into <location >.

 The error INVALID_OPERATION is generated by the GetUniformBufferSizeEXT
 and UniformBufferEXT commands if <program> has not been successfully
 linked.

 The error INVALID_OPERATION is generated by the GetUniformBufferSizeEXT
 and UniformBufferEXT commands if <location> is not the location
 corresponding to the name of the bindable unifo rm itself or if <location>
 does not correspond to an active bindable unifo rm in <program>.

 The error INVALID_OPERATION is generated by Get UniformOffsetEXT if
 <program> was not linked successfully, if <loca tion> refers to a uniform
 that was not declared as bindable, or if <locat ion> refers to a boolean,
 boolean vector, or matrix uniform.

 The error INVALID_OPERATION is generated by the UniformBufferEXT command if
 <buffer> is not the name of a buffer object.

 The error INVALID_OPERATION is generated by Beg in, Rasterpos or any
 command that performs an implicit Begin if:

 - A buffer object is bound to multiple bindabl e uniforms in the currently
 active program object.

 - There is one, or more, bindable uniform(s) i n the currently active
 program object that does not have a buffer o bject bound to it.

 - There is one, or more, bindable uniform(s) i n the currently active
 program object that have a buffer object bou nd to it of insufficient
 size. This means that the buffer object is s maller than the size that
 would be returned by GetUniformBufferSizeEXT for the bindable uniform.

New State

 Minimum
 Get Value Type Get Command Value Description Section Attrib
 ---------------------- ---- ----------- ----- --------------------- ------- ------
 MAX_BINDABLE_VERTEX_ Z+ GetIntegerv 8 Number of bindable 2.15 -
 UNIFORMS_EXT uniforms per vertex
 shader
 MAX_BINDABLE_FRAGMENT_ Z+ GetIntegerv 8 Number of bindable 3.11.1 -
 UNIFORMS_EXT uniforms per fragment
 shader
 MAX_BINDABLE_GEOMETRY_ Z+ GetIntegerv 8 Number of bindable X.X.X -
 UNIFORMS_EXT uniforms per geometry
 shader
 MAX_BINDABLE_UNIFORM_ Z+ GetIntegerv 16384 Maximum size (in bytes) 2.15 -
 SIZE_EXT for bindable uniform
 storage.

OpenGL Extension Specifcations for GeForce 8 Series EXT_bindable_uniform

NVIDIA Proprietary 16

New Implementation Dependent State

 In itial
 Get Value Type Get Command V alue Description Sec Attribute
 -------------------------- ---- ----------- - ---- ------------------------- ----- ---------
 UNIFORM_BUFFER_BINDING_EXT Z+ GetIntegerv 0 Uniform buffer bound to 2.15 -
 the context for buffer
 object manipulation.

Modifications to The OpenGL Shading Language Specif ication, Version
1.10.59

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_EXT_bindable_uniform: <behavio r>

 where <behavior> is as specified in section 3.3 .

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_EXT_bindable_uniform 1

 Add to section 3.6 "Keywords"

 Add the following keyword:

 bindable

 Change section 4.3 "Type Qualifiers"

 In the qualifier table, add the following sub-q ualifiers under the uniform
 qualifier:

 bindable uniform

 Change section 4.3.5 "Uniform"

 Add the following paragraphs between the last a nd the second to last
 paragraphs:

 Uniform variables, except for samplers, can opt ionally be further
 qualified with "bindable". If "bindable" is pre sent, the storage for the
 uniform comes from a buffer object, which is bo und to the uniform through
 the GL API, as described in section 2.15.3 of t he OpenGL 2.0
 specification. In this case, the memory used do es not count against the
 storage limit described in the previous paragra ph. When using the
 "bindable" keyword, it must immediately precede the "uniform" keyword.

 An example bindable uniform declaration is:

 bindable uniform float foo;

 Only a limited number of uniforms can be bindab le for each type of
 shader. If this limit is exceeded, it will caus e a compile-time or
 link-time error. Bindable uniforms that are dec lared but not used do not
 count against this limit.

EXT_bindable_uniform OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 17

 Add to section 9 "Shading Language Grammar"

 type_qualifer:
 CONST
 ATTRIBUTE // Vertex only
 uniform-modifieropt UNIFORM

 uniform-modifier:
 BINDABLE

Issues

 1. Is binding a buffer object to a uniform done before or after linking a
 program object?

 DISCUSSION: There is no need to re-link when changing the buffer object
 that backs a uniform. Re-binding can therefor e be relatively quickly.
 Binding is be done using the location of the uniform retrieved by
 GetUniformLocation, to make it even faster (i nstead of binding by name
 of the uniform).

 Reasons to do this before linking: The linker might want to know what
 buffer object backs the uniform. Binding of a buffer object to a
 bindable uniform, in this case, will have to be done using the name of
 the uniform (no location is available until a fter linking). Changing the
 binding of a buffer object to a bindable unif orm means the program
 object will have to be re-linked, which would substantially increase the
 overhead of using multiple different "constan t sets" in a single
 program.

 RESOLUTION: Binding a buffer object to a bind able uniform needs to be
 done after the program object is linked. One of the purposes of this
 extension is to be able to switch among multi ple sets of uniform values
 efficiently.

 2. Is the memory layout of a bindable uniform av ailable to an application?

 DISCUSSION: Buffer objects are arrays of byt es. The application can map
 a buffer object and retrieve a pointer to it, and read or write into it
 directly. Or, the application can use the Buf ferSubData() command to
 store data in a buffer object. They can also be filled using ReadPixels
 (with ARB_pixel_buffer_object), or filled usi ng extensions such as the
 new transform feedback extension.

 If the layout of a uniform in buffer object m emory is known, these
 different ways of filling a buffer object cou ld be leveraged. On the
 other hand, different compiler implementation s may want a different
 packing schemes that may or may not match an end-user's expectations
 (e.g., all individual uniforms might be store d as vec4's). If only the
 Uniform*() API were allowed to modify buffer objects, we could
 completely hide the layout of bindable unifor ms. Unfortuantely, that
 would limit how the buffer object can be link ed to other sources of
 data.

 RESOLUTION: RESOLVED. The memory layout of a bindable uniform variable
 will not be specified. However, a query func tion will be added that

OpenGL Extension Specifcations for GeForce 8 Series EXT_bindable_uniform

NVIDIA Proprietary 18

 allows applications to determine the layout a nd load their buffer object
 via API's other than Uniform*() accordingly i f they choose.
 Unfortunately, the layout may not be consiste nt across implementations
 of this extension.

 Providing a better standard set of packing ru les is highly desirable,
 and we hope to design and add such functional ity in an extension in the
 near future.

 3. How is synchronization handled between a prog ram object using a buffer
 object and updates to the buffer object?

 DISCUSSION: For example, what happens when a ReadPixels into a buffer
 object is outstanding, that is bound to a bin dable uniform while the
 program object, containing the bindable unifo rm, is in use?

 RESOLUTION: UNRESOLVED. It is probably the GL implementation's
 responsibility to properly synchronize such u sages. This issue needs
 solving for GL_EXT_texture_buffer_object also , and should be consistent.

 4. A limited number of bindable uniforms can exi st in one program
 object. Should this limit be queriable?

 DISCUSSION: The link operation will fail if t oo many bindable uniforms
 are declared and active. Should the limit on the number of active
 bindable uniforms be queriable by the applica tion?

 RESOLUTION: Yes, this limit is queriable.

 5. Is the limit discussed in the previous issue per shader type?

 DISCUSSION: Is there a different limit for ve rtex shader and fragment
 shaders? Hardware might support different lim its. The storage for
 uniform variables is a limit queriable per sh ader type, thus it would be
 nice to be consistent with the existing model .

 RESOLUTION: YES.

 6. Can an application find out programmatically that a uniform is declared
 as a bindable uniform?

 DISCUSSION: Using GetActiveUniform() the appl ication can
 programmatically find out which uniforms are active, what their type and
 size etc it. Do we need to add a mechanism fo r an application to find
 out if an active uniform is a bindable unifor m?

 RESOLUTION: UNRESOLVED. To be consistent, the answer should be
 yes. However, extending GetActiveUniform() is not possible, which means
 we need a new API command. If we define a new API command, it probably
 is better to define something like: GetNewAc tiveUniform(int program,
 uint index, enum property, void *data); Or al ternatively, define new API
 to query the properties of a uniform per unif orm location:
 GetActiveUniformProperty(int program, int loc ation, enum property, void
 *data)

 7. What to do when the buffer object bound to a bindable uniform is not big
 enough to back the uniform or if no buffer ob ject is bound at all?

EXT_bindable_uniform OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 19

 DISCUSSION: The size of a buffer object can b e changed, after it is
 bound, by calling BufferData. It is possible that the buffer object
 isn't sufficiently big enough to back the bin dable uniform. This is an
 issue when loading values for uniforms and wh en actually rendering. In
 the case of loading uniforms, should the Unif orm* API generate an error?
 In the case of rendering, should this be a Be gin error?

 RESOLUTION: RESOLVED. It is a Begin error if a buffer object is too
 small or no buffer object is bound at all. Th e Uniform* commands will
 generate an error in these cases as well.

 8. What restrictions are there on binding a buff er object to more than one
 bindable uniform?

 DISCUSSION: Can a buffer object be bound to m ore than one uniform within
 a program object? No, this does not seem to b e a good idea. Can a
 buffer object be bound to more than one unifo rm in different program
 objects? Yes, this is useful functionality to have. If each uniform is
 also of the same type, then data access in pr ogram object A then the
 same access in program object B results in th e same data. In the latter
 case, if the uniform variables are arrays, mu st the arrays have the same
 length declared? No, that is too big of a res triction. The application
 is responsible for making sure the buffer obj ect is sufficiently sized
 to provide storage for the largest bindable u niform array.

 RESOLUTION: RESOLVED.

 9. It is not allowed to bind a buffer object to more than one bindable
 uniform in a program object. There are severa l operations that could be
 affected by this rule: UseProgram(), the unif orm loading commands
 Uniform*, Begin, RasterPos and any related re ndering command. Should
 each operation generate an error if the rule is violated?

 DISCUSSION: See also issue 7. The UseProgram command could generate an
 error if the rule is violated. However, it is possible to change the
 binding of a buffer object to a bindable unif orm even after UseProgram
 has been issued. Thus should the Uniform* com mands also check for this?
 If so, is that going to be a performance burd en on uniform loading? Or
 should it be undefined? Finally, at renderin g time violation of this
 rule will have to be checked. If violated, it seems to make sense to
 generate an error.

 RESOLUTION: RESOLVED. Make violation of the r ule a Begin error and a
 Uniform* error.

 10. How to provide the ability to use bindable un iform arrays (or bindable
 uniform arrays of structures) where the amoun t of data can differ based
 on the buffer object bound to it?

 DISCUSSION: In other words, the size of the b indable uniform is no
 longer declared in the shader, but determined by the buffer object
 backing it. This can be achieved through a va riety of ways:

 bindable uniform vec3 foo[1];

 Where we would allow indexing 'off the end' o f the array 'foo', because

OpenGL Extension Specifcations for GeForce 8 Series EXT_bindable_uniform

NVIDIA Proprietary 20

 it is backed by a buffer object. The actual s ize of the array will be
 implicitly inferred from the buffer object bo und to it. It'll be the
 shader's responsibility to not index outside the size of the buffer
 object. That in turn means that the layout in buffer object memory of a
 bindable uniform needs to be exposed to the a pplication.

 Or we could support something like:

 bindable uniform vec3 foo[100000]; // Some re ally big number

 and make all accesses inside the buffer objec t bound to "foo" legal.

 Or we could support something like:

 bindable uniform float foo[];

 foo[3] = 1.0;
 foo[i] = .

 Where 'i' could be a run-time index.

 RESOLUTION: For now, we will not support this functionality.

 11. Do we want to have bindable namespaces instea d of the uniform qualifier
 "bindable"?

 DISCUSSION: Something like this:

 bindable {
 vec3 blarg;
 int booyah;
 };

 where "blarg" and "booyah" can be referred to directly, but are both
 bindable to the same buffer. You can achieve this with bindable uniforms
 stored in structures:

 bindable uniform struct {
 vec3 blarg;
 int booyah;
 } foo;

 but then have to use "foo.blarg" and "foo.boo yah".

 RESOLUTION: Not in this extension. This might be nice programming sugar,
 but not essential. Such a feature may be add ed in a future extension
 building on this one.

 12. How can an application load data into a binda ble uniform?

 RESOLUTION: See also issue 2. Uniform variabl es declared as bindable can
 be loaded using the existing Uniform* command s, or data can be loaded in
 the buffer object bound to the uniform using any of the existing
 mechanisms.

EXT_bindable_uniform OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 21

 13. Should it be allowed to load data, using the Uniform* commands, into a
 buffer object that is bound to more than one bindable uniform variable
 in a program object?

 DISCUSSION: It is a Begin error to attempt to render in this situation.

 RESOLUTION: Yes, to be consistent with the Be gin error, it is also an
 error to load a value in this case.

 14. Should a buffer object binding point be provi ded for bindable uniforms?

 DISCUSSION: All current OpenGL buffer object manipulation functions take
 a <target> to which a buffer object must be b ound. In this extension,
 buffer objects are bound to uniforms stored i n a program, and are not
 bound directly to the context. So these bind ings may not be used to
 manipulate the

 RESOLUTION: Yes, a new <target> called UNIFO RM_BUFFER_EXT is provided.

 The following is a simple example of creating , binding, and populating a
 buffer object for a bindable uniform named "s tuff", which is an array of
 vec4 values:

 GLuint program, buffer;
 GLint location, size;
 GLfloat values;

 // ... compile shaders and link <program>
 location = glGetUniformLocation(program, "stuff");
 size = GetUniformBufferSize(program, loca tion);
 glGenBuffers(1, &buffer);
 glBindBuffer(GL_UNIFORM_BUFFER_EXT, buffe r);
 glBufferData(GL_UNIFORM_BUFFER_EXT, size, NULL, STATIC_READ);
 glUniformBufferEXT(program, location, buf fer);
 ...
 glUseProgram(program);
 glUniform4fv(location, count, values);

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 13 12/13/07 pbrown Minor clarification o n what values can be passed
 to GetUniformBufferSi zeEXT and UniformBufferEXT.

 12 12/15/06 pbrown Documented that the ' #extension' token
 for this extension sh ould begin with "GL_",
 as apparently called for per convention.

 11 -- Pre-release revisions .

OpenGL Extension Specifcations for GeForce 8 Series EXT_draw_buffers2

NVIDIA Proprietary 22

Name

 EXT_draw_buffers2

Name Strings

 GL_EXT_draw_buffers2

Contact

 Mike Strauss, NVIDIA Corporation (mstrauss 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 11/06/2006
 NVIDIA Revision: 9

Number

 340

Dependencies

 The extension is written against the OpenGL 2.0 Specification.

 OpenGL 2.0 is required.

Overview

 This extension builds upon the ARB_draw_buffers extension and provides
 separate blend enables and color write masks fo r each color output. In
 ARB_draw_buffers (part of OpenGL 2.0), separate values can be written to
 each color buffer, but the blend enable and col or write mask are global
 and apply to all color outputs.

 While this extension does provide separate blen d enables, it does not
 provide separate blend functions or blend equat ions per color output.

New Procedures and Functions

 void ColorMaskIndexedEXT(uint buf, boolean r, b oolean g,
 boolean b, boolean a);

 void GetBooleanIndexedvEXT(enum value, uint ind ex, boolean *data);

 void GetIntegerIndexedvEXT(enum value, uint ind ex, int *data);

 void EnableIndexedEXT(enum target, uint index);

 void DisableIndexedEXT(enum target, uint index) ;

 boolean IsEnabledIndexedEXT(enum target, uint i ndex);

EXT_draw_buffers2 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 23

New Tokens

 None.

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify the thrid paragraph of section 4.1.8 (Bl ending) , p206, to
 read as follows:

 Blending is dependent on the incoming fragment' s alpha value and
 that of the corresponding currently stored pixe l. Blending applies
 only in RGBA mode; in color index mode it is by passed. Blending
 is enabled or disabled for an individual draw b uffer using

 void EnableIndexedEXT(GLenum target, GLuint index);
 void DisableIndexedEXT(GLenum target, GLuin t index);

 <target> is the symbolic constant BLEND and <in dex> is an integer
 i specifying the draw buffer associated with th e symbolic constant
 DRAW_BUFFERi. If the color buffer associated w ith DRAW_BUFFERi is
 one of FRONT, BACK, LEFT, RIGHT, or FRONT_AND_B ACK (specifying
 multiple color buffers), then the state enabled or disabled is
 applicable for all of the buffers. Blending ca n be enabled or
 disabled for all draw buffers using Enable or D isable with the
 symbolic constant BLEND. If blending is disabl ed for a particular
 draw buffer, or if logical operation on color v alues is enabled
 (section 4.1.10), proceed to the next operation .

 Modify the first paragraph of section 4.1.8 (Bl ending - Blending
 State), p209, to read as follows:

 The state required for blending is two integers for the RGB and
 alpha blend equations, four integers indicating the source and
 destination RGB and alpha blending functions, f our floating-point
 values to store the RGBA constant blend color, and n bits
 indicating whether blending is enabled or disab led for each of the
 n draw buffers. The initial blend equations fo r RGB and alpha are
 both FUNC_ADD. The initial blending functions are ONE for the
 source RGB and alpha functions, and ZERO for th e destination RGB
 and alpha functions. The initial constant blen d color is
 (R, G, B, A) = (0, 0, 0, 0). Initially, blendi ng is disabled for
 all draw buffers.

OpenGL Extension Specifcations for GeForce 8 Series EXT_draw_buffers2

NVIDIA Proprietary 24

 Modify the first paragraph of section 4.2.2 (Fi ne Control of Buffer
 Updates) to read as followS:

 Three commands are used to mask the writing of bits to each of the
 logical draw buffers after all per-fragment ope rations have been
 performed.

 The commands

 void IndexMask(uint mask);
 void ColorMask(boolean r, boolean g, boolea n b, boolean a);
 void ColorMaskIndexedEXT(uint buf, boolean r, boolean g,
 boolean b, boolean a);

 control writes to the active draw buffers.

 The least significant n bits of <mask>, where n is the number of
 bits in a color index buffer, specify a mask. Where a 1 appears in
 this mask, the corresponding bit in the color i ndex buffer (or
 buffers) is written; where a 0 appears, the bit is not written.
 This mask applies only in color index mode.

 In RGBA mode, ColorMask and ColorMaskIndexedEXT are used to mask
 the writing of R, G, B and A values to the draw buffer or buffers.
 ColorMaskIndexedEXT sets the mask for a particu lar draw buffer.
 The mask for DRAW_BUFFERi is modified by passin g i as the parameter
 <buf>. <r>, <g>, , and <a> indicate whether R, G, B, or A
 values, respectively, are written or not (a val ue of TRUE means
 that the corresponding value is written). The mask specified by
 <r>, <g>, , and <a> is applied to the color buffer associated
 with DRAW_BUFFERi. If DRAW_BUFFERi is one of F RONT, BACK, LEFT,
 RIGHT, or FRONT_AND_BACK (specifying multiple c olor buffers) then
 the mask is applied to all of the buffers. Col orMask sets the mask
 for all draw buffers to the same values as spec ified by <r>, <g>,
 , and <a>.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify the second paragraph of section 6.1.1 (S imple Queries)
 p244 to read as follows:

 ...<data> is a pointer to a scalar or array of the indicated
 type in which to place the returned data.

 void GetBooleanIndexedvEXT(enum target, uin t index, boolean *data);
 void GetIntegerIndexedvEXT(enum target, uin t index, int *data);

 are used to query indexed state. <target> is t he name of
 the indexed state and <index> is the index of t he particular
 element being queried. <data> is a pointer to a scalar or array

EXT_draw_buffers2 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 25

 of the indicated type in which to place the ret urned data. In
 addition

 boolean IsEnabled(enum value);

 can be used to determine if <value> is currentl y enabled (as with
 Enable) or disabled.

 boolean IsEnabledIndexedEXT(enum target, ui nt index);

 can be used to determine if the index state cor responding to
 <target> and <index> is enabled or disabled.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Errors

 The error INVALID_ENUM is generated by EnableIn dexedEXT and
 DisableIndexedEXT if the <target> parameter is not BLEND.

 The error INVALID_OPERATION is generated by Ena bleIndexedEXT and
 DisableIndexeEXT if the <target> parameter is B LEND and the <index>
 parameter is outside the range [0, MAX_DRAW_BUF FERS-1].

 The error INVALID_ENUM is generated by IsEnable dIndexedEXT if the
 <target> parameter is not BLEND.

 The error INVALID_OPERATION is generated by IsE nabledIndexedEXT if
 the <target> parameter is BLEND and the <index> parameter is
 outside the range [0, MAX_DRAW_BUFFERS-1].

 The error INVALID_OPERATION is generated by Dra wBufferColorMaskEXT
 if the <buf> parameter is outside the range
 [0, MAX_DRAW_BUFFERS-1].

 The error INVALID_ENUM is generated by GetBoole anIndexedvEXT if the
 <target> parameter is not BLEND.

 The error INVALID_OPERATION is generated by Get BooleanIndexedvEXT
 if the <target> parameter is BLEND and the <ind ex> parameter is
 outside the range [0, MAX_DRAW_BUFFERS-1].

OpenGL Extension Specifcations for GeForce 8 Series EXT_draw_buffers2

NVIDIA Proprietary 26

New State

 Modify (table 6.20, p281), modifying the entry for BLEND and adding
 a new one.

 Get Target Type Get Command Value Desc ription Section Attrib ute
 ---------- ---- ------------------- ----- ---- ------------------------------ ------- ------------ -------
 BLEND B IsEnabled False Blen ding enabled for draw buffer 0 4.1.8 color-buffer /enable
 BLEND B IsEnabledIndexedEXT False Blen ding enabled for draw buffer i 4.1.8 color-buffer /enable
 where i is specified as <index>

 Modify (table 6.21, p282), modifying the entry for COLOR_WRITEMASK
 and adding a new one.

 Get Value Type Get Command Valu e Description Section Attrib ute
 --------------- ---- --------------------- ---- - ---------------------------------- ------- ------ ------
 COLOR_WRITEMASK 4xB GetBooleanv True Color write mask for draw buffer 0 4.2.2 color- buffer
 COLOR_WRITEMASK 4xB GetBooleanIndexedvEXT True Color write mask for draw buffer i 4.2.2 color- buffer
 where i is specified as <index>

Issues

 1. Should the extension provide support for pe r draw buffer index
 masks as well as per draw buffer color masks?

 RESOLVED: No. Color index rendering is no t interesting
 enough to warrant extending the API in this direction.

 2. Should the API for specifying separate colo r write masks be
 based on DrawBuffers() (specifying an array of write masks at
 once)?

 RESOLVED: No. There are two ways to mimic the DrawBuffers()
 API. A function, ColorMasks(), could take an an element count
 and an array of four element boolean arrays as parameters.
 Each four element boolean array contains a set of red, green,
 blue, and alpha write masks for a specific color buffer. An
 alternative is a ColorMasks() function that takes an element
 count and four parallel boolean arrays with one array per color
 channel. Neither approach is particularly clean. A cleaner
 approach, taken by ColorMaskIndexedEXT(), i s to specify a
 color mask for a single draw buffer where t he draw buffer is
 specified as a parameter to the function.

 3. How should ColorMask() affect the per color buffer write masks?

 RESOLVED: ColorMask() should set all color buffer write masks
 to the same values. This is backwards comp atible with the way
 ColorMask() behaves in the absence of this extension.

 4. What should GetBooleanv return when COLOR_W RITEMASK is queried?

 RESOLVED: COLOR_WRITEMASK should return
 DRAW_BUFFER0_COLOR_WRITEMASK_EXT. This is backwards compatible
 with the way the query works without this e xtension. To query
 the writemask associated with a particular draw buffer, an
 application can use GetBooleanIndexedvEXT.

EXT_draw_buffers2 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 27

 5. How are separate blend enables controlled? Should a new
 function be introduced, or do Enable() and Disa ble() provide
 sufficient functionality?

 RESOLVED: This extension introduces new fu nctions
 EnableIndexedEXT and DisableIndexedEXT that can be used to
 enable/disable individual states of a state array. These
 functions are introduced because there is a trend towards
 introducing arrays of state. Rather than c reating enums for
 each index in the array, it is better to gi ve applications
 a mechanism for accessing a particular elem ent of the state
 array given the name of the state and an in dex into the array.

 6. What effect does enabling or disabling blen ding using BLEND
 have on per draw buffer blend enables?

 RESOLVED: BLEND, used with Enable() and Di sable(), should
 enable or disable all per draw buffer blend enables. This is
 similar to the way that ColorMask() affects the per draw
 buffer write masks.

Revision History

 None

OpenGL Extension Specifcations for GeForce 8 Series EXT_draw_instanced

NVIDIA Proprietary 28

Name

 EXT_draw_instanced

Name Strings

 GL_EXT_draw_instanced

Contact

 Michael Gold, NVIDIA Corporation (gold 'at' nvi dia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: November 6, 2006
 Author Revision: 1.4

Number

 327

Dependencies

 OpenGL 2.0 is required.

 EXT_gpu_shader4 or NV_vertex_shader4 is require d.

Overview

 This extension provides the means to render mul tiple instances of
 an object with a single draw call, and an "inst ance ID" variable
 which can be used by the vertex program to comp ute per-instance
 values, typically an object's transform.

New Tokens

 None

New Procedures and Functions

 void DrawArraysInstancedEXT(enum mode, int firs t, sizei count,
 sizei primcount);
 void DrawElementsInstancedEXT(enum mode, sizei count, enum type,
 const void *indices, sizei primcount);

EXT_draw_instanced OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 29

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion
(OpenGL Operation)

 Modify section 2.8 (Vertex Arrays), p. 23

 (insert before the final paragraph, p. 30)

 The internal counter <instanceID> is a 32-bit i nteger value which
 may be read by a vertex program as <vertex.inst ance>, as described
 in section 2.X.3.2, or vertex shader as <gl_Ins tanceID>, as
 described in section 2.15.4.2. The value of th is counter is
 always zero, except as noted below.

 The command

 void DrawArraysInstancedEXT(enum mode, int first, sizei count,
 sizei primcount);

 behaves identically to DrawArrays except that < primcount>
 instances of the range of elements are executed and the value of
 <instanceID> advances for each iteration. It h as the same effect
 as:

 if (mode or count is invalid)
 generate appropriate error
 else {
 for (i = 0; i < primcount; i++) {
 instanceID = i;
 DrawArrays(mode, first, count, i);
 }
 instanceID = 0;
 }

 The command

 void DrawElementsInstancedEXT(enum mode, si zei count, enum type,
 const void *indices, sizei primcoun t);

 behaves identically to DrawElements except that <primcount>
 instances of the set of elements are executed, and the value of
 <instanceID> advances for each iteration. It h as the same effect
 as:

 if (mode, count, or type is invalid)
 generate appropriate error
 else {
 for (int i = 0; i < primcount; i++) {
 instanceID = i;
 DrawElements(mode, count, type, ind ices, i);
 }
 instanceID = 0;
 }

OpenGL Extension Specifcations for GeForce 8 Series EXT_draw_instanced

NVIDIA Proprietary 30

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion
(Special Functions)

 The error INVALID_OPERATION is generated if Dra wArraysInstancedEXT
 or DrawElementsInstancedEXT is called during di splay list
 compilation.

Dependencies on NV_vertex_program4

 If NV_vertex_program4 is not supported, all ref erences to
 vertex.instance are deleted.

Dependencies on EXT_gpu_shader4

 If EXT_gpu_shader4 is not supported, all refere nces to
 gl_InstanceID are deleted.

Errors

 INVALID_ENUM is generated by DrawElementsInstan cedEXT if <type> is
 not one of UNSIGNED_BYTE, UNSIGNED_SHORT or UNS IGNED_INT.

 INVALID_VALUE is generated by DrawArraysInstanc edEXT if <first> is
 less than zero.

Issues

 (1) Should instanceID be provided by this extensi on, or should it be
 provided by EXT_gpu_shader4, thus creating a dependence on that
 spec?

 Resolved: While this extension could stand alone, its utility
 would be limited without the additional fun ctionality provided
 by EXT_gpu_shader4; also, the spec language is cleaner if
 EXT_gpu_shader4 assumes instanceID is alway s available, even
 if its value is always zero without this ex tension.

 (2) Should MultiDrawArrays and MultiDrawElements affect the value of
 instanceID?

 Resolved: No, this may cause implementation difficulties and
 is considered unlikely to provide any real benefit.

 (3) Should DrawArraysInstanced and DrawElementsIn stanced be compiled
 into display lists?

 Resolved: No, calling these during display list compilation
 generate INVALID_OPERATION.

Revision History

 None

EXT_framebuffer_sRGB OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 31

Name

 EXT_framebuffer_sRGB

Name Strings

 GL_EXT_framebuffer_sRGB
 GLX_EXT_framebuffer_sRGB
 WGL_EXT_framebuffer_sRGB

Contributors

 Herb (Charles) Kuta, Quantum3D

 From the EXT_texture_sRGB specification...

 Alain Bouchard, Matrox
 Brian Paul, Tungsten Graphics
 Daniel Vogel, Epic Games
 Eric Werness, NVIDIA
 Kiril Vidimce, Pixar
 Mark J. Kilgard, NVIDIA
 Pat Brown, NVIDIA
 Yanjun Zhang, S3 Graphics
 Jeremy Sandmel, Apple

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Date: November 6, 2006
 Revision: 2

Number

 337

Dependencies

 OpenGL 1.1 required

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

 WGL_EXT_extensions_string is required for WGL s upport.

 WGL_EXT_pixel_format is required for WGL suppor t.

 ARB_color_buffer_float interacts with this exte nsion.

 EXT_framebuffer_object interacts with this exte nsion.

OpenGL Extension Specifcations for GeForce 8 Series EXT_framebuffer_sRGB

NVIDIA Proprietary 32

 EXT_texture_sRGB interacts with this extension.

 ARB_draw_buffers interacts with this extension.

Overview

 Conventionally, OpenGL assumes framebuffer colo r components are stored
 in a linear color space. In particular, frameb uffer blending is a
 linear operation.

 The sRGB color space is based on typical (non-l inear) monitor
 characteristics expected in a dimly lit office. It has been
 standardized by the International Electrotechni cal Commission (IEC)
 as IEC 61966-2-1. The sRGB color space roughly corresponds to 2.2
 gamma correction.

 This extension adds a framebuffer capability fo r sRGB framebuffer
 update and blending. When blending is disabled but the new sRGB
 updated mode is enabled (assume the framebuffer supports the
 capability), high-precision linear color compon ent values for red,
 green, and blue generated by fragment coloring are encoded for sRGB
 prior to being written into the framebuffer. W hen blending is enabled
 along with the new sRGB update mode, red, green , and blue framebuffer
 color components are treated as sRGB values tha t are converted to
 linear color values, blended with the high-prec ision color values
 generated by fragment coloring, and then the bl end result is encoded
 for sRGB just prior to being written into the f ramebuffer.

 The primary motivation for this extension is th at it allows OpenGL
 applications to render into a framebuffer that is scanned to a monitor
 configured to assume framebuffer color values a re sRGB encoded.
 This assumption is roughly true of most PC moni tors with default
 gamma correction. This allows applications to achieve faithful
 color reproduction for OpenGL rendering without adjusting the
 monitor's gamma correction.

New Procedures and Functions

 None

New Tokens

 Accepted by the <attribList> parameter of glXCh ooseVisual, and by
 the <attrib> parameter of glXGetConfig:

 GLX_FRAMEBUFFER_SRGB_CAPABLE_EXT 0x20B2

 Accepted by the <piAttributes> parameter of
 wglGetPixelFormatAttribivEXT, wglGetPixelFormat AttribfvEXT, and
 the <piAttribIList> and <pfAttribIList> of wglC hoosePixelFormatEXT:

 WGL_FRAMEBUFFER_SRGB_CAPABLE_EXT 0x20A9

EXT_framebuffer_sRGB OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 33

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev:

 FRAMEBUFFER_SRGB_EXT 0x8DB9

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 FRAMEBUFFER_SRGB_CAPABLE_EXT 0x8DBA

Additions to Chapter 2 of the 2.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 2.0 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 2.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 DELETE the following sentence from section 4.1. 8 (Blending) because
 it is moved to the new "sRGB Conversion" sectio n:

 "Each of these floating-point values is clamped to [0,1] and
 converted back to a fixed-point value in the ma nner described in
 section 2.14.9."

 If ARB_color_buffer_float is supported, the fol lowing paragraph
 is modified to eliminate the fixed-point clampi ng and conversion
 because this behavior is moved to the new "sRGB Conversion" section.

 "If the color buffer is fixed-point, the compon ents of the source
 and destination values and blend factors are cl amped to [0, 1]
 prior to evaluating the blend equation, the com ponents of the
 blending result are clamped to [0,1] and conver ted to fixed-
 point values in the manner described in section 2.14.9. If the
 color buffer is floating-point, no clamping occ urs. The
 resulting four values are sent to the next oper ation."

 The modified ARB_color_buffer_float paragraph s hould read:

 "If the color buffer is fixed-point, the compon ents of the source
 and destination values and blend factors are cl amped to [0, 1]
 prior to evaluating the blend equation. If the color buffer is
 floating-point, no clamping occurs. The result ing four values are
 sent to the next operation."

OpenGL Extension Specifcations for GeForce 8 Series EXT_framebuffer_sRGB

NVIDIA Proprietary 34

 Replace the following sentence:

 "Destination (framebuffer) components are taken to be fixed-point
 values represented according to the scheme in s ection 2.14.9 (Final
 Color Processing), as are source (fragment) com ponents."

 with the following sentences:

 "Destination (framebuffer) components are taken to be fixed-point
 values represented according to the scheme in s ection 2.14.9 (Final
 Color Processing). If FRAMEBUFFER_SRGB_EXT is enabled and the boolean
 FRAMEBUFFER_SRGB_CAPABLE_EXT state for the draw able is true, the R,
 G, and B destination color values (after conver sion from fixed-point
 to floating-point) are considered to be encoded for the sRGB color
 space and hence need to be linearized prior to their use in blending.
 Each R, G, and B component is linearized by som e approximation of
 the following:

 { cs / 12.92, cs <= 0. 04045
 cl = {
 { ((cs + 0.055)/1.055)^2.4, cs > 0. 04045

 where cs is the component value prior to linear ization and cl is
 the result. Otherwise if FRAMEBUFFER_SRGB_EXT is disabled, or the
 drawable is not sRGB capable, or the value corr esponds to the A
 component, then cs = cl for such components. T he corresponding cs
 values for R, G, B, and A are recombined as the destination color
 used subsequently by blending."

 ADD new section 4.1.X "sRGB Conversion" after s ection 4.1.8 (Blending)
 and before section 4.1.9 (Dithering). With thi s new section added,
 understand the "next operation" referred to in the section 4.1.8
 (Blending) to now be "sRGB Conversion" (instead of "Dithering").

 "If FRAMEBUFFER_SRGB_EXT is enabled and the boo lean
 FRAMEBUFFER_SRGB_CAPABLE_EXT state for the draw able is true, the R,
 G, and B values after blending are converted in to the non-linear
 sRGB color space by some approximation of the f ollowing:

 { 0.0, 0 <= cl
 { 12.92 * c, 0 < cl < 0.0031308
 cs = { 1.055 * cl^0.41666 - 0.055, 0.003 1308 <= cl < 1
 { 1.0, cl >= 1

 where cl is the R, G, or B element and cs is th e result
 (effectively converted into an sRGB color space). Otherwise if
 FRAMEBUFFER_SRGB_EXT is disabled, or the drawab le is not sRGB
 capable, or the value corresponds to the A elem ent, then cs = cl
 for such elements.

 The resulting cs values form a new RGBA color v alue. If the color
 buffer is fixed-point, the components of this R GBA color value are
 clamped to [0,1] and then converted to a fixed- point value in the
 manner described in section 2.14.9. The result ing four values are
 sent to the subsequent dithering operation."

EXT_framebuffer_sRGB OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 35

Additions to Chapter 5 of the 2.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 2.0 Specification (St ate and State Requests)

 None

Additions to the OpenGL Shading Language specificat ion

 None

Additions to the GLX Specification

 None

Dependencies on ARB_color_buffer_float

 If ARB_color_buffer_float is not supported, ign ore the edits to
 ARB_color_buffer_float language.

Dependencies on EXT_texture_sRGB and EXT_framebuffe r_object

 If EXT_texture_sRGB and EXT_framebuffer_object are both supported, the
 implementation should set FRAMEBUFFER_SRGB_CAPA BLE_EXT to false when
 rendering to a color texture that is not one of the EXT_texture_sRGB
 introduced internal formats. An implementation can determine whether
 or not it will set FRAMEBUFFER_SRGB_CAPABLE_EXT to true for the
 EXT_texture_sRGB introduced internal formats. Implementations are
 encouraged to allow sRGB update and blending wh en rendering to sRGB
 textures using EXT_framebuffer_object but this is not required.
 In any case, FRAMEBUFFER_SRGB_CAPABLE_EXT shoul d indicate whether
 or not sRGB update and blending is supported.

Dependencies on ARB_draw_buffers, EXT_texture_sRGB, and EXT_framebuffer_object

 If ARB_draw_buffers, EXT_texture_sRGB, and EXT_ framebuffer_object
 are supported and an application attempts to re nder to a set
 of color buffers where some but not all of the color buffers
 are FRAMEBUFFER_SRGB_CAPABLE_EXT individually, the query of
 FRAMEBUFFER_SRGB_CAPABLE_EXT should return true .

 However sRGB update and blending only apply to the color buffers
 that are actually sRGB-capable.

GLX Protocol

 None.

Errors

 Relaxation of INVALID_ENUM errors

 Enable, Disable, IsEnabled, GetBooleanv, GetInt egerv, GetFloatv,
 and GetDoublev now accept the new token as allo wed in the "New
 Tokens" section.

OpenGL Extension Specifcations for GeForce 8 Series EXT_framebuffer_sRGB

NVIDIA Proprietary 36

New State

 Add to table 6.20 (Pixel Operations)

 Get Value Type Get Command Initia l Value Description Sec. Attribute
 -------------------- ---- ----------- ------ ------- --------------- ----- ------------------ -
 FRAMEBUFFER_SRGB_EXT B IsEnabled False sRGB update and 4.1.X color-buffer/enabl e
 blending enable

 Add to table 6.33 (Implementation Dependent Val ues)

 Get Value Type Get Command Initial Value Description Sec. Attri bute
 ---------------------------- ---- ----------- ------------- -------------------- ----- ----- ----
 FRAMEBUFFER_SRGB_CAPABLE_EXT B IsEnabled - true if drawable 4.1.X -
 supports sRGB update
 and blending

New Implementation Dependent State

 None

Issues

 1) What should this extension be called?

 RESOLVED: EXT_framebuffer_sRGB.

 The "EXT_framebuffer" part indicates the ex tension is in
 the framebuffer domain and "sRGB" indicates the extension is
 adding a set of sRGB formats. This mimics the naming of the
 EXT_texture_sRGB extension that adds sRGB t exture formats.

 The mixed-case spelling of sRGB is the esta blished usage so
 "_sRGB" is preferred to "_srgb". The "s" s tands for standard
 (color space).

 For token names, we use "SRGB" since token names are uniformly
 capitalized.

 2) Should alpha be sRGB encoded?

 RESOLVED: No. Alpha remains linear.

 A rationale for this resolution is found in Alvy Ray's "Should
 Alpha Be Nonlinear If RGB Is?" Tech Memo 17 (December 14, 1998).
 See: ftp://ftp.alvyray.com/Acrobat/17_Nonln .pdf

 3) Should the ability to support sRGB framebuf fer update and blending
 be an attribute of the framebuffer?

 RESOLVED: Yes. It should be a capability of some pixel formats
 (mostly likely just RGB8 and RGBA8) that sa ys sRGB blending can
 be enabled.

 This allows an implementation to simply mar k the existing RGB8
 and RGBA8 pixel formats as supporting sRGB blending and then

EXT_framebuffer_sRGB OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 37

 just provide the functionality for sRGB upd ate and blending for
 such formats.

 sRGB support for floating-point formats mak es little sense
 (because floating-point already provide a n on-linear distribution
 of precision and typically have considerabl y more precision
 than 8-bit fixed-point framebuffer componen ts allow) and would
 be expensive to support.

 Requiring sRGB support for all fixed-point buffers means that
 support for 16-bit components or very small 5-bit or 6-bit
 components would require special sRGB conve rsion hardware.
 Typically sRGB is well-suited for 8-bit fix ed-point components
 so we do not want this extension to require expensive tables
 for other component sizes that are unlikely to ever be used.
 Implementations could support sRGB conversi on for any color
 framebuffer format but implementations are not required to
 (honestly nor are implementations like to s upport sRGB on anything
 but 8-bit fixed-point color formats).

 4) Should there be an enable for sRGB update a nd blending?

 RESOLVED: Yes, and it is disabled by defau lt. The enable only
 applies if the framebuffer's underlying pix el format is capable
 of sRGB update and blending. Otherwise, th e enable is silently
 ignored (similar to how the multisample ena bles are ignored when
 the pixel format lacks multisample supports).

 5) How is sRGB blending done?

 RESOLVED: Blending is a linear operation s o should be performed
 on values in linear spaces. sRGB-encoded v alues are in a
 non-linear space so sRGB blending should co nvert sRGB-encoded
 values from the framebuffer to linear value s, blend, and then
 sRGB-encode the result to store it in the f ramebuffer.

 The destination color RGB components are ea ch converted
 from sRGB to a linear value. Blending is t hen performed.
 The source color and constant color are sim ply assumed to be
 treated as linear color components. Then t he result of blending
 is converted to an sRGB encoding and stored in the framebuffer.

 6) What happens if GL_FRAMEBUFFER_SRGB_EXT is enabled (and
 GL_FRAMEBUFFER_SRGB_CAPABLE_EXT is true for the drawable) but
 GL_BLEND is not enabled?

 RESOLVED: The color result from fragment c oloring (the source
 color) is converted to an sRGB encoding and stored in the
 framebuffer.

 7) How are multiple render targets handled?

 RESOLVED: Render targets that are not
 GL_FRAMEBUFFER_SRGB_CAPABLE_EXT ignore the state of the
 GL_FRAMEBUFFER_SRGB_EXT enable for sRGB upd ate and blending.
 So only the render targets that are sRGB-ca pable perform sRGB
 blending and update when GL_FRAMEBUFFER_SRG B_EXT is enabled.

OpenGL Extension Specifcations for GeForce 8 Series EXT_framebuffer_sRGB

NVIDIA Proprietary 38

 8) Should sRGB framebuffer support affect the pixel path?

 RESOLVED: No.

 sRGB conversion only applies to color reads for blending and
 color writes. Color reads for glReadPixels , glCopyPixels,
 or glAccum have no sRGB conversion applied.

 For pixel path operations, an application c ould use pixel maps
 or color tables to perform an sRGB-to-linea r conversion with
 these lookup tables.

 9) Can luminance (single color component) fram ebuffer formats
 support sRGB blending?

 RESOLVED: Yes, if an implementation choose s to advertise such
 a format and set the sRGB attribute for the format too.

 Implementations are not obliged to provide such formats.

 10) Should all component sizes be supported for sRGB components or
 just 8-bit?

 RESOLVED: This is at the implementation's discretion since
 the implementation decides what pixel forma ts such support sRGB
 update and blending.

 It likely implementations will only provide sRGB-capable
 framebuffer configurations for configuratio ns with 8-bit
 components.

 11) What must be specified as far as how do you convert to and from
 sRGB and linear RGB color spaces?

 RESOLVED: The specification language needs to only supply the
 linear RGB to sRGB conversion (see section 4.9.X above).

 The sRGB to linear RGB conversion is docume nted in the
 EXT_texture_sRGB specification.

 For completeness, the accepted linear RGB t o sRGB conversion
 (the inverse of the function specified in s ection 3.8.x) is as
 follows:

EXT_framebuffer_sRGB OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 39

 Given a linear RGB component, cl, convert i t to an sRGB component,
 cs, in the range [0,1], with this pseudo-co de:

 if (isnan(cl)) {
 /* Map IEEE-754 Not-a-number to zer o. */
 cs = 0.0;
 } else if (cl > 1.0) {
 cs = 1.0;
 } else if (cl < 0.0) {
 cs = 0.0;
 } else if (cl < 0.0031308) {
 cs = 12.92 * cl;
 } else {
 cs = 1.055 * pow(cl, 0.41666) - 0.0 55;
 }

 The NaN behavior in the pseudo-code is rec ommended but not
 specified in the actual specification lang uage.

 sRGB components are typically stored as un signed 8-bit
 fixed-point values. If cs is computed wit h the above
 pseudo-code, cs can be converted to a [0,2 55] integer with this
 formula:

 csi = floor(255.0 * cs + 0.5)

 12) Does this extension guarantee images render ed with sRGB textures
 will "look good" when output to a device su pporting an sRGB
 color space?

 RESOLVED: No.

 Whether the displayed framebuffer is displa yed to a monitor that
 faithfully reproduces the sRGB color space is beyond the scope
 of this extension. This involves the gamma correction and color
 calibration of the physical display device.

 13) How does this extension interact with EXT_f ramebuffer_object?

 RESOLVED: When rendering to a color textur e, an application
 can query GL_FRAMEBUFFER_SRGB_CAPABLE_EXT t o determine if the
 color texture image is capable of sRGB rend ering.

 This boolean should be false for all textur e internal formats
 except may be true (but are not required to be true) for the sRGB
 internal formats introduced by EXT_texture_ sRGB. The expectation
 is that implementations of this extension w ill be able to support
 sRGB update and blending of sRGB textures.

 14) How is the constant blend color handled for sRGB framebuffers?

 RESOLVED: The constant blend color is spec ified as four
 floating-point values. Given that the text ure border color can
 be specified at such high precision, it is always treated as a
 linear RGBA value.

OpenGL Extension Specifcations for GeForce 8 Series EXT_framebuffer_sRGB

NVIDIA Proprietary 40

 15) How does glCopyTex[Sub]Image work with sRGB ? Suppose we're
 rendering to a floating point pbuffer or fr amebuffer object and
 do CopyTexImage. Are the linear framebuffe r values converted
 to sRGB during the copy?

 RESOLVED: No, linear framebuffer values wi ll NOT be automatically
 converted to the sRGB encoding during the c opy. If such a
 conversion is desired, as explained in issu e 12, the red, green,
 and blue pixel map functionality can be use d to implement a
 linear-to-sRGB encoding translation.

 16) Should this extension explicitly specify th e particular
 sRGB-to-linear and linear-to-sRGB conversio ns it uses?

 RESOLVED: The conversions are explicitly s pecified but
 allowance for approximations is provided. The expectation is
 that the implementation is likely to use a table to implement the
 conversions the conversion is necessarily t hen an approximation.

 17) How does this extension interact with multi sampling?

 RESOLVED: There are no explicit interactio ns. However, arguably
 if the color samples for multisampling are sRGB encoded, the
 samples should be linearized before being " resolved" for display
 and then recoverted to sRGB if the output d evice expects sRGB
 encoded color components.

 This is really a video scan-out issue and b eyond the scope
 of this extension which is focused on the r endering issues.
 However some implementation advice is provi ded:

 The implementation sufficiently aware of th e gamma correction
 configured for the display device could dec ide to perform an
 sRGB-correct multisample resolve. Whether this occurs or not
 could be determined by a control panel sett ing or inferred by
 the application's use of this extension.

 18) Why is the sRGB framebuffer GL_FRAMEBUFFER_ SRGB_EXT enable
 disabled by default?

 RESOLVED: This extension could have a bool ean
 sRGB-versus-non-sRGB pixel format configura tion mode that
 determined whether or not sRGB framebuffer update and blending
 occurs. The problem with this approach is 1) it creates may more
 pixel formation configurations because sRGB and non-sRGB versions
 of lots of existing configurations must be advertised, and 2)
 applicaitons unaware of sRGB might unknowin gly select an sRGB
 configuration and then generate over-bright rendering.

 It seems more appropriate to have a capabil ity for sRGB
 framebuffer update and blending that is dis abled by default.
 This allows existing RGB8 and RGBA8 framebu ffer configurations
 to be marked as sRGB capable (so no additio nal configurations
 need be enumerated). Applications that des ire sRGB rendering
 should identify an sRGB-capable framebuffer configuration and
 then enable sRGB rendering.

EXT_framebuffer_sRGB OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 41

 This is different from how EXT_texture_sRGB handles sRGB support
 for texture formats. In the EXT_texture_sR GB extension, textures
 are either sRGB or non-sRGB and there is no texture parameter
 to switch textures between the two modes. This makes sense for
 EXT_texture_sRGB because it allows implemen tations to fake sRGB
 textures with higher-precision linear textu res that simply convert
 sRGB-encoded texels to sufficiently precise linear RGB values.

 Texture formats also don't have the problem enumerated pixel
 format descriptions have where a naive appl ication could stumble
 upon an sRGB-capable pixel format. sRGB te xtures require
 explicit use of one of the new EXT_texture_ sRGB-introduced
 internal formats.

 19) How does sRGB and this extension interact w ith digital video
 output standards, in particular DVI?

 RESOLVED: The DVI 1.0 specification recomm ends "as a default
 position that digital moniotrs of all types support a color
 transfer function similar to analog CRT mon itors (gamma=2.2)
 which makes up the majority of the compute display market." This
 means DVI output devices should benefit fro m blending in the
 sRGB color space just like analog monitors.

Revision History

 None

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 42

Name

 EXT_geometry_shader4

Name String

 GL_EXT_geometry_shader4

Contact

 Pat Brown, NVIDIA (pbrown 'at' nvidia.com)
 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at' nvidia.com)

Status

 Multi-vendor extension

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 05/22/2007
 NVIDIA Revision: 17

Number

 324

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 2. 0 specification.

 EXT_framebuffer_object interacts with this exte nsion.

 EXT_framebuffer_blit interacts with this extens ion.

 EXT_texture_array interacts with this extension .

 ARB_texture_rectangle trivially affects the def inition of this
 extension.

 EXT_texture_buffer_object trivially affects the definition of this
 extension.

 NV_primitive_restart trivially affects the defi nition of this
 extension.

 This extension interacts with EXT_tranform_feed back.

Overview

 EXT_geometry_shader4 defines a new shader type available to be run on the
 GPU, called a geometry shader. Geometry shaders are run after vertices are
 transformed, but prior to color clamping, flat shading and clipping.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 43

 A geometry shader begins with a single primitiv e (point, line,
 triangle). It can read the attributes of any of the vertices in the
 primitive and use them to generate new primitiv es. A geometry shader has a
 fixed output primitive type (point, line strip, or triangle strip) and
 emits vertices to define a new primitive. A geo metry shader can emit
 multiple disconnected primitives. The primitive s emitted by the geometry
 shader are clipped and then processed like an e quivalent OpenGL primitive
 specified by the application.

 Furthermore, EXT_geometry_shader4 provides four additional primitive
 types: lines with adjacency, line strips with a djacency, separate
 triangles with adjacency, and triangle strips w ith adjacency. Some of the
 vertices specified in these new primitive types are not part of the
 ordinary primitives, instead they represent nei ghboring vertices that are
 adjacent to the two line segment end points (li nes/strips) or the three
 triangle edges (triangles/tstrips). These verti ces can be accessed by
 geometry shaders and used to match up the verti ces emitted by the geometry
 shader with those of neighboring primitives.

 Since geometry shaders expect a specific input primitive type, an error
 will occur if the application presents primitiv es of a different type.
 For example, if a geometry shader expects point s, an error will occur at
 Begin() time, if a primitive mode of TRIANGLES is specified.

New Procedures and Functions

 void ProgramParameteriEXT(uint program, enum pn ame, int value);
 void FramebufferTextureEXT(enum target, enum at tachment,
 uint texture, int le vel);
 void FramebufferTextureLayerEXT(enum target, en um attachment,
 uint texture, i nt level, int layer);
 void FramebufferTextureFaceEXT(enum target, enu m attachment,
 uint texture, in t level, enum face);

New Tokens

 Accepted by the <type> parameter of CreateShade r and returned by the
 <params> parameter of GetShaderiv:

 GEOMETRY_SHADER_EXT 0x8DD9

 Accepted by the <pname> parameter of ProgramPar ameteriEXT and
 GetProgramiv:

 GEOMETRY_VERTICES_OUT_EXT 0x8DDA
 GEOMETRY_INPUT_TYPE_EXT 0x8DDB
 GEOMETRY_OUTPUT_TYPE_EXT 0x8DDC

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 44

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT 0x8C29
 MAX_GEOMETRY_VARYING_COMPONENTS_EXT 0x8DDD
 MAX_VERTEX_VARYING_COMPONENTS_EXT 0x8DDE
 MAX_VARYING_COMPONENTS_EXT 0x8B4B
 MAX_GEOMETRY_UNIFORM_COMPONENTS_EXT 0x8DDF
 MAX_GEOMETRY_OUTPUT_VERTICES_EXT 0x8DE0
 MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT 0x8DE1

 Accepted by the <mode> parameter of Begin, Draw Arrays,
 MultiDrawArrays, DrawElements, MultiDrawElement s, and
 DrawRangeElements:

 LINES_ADJACENCY_EXT 0xA
 LINE_STRIP_ADJACENCY_EXT 0xB
 TRIANGLES_ADJACENCY_EXT 0xC
 TRIANGLE_STRIP_ADJACENCY_EXT 0xD

 Returned by CheckFramebufferStatusEXT:

 FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT 0x8DA8
 FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT 0x8DA9

 Accepted by the <pname> parameter of GetFramebu fferAttachment-
 ParameterivEXT:

 FRAMEBUFFER_ATTACHMENT_LAYERED_EXT 0x8DA7
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT 0x8CD4

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetIntegerv, Ge tFloatv, GetDoublev,
 and GetBooleanv:

 PROGRAM_POINT_SIZE_EXT 0x8642

 (Note: FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is simply an alias for the
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT token provided in
 EXT_framebuffer_object. This extension general izes the notion of
 "<zoffset>" to include layers of an array textu re.)

 (Note: PROGRAM_POINT_SIZE_EXT is simply an ali as for the
 VERTEX_PROGRAM_POINT_SIZE token provided in Ope nGL 2.0, which is itself an
 alias for VERTEX_PROGRAM_POINT_SIZE_ARB provide d by
 ARB_vertex_program. Program-computed point size s can be enabled if
 geometry shaders are enabled.)

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 45

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL
Operation)

 Modify Section 2.6.1 (Begin and End Objects), p . 13

 (Add to end of section, p. 18)

 (add figure)

 1 - - - 2----->3 - - - 4 1 - - - 2--->3 --->4--->5 - - - 6

 5 - - - 6----->7 - - - 8

 (a) (b)

 Figure 2.X1 (a) Lines with adjacency, (b) Line strip with adja cency.
 The vertices connected with solid lines belon g to the main primitives;
 the vertices connected by dashed lines are th e adjacent vertices that
 may be used in a geometry shader.

 Lines with Adjacency

 Lines with adjacency are independent line segme nts where each endpoint has
 a corresponding "adjacent" vertex that can be a ccessed by a geometry
 shader (Section 2.16). If a geometry shader is not active, the "adjacent"
 vertices are ignored.

 A line segment is drawn from the 4i + 2nd verte x to the 4i + 3rd vertex
 for each i = 0, 1, ... , n-1, where there are 4 n+k vertices between the
 Begin and End. k is either 0, 1, 2, or 3; if k is not zero, the final k
 vertices are ignored. For line segment i, the 4i + 1st and 4i + 4th
 vertices are considered adjacent to the 4i + 2n d and 4i + 3rd vertices,
 respectively. See Figure 2.X1.

 Lines with adjacency are generated by calling B egin with the argument
 value LINES_ADJACENCY_EXT.

 Line Strips with Adjacency

 Line strips with adjacency are similar to line strips, except that each
 line segment has a pair of adjacent vertices th at can be accessed by a
 geometry shader (Section 2.15). If a geometry shader is not active, the
 "adjacent" vertices are ignored.

 A line segment is drawn from the i + 2nd vertex to the i + 3rd vertex for
 each i = 0, 1, ..., n-1, where there are n+3 ve rtices between the Begin
 and End. If there are fewer than four vertices between a Begin and End,
 all vertices are ignored. For line segment i, the i + 1st and i + 4th
 vertex are considered adjacent to the i + 2nd a nd i + 3rd vertices,
 respectively. See Figure 2.X1.

 Line strips with adjacency are generated by cal ling Begin with the
 argument value LINE_STRIP_ADJACENCY_EXT.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 46

 (add figure)

 2 - - - 3 - - - 4 8 - - - 9 - - - 10
 ^\ ^\
 \ | \ | \ | \ |
 | \ | \
 \ | \ | \ | \ |
 | \ | \
 \ | \ | \ | \ |
 | v | v
 1<------5 7< ------11

 \ | \ |

 \ | \ |

 \ | \ |

 6 12

 Figure 2.X2 Triangles with adjacency. The vertices connected with solid
 lines belong to the main primitive; the verti ces connected by dashed
 lines are the adjacent vertices that may be u sed in a geometry shader.

 Triangles with Adjacency

 Triangles with adjacency are similar to separat e triangles, except that
 each triangle edge has an adjacent vertex that can be accessed by a
 geometry shader (Section 2.15). If a geometry shader is not active, the
 "adjacent" vertices are ignored.

 The 6i + 1st, 6i + 3rd, and 6i + 5th vertices (in that order) determine a
 triangle for each i = 0, 1, ..., n-1, where the re are 6n+k vertices
 between the Begin and End. k is either 0, 1, 2 , 3, 4, or 5; if k is
 non-zero, the final k vertices are ignored. Fo r triangle i, the i + 2nd,
 i + 4th, and i + 6th vertices are considered ad jacent to edges from the i
 + 1st to the i + 3rd, from the i + 3rd to the i + 5th, and from the i +
 5th to the i + 1st vertices, respectively. See Figure 2.X2.

 Triangles with adjacency are generated by calli ng Begin with the argument
 value TRIANGLES_ADJACENCY_EXT.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 47

 (add figure)
 6 6

 | \ | \

 | \ | \

 | \ | \

 2 - - - 3- - - >6 2 - - - 3------>7 2 - - - 3------>7- - - 10
 ^\ ^^ | ^^ ^^ |
 \ | \ | \ | \ | \ \ | \ | \
 | \ | \ | | \ | \ |
 \ | \ | \ | \ | \ \ | \ | \
 | \ | \ | | \ | \ |
 \ | \ | \ | \ | \ \ | \ | \
 | v | vv | vv v|
 1<------5 1<------5 - - - 8 1<------5<------9

 \ | \ | \ | \ |

 \ | \ | \ | \ |

 \ | \ | \ | \ |

 4 4 4 8

 6 10

 | \ | \

 | \ | \

 | \ | \
 2 - - - 3------>7------> 11
 ^^ ^^ |
 \ | \ | \ | \
 | \ | \ |
 \ | \ | \ | \
 | \ | \ |
 \ | \ | \ | \
 | vv v v
 1<------5<------ 9 - - - 12

 \ | \ |

 \ | \ |

 \ | \ |

 4 8

 Figure 2.X3 Triangle strips with adjacency. The vertices conn ected with
 solid lines belong to the main primitives; th e vertices connected by
 dashed lines are the adjacent vertices that m ay be used in a geometry
 shader.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 48

 Triangle Strips with Adjacency

 Triangle strips with adjacency are similar to t riangle strips, except that
 each line triangle edge has an adjacent vertex that can be accessed by a
 geometry shader (Section 2.15). If a geometry shader is not active, the
 "adjacent" vertices are ignored.

 In triangle strips with adjacency, n triangles are drawn using 2 * (n+2) +
 k vertices between the Begin and End. k is eit her 0 or 1; if k is 1, the
 final vertex is ignored. If fewer than 6 verti ces are specified between
 the Begin and End, the entire primitive is igno red. Table 2.X1 describes
 the vertices and order used to draw each triang le, and which vertices are
 considered adjacent to each edge of the triangl e. See Figure 2.X3.

 (add table)
 primitive adjacent
 vertices vertices
 primitive 1st 2nd 3rd 1 /2 2/3 3/1
 --------------- ---- ---- ---- -- -- ---- ----
 only (i==0, n==1) 1 3 5 2 6 4
 first (i==0) 1 3 5 2 7 4
 middle (i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+7
 middle (i even) 2i+1 2i+3 2i+5 2i -1 2i+7 2i+4
 last (i==n-1, i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+6
 last (i==n-1, i even) 2i+1 2i+3 2i+5 2i -1 2i+6 2i+4

 Table 2.X1: Triangles generated by triangle strips with adjacency.
 Each triangle is drawn using the vertices in the "1st", "2nd", and "3rd"
 columns under "primitive vertices", in that o rder. The vertices in the
 "1/2", "2/3", and "3/1" columns under "adjace nt vertices" are considered
 adjacent to the edges from the first to the s econd, from the second to
 the third, and from the third to the first ve rtex of the triangle,
 respectively. The six rows correspond to the six cases: the first and
 only triangle (i=0, n=1), the first triangle of several (i=0, n>0),
 "odd" middle triangles (i=1,3,5...), "even" m iddle triangles
 (i=2,4,6,...), and special cases for the last triangle inside the
 Begin/End, when i is either even or odd. For the purposes of this
 table, the first vertex specified after Begin is numbered "1" and the
 first triangle is numbered "0".

 Triangle strips with adjacency are generated by calling Begin with the
 argument value TRIANGLE_STRIP_ADJACENCY_EXT.

 Modify Section 2.14.1, Lighting (p. 59)

 (modify fourth paragraph, p. 63) Additionally, vertex and geometry shaders
 can operate in two-sided color mode, which is e nabled and disabled by
 calling Enable or Disable with the symbolic val ue VERTEX_PROGRAM_TWO_SIDE.
 When a vertex or geometry shader is active, the shaders can write front
 and back color values to the gl_FrontColor, gl_ BackColor,
 gl_FrontSecondaryColor and gl_BackSecondaryColo r outputs. When a vertex or
 geometry shader is active and two-sided color m ode is enabled, the GL
 chooses between front and back colors, as descr ibed below. If two-sided
 color mode is disabled, the front color output is always selected.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 49

 Modify Section 2.15.2 Program Objects, p. 73

 Change the first paragraph on p. 74 as follows:

 Program objects are empty when they are created . Default values for
 program object parameters are discussed in sect ion 2.15.5, Required
 State. A non-zero name that can be used to refe rence the program object is
 returned.

 Change the language below the LinkProgram comma nd on p. 74 as follows:

 ... Linking can fail for a variety of reasons a s specified in the OpenGL
 Shading Language Specification. Linking will al so fail if one or more of
 the shader objects, attached to <program> are n ot compiled successfully,
 or if more active uniform or active sampler var iables are used in
 <program> than allowed (see sections 2.15.3 and 2.16.3). Linking will also
 fail if the program object contains objects to form a geometry shader (see
 section 2.16), but no objects to form a vertex shader or if the program
 object contains objects to form a geometry shad er, and the value of
 GEOMETRY_VERTICES_OUT_EXT is zero. If LinkProgr am failed, ..

 Add the following paragraphs above the descript ion of
 DeleteProgram, p. 75:

 To set a program object parameter, call

 void ProgramParameteriEXT(uint program, enu m pname, int value)

 <param> identifies which parameter to set for < program>. <value> holds the
 value being set. Legal values for <param> and <value> are discussed in
 section 2.16.

 Modify Section 2.15.3, Shader Variables, p. 75

 Modify the first paragraph of section 'Varying Variables' p. 83 as
 follows:

 A vertex shader may define one or more varying variables (see the OpenGL
 Shading Language specification). Varying variab les are outputs of a vertex
 shader. They are either used as the mechanism t o communicate values to a
 geometry shader, if one is active, or to commun icate values to the
 fragment shader. The OpenGL Shading Language s pecification also defines a
 set of built-in varying variables that vertex s haders can write to (see
 section 7.6 of the OpenGL Shading Language Spec ification). These variables
 can also be used to communicate values to a geo metry shader, if one is
 active, or to communicate values to the fragmen t shader and to the fixed-
 function processing that occurs after vertex sh ading.

 If a geometry shader is not active, the values of all varying variables,
 including built-in variables, are expected to b e interpolated across the
 primitive being rendered, unless flat shaded. T he number of interpolators
 available for processing varying variables is g iven by the
 implementation-dependent constant MAX_VARYING_C OMPONENTS_EXT. This value
 represents the number of individual components that can be interpolated;
 varying variables declared as vectors, matrices , and arrays will all
 consume multiple interpolators. When a program is linked, all components
 of any varying variable written by a vertex sha der, or read by a fragment

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 50

 shader, will count against this limit. The tran sformed vertex position
 (gl_Position) does not count against this limit . A program whose vertex
 and/or fragment shaders access more than MAX_VA RYING_COMPONENTS_EXT
 components worth of varying variables may fail to link, unless
 device-dependent optimizations are able to make the program fit within
 available hardware resources.

 Note that the two values MAX_VARYING_FLOATS and MAX_VARYING_COMPONENTS_EXT
 are aliases of each other. The use of MAX_VARYI NG_FLOATS however is
 discouraged; varying variables can be declared as integers as well.

 If a geometry shader is active, the values of v arying variables are
 collected by the primitive assembly stage and p assed on to the geometry
 shader once enough data for one primitive has b een collected (see also
 section 2.16). The OpenGL Shading Language spec ification also defines a
 set of built-in varying and built-in special va riables that vertex shaders
 can write to (see sections 7.1 and 7.6 of the O penGL Shading Language
 Specification). These variables are also collec ted and passed on to the
 geometry shader once enough data has been colle cted. The number of
 components of varying and special variables tha t can be collected per
 vertex by the primitive assembly stage is given by the implementation
 dependent constant MAX_VERTEX_VARYING_COMPONENT S_EXT. This value
 represents the number of individual components that can be collected;
 varying variables declared as vectors, matrices , and arrays will all
 consume multiple components. When a program is linked, all components of
 any varying variable written by a vertex shader , or read by a geometry
 shader, will count against this limit. A progra m whose vertex and/or
 geometry shaders access more than MAX_VERTEX_VA RYING_COMPONENTS_EXT
 components worth of varying variables may fail to link, unless
 device-dependent optimizations are able to make the program fit within
 available hardware resources.

 Modify Section 2.15.4 Shader Execution, p. 84

 Change the following sentence:

 "The following operations are applied to vertex values that are the result
 of executing the vertex shader:"

 As follows:

 If no geometry shader (see section 2.16) is pre sent in the program object,
 the following operations are applied to vertex values that are the result
 of executing the vertex shader:

 [bulleted list of operations]

 On page 85, below the list of bullets, add the following:

 If a geometry shader is present in the program object, geometry shading
 (section 2.16) is applied to vertex values that are the result of
 executing the vertex shader.

 Modify the first paragraph of the section 'Text ure Access', p. 85,
 as follows:

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 51

 Vertex shaders have the ability to do a lookup into a texture map, if
 supported by the GL implementation. The maximum number of texture image
 units available to a vertex shader is MAX_VERTE X_TEXTURE_IMAGE_UNITS; a
 maximum number of zero indicates that the GL im plementation does not
 support texture accesses in vertex shaders. The vertex shader, geometry
 shader, if exists, and fragment processing comb ined cannot use more than
 MAX_COMBINED_TEXTURE_IMAGE_UNITS texture image units. If the vertex
 shader, geometry shader and the fragment proces sing stage access the same
 texture image unit, then that counts as using t hree texture image units
 against the MAX_COMBINED_TEXTURE_IMAGE_UNITS li mit.

 Modify Section 2.15.5, Required State, p. 88

 Add the following bullets to the state required per program object:

 * One integer to store the value of GEOMETRY_ VERTICES_OUT_EXT, initially
 zero.

 * One integer to store the value of GEOMETRY_ INPUT_TYPE_EXT, initially
 set to TRIANGLES.

 * One integer to store the value of GEOMETRY_ OUTPUT_TYPE_EXT, initially
 set to TRIANGLE_STRIP.

 Insert New Section 2.16, Geometry Shaders after p. 89

 After vertices are processed, they are arranged into primitives, as
 described in section 2.6.1 (Begin/End Objects). This section described a
 new pipeline stage that processes those primiti ves. A geometry shader
 defines the operations that are performed in th is new pipeline stage. A
 geometry shader is an array of strings containi ng source code. The source
 code language used is described in the OpenGL S hading Language
 specification. A geometry shader operates on a single primitive at a time
 and emits one or more output primitives, all of the same type, which are
 then processed like an equivalent OpenGL primit ive specified by the
 application. The original primitive is discard ed after the geometry
 shader completes. The inputs available to a geo metry shader are the
 transformed attributes of all the vertices that belong to the primitive.
 Additional "adjacency" primitives are available which also make the
 transformed attributes of neighboring vertices available to the shader.
 The results of the shader are a new set of tran sformed vertices, arranged
 into primitives by the shader.

 This new geometry shader pipeline stage is inse rted after primitive
 assembly, right before color clamping (section 2.14.6), flat shading
 (section 2.14.7) and clipping (sections 2.12 an d 2.14.8).

 A geometry shader only applies when the GL is i n RGB mode. Its operation
 in color index mode is undefined.

 Geometry shaders are created as described in se ction 2.15.1 using a type
 parameter of GEOMETRY_SHADER_EXT. They are atta ched to and used in program
 objects as described in section 2.15.2. When th e program object currently
 in use includes a geometry shader, its geometry shader is considered
 active, and is used to process primitives. If t he program object has no
 geometry shader, or no program object is in use , this new primitive
 processing pipeline stage is bypassed.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 52

 A program object that includes a geometry shade r must also include a
 vertex shader; otherwise a link error will occu r.

 Section 2.16.1, Geometry shader Input Primitive s

 A geometry shader can operate on one of five in put primitive types.
 Depending on the input primitive type, one to s ix input vertices are
 available when the shader is executed. Each in put primitive type supports
 a subset of the primitives provided by the GL. If a geometry shader is
 active, Begin, or any function that implicitly calls Begin, will produce
 an INVALID_OPERATION error if the <mode> parame ter is incompatible with
 the input primitive type of the currently activ e program object, as
 discussed below.

 The input primitive type is a parameter of the program object, and must be
 set before linking by calling ProgramParameteri EXT with <pname> set to
 GEOMETRY_INPUT_TYPE_EXT and <value> set to one of POINTS, LINES,
 LINES_ADJACENCY_EXT, TRIANGLES or TRIANGLES_ADJ ACENCY_EXT. This setting
 will not be in effect until the next time LinkP rogram has been called
 successfully. Note that queries of GEOMETRY_INP UT_TYPE_EXT will return the
 last value set. This is not necessarily the va lue used to generate the
 executable code in the program object. After a program object has been
 created it will have a default value for GEOMET RY_INPUT_TYPE_EXT, as
 discussed in section 2.15.5, Required State.

 Note that a geometry shader that accesses more input vertices than are
 available for a given input primitive type can be successfully compiled,
 because the input primitive type is not part of the shader
 object. However, a program object, containing a shader object that access
 more input vertices than are available for the input primitive type of the
 program object, will not link.

 The supported input primitive types are:

 Points (POINTS)

 Geometry shaders that operate on points are val id only for the POINTS
 primitive type. There is only a single vertex available for each geometry
 shader invocation.

 Lines (LINES)

 Geometry shaders that operate on line segments are valid only for the
 LINES, LINE_STRIP, and LINE_LOOP primitive type s. There are two vertices
 available for each geometry shader invocation. The first vertex refers to
 the vertex at the beginning of the line segment and the second vertex
 refers to the vertex at the end of the line seg ment. See also section
 2.16.4.

 Lines with Adjacency (LINES_ADJACENCY_EXT)

 Geometry shaders that operate on line segments with adjacent vertices are
 valid only for the LINES_ADJACENCY_EXT and LINE _STRIP_ADJACENCY_EXT
 primitive types. There are four vertices avail able for each program
 invocation. The second vertex refers to attribu tes of the vertex at the
 beginning of the line segment and the third ver tex refers to the vertex at

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 53

 the end of the line segment. The first and four th vertices refer to the
 vertices adjacent to the beginning and end of t he line segment,
 respectively.

 Triangles (TRIANGLES)

 Geometry shaders that operate on triangles are valid for the TRIANGLES,
 TRIANGLE_STRIP and TRIANGLE_FAN primitive types .

 There are three vertices available for each pro gram invocation. The first,
 second and third vertices refer to attributes o f the first, second and
 third vertex of the triangle, respectively.

 Triangles with Adjacency (TRIANGLES_ADJACENCY_E XT)

 Geometry shaders that operate on triangles with adjacent vertices are
 valid for the TRIANGLES_ADJACENCY_EXT and TRIAN GLE_STRIP_ADJACENCY_EXT
 primitive types. There are six vertices availa ble for each program
 invocation. The first, third and fifth vertices refer to attributes of the
 first, second and third vertex of the triangle, respectively. The second,
 fourth and sixth vertices refer to attributes o f the vertices adjacent to
 the edges from the first to the second vertex, from the second to the
 third vertex, and from the third to the first v ertex, respectively.

 Section 2.16.2, Geometry Shader Output Primitiv es

 A geometry shader can generate primitives of on e of three types. The
 supported output primitive types are points (PO INTS), line strips
 (LINE_STRIP), and triangle strips (TRIANGLE_STR IP). The vertices output
 by the geometry shader are decomposed into poin ts, lines, or triangles
 based on the output primitive type in the manne r described in section
 2.6.1. The resulting primitives are then furthe r processed as shown in
 figure 2.16.xxx. If the number of vertices emit ted by the geometry shader
 is not sufficient to produce a single primitive , nothing is drawn.

 The output primitive type is a parameter of the program object, and can be
 set by calling ProgramParameteriEXT with <pname > set to
 GEOMETRY_OUTPUT_TYPE_EXT and <value> set to one of POINTS, LINE_STRIP or
 TRIANGLE_STRIP. This setting will not be in eff ect until the next time
 LinkProgram has been called successfully. Note that queries of
 GEOMETRY_OUTPUT_TYPE_EXT will return the last v alue set; which is not
 necessarily the value used to generate the exec utable code in the program
 object. After a program object has been created it will have a default
 value for GEOMETRY_OUTPUT_TYPE_EXT, as discusse d in section 2.15.5,
 Required State. .

 Section 2.16.3 Geometry Shader Variables

 Geometry shaders can access uniforms belonging to the current program
 object. The amount of storage available for geo metry shader uniform
 variables is specified by the implementation de pendent constant
 MAX_GEOMETRY_UNIFORM_COMPONENTS_EXT. This value represents the number of
 individual floating-point, integer, or Boolean values that can be held in
 uniform variable storage for a geometry shader. A link error will be
 generated if an attempt is made to utilize more than the space available
 for geometry shader uniform variables. Uniforms are manipulated as
 described in section 2.15.3. Geometry shaders also have access to

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 54

 samplers, to perform texturing operations, as d escribed in sections 2.15.3
 and 3.8.

 Geometry shaders can access the transformed att ributes of all vertices for
 its input primitive type through input varying variables. A vertex shader,
 writing to output varying variables, generates the values of these input
 varying variables. This includes values for bui lt-in as well as
 user-defined varying variables. Values for any varying variables that are
 not written by a vertex shader are undefined. A dditionally, a geometry
 shader has access to a built-in variable that h olds the ID of the current
 primitive. This ID is generated by the primitiv e assembly stage that sits
 in between the vertex and geometry shader.

 Additionally, geometry shaders can write to one , or more, varying
 variables for each primitive it outputs. These values are optionally flat
 shaded (using the OpenGL Shading Language varyi ng qualifier "flat") and
 clipped, then the clipped values interpolated a cross the primitive (if not
 flat shaded). The results of these interpolatio ns are available to a
 fragment shader, if one is active. Furthermore, geometry shaders can write
 to a set of built- in varying variables, define d in the OpenGL Shading
 Language, that correspond to the values require d for the fixed-function
 processing that occurs after geometry processin g.

 Section 2.16.4, Geometry Shader Execution Envir onment

 If a successfully linked program object that co ntains a geometry shader is
 made current by calling UseProgram, the executa ble version of the geometry
 shader is used to process primitives resulting from the primitive assembly
 stage.

 The following operations are applied to the pri mitives that are the result
 of executing a geometry shader:

 * color clamping or masking (section 2.14.6),

 * flat shading (section 2.14.7),

 * clipping, including client-defined clip pla nes (section 2.12),

 * front face determination (section 2.14.1),

 * color and associated data clipping (section 2.14.8),

 * perspective division on clip coordinates (s ection 2.11),

 * final color processing (section 2.14.9), an d

 * viewport transformation, including depth-ra nge scaling (section
 2.11.1).

 There are several special considerations for ge ometry shader execution
 described in the following sections.

 Texture Access

 Geometry shaders have the ability to do a looku p into a texture map, if
 supported by the GL implementation. The maximum number of texture image

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 55

 units available to a geometry shader is
 MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT; a maximum number of zero indicates
 that the GL implementation does not support tex ture accesses in geometry
 shaders.

 The vertex shader, geometry shader and fragment processing combined cannot
 use more than MAX_COMBINED_TEXTURE_IMAGE_UNITS texture image units. If the
 vertex shader, geometry shader and the fragment processing stage access
 the same texture image unit, then that counts a s using three texture image
 units against the MAX_COMBINED_TEXTURE_IMAGE_UN ITS limit.

 When a texture lookup is performed in a geometr y shader, the filtered
 texture value tau is computed in the manner des cribed in sections 3.8.8
 and 3.8.9, and converted to a texture source co lor Cs according to table
 3.21 (section 3.8.13). A four component vector (Rs,Gs,Bs,As) is returned
 to the geometry shader. In a geometry shader it is not possible to perform
 automatic level-of- detail calculations using p artial derivatives of the
 texture coordinates with respect to window coor dinates as described in
 section 3.8.8. Hence, there is no automatic sel ection of an image array
 level. Minification or magnification of a textu re map is controlled by a
 level-of-detail value optionally passed as an a rgument in the texture
 lookup functions. If the texture lookup functio n supplies an explicit
 level-of-detail value lambda, then the pre-bias level-of-detail value
 LAMBDAbase(x, y) = lambda (replacing equation 3 .18). If the texture lookup
 function does not supply an explicit level-of-d etail value, then
 LAMBDAbase(x, y) = 0. The scale factor Rho(x, y) and its approximation
 function f(x, y) (see equation 3.21) are ignore d.

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 the R value (see section 3.8.14) used to perfor m the lookup. The
 comparison operation is requested in the shader by using any of the shadow
 sampler and in the texture using the TEXTURE CO MPARE MODE parameter. These
 requests must be consistent; the results of a t exture lookup are undefined
 if:

 * the sampler used in a texture lookup functi on is not one of the shadow
 sampler types, and the texture object's int ernal format is DEPTH
 COMPONENT, and the TEXTURE COMPARE MODE is not NONE;

 * the sampler used in a texture lookup functi on is one of the shadow
 sampler types, and the texture object's int ernal format is DEPTH
 COMPONENT, and the TEXTURE COMPARE MODE is NONE; or

 * the sampler used in a texture lookup functi on is one of the shadow
 sampler types, and the texture object's int ernal format is not DEPTH
 COMPONENT.

 If a geometry shader uses a sampler where the a ssociated texture object is
 not complete as defined in section 3.8.10, the texture image unit will
 return (R,G,B,A) = (0, 0, 0, 1).

 Geometry Shader Inputs

 The OpenGL Shading Language specification descr ibes the set of built-in
 variables that are available as inputs to the g eometry shader. This set
 receives the values from the equivalent built-i n output variables written

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 56

 by the vertex shader. These built-in variables are arrays; each element in
 the array holds the value for a specific vertex of the input
 primitive. The length of each array depends on the value of the input
 primitive type, as determined by the program ob ject value
 GEOMETRY_INPUT_TYPE_EXT, and is set by the GL d uring link. Each built-in
 variable is a one-dimensional array, except for the built-in texture
 coordinate variable, which is a two- dimensiona l array. The vertex shader
 built-in output gl_TexCoord[] is a one-dimensio nal array. Therefore, the
 geometry shader equivalent input variable gl_Te xCoordIn[][] becomes a two-
 dimensional array. See the OpenGL Shading Langu age Specification, sections
 4.3.6 and 7.6 for more information.

 The built-in varying variables gl_FrontColorIn[], gl_BackColorIn[],
 gl_FrontSecondaryColorIn[] and gl_BackSecondary ColorIn[] hold the
 per-vertex front and back colors of the primary and secondary colors, as
 written by the vertex shader to its equivalent built-in output variables.

 The built-in varying variable gl_TexCoordIn[][] holds the per- vertex
 values of the array of texture coordinates, as written by the vertex
 shader to its built-in output array gl_TexCoord [].

 The built-in varying variable gl_FogFragCoordIn [] holds the per- vertex
 fog coordinate, as written by the vertex shader to its built- in output
 variable gl_FogFragCoord.

 The built-in varying variable gl_PositionIn[] h olds the per-vertex
 position, as written by the vertex shader to it s output variable
 gl_Position. Note that writing to gl_Position f rom either the vertex or
 fragment shader is optional. See also section 7 .1 "Vertex and Geometry
 Shader Special Variables" of the OpenGL Shading Language specification.

 The built-in varying variable gl_ClipVertexIn[] holds the per-vertex
 position in clip coordinates, as written by the vertex shader to its
 output variable gl_ClipVertex.

 The built-in varying variable gl_PointSizeIn[] holds the per-vertex point
 size written by the vertex shader to its built- in output varying variable
 gl_PointSize. If the vertex shader does not wri te gl_PointSize, the value
 of gl_PointSizeIn[] is undefined, regardless of the value of the enable
 VERTEX_PROGRAM_POINT_SIZE.

 The built-in special variable gl_PrimitiveIDIn is not an array and has no
 vertex shader equivalent. It is filled with the number of primitives
 processed since the last time Begin was called (directly or indirectly via
 vertex array functions). The first primitive g enerated after a Begin is
 numbered zero, and the primitive ID counter is incremented after every
 individual point, line, or triangle primitive i s processed. For triangles
 drawn in point or line mode, the primitive ID c ounter is incremented only
 once, even though multiple points or lines may be drawn. Restarting a
 primitive topology using the primitive restart index has no effect on the
 primitive ID counter.

 Similarly to the built-in varying variables, us er-defined input varying
 variables need to be declared as arrays. Declar ing a size is optional. If
 no size is specified, it will be inferred by th e linker from the input
 primitive type. If a size is specified, it has to be of the size matching
 the number of vertices of the input primitive t ype, otherwise a link error

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 57

 will occur. The built-in variable gl_VerticesIn , if so desired, can be
 used to size the array correctly for each input primitive
 type. User-defined varying variables can be dec lared as arrays in the
 vertex shader. This means that those, on input to the geometry shader,
 must be declared as two-dimensional arrays. See sections 4.3.6 and 7.6 of
 the OpenGL Shading Language Specification for m ore information.

 Using any of the built-in or user-defined input varying variables can
 count against the limit MAX_VERTEX_VARYING_COMP ONENTS_EXT as discussed in
 section 2.15.3.

 Geometry Shader outputs

 A geometry shader is limited in the number of v ertices it may emit per
 invocation. The maximum number of vertices a ge ometry shader can possibly
 emit needs to be set as a parameter of the prog ram object that contains
 the geometry shader. To do so, call ProgramPara meteriEXT with <pname> set
 to GEOMETRY_VERTICES_OUT_EXT and <value> set to the maximum number of
 vertices the geometry shader will emit in one i nvocation. This setting
 will not be guaranteed to be in effect until th e next time LinkProgram has
 been called successfully. If a geometry shader, in one invocation, emits
 more vertices than the value GEOMETRY_VERTICES_ OUT_EXT, these emits may
 have no effect.

 There are two implementation-dependent limits o n the value of
 GEOMETRY_VERTICES_OUT_EXT. First, the error IN VALID_VALUE will be
 generated by ProgramParameteriEXT if the number of vertices specified
 exceeds the value of MAX_GEOMETRY_OUTPUT_VERTIC ES_EXT. Second, the
 product of the total number of vertices and the sum of all components of
 all active varying variables may not exceed the value of
 MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT. LinkProgram will fail if it
 determines that the total component limit would be violated.

 A geometry shader can write to built-in as well as user-defined varying
 variables. These values are expected to be inte rpolated across the
 primitive it outputs, unless they are specified to be flat shaded. In
 order to seamlessly be able to insert or remove a geometry shader from a
 program object, the rules, names and types of t he output built-in varying
 variables and user-defined varying variables ar e the same as for the
 vertex shader. Refer to section 2.15.3 and the OpenGL Shading Language
 specification sections 4.3.6, 7.1 and 7.6 for m ore detail.

 The built-in output variables gl_FrontColor, gl _BackColor,
 gl_FrontSecondaryColor, and gl_BackSecondaryCol or hold the front and back
 colors for the primary and secondary colors for the current vertex.

 The built-in output variable gl_TexCoord[] is a n array and holds the set
 of texture coordinates for the current vertex.

 The built-in output variable gl_FogFragCoord is used as the "c" value, as
 described in section 3.10 "Fog" of the OpenGL 2 .0 specification.

 The built-in special variable gl_Position is in tended to hold the
 homogeneous vertex position. Writing gl_Positio n is optional.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 58

 The built-in special variable gl_ClipVertex hol ds the vertex coordinate
 used in the clipping stage, as described in sec tion 2.12 "Clipping" of the
 OpenGL 2.0 specification.

 The built-in special variable gl_PointSize, if written, holds the size of
 the point to be rasterized, measured in pixels.

 Additionally, a geometry shader can write to th e built-in special
 variables gl_PrimitiveID and gl_Layer, whereas a vertex shader cannot. The
 built-in gl_PrimitiveID provides a single integ er that serves as a
 primitive identifier. This written primitive I D is available to fragment
 shaders. If a fragment shader using primitive IDs is active and a
 geometry shader is also active, the geometry sh ader must write to
 gl_PrimitiveID or the primitive ID number is un defined. The built-in
 variable gl_Layer is used in layered rendering, and discussed in the next
 section.

 The number of components available for varying variables is given by the
 implementation-dependent constant
 MAX_GEOMETRY_VARYING_COMPONENTS_EXT. This value represents the number of
 individual components of a varying variable; va rying variables declared as
 vectors, matrices, and arrays will all consume multiple components. When a
 program is linked, all components of any varyin g variable written by a
 geometry shader, or read by a fragment shader, will count against this
 limit. The transformed vertex position (gl_Posi tion) does not count
 against this limit. A program whose geometry an d/or fragment shaders
 access more than MAX_GEOMETRY_VARYING_COMPONENT S_EXT worth of varying
 variable components may fail to link, unless de vice-dependent
 optimizations are able to make the program fit within available hardware
 resources.

 Layered rendering

 Geometry shaders can be used to render to one o f several different layers
 of cube map textures, three-dimensional texture s, plus one- dimensional
 and two-dimensional texture arrays. This functi onality allows an
 application to bind an entire "complex" texture to a framebuffer object,
 and render primitives to arbitrary layers compu ted at run time. For
 example, this mechanism can be used to project and render a scene onto all
 six faces of a cubemap texture in one pass. The layer to render to is
 specified by writing to the built-in output var iable gl_layer. Layered
 rendering requires the use of framebuffer objec ts. Refer to the section
 'Dependencies on EXT_framebuffer_object' for de tails.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.3, Points (p. 95)

 (replace all Section 3.3 text on p. 95)

 A point is drawn by generating a set of fragmen ts in the shape of a square
 or circle centered around the vertex of the poi nt. Each vertex has an
 associated point size that controls the size of that square or circle.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 59

 If no vertex or geometry shader is active, the size of the point is
 controlled by

 void PointSize(float size);

 <size> specifies the requested size of a point. The default value is
 1.0. A value less than or equal to zero results in the error
 INVALID_VALUE.

 The requested point size is multiplied with a d istance attenuation factor,
 clamped to a specified point size range, and fu rther clamped to the
 implementation-dependent point size range to pr oduce the derived point
 size:

 derived size = clamp(size * sqrt(1/(a+b* d+c*d^2)))

 where d is the eye-coordinate distance from the eye, (0,0,0,1) in eye
 coordinates, to the vertex, and a, b, and c are distance attenuation
 function coefficients.

 If a vertex or geometry shader is active, the d erived size depends on the
 per-vertex point size mode enable. Per-vertex point size mode is enabled
 or disabled by calling Enable or Disable with t he symbolic value
 PROGRAM_POINT_SIZE_EXT. If per-vertex point si ze is enabled and a
 geometry shader is active, the derived point si ze is taken from the
 (potentially clipped) point size variable gl_Po intSize written by the
 geometry shader. If per-vertex point size is en abled and no geometry
 shader is active, the derived point size is tak en from the (potentially
 clipped) point size variable gl_PointSize writt en by the vertex shader. If
 per-vertex point size is disabled and a geometr y and/or vertex shader is
 active, the derived point size is taken from th e <size> value provided to
 PointSize, with no distance attenuation applied . In all cases, the
 derived point size is clamped to the implementa tion-dependent point size
 range.

 If multisampling is not enabled, the derived si ze is passed on to
 rasterization as the point width. ...

 Modify section 3.10 "Fog", p. 191

 Modify the third paragraph of this section as f ollows.

 If a vertex or geometry shader is active, or if the fog source, as defined
 below, is FOG_COORD, then c is the interpolated value of the fog
 coordinate for this fragment. Otherwise, ...

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 60

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special
Functions)

 Change section 5.4 Display Lists, p. 237

 Add the command ProgramParameteriEXT to the lis t of commands that are not
 compiled into a display list, but executed imme diately, under "Program and
 Shader Objects", p. 241

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 Modify section 6.1.14, Shader and Program Objec ts, p. 256

 Add to the second paragraph on p. 257:

 ... if <shader> is a fragment shader object, an d GEOMETRY_SHADER_EXT is
 returned if <shader> is a geometry shader objec t.

 Add to the end of the description of GetProgram iv, p. 257:

 If <pname> is GEOMETRY_VERTICES_OUT_EXT, the cu rrent value of the maximum
 number of vertices the geometry shader will out put is returned. If <pname>
 is GEOMETRY_INPUT_TYPE_EXT, the current geometr y shader input type is
 returned and can be one of POINTS, LINES, LINES _ADJACENCY_EXT, TRIANGLES
 or TRIANGLES_ADJACENCY_EXT. If <pname> is GEOM ETRY_OUTPUT_TYPE_EXT, the
 current geometry shader output type is returned and can be one of POINTS,
 LINE_STRIP or TRIANGLE_STRIP.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on NV_primitive_restart

 The spec describes the behavior that primitive restart does not affect the
 primitive ID counter gl_PrimitiveIDIn. If NV_pr imitive_restart is not
 supported, references to that extension in the discussion of the primitive
 ID should be removed.

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object (or similar functiona lity) is not supported, the
 gl_Layer output has no effect. "FramebufferTex tureEXT" and
 "FramebufferTextureLayerEXT" should be removed from "New Procedures and
 Functions", and FRAMEBUFFER_ATTACHMENT_LAYERED_ EXT,
 FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT, and
 FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT should b e removed from "New
 Tokens".

 Otherwise, this extension modifies EXT_framebuf fer_object to add the
 notion of layered framebuffer attachments and f ramebuffers that can be
 used in conjunction with geometry shaders to al low programs to direct

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 61

 primitives to a face of a cube map or layer of a three-dimensional texture
 or one- or two-dimensional array texture. The layer used for rendering
 can be selected by the geometry shader at run t ime.

 (insert before the end of Section 4.4.2, Attach ing Images to Framebuffer
 Objects)

 There are several types of framebuffer-attachab le images:

 * the image of a renderbuffer object, which i s always two-dimensional,

 * a single level of a one-dimensional texture , which is treated as a
 two-dimensional image with a height of one,

 * a single level of a two-dimensional or rect angle texture,

 * a single face of a cube map texture level, which is treated as a
 two-dimensional image, or

 * a single layer of a one- or two-dimensional array texture or
 three-dimensional texture, which is treated as a two-dimensional
 image.

 Additionally, an entire level of a three-dimens ional texture, cube map
 texture, or one- or two-dimensional array textu re can be attached to an
 attachment point. Such attachments are treated as an array of
 two-dimensional images, arranged in layers, and the corresponding
 attachment point is considered to be layered.

 (replace section 4.4.2.3, "Attaching Texture Im ages to a Framebuffer")

 GL supports copying the rendered contents of th e framebuffer into the
 images of a texture object through the use of t he routines
 CopyTexImage{1D|2D}, and CopyTexSubImage{1D|2D| 3D}. Additionally, GL
 supports rendering directly into the images of a texture object.

 To render directly into a texture image, a spec ified level of a texture
 object can be attached as one of the logical bu ffers of the currently
 bound framebuffer object by calling:

 void FramebufferTextureEXT(enum target, enum attachment,
 uint texture, int level);

 <target> must be FRAMEBUFFER_EXT. <attachment> must be one of the
 attachment points of the framebuffer listed in table 1.nnn.

 If <texture> is zero, any image or array of ima ges attached to the
 attachment point named by <attachment> is detac hed, and the state of the
 attachment point is reset to its initial values . <level> is ignored if
 <texture> is zero.

 If <texture> is non-zero, FramebufferTextureEXT attaches level <level> of
 the texture object named <texture> to the frame buffer attachment point
 named by <attachment>. The error INVALID_VALUE is generated if <texture>
 is not the name of a texture object, or if <lev el> is not a supported
 texture level number for textures of the type c orresponding to <target>.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 62

 The error INVALID_OPERATION is generated if <te xture> is the name of a
 buffer texture.

 If <texture> is the name of a three-dimensional texture, cube map texture,
 or one- or two-dimensional array texture, the t exture level attached to
 the framebuffer attachment point is an array of images, and the
 framebuffer attachment is considered layered.

 The command

 void FramebufferTextureLayerEXT(enum target, enum attachment,
 uint texture, int level, int layer);

 operates like FramebufferTextureEXT, except tha t only a single layer of
 the texture level, numbered <layer>, is attache d to the attachment point.
 If <texture> is non-zero, the error INVALID_VAL UE is generated if <layer>
 is negative, or if <texture> is not the name of a texture object. The
 error INVALID_OPERATION is generated unless <te xture> is zero or the name
 of a three-dimensional or one- or two-dimension al array texture.

 The command

 void FramebufferTextureFaceEXT(enum target, e num attachment,
 uint texture, int level, enum face);

 operates like FramebufferTextureEXT, except tha t only a single face of a
 cube map texture, given by <face>, is attached to the attachment point.
 <face> is one of TEXTURE_CUBE_MAP_POSITIVE_X, T EXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_Z. If <texture> is
 non-zero, the error INVALID_VALUE is generated if <texture> is not the
 name of a texture object. The error INVALID_OP ERATION is generated unless
 <texture> is zero or the name of a cube map tex ture.

 The command

 void FramebufferTexture1DEXT(enum target, enu m attachment,
 enum textarget, uint texture, int level);

 operates identically to FramebufferTextureEXT, except for two additional
 restrictions. If <texture> is non-zero, the er ror INVALID_ENUM is
 generated if <textarget> is not TEXTURE_1D and the error INVALID_OPERATION
 is generated unless <texture> is the name of a one-dimensional texture.

 The command

 void FramebufferTexture2DEXT(enum target, enu m attachment,
 enum textarget, uint texture, int level);

 operates similarly to FramebufferTextureEXT. I f <textarget> is TEXTURE_2D
 or TEXTURE_RECTANGLE_ARB, <texture> must be zer o or the name of a
 two-dimensional or rectangle texture. If <text arget> is
 TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MA P_NEGATIVE_Z, <texture>
 must be zero or the name of a cube map texture. For cube map textures,
 only the single face of the cube map texture le vel given by <textarget> is

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 63

 attached. The error INVALID_ENUM is generated if <texture> is not zero
 and <textarget> is not one of the values enumer ated above. The error
 INVALID_OPERATION is generated if <texture> is the name of a texture whose
 type does not match the texture type required b y <textarget>.

 The command

 void FramebufferTexture3DEXT(enum target, enu m attachment,
 enum textarget, uint texture,
 int level, int z offset);

 behaves identically to FramebufferTextureLayerE XT, with the <layer>
 parameter set to the value of <zoffset>. The e rror INVALID_ENUM is
 generated if <textarget> is not TEXTURE_3D. Th e error INVALID_OPERATION
 is generated unless <texture> is zero or the na me of a three-dimensional
 texture.

 For all FramebufferTexture commands, if <textur e> is non-zero and the
 command does not result in an error, the frameb uffer attachment state
 corresponding to <attachment> is updated based on the new attachment.
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is set t o TEXTURE,
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT is set t o <texture>, and
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to <level>.
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_FACE is set to <textarget> if
 FramebufferTexture2DEXT is called and <texture> is the name of a cubemap
 texture; otherwise, it is set to TEXTURE_CUBE_M AP_POSITIVE_X.
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is set to <layer> or <zoffset> if
 FramebufferTextureLayerEXT or FramebufferTextur e3DEXT is called;
 otherwise, it is set to zero. FRAMEBUFFER_ATTA CHMENT_LAYERED_EXT is set
 to TRUE if FramebufferTextureEXT is called and <texture> is the name of a
 three-dimensional texture, cube map texture, or one- or two-dimensional
 array texture; otherwise it is set to FALSE.

 (modify Section 4.4.4.1, Framebuffer Attachment Completeness -- add to the
 conditions necessary for attachment completenes s)

 The framebuffer attachment point <attachment> i s said to be "framebuffer
 attachment complete" if ...:

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a three-dimensional
 texture, FRAMEBUFFER_ATTACHMENT_TEXTURE_LAY ER_EXT must be smaller than
 the depth of the texture.

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a one- or two-dimensional
 array texture, FRAMEBUFFER_ATTACHMENT_TEXTU RE_LAYER_EXT must be
 smaller than the number of layers in the te xture.

 (modify section 4.4.4.2, Framebuffer Completene ss -- add to the list of
 conditions necessary for completeness)

 * If any framebuffer attachment is layered, a ll populated attachments
 must be layered. Additionally, all populat ed color attachments must
 be from textures of the same target (i.e., three-dimensional, cube
 map, or one- or two-dimensional array textu res).
 { FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT }

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 64

 * If any framebuffer attachment is layered, a ll attachments must have
 the same layer count. For three-dimensiona l textures, the layer count
 is the depth of the attached volume. For c ube map textures, the layer
 count is always six. For one- and two-dime nsional array textures, the
 layer count is simply the number of layers in the array texture.
 { FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT }

 The enum in { brackets } after each clause of t he framebuffer completeness
 rules specifies the return value of CheckFrameb ufferStatusEXT (see below)
 that is generated when that clause is violated. ...

 (add section 4.4.7, Layered Framebuffers)

 A framebuffer is considered to be layered if it is complete and all of its
 populated attachments are layered. When render ing to a layered
 framebuffer, each fragment generated by the GL is assigned a layer number.
 The layer number for a fragment is zero if

 * the fragment is generated by DrawPixels, Co pyPixels, or Bitmap,

 * geometry shaders are disabled, or

 * the current geometry shader does not contai n an instruction that
 statically assigns a value to the built-in output variable gl_Layer.

 Otherwise, the layer for each point, line, or t riangle emitted by the
 geometry shader is taken from the layer output of one of the vertices of
 the primitive. The vertex used is implementati on-dependent. To get
 defined results, all vertices of each primitive emitted should set the
 same value for gl_Layer. Since the EndPrimitiv e() built-in function
 starts a new output primitive, defined results can be achieved if
 EndPrimitive() is called between two vertices e mitted with different layer
 numbers. A layer number written by a geometry shader has no effect if the
 framebuffer is not layered.

 When fragments are written to a layered framebu ffer, the fragment's layer
 number selects an image from the array of image s at each attachment point
 from which to obtain the destination R, G, B, A values for blending
 (Section 4.1.8) and to which to write the final color values for that
 attachment. If the fragment's layer number is negative or greater than
 the number of layers attached, the effects of t he fragment on the
 framebuffer contents are undefined.

 When the Clear command is used to clear a layer ed framebuffer attachment,
 all layers of the attachment are cleared.

 When commands such as ReadPixels or CopyPixels read from a layered
 framebuffer, the image at layer zero of the sel ected attachment is always
 used to obtain pixel values.

 When cube map texture levels are attached to a layered framebuffer, there
 are six layers attached, numbered zero through five. Each layer number is
 mapped to a cube map face, as indicated in Tabl e X.4.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 65

 layer number cube map face
 ------------ ---------------------------
 0 TEXTURE_CUBE_MAP_POSITIVE_X
 1 TEXTURE_CUBE_MAP_NEGATIVE_X
 2 TEXTURE_CUBE_MAP_POSITIVE_Y
 3 TEXTURE_CUBE_MAP_NEGATIVE_Y
 4 TEXTURE_CUBE_MAP_POSITIVE_Z
 5 TEXTURE_CUBE_MAP_NEGATIVE_Z

 Table X.4, Layer numbers for cube map texture faces. The lay ers are
 numbered in the same sequence as the cube map face token values.

 (modify Section 6.1.3, Enumerated Queries -- Mo dify/add to list of <pname>
 values for GetFramebufferAttachmentParameterivE XT if
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is TEXTURE)

 If <pname> is FRAMEBUFFER_ATTACHMENT_TEXTURE_ LAYER_EXT and the attached
 image is a layer of a three-dimensional textu re or one- or
 two-dimensional array texture, then <params> will contain the specified
 layer number. Otherwise, <params> will conta in the value zero.

 If <pname> is FRAMEBUFFER_ATTACHMENT_LAYERED_ EXT, then <params> will
 contain TRUE if an entire level of a three-di mesional texture, cube map
 texture, or one- or two-dimensional array tex ture is attached to the
 <attachment>. Otherwise, <params> will conta in FALSE.

 (Modify the Additions to Chapter 5, section 5.4)

 Add the commands FramebufferTextureEXT, Framebu fferTextureLayerEXT, and
 FramebufferTextureFaceEXT to the list of comman ds that are not compiled
 into a display list, but executed immediately.

Dependencies on EXT_framebuffer_blit

 If EXT_framebuffer_blit is supported, the EXT_f ramebuffer_object language
 should be further amended so that <target> valu es passed to
 FramebufferTextureEXT and FramebufferTextureLay erEXT can be
 DRAW_FRAMEBUFFER_EXT or READ_FRAMEBUFFER_EXT, and that those functions
 set/query state for the draw framebuffer if <ta rget> is FRAMEBUFFER_EXT.

Dependencies on EXT_texture_array

 If EXT_texture_array is not supported, the disc ussion array textures the
 layered rendering edits to EXT_framebuffer_obje ct should be
 removed. Layered rendering to cube map and 3D t extures would still be
 supported.

 If EXT_texture_array is supported, the edits to EXT_framebuffer_object
 supersede those made in EXT_texture_array, exce pt for language pertaining
 to mipmap generation of array textures.

 There are no functional incompatibilities betwe en the FBO support in these
 two specifications. The only differences are t hat this extension supports
 layered rendering and also rewrites certain sec tions of the core FBO
 specification more aggressively.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 66

Dependencies on ARB_texture_rectangle

 If ARB_texture_rectangle is not supported, all references to rectangle
 textures in the EXT_framebuffer_object spec lan guage should be removed.

Dependencies on EXT_texture_buffer_object

 If EXT_buffer_object is not supported, the refe rence to an
 INVALID_OPERATION error if a buffer texture is passed to
 FramebufferTextureEXT should be removed.

GLX protocol

 TBD

Errors

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 GEOMETRY_INPUT_TYPE_EXT and <value> is not one of POINTS, LINES,
 LINES_ADJACENCY_EXT, TRIANGLES or TRIANGLES_ADJ ACENCY_EXT.

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 GEOMETRY_OUTPUT_TYPE_EXT and <value> is not one of POINTS, LINE_STRIP or
 TRIANGLE_STRIP.

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 GEOMETRY_VERTICES_OUT_EXT and <value> is negati ve.

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 GEOMETRY_VERTICES_OUT_EXT and <value> exceeds
 MAX_GEOMETRY_OUTPUT_VERTICES_EXT.

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 set to GEOMETRY_VERTICES_OUT_EXT and the produc t of <value> and the sum of
 all components of all active varying variables exceeds
 MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT.

 The error INVALID_OPERATION is generated if Beg in, or any command that
 implicitly calls Begin, is called when a geomet ry shader is active and:

 * the input primitive type of the current geo metry shader is
 POINTS and <mode> is not POINTS,

 * the input primitive type of the current geo metry shader is
 LINES and <mode> is not LINES, LINE_STRIP, or LINE_LOOP,

 * the input primitive type of the current geo metry shader is
 TRIANGLES and <mode> is not TRIANGLES, TRIA NGLE_STRIP or
 TRIANGLE_FAN,

 * the input primitive type of the current geo metry shader is
 LINES_ADJACENCY_EXT and <mode> is not LINES _ADJACENCY_EXT or
 LINE_STRIP_ADJACENCY_EXT, or

 * the input primitive type of the current geo metry shader is
 TRIANGLES_ADJACENCY_EXT and <mode> is not
 TRIANGLES_ADJACENCY_EXT or TRIANGLE_STRIP_A DJACENCY_EXT.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 67

New State

 Initial
 Get Value Type Get Command Value Description Sec. Attribut e
 ------------------------- ---- ----------- ------- ---------------------- ------ -------- --
 FRAMEBUFFER_ATTACHMENT_ nxB GetFramebuff er- FALSE Framebuffer attachment 4.4.2.3 -
 LAYERED_EXT Attachment- is layered
 ParameterivE XT

 Modify the following state value in Table 6.28, Shader Object State,
 p. 289.

 Get Value Type Get Command Va lue Description Sec. Attribut e
 ------------------ ---- ----------- --- ---- ---------------------- ------ -------- -
 SHADER_TYPE Z2 GetShaderiv - Type of shader (vertex, 2.15.1 -
 Fragment, geometry)

 Add the following state to Table 6.29, Program Object State, p. 290

 Initial
 Get Value Type Get Command Value Description Sec. Attribu te
 ------------------------- ---- ------------ ------- ----------------- ------ ------ -
 GEOMETRY_VERTICES_OUT_EXT Z+ GetProgramiv 0 max # of output vertices 2.16.4 -
 GEOMETRY_INPUT_TYPE_EXT Z5 GetProgramiv TRIANGLES Primitive input type 2.16.1 -
 GEOMETRY_OUTPUT_TYPE_EXT Z3 GetProgramiv TRIANGLE_ Primitive output type 2.16.2 -
 STRIP

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 68

New Implementation Dependent State

 Min.
 Get Value Type Get Command Valu e Description Sec. Attrib
 ---------------------- ---- ----------- ---- - -------------------- -------- ------
 MAX_GEOMETRY_TEXTURE_ Z+ GetIntegerv 16 maximum number of 2.16.4 -
 IMAGE_UNITS_EXT texture image units
 accessible in a
 geometry shader
 MAX_GEOMETRY_OUTPUT_ Z+ GetIntegerv 256 maximum number of 2.16.4 -
 VERTICES_EXT vertices that any
 geometry shader can
 can emit
 MAX_GEOMETRY_TOTAL_ Z+ GetIntegerv 1024 maximum number of 2.16.4 -
 OUTPUT_COMPONENTS_EXT total components (all
 vertices) of active
 varyings that a
 geometry shader can
 emit
 MAX_GEOMETRY_UNIFORM_ Z+ GetIntegerv 512 Number of words for 2.16.3 -
 COMPONENTS_EXT geometry shader
 uniform variables
 MAX_GEOMETRY_VARYING_ Z+ GetIntegerv 32 Number of components 2.16.4 -
 COMPONENTS_EXT for varying variables
 between geometry and
 fragment shaders
 MAX_VERTEX_VARYING_ Z+ GetIntegerv 32 Number of components 2.15.3 -
 COMPONENTS_EXT for varying variables
 between Vertex and
 geometry shaders
 MAX_VARYING_ Z+ GetIntegerv 32 Alias for 2.15.3 -
 COMPONENTS_EXT MAX_VARYING_FLOATS

Modifications to the OpenGL Shading Language Specif ication version
1.10.59

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_EXT_geometry_shader4 : <behavio r>

 where <behavior> is as specified in section 3.3 .

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_EXT_geometry_shader4 1

 Change the introduction to Chapter 2 "Overview of OpenGL Shading" as
 follows:

 The OpenGL Shading Language is actually three c losely related
 languages. These languages are used to create s haders for the programmable
 processors contained in the OpenGL processing p ipeline. The precise
 definition of these programmable units is left to separate
 specifications. In this document, we define the m only well enough to
 provide a context for defining these languages. Unless otherwise noted in
 this paper, a language feature applies to all l anguages, and common usage

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 69

 will refer to these languages as a single langu age. The specific languages
 will be referred to by the name of the processo r they target: vertex,
 geometry or fragment.

 Change the last sentence of the first paragraph of section 3.2
 "Source Strings" to:

 Multiple shaders of the same language (vertex, geometry or fragment) can
 be linked together to form a single program.

 Change the first paragraph of section 4.1.3, "I ntegers" as follows:

 ... integers are limited to 16 bits of precisio n, plus a sign
 representation in the vertex, geometry and frag ment languages..

 Change the first paragraph of section 4.1.9, "A rrays", as follows:

 Variables of the same type can be aggregated in to one- and two-
 dimensional arrays by declaring a name followed by brackets ([] for
 one-dimensional arrays and [][] for two-dimensi onal arrays) enclosing an
 optional size. When an array size is specified in a declaration, it must
 be an integral constant expression (see Section 4.3.3 "Integral Constant
 Expressions") greater than zero. If an array i s indexed with an
 expression that is not an integral constant exp ression or passed as an
 argument to a function, then its size must be d eclared before any such
 use. It is legal to declare an array without a size and then later
 re-declare the same name as an array of the sam e type and specify a
 size. It is illegal to declare an array with a size, and then later (in
 the same shader) index the same array with an i ntegral constant expression
 greater than or equal to the declared size. It is also illegal to index an
 array with a negative constant expression. Arra ys declared as formal
 parameters in a function declaration must speci fy a size. Undefined
 behavior results from indexing an array with a non-constant expression
 that's greater than or equal to the array's siz e or less than 0. All basic
 types and structures can be formed into arrays.

 Two-dimensional arrays can only be declared as "varying in" variables in a
 geometry shader. See section 4.3.6 for details. All other declarations of
 two-dimensional arrays are illegal.

 Change the fourth paragraph of section 4.2 "Sco ping", as follows:

 Shared globals are global variables declared wi th the same name in
 independently compiled units (shaders) of the s ame language (vertex,
 geometry or fragment) that are linked together .

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 70

 Change section 4.3 "Type Qualifiers"

 Change the "varying", "in" and "out" qualifiers as follows:

 varying - linkage between a vertex shader and g eometry shader, or between
 a geometry shader and a fragment shader, or bet ween a vertex shader and a
 fragment shader.

 in - for function parameters passed into a func tion or for input varying
 variables (geometry only)

 out - for function parameters passed back out o f a function, but not
 initialized for use when passed in. Also for ou tput varying variables
 (geometry only).

 Change section 4.3.6 "Varying" as follows:

 Varying variables provide the interface between the vertex shader and
 geometry shader and also between the geometry s hader and fragment shader
 and the fixed functionality between them. If no geometry shader is
 present, varying variables also provide the int erface between the vertex
 shader and fragment shader.

 The vertex, or geometry shader will compute val ues per vertex (such
 as color, texture coordinates, etc) and write t hem to output variables
 declared with the "varying" qualifier (vertex o r geometry) or "varying
 out" qualifiers (geometry only). A vertex or ge ometry shader may also
 read these output varying variables, getting ba ck the same values it has
 written. Reading an output varying variable in a vertex or geometry shader
 returns undefined results if it is read before being written.

 A geometry shader may also read from an input v arying variable declared
 with the "varying in" qualifiers. The value rea d will be the same value as
 written by the vertex shader for that varying v ariable. Since a geometry
 shader operates on primitives, each input varyi ng variable needs to be
 declared as an array. Each element of such an a rray corresponds to a
 vertex of the primitive being processed. If the varying variable is
 declared as a scalar or matrix in the vertex sh ader, it will be a
 one-dimensional array in the geometry shader. E ach array can optionally
 have a size declared. If a size is not specifie d, it inferred by the
 linker and depends on the value of the input pr imitive type. See table
 4.3.xxx to determine the exact size. The read-o nly built-in constant
 gl_VerticesIn will be set to this value by the linker. If a size is
 specified, it has to be the size as given by ta ble 4.3.xxx, otherwise a
 link error will occur. The built-in constant gl _VerticesIn, if so desired,
 can be used to size the array correctly for eac h input primitive
 type. Varying variables can also be declared as arrays in the vertex
 shader. This means that those, on input to the geometry shader, must be
 declared as two- dimensional arrays. The first index to the
 two-dimensional array holds the vertex number. Declaring a size for the
 first range of the array is optional, just as i t is for one-dimensional
 arrays. The second index holds the per-vertex array data. Declaring a
 size for the second range of the array is not o ptional, and has to match
 the declaration in the vertex shader.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 71

 Value of built-in
 Input primitive type gl_VerticesIn
 ----------------------- -----------------
 POINTS 1
 LINES 2
 LINES_ADJACENCY_EXT 4
 TRIANGLES 3
 TRIANGLES_ADJACENCY_EXT 6

 Table 4.3.xxxx The value of the built-in variable gl_VerticesIn i s
 determined at link time, based on the input pri mitive type.

 It is illegal to index these varying arrays, or in the case of two-
 dimensional arrays, the first range of the arra y, with a negative integral
 constant expression or an integral constant exp ression greater than or
 equal to gl_VerticesIn. A link error will occur in these cases.

 Varying variables that are part of the interfac e to the fragment shader
 are set per vertex and interpolated in a perspe ctive correct manner,
 unless flat shaded, over the primitive being re ndered. If single-sampling,
 the interpolated value is for the fragment cent er. If multi-sampling, the
 interpolated value can be anywhere within the p ixel, including the
 fragment center or one of the fragment samples.

 A fragment shader may read from varying variabl es and the value read will
 be the interpolated value, as a function of the fragment's position within
 the primitive, unless the varying variable is f lat shaded. A fragment
 shader cannot write to a varying variable.

 If a geometry shader is present, the type of th e varying variables with
 the same name declared in the vertex shader and the input varying
 variables in the geometry shader must match, ot herwise the link command
 will fail. Likewise, the type of the output var ying variables with the
 same name declared in the geometry shader and t he varying variables in the
 fragment shader must match.

 If a geometry shader is not present, the type o f the varying variables
 with the same name declared in both the vertex and fragment shaders must
 match, otherwise the link command will fail.

 Only those varying variables used (i.e. read) i n the geometry or fragment
 shader must be written to by the vertex or geom etry shader; declaring
 superfluous varying variables in the vertex sha der or declaring
 superfluous output varying variables in the geo metry shader is
 permissible.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 72

 Varying variables are declared as in the follow ing example:

 varying in float foo[]; // geometry shader input. Size of the
 // array set as a result of link, based
 // on the input pr imitive type.

 varying in float foo[gl_VerticesIn]; // geome try shader input

 varying in float foo[3]; // geometry shader input. Only legal for
 // the TRIANGLES i nput primitive type

 varying in float foo[][5]; // Size of the fir st range set as a
 // result of link. Each vertex holds an
 // array of 5 floa ts.

 varying out vec4 bar; // geometry output
 varying vec3 normal; // vertex shader o utput or fragment
 // shader input

 The varying qualifier can be used only with the data types float, vec2,
 vec3, vec4, mat2, mat3 and mat4 or arrays of th ese. Structures cannot be
 varying. Additionally, the "varying in" and "va rying out" qualifiers can
 only be used in a geometry shader.

 If no vertex shader is active, the fixed functi onality pipeline of OpenGL
 will compute values for the built-in varying va riables that will be
 consumed by the fragment shader. Similarly, if no fragment shader is
 active, the vertex shader or geometry shader is responsible for computing
 and writing to the built-in varying variables t hat are needed for OpenGL's
 fixed functionality fragment pipeline.

 Varying variables are required to have global s cope, and must be declared
 outside of function bodies, before their first use.

 Change section 7.1 "Vertex Shader Special Varia bles"

 Rename this section to "Vertex and Geometry Sha der Special Variables"

 Anywhere in this section where it reads "vertex language" replace it with
 "vertex and geometry language".

 Anywhere in this section where it reads "vertex shader" replace it with
 "vertex shader or geometry shader".

 Change the second paragraph to:

 The variable gl_Position is available only in t he vertex and geometry
 language and is intended for writing the homoge neous vertex position. It
 can be written at any time during shader execut ion. It may also be read
 back by the shader after being written. This va lue will be used by
 primitive assembly, clipping, culling, and othe r fixed functionality
 operations that operate on primitives after ver tex or geometry processing
 has occurred. Compilers may generate a diagnos tic message if they detect
 gl_Position is read before being written, but n ot all such cases are
 detectable. Writing to gl_Position is optional. If gl_Position is not
 written but subsequent stages of the OpenGL pip eline consume gl_Position,
 then results are undefined.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 73

 Change the last sentence of this section into t he following:

 The read-only built-in gl_PrimitiveIDIn is avai lable only in the geometry
 language and is filled with the number of primi tives processed by the
 geometry shader since the last time Begin was c alled (directly or
 indirectly via vertex array functions). See sec tion 2.16.4 for more
 information.

 This variable is intrinsically declared as:

 int gl_PrimitiveIDIn; // read only

 The built-in output variable gl_PrimitiveID is available only in the
 geometry language and provides a single integer that serves as a primitive
 identifier. This written primitive ID is avail able to fragment shaders.
 If a fragment shader using primitive IDs is act ive and a geometry shader
 is also active, the geometry shader must write to gl_PrimitiveID or the
 primitive ID in the fragment shader number is u ndefined.

 The built-in output variable gl_Layer is availa ble only in the geometry
 language, and provides the number of the layer of textures attached to a
 FBO to direct rendering to. If a shader statica lly assigns a value to
 gl_Layer, layered rendering mode is enabled. Se e section 2.16.4 for a
 detailed explanation. If a shader statically as signs a value to gl_Layer,
 and there is an execution path through the shad er that does not set
 gl_Layer, then the value of gl_Layer may be und efined for executions of
 the shader that take that path.

 These variables area intrinsically declared as:

 int gl_PrimitiveID;
 int gl_Layer;

 These variables can be read back by the shader after writing to them, to
 retrieve what was written. Reading the variable before writing it results
 in undefined behavior. If it is written more th an once, the last value
 written is consumed by the subsequent operation s.

 All built-in variables discussed in this sectio n have global scope.

 Change section 7.2 "Fragment Shader Special Var iables"

 Change the first paragraph on p. 44 as follows:

 The fragment shader has access to the read-only built-in variable
 gl_FrontFacing whose value is true if the fragm ent belongs to a
 front-facing primitive. One use of this is to e mulate two-sided lighting
 by selecting one of two colors calculated by th e vertex shader or geometry
 shader.

 Change the first sentence of section 7.4 "Built -in Constants"

 The following built-in constant is provided to geometry shaders.

 const int gl_VerticesIn; // Value set at link time

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 74

 The following built-in constants are provided t o the vertex, geometry and
 fragment shaders:

 Change section 7.6 "Varing Variables"

 Unlike user-defined varying variables, the buil t-in varying variables
 don't have a strict one-to-one correspondence b etween the vertex language,
 geometry language and the fragment language. Fo ur sets are provided, one
 set for the vertex language output, one set for the geometry language
 output, one set for the fragment language input and another set for the
 geometry language input. Their relationship is described below.

 The following built-in varying variables are av ailable to write to in a
 vertex shader or geometry shader. A particular one should be written to if
 any functionality in a corresponding geometry s hader or fragment shader or
 fixed pipeline uses it or state derived from it . Otherwise, behavior is
 undefined.

 Vertex language built-in outputs:

 varying vec4 gl_FrontColor;
 varying vec4 gl_BackColor;
 varying vec4 gl_FrontSecondaryColor;
 varying vec4 gl_BackSecondaryColor;
 varying vec4 gl_TexCoord[]; // at most will b e gl_MaxTextureCoords
 varying float gl_FogFragCoord;

 Geometry language built-in outputs:

 varying out vec4 gl_FrontColor;
 varying out vec4 gl_BackColor;
 varying out vec4 gl_FrontSecondaryColor;
 varying out vec4 gl_BackSecondaryColor;
 varying out vec4 gl_TexCoord[]; // at most gl _MaxTextureCoords
 varying out float gl_FogFragCoord;

 For gl_FogFragCoord, the value written will be used as the "c" value on
 page 160 of the OpenGL 1.4 Specification by the fixed functionality
 pipeline. For example, if the z-coordinate of t he fragment in eye space is
 desired as "c", then that's what the vertex or geometry shader should
 write into gl_FogFragCoord.

 Indices used to subscript gl_TexCoord must eith er be an integral constant
 expressions, or this array must be re-declared by the shader with a
 size. The size can be at most gl_MaxTextureCoor ds. Using indexes close to
 0 may aid the implementation in preserving vary ing resources.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 75

 The following input varying variables are avail able to read from in a
 geometry shader.

 varying in vec4 gl_FrontColorIn[gl_VerticesIn];
 varying in vec4 gl_BackColorIn[gl_VerticesIn] ;
 varying in vec4 gl_FrontSecondaryColorIn[gl_V erticesIn];
 varying in vec4 gl_BackSecondaryColorIn[gl_Ve rticesIn];
 varying in vec4 gl_TexCoordIn[gl_VerticesIn][]; // at most will be
 // gl_MaxTextureCoords
 varying in float gl_FogFragCoordIn[gl_Vertice sIn];
 varying in vec4 gl_PositionIn[gl_VerticesIn];
 varying in float gl_PointSizeIn[gl_VerticesIn];
 varying in vec4 gl_ClipVertexIn[gl_VerticesIn];

 All built-in variables are one-dimensional arra ys, except for
 gl_TexCoordIn, which is a two-dimensional array . Each element of a
 one-dimensional array, or the first index of a two-dimensional array,
 corresponds to a vertex of the primitive being processed and receives
 their value from the equivalent vertex output v arying variables. See also
 section 4.3.6.

 The following varying variables are available t o read from in a fragment
 shader. The gl_Color and gl_SecondaryColor name s are the same names as
 attributes passed to the vertex shader. However , there is no name
 conflict, because attributes are visible only i n vertex shaders and the
 following are only visible in a fragment shader .

 varying vec4 gl_Color;
 varying vec4 gl_SecondaryColor;
 varying vec4 gl_TexCoord[]; // at most will b e gl_MaxTextureCoords
 varying float gl_FogFragCoord;

 The values in gl_Color and gl_SecondaryColor wi ll be derived automatically
 by the system from gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor,
 and gl_BackSecondaryColor. This selection proce ss is described in section
 2.14.1 of the OpenGL 2.0 Specification. If fixe d functionality is used for
 vertex processing, then gl_FogFragCoord will ei ther be the z-coordinate of
 the fragment in eye space, or the interpolation of the fog coordinate, as
 described in section 3.10 of the OpenGL 1.4 Spe cification. The
 gl_TexCoord[] values are the interpolated gl_Te xCoord[] values from a
 vertex or geometry shader or the texture coordi nates of any fixed pipeline
 based vertex functionality.

 Indices to the fragment shader gl_TexCoord arra y are as described above in
 the vertex and geometry shader text.

 Change section 8.7 "Texture Lookup Functions"

 Change the first paragraph to:

 Texture lookup functions are available to verte x, geometry and fragment
 shaders. However, level of detail is not comput ed by fixed functionality
 for vertex or geometry shaders, so there are so me differences in operation
 between texture lookups. The functions.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 76

 Change the third and fourth paragraphs to:

 In all functions below, the bias parameter is o ptional for fragment
 shaders. The bias parameter is not accepted in a vertex or geometry
 shader. For a fragment shader, if bias is prese nt, it is added to the
 calculated level of detail prior to performing the texture access
 operation. If the bias parameter is not provide d, then the implementation
 automatically selects level of detail: For a te xture that is not
 mip-mapped, the texture is used directly. If it is mip- mapped and running
 in a fragment shader, the LOD computed by the i mplementation is used to do
 the texture lookup. If it is mip- mapped and ru nning on the vertex or
 geometry shader, then the base LOD of the textu re is used.

 The built-ins suffixed with "Lod" are allowed o nly in a vertex or geometry
 shader. For the "Lod" functions, lod is directl y used as the level of
 detail.

 Change section 8.9 Noise Functions

 Change the first paragraph to:

 Noise functions are available to the vertex, ge ometry and fragment
 shaders. They are...

 Add a section 8.10 Geometry Shader Functions

 This section contains functions that are geomet ry language specific.

 Syntax:

 void EmitVertex(); // Geometry only
 void EndPrimitive(); // Geometry only

 Description:

 The function EmitVertex() specifies that a vert ex is completed. A vertex
 is added to the current output primitive using the current values of the
 varying output variables and the current values of the special built-in
 output variables gl_PointSize, gl_ClipVertex, g l_Layer, gl_Position and
 gl_PrimitiveID. The values of any unwritten ou tput variables are
 undefined. The values of all varying output var iables and the special
 built-in output variables are undefined after a call to EmitVertex(). If a
 geometry shader, in one invocation, emits more vertices than the value
 GEOMETRY_VERTICES_OUT_EXT, these emits may have no effect.

 The function EndPrimitive() specifies that the current output primitive is
 completed and a new output primitive (of the sa me type) should be
 started. This function does not emit a vertex. The effect of
 EndPrimitive() is roughly equivalent to calling End followed by a new
 Begin, where the primitive mode is taken from t he program object parameter
 GEOMETRY_OUTPUT_TYPE_EXT. If the output primiti ve type is POINTS, calling
 EndPrimitive() is optional.

 A geometry shader starts with an output primiti ve containing no
 vertices. When a geometry shader terminates, th e current output primitive
 is automatically completed. It is not necessary to call EndPrimitive() if
 the geometry shader writes only a single primit ive.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 77

 Add/Change section 9 (Shading language grammar) :

 init_declarator_list:
 single_declaration
 init_declarator_list COMMA IDENTIFIER
 init_declarator_list COMMA IDENTIFIER array _declarator_suffix
 init_declarator_list COMMA IDENTIFIER EQUAL initializer

 single_declaration:
 fully_specified_type
 fully_specified_type IDENTIFIER
 fully_specified_type IDENTIFIER array_decla rator_suffix
 fully_specified_type IDENTIFIER EQUAL initi alizer

 array_declarator_suffix:
 LEFT_BRACKET RIGHT_BRACKET
 LEFT_BRACKET constant_expression RIGHT_BRAC KET
 LEFT_BRACKET RIGHT_BRACKET array_declarator _suffix
 LEFT_BRACKET constant_expression RIGHT_BRAC KET
 array_declarator_suffix

 type_qualifier:
 CONST
 ATTRIBUTE // Vertex only
 VARYING
 VARYING IN // Geometry only
 VARYING OUT // Geometry only
 UNIFORM

NVIDIA Implementation Details

 Because of a hardware limitation, some GeForce 8 series chips use the
 odd vertex of an incomplete TRIANGLE_STRIP_ADJA CENCY_EXT primitive
 as a replacement adjacency vertex rather than i gnoring it.

Issues

 1. How do geometry shaders fit into the existing GL pipeline?

 RESOLVED: The following diagram illustrates how geometry shaders fit
 into the "vertex processing" portion of the G L (Chapter 2 of the OpenGL
 2.0 Specification).

 First, vertex attributes are specified via im mediate-mode commands or
 through vertex arrays. They can be conventio nal attributes (e.g.,
 glVertex, glColor, glTexCoord) or generic (nu mbered) attributes.

 Vertices are then transformed, either using a vertex shader or
 fixed-function vertex processing. Fixed-func tion vertex processing
 includes position transformation (modelview a nd projection matrices),
 lighting, texture coordinate generation, and other calculations. The
 results of either method are a "transformed v ertex", which has a
 position (in clip coordinates), front and bac k colors, texture
 coordinates, generic attributes (vertex shade r only), and so on. Note
 that on many current GL implementations, vert ex processing is performed
 by executing a "fixed function vertex shader" generated by the driver.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 78

 After vertex transformation, vertices are ass embled into primitives,
 according to the topology (e.g., TRIANGLES, Q UAD_STRIP) provided by the
 call to glBegin(). Primitives are points, li nes, triangles, quads, or
 polygons. Many GL implementations do not dir ectly support quads or
 polygons, but instead decompose them into tri angles as permitted by the
 spec.

 After initial primitive assembly, a geometry shader is executed on each
 individual point, line, or triangle primitive , if one is active. It can
 read the attributes of each transformed verte x, perform arbitrary
 computations, and emit new transformed vertic es. These emitted vertices
 are themselves assembled into primitives acco rding to the output
 primitive type of the geometry shader.

 Then, the colors of the vertices of each prim itive are clamped to [0,1]
 (if color clamping is enabled), and flat shad ing may be performed by
 taking the color from the provoking vertex of the primitive.

 Each primitive is clipped to the view volume, and to any enabled
 user-defined clip planes. Color, texture coo rdinate, and other
 attribute values are computed for each new ve rtex introduced by
 clipping.

 After clipping, the position of each vertex (in clip coordinates) is
 converted to normalized device coordinates in the perspective division
 (divide by w) step, and to window coordinates in the viewport
 transformation step.

 At the same time, color values may be convert ed to normalized
 fixed-point values according to the "Final Co lor Processing" portion of
 the specification.

 After the vertices of the primitive are trans formed to window
 coordinate, the GL determines if the primitiv e is front- or back-facing.
 That information is used for two-sided color selection, where a single
 set of colors is selected from either the fro nt or back colors
 associated with each transformed vertex.

 When all this is done, the final transformed position, colors (primary
 and secondary), and other attributes are used for rasterization (Chapter
 3 in the OpenGL 2.0 Specification).

 When the raster position is specified (via gl RasterPos), it goes through
 the entire vertex processing pipeline as thou gh it were a point.
 However, geometry shaders are never run on th e raster position.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 79

 | generic |conventional
 |vertex |vert ex
 |attributes |attr ibutes
 | |
 | +-------------------+
 | | |
 V V V
 vertex fixed-funct ion
 shader vertex
 | processing
 | |
 | |
 +<-------------------+
 | Output
 |position, color, Primitive
 |other vertex data Type
 | |
 V |
 Begin/ primitive geometry primitive |
 End ------> assembly -----> shader ---- > assembly <-+
 State | |
 V |
 +<------------------------ ------+
 |
 |
 | color flat
 +----------> clamping ---- > shading
 | |
 V |
 +<------------------------ ------+
 |
 |
 clipping
 |
 | perspective viewport
 +------> divide ----> transform
 | |
 | +---+-----+
 | V |
 | final f acing |
 +------> color dete rmination |
 | processing | | |
 | | | |
 | | | |
 | +-----+ +--- -+ |
 | | | |
 | V V |
 | two-sided |
 | coloring |
 | | |
 | | |
 +------------------+ | +-- -----------+
 | | |
 V V V
 rasterizati on
 |
 |
 V

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 80

 2. Why is this called GL_EXT_geometry_shader4? There aren't any previous
 versions of this extension, let alone three?

 RESOLVED: To match its sibling, EXT_gpu_shad er4 and the assembly
 version NV_gpu_program4. This is the fourth g eneration of shading
 functionality, hence the "4" in the name.

 3. Should the GL produce errors at Begin time if an application specifies a
 primitive mode that is "incompatible" with th e geometry shader? For
 example, if the geometry shader operates on t riangles and the
 application sends a POINTS primitive?

 RESOLVED: Yes. Mismatches of app-specified primitive types and
 geometry shader input primitive types appear to be errors and would
 produce weird and wonderful effects.

 4. Can the input primitive type of a geometry sh ader be determined at run
 time?

 RESOLVED: No. Each geometry shader has a sin gle input primitive type,
 and vertices are presented to the shader in a specific order based on
 that type.

 5. Can the input primitive type of a geometry sh ader be changed?

 DISCUSSION: The input primitive type is a pro perty of the program
 object. A change of the input primitive type means the program object
 will need to be re-linked. It would be nice i f the input primitive type
 was known at compile time, so that the compil er can do error checking of
 the type and the number of vertices being acc essed by the shader. Since
 we allow multiple compilation units to form o ne geometry shader, it is
 not clear how to achieve that. Therefore, th e input primitive type is a
 property of the program object, and not of a shader object.

 RESOLVED: Yes, but each change means the prog ram object will have to be
 re-linked.

 6. Can the output primitive type of a geometry s hader be determined
 at run time?

 RESOLVED: Not in this extension.

 7. Can the output primitive type of a program ob ject be changed?

 RESOLVED: Yes, but the program object will ha ve to be re-linked in order
 for the change to have effect on program exec ution.

 8. Must the output primitive type of a geometry shader match the
 input primitive type in any way?

 RESOLVED: No, you can have a geometry shader generate points out of
 triangles or triangles out of points. Some c ombinations are analogous
 to existing OpenGL operations: reading trian gles and writing points or
 line strips can be used to emulate a subset o f PolygonMode
 functionality. Reading points and writing tr iangle strips can be used
 to emulate point sprites.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 81

 9. Are primitives emitted by a geometry shader p rocessed like any other
 OpenGL primitive?

 RESOLVED: Yes. Antialiasing, stippling, pol ygon offset, polygon mode,
 culling, two-sided lighting and color selecti on, point sprite
 operations, and fragment processing all work as expected.

 One limitation is that the only output primit ive types supported are
 points, line strips, and triangle strips, non e of which meaningfully
 support edge flags that are sometimes used in conjunction with the POINT
 and LINE polygon modes. Edge flags are always ignored for line-mode
 triangle strips.

 10. Should geometry shaders support additional in put primitive types?

 RESOLVED: Possibly in a future extension. I t should be straightforward
 to build a future extension to support geomet ry shaders that operate on
 quads. Other primitive types might be more d emanding on hardware. Quads
 with adjacency would require 12 vertices per shader execution. General
 polygons may require even more, since there i s no fixed bound on the
 number of vertices in a polygon.

 11. Should geometry shaders support additional ou tput primitive types?

 RESOLVED: Possibly in a future extension. A dditional output types
 (e.g., independent lines, line loops, triangl e fans, polygons) may be
 useful in the future; triangle fans/polygons seem particularly useful.

 12. How are adjacency primitives processed by the GL?

 RESOLVED: The primitive type of an adjacent p rimitive is set as a Begin
 mode parameter. Any vertex of an adjacency pr imitive will be treated as
 a regular vertex, and processed by a vertex s hader as well as the
 geometry shader. The geometry shader cannot o utput adjacency primitives,
 thus processing stops with the geometry shade r. If a geometry shader is
 not active, the GL ignores the "adjacent" ver tices in the adjacency
 primitive.

 13. Should we provide additional adjacency primit ive types that can be
 used inside a Begin/End?

 RESOLVED: Not in this extension. It may be desirable to add new
 primitive types (e.g., TRIANGLE_FAN_ADJACENCY) in a future extension.

 14. How do geometry shaders interact with RasterP os?

 RESOLVED: Geometry shaders are ignored when specifying the raster
 position.

 15. How do geometry shaders interact with pixel p rimitives
 (DrawPixels, Bitmap)?

 RESOLVED: They do not.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 82

 16. Is there a limit on the number of vertices th at can be emitted by
 a geometry shader?

 RESOLVED: Unfortunately, yes. Besides pract ical hardware limits, there
 may also be practical performance advantages when applications guarantee
 a tight upper bound on the number of vertices a geometry shader will
 emit. GPUs frequently excecute programs in p arallel, and there are
 substantial implementation challenges to para llel execution of geometry
 threads that can write an unbounded number of results, particular given
 that all the primitives generated by the firs t geometry shader
 invocation must be consumed before any of the primitives generated by
 the second program invocation. Limiting the amount of data a geometry
 shader can write substantially eases the impl ementation burden.

 A program object, holding a geometry shader, must declare a maximum
 number of vertices that can be emitted. There is an
 implementation-dependent limit on the total n umber of vertices a program
 object can emit (256 minimum) and the product of the number of vertices
 emitted and the number of components of all a ctive varying variables
 (1024 minimum).

 It would be ideal if the limit could be infer red from the instructions
 in the shader itself, and that would be possi ble for many shaders,
 particularly ones with straight-line flow con trol. For shaders with
 more complicated flow control (subroutines, d ata- dependent looping, and
 so on), it would be impossible to make such a n inference and a "safe"
 limit would have to be used with adverse and possibly unexpected
 performance consequences.

 The limit on the number of EmitVertex() calls that can be issued can not
 always be enforced at compile time, or even a t Begin time. We specify
 that if a shader tries to emit more vertices than allowed, emits that
 exceed the limit may or may not have any effe ct.

 17. Should it be possible to change the limit GEO METRY_VERTICES_OUT_EXT, the
 number of vertices emitted by a geometry shad er, after the program
 object, containing the shader, is linked?

 RESOLVED: NO. See also issue 31. Changing thi s limit might require a
 re-compile and/or re-link of the shaders and program object on certain
 implementations. Pretending that this limit c an be changed without
 re-linking does not reflect reality.

 18. How do user clipping and geometry shaders int eract?

 RESOLVED: Just like vertex shaders and user c lipping interact. The
 geometry shader needs to provide the (eye) po sition gl_ClipVertex.
 Primitives are clipped after geometry shader execution, not before.

 19. How do edge flags interact with adjacency pri mitives?

 RESOLVED: If geometry programs are disabled, adjacency primitives are
 still supported. For TRIANGLES_ADJACENCY_EXT , edge flags will apply as
 they do for TRIANGLES. Such primitives are r endered as independent
 triangles as though the adjacency vertices we re not provided. Edge
 flags for the "real" vertices are supported. For all other adjacency
 primitive types, edge flags are irrelevant.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 83

 20. Now that a third shader object type is added, what combinations of
 GLSL, assembly (ARB or NV) low level and fixe d-function do we want
 to support?

 DISCUSSION: With the addition of the geometry shader, the number of
 combinations the GL pipeline could support do ubled (there is no
 fixed-function geometry shading). Possible c ombinations now are:

 vertex geometry fragment

 ff/ASM/GLSL none/ASM/GLSL ff/ASM/GLSL

 for a total of 3 x 3 x 3 is 27 combinations. Before the geometry shader
 was added, the number of combinations was 9, and those we need to
 support. We have a choice on the other 18.

 RESOLUTION: It makes sense to draw a line at raster in the GL
 pipeline. The 'north' side of this line cover s vertex and geometry
 shaders, the 'south' side fragment shaders. W e now add a simple rule
 that states that if a program object contains anything north of this
 line, the north side will be 100% GLSL. This means that:

 a) GLSL program objects with a vertex shader can only use a geometry
 shader and not an assembly geometry program. If an assembly geometry
 program is enabled, it is bypassed. This als o avoids a tricky case -- a
 GLSL program object with a vertex and a fragm ent program linked
 together. Injecting an assembly geometry sha der in the middle at run
 time won't work well.

 b) GLSL program objects with a geometry shade r must have a vertex shader
 (cannot be ARB/NV or fixed-function vertex sh ading).

 The 'south' side in this program object still can be any of
 ff/ARB/NV/GLSL.

 21. How do geometry shaders interact with color c lamping?

 RESOLVED: Geometry shader execution occurs p rior to color clamping in
 the pipeline. This means the colors written by vertex shaders are not
 clamped to [0,1] before they are read by geom etry shaders. If color
 clamping is enabled, any vertex colors writte n by the geometry shader
 will have their components clamped to [0,1].

 22. What is a primitive ID and a vertex ID? I am confused.

 DISCUSSION: A vertex shader can read a built- in attribute that holds the
 ID of the current vertex it is processing. Se e the EXT_gpu_shader4 spec
 for more information on vertex ID. If the geo metry shader needs access
 to a vertex ID as well, it can be passed as a user-defined varying
 variable. A geometry shader can read a built- in varying variable that
 holds the ID of the current primitive it is p rocessing. It also has the
 ability to write to a built-in output primiti ve ID variable, to
 communicate the primitive ID to a fragment sh ader. A fragment shader
 can read a built-in attribute that holds the ID of the current primitive
 it is processing. A primitive ID will be gene rated even if no geometry
 shader is active.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 84

 23. After a call to EmitVertex(), should the valu es of the output varying
 variables be retained or be undefined?

 DISCUSSION: There is not a clear answer to th is question .The underlying
 HW mechanism is as follows. An array of outpu t registers is set aside to
 store vertices that make up primitives. Afte r each EmitVertex() a
 pointer into that array is incremented. The shader no longer has access
 to the previous set of values. This argues t hat the values of output
 varying variables should be undefined after a n EmitVertex() call. The
 shader is responsible for writing values to a ll varying variables it
 wants to emit, for each emit. The counter arg ument to this is that this
 is not a nice model for GLSL to program in. T he compiler can store
 varying outputs in a temp register and preser ve their values across
 EmitVertex() calls, at the cost of increased register pressure.

 RESOLUTION: For now, without being a clear wi nner, we've decided to go
 with the undefined option. The shader is resp onsible for writng values
 to all varying variabvles it wants to emit, f or each emit.

 24. How to distinguish between input and output " varying" variables?

 DISCUSSION: Geometry shader outputs are varyi ng variables consistent
 with the existing definition of varying (used to communicate to the
 fragment processing stage). Geometry inputs a re received from a vertex
 shader writing to its varying variable output s. The inputs could be
 called "varying", to match with the vertex sh ader, or could be called
 "attributes" to match the vertex shader input s (which are called
 attributes).

 RESOLUTION: We'll call input variables "varyi ng", and not
 "attributes". To distinguish between input an d output, they will be
 further qualified with the words "in" and "ou t" resulting in, for
 example:

 varying in float foo;
 varying out vec4 bar[];

 25. What is the syntax for declaring varying inpu t variables?

 DISCUSSION: We need a way to distinguish betw een the vertices of the
 input primitive. Suggestions:

 1. Declare each input varying variable as a n unsized array. Its size
 is inferred by the linker based on the o utput primitive type.

 2. Declare each input varying variable as a sized array. If the size
 does not match the output primitive type , a link error occurs.

 3. Have an array of structures, where the s tructure contains the
 attributes for each vertex.

 RESOLUTION: Option 1 seems simple and solves the problem, but it is not
 a clear winner over the other two. To aid the shader writer in figuring
 out the size of each array, a new built-in co nstant, gl_VerticesIn, is
 defined that holds the number of vertices for the current input
 primitive type.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 85

 26. Does gl_PointSize, gl_Layer, gl_ClipVertex co unt agains the
 MAX_GEOMETRY_VARYING_COMPONENTS limit?

 RESOLUTION: Core OpenGL 2.0 makes a distincti on between varying
 variables, output from a vertex shader and in terpolated over a
 primitive, and 'special built-in variables' t hat are outputs, but not
 interpolated across a primitive. Only varying variables do count against
 the MAX_VERTEX_VARYING_COMPONENTS limit. gl_ PointSize, gl_Layer,
 gl_ClipVertex and gl_Position are 'special bu ilt-in' variables, and
 therefore should not count against the limit. If HW does need to take
 components away to support those, that is ok. The actual spec language
 does mention possible implementation dependen cies.

 27. Should writing to gl_Position be optional?

 DISCUSSION: Before this extensions, the OpenG L Shading Language required
 that gl_Position be written to in a vertex sh ader. With the addition of
 geometry shaders, it is not necessary anymore for a vertex shader to
 output gl_Position. The geometry shader can d o so. With the addition of
 transform-feedback (see the transform feedbac k specification) it is not
 necessary useful for the geometry shader to w rite out gl_Position
 either.

 RESOLUTION: Yes, this should be optional.

 28. Should geometry shaders be able to select a l ayer of a 3D texture, cube
 map texture, or array texture at run time? I f so, how?

 RESOLVED: See also issue 32. This extension p rovides a per-vertex output
 called "gl_Layer", which is an integer specif ying the layer to render
 to. In order to get defined results, the valu e of gl_Layer needs to be
 constant for each primitive (point, line or t riangle) being emitted by a
 geometry shader. This layer value is used for all fragments generated by
 that primitive.

 The EXT_framebuffer_object (FBO) extension is used for rendering to
 textures, but for cube maps and 3D textures, it only provides the
 ability to attach a single face or layer of s uch textures.

 This extension generalizes FBO by creates new entry points to bind an
 entire texture level (FramebufferTextureEXT) or a single layer of a
 texture level (FramebufferTextureLayerEXT) or a single face of a level
 of a cube map texture (FramebufferTextureFace EXT) to an attachment
 point. The existing FBO binding functions, F ramebufferTexture[123]DEXT
 are retained, and are defined in terms of the more general new
 functions.

 The new functions do not have a dimension in the function name or a
 <textarget> parameter, which can be inferred from the provided
 texture.

 When an entire texel level of a cube map, 3D, or array texture is
 attached, that attachment is considered layer ed. The framebuffer is
 considered layered if any attachment is layer ed. When the framebuffer
 is layered, there are three additional comple teness requirements:

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 86

 * all attachments must be layered
 * all color attachments must be from textur es of identical type
 * all attachments must have the same number of layers

 We expect subsequent versions of the FBO spec to relax the requirement
 that all attachments must have the same width and height, and plan to
 relax the similar requirement for layer count at that time.

 When rendering to a layered framebuffer, laye r zero is used unless a
 geometry shader that writes (statically assin gs, to be precise) to
 gl_Layer. When rendering to a non-layered fra mebuffer, the value of
 gl_Layer is ignored and the set of single-ima ge attachments are used.
 When reading from a layered framebuffer (e.g. , ReadPixels), layer zero
 is always used. When clearing a layered fram ebuffer, all layers are
 cleared to the corresponding clear values.

 Several other approaches were considered, inc luding leveraging existing
 FBO attachment functions and requiring the us e of FramebufferTexture3D
 with a <zoffset> of zero to make a framebuffe r attachment "layerable"
 (attaching layer zero means that the attachme nt could be used for either
 layered- or non- layered rendering). Whether rendering was layered or
 not could either be inferred from the active geometry shader, or set as
 a new property of the framebuffer object. Th ere is presently no
 FramebufferParameter API to set a property of a framebuffer, so it would
 have been necessary to create new set/query A PIs if this approach were
 chosen.

 29. How should per-vertex point size work with ge ometry shaders?

 RESOLVED: The value of the existing VERTEX_PR OGRAM_POINT_SIZE enable, to
 control the point size behavior of a vertex s hader, does not affect
 geometry shaders. Specifically, If a geometr y shader is active, the
 point size is taken from the point size outpu t gl_PointSize of the
 vertex shader, regardless of the value of VER TEX_PROGRAM_POINT_SIZE.

 30. Geometry shaders don't provide a QUADS or gen eric POLYGON input
 primitive type. In this extension, what happ ens if an application
 provides QUADS, QUAD_STRIP, or POLYGON primit ives?

 RESOLVED: Not all vendors supporting this ex tension were able to accept
 quads and polygon primitives as input, so suc h functionality was not
 provided in this extension. This extension r equires that primitives
 provided to the GL must match the input primi tive type of the active
 geometry shader (if any). QUADS, QUAD_STRIP, and POLYGON primitives are
 considered not to match any input primitive t ype, so an
 INVALID_OPERATION error will result.

 The NV_geometry_shader4 extension (built on t op of this one) allows
 applications to provide quads or general poly gon primitives to a
 geometry shader with an input primitive type of TRIANGLES. Such
 primitives are decomposed into triangles, and a geometry shader is run
 on each triangle independently.

EXT_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 87

 31. Geometry shaders provide a limit on the numbe r of vertices that can be
 emitted. Can this limit be changed at dynami cally?

 RESOLVED: See also issue 17. Not in this ext ension. This functionality
 was not provided because it would be an expen sive operation on some
 implementations of this extension. The NV_ge ometry_shader4 extension
 (layered on top of this one) does allow appli cations to change this
 limit dynamically.

 An application can change the vertex output l imit at any time. To allow
 for the possibility of dynamic changes (as in NV_geometry_shader4) but
 not require it, a limit change is not guarant eed to take effect unless
 the program object is re-linked. However, th ere is no guarantee that
 such limit changes will not take effect immed iately.

 32. See also issue 28. Each vertex emitted by a g eometry shader can specify
 a layer to render to using the output variabl e "gl_Layer". For
 LINE_STRIP and TRIANGLE_STRIP output primitiv e types, which vertex's
 layer is used?

 RESOLVED: The vertex from which the layer is extracted is unfortunately
 undefined. In practice, some implementations of this extension will
 extract the layer number from the first verte x of the output primitive;
 others will extract it from the last (provoki ng) vertex. A future
 geometry shader extension may choose to defin e this behavior one way or
 the other.

 To get portable results, the layer number sho uld be the same for all
 vertices in any single primitive emitted by t he geometry shader. The
 EndPrimitive() built-in function available in a geometry shader starts a
 new primitive, and the layer number emitted c an be safely changed after
 EndPrimitive() is called.

 33. The grammar allows "varying", "varying out", and "varying in" as
 type-qualifiers for geometry shaders. What d oes "varying" without "in"
 or "out" mean for a geometry shader?

 RESOLVED: The "varying" type qualifier in a geometry shader not
 followed by "in" or "out" means the same as " varying out".

 This is consistent with the specification say ing: "In order to seamlessly
 be able to insert or remove a geometry shader from a program object,
 the rules, names and types of the output buil t-in varying variables and
 user-defined varying variables are the same a s for the vertex shader."

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 17 05/22/07 mjk Clarify that "varying " means the same as
 "varying out" in a ge ometry shader.

 16 01/10/07 pbrown Specify that the tota l component limit is
 enforced at LinkProgr am time.

OpenGL Extension Specifcations for GeForce 8 Series EXT_geometry_shader4

NVIDIA Proprietary 88

 15 12/15/06 pbrown Documented that the ' #extension' token
 for this extension sh ould begin with "GL_",
 as apparently called for per convention.

 14 -- Pre-release revisions .

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 89

Name

 EXT_gpu_shader4

Name Strings

 GL_EXT_gpu_shader4

Contact

 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at' nvidia.com)
 Pat Brown, NVIDIA (pbrown 'at' nvidia.com)

Status

 Multi vendor extension

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 02/04/2008
 Author revision: 12

Number

 326

Dependencies

 OpenGL 2.0 is required.

 This extension is written against the OpenGL 2. 0 specification and version
 1.10.59 of the OpenGL Shading Language specific ation.

 This extension trivially interacts with ARB_tex ture_rectangle.

 This extension trivially interacts with GL_EXT_ texture_array.

 This extension trivially interacts with GL_EXT_ texture_integer.

 This extension trivially interacts with GL_EXT_ geometry_shader4

 This extension trivially interacts with GL_EXT_ texture_buffer_object.

 NV_primitive_restart trivially affects the defi nition of this extension.

 ARB_color_buffer_float affects the definition o f this extension.
 EXT_draw_instanced affects the definition of th is extension.

Overview

 This extension provides a set of new features t o the OpenGL Shading
 Language and related APIs to support capabiliti es of new hardware. In
 particular, this extension provides the followi ng functionality:

 * New texture lookup functions are provided that allow shaders to

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 90

 access individual texels using integer coo rdinates referring to the
 texel location and level of detail. No fil tering is performed. These
 functions allow applications to use textur es as one-, two-, and
 three-dimensional arrays.

 * New texture lookup functions are provided that allow shaders to query
 the dimensions of a specific level-of-deta il image of a texture
 object.

 * New texture lookup functions variants are provided that allow shaders
 to pass a constant integer vector used to offset the texel locations
 used during the lookup to assist in custom texture filtering
 operations.

 * New texture lookup functions are provided that allow shaders to
 access one- and two-dimensional array text ures. The second, or third,
 coordinate is used to select the layer of the array to access.

 * New "Grad" texture lookup functions are pr ovided that allow shaders
 to explicitely pass in derivative values w hich are used by the GL to
 compute the level-of-detail when performin g a texture lookup.

 * A new texture lookup function is provided to access a buffer texture.

 * The existing absolute LOD texture lookup f unctions are no longer
 restricted to the vertex shader only.

 * The ability to specify and use cubemap tex tures with a
 DEPTH_COMPONENT internal format. This also enables shadow mapping on
 cubemaps. The 'q' coordinate is used as th e reference value for
 comparisons. A set of new texture lookup f unctions is provided to
 lookup into shadow cubemaps.

 * The ability to specify if varying variable s are interpolated in a
 non-perspective correct manner, if they ar e flat shaded or, if
 multi-sampling, if centroid sampling shoul d be performed.

 * Full signed integer and unsigned integer s upport in the OpenGL
 Shading Language:

 - Integers are defined as 32 bit value s using two's complement.

 - Unsigned integers and vectors thereo f are added.

 - New texture lookup functions are pro vided that return integer
 values. These functions are to be us ed in conjunction with new
 texture formats whose components are actual integers, rather
 than integers that encode a floating -point value. To support
 these lookup functions, new integer and unsigned-integer
 sampler types are introduced.

 - Integer bitwise operators are now en abled.

 - Several built-in functions and opera tors now operate on
 integers or vectors of integers.

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 91

 - New vertex attribute functions are a dded that load integer
 attribute data and can be referenced in a vertex shader as
 integer data.

 - New uniform loading commands are add ed to load unsigned integer
 data.

 - Varying variables can now be (unsign ed) integers. If declared
 as such, they have to be flat shaded .

 - Fragment shaders can define their ow n output variables, and
 declare them to be of type floating- point, integer or unsigned
 integer. These variables are bound t o a fragment color index
 with the new API command BindFragDat aLocationEXT(), and directed
 to buffers using the existing DrawBu ffer or DrawBuffers API
 commands.

 * Added new built-in functions truncate() an d round() to the shading
 language.

 * A new built-in variable accessible from wi thin vertex shaders that
 holds the index <i> implicitly passed to A rrayElement to specify the
 vertex. This is called the vertex ID.

 * A new built-in variable accessible from wi thin fragment and geometry
 shaders that hold the index of the current ly processed
 primitive. This is called the primitive ID .

 This extension also briefly mentions a new shad er type, called a geometry
 shader. A geometry shader is run after vertices are transformed, but
 before clipping. A geometry shader begins with a single primitive (point,
 line, triangle. It can read the attributes of a ny of the vertices in the
 primitive and use them to generate new primitiv es. A geometry shader has a
 fixed output primitive type (point, line strip, or triangle strip) and
 emits vertices to define a new primitive. Geome try shaders are discussed
 in detail in the GL_EXT_geometry_shader4 specif ication.

New Procedures and Functions

 void VertexAttribI1iEXT(uint index, int x);
 void VertexAttribI2iEXT(uint index, int x, int y);
 void VertexAttribI3iEXT(uint index, int x, int y, int z);
 void VertexAttribI4iEXT(uint index, int x, int y, int z, int w);

 void VertexAttribI1uiEXT(uint index, uint x);
 void VertexAttribI2uiEXT(uint index, uint x, ui nt y);
 void VertexAttribI3uiEXT(uint index, uint x, ui nt y, uint z);
 void VertexAttribI4uiEXT(uint index, uint x, ui nt y, uint z,
 uint w);

 void VertexAttribI1ivEXT(uint index, const int *v);
 void VertexAttribI2ivEXT(uint index, const int *v);
 void VertexAttribI3ivEXT(uint index, const int *v);
 void VertexAttribI4ivEXT(uint index, const int *v);

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 92

 void VertexAttribI1uivEXT(uint index, const uin t *v);
 void VertexAttribI2uivEXT(uint index, const uin t *v);
 void VertexAttribI3uivEXT(uint index, const uin t *v);
 void VertexAttribI4uivEXT(uint index, const uin t *v);

 void VertexAttribI4bvEXT(uint index, const byte *v);
 void VertexAttribI4svEXT(uint index, const shor t *v);
 void VertexAttribI4ubvEXT(uint index, const uby te *v);
 void VertexAttribI4usvEXT(uint index, const ush ort *v);

 void VertexAttribIPointerEXT(uint index, int si ze, enum type,
 sizei stride, const void *pointer);

 void GetVertexAttribIivEXT(uint index, enum pna me, int *params);
 void GetVertexAttribIuivEXT(uint index, enum pn ame,
 uint *params);

 void Uniform1uiEXT(int location, uint v0);
 void Uniform2uiEXT(int location, uint v0, uint v1);
 void Uniform3uiEXT(int location, uint v0, uint v1, uint v2);
 void Uniform4uiEXT(int location, uint v0, uint v1, uint v2,
 uint v3);

 void Uniform1uivEXT(int location, sizei count, const uint *value);
 void Uniform2uivEXT(int location, sizei count, const uint *value);
 void Uniform3uivEXT(int location, sizei count, const uint *value);
 void Uniform4uivEXT(int location, sizei count, const uint *value);

 void GetUniformuivEXT(uint program, int locatio n, uint *params);

 void BindFragDataLocationEXT(uint program, uint colorNumber,
 const char *name);
 int GetFragDataLocationEXT(uint program, const char *name);

New Tokens

 Accepted by the <pname> parameters of GetVertex Attribdv,
 GetVertexAttribfv, GetVertexAttribiv, GetVertex AttribIuivEXT and
 GetVertexAttribIivEXT:

 VERTEX_ATTRIB_ARRAY_INTEGER_EXT 0x88FD

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 93

 Returned by the <type> parameter of GetActiveUn iform:

 SAMPLER_1D_ARRAY_EXT 0x8DC0
 SAMPLER_2D_ARRAY_EXT 0x8DC1
 SAMPLER_BUFFER_EXT 0x8DC2
 SAMPLER_1D_ARRAY_SHADOW_EXT 0x8DC3
 SAMPLER_2D_ARRAY_SHADOW_EXT 0x8DC4
 SAMPLER_CUBE_SHADOW_EXT 0x8DC5
 UNSIGNED_INT 0x1405
 UNSIGNED_INT_VEC2_EXT 0x8DC6
 UNSIGNED_INT_VEC3_EXT 0x8DC7
 UNSIGNED_INT_VEC4_EXT 0x8DC8
 INT_SAMPLER_1D_EXT 0x8DC9
 INT_SAMPLER_2D_EXT 0x8DCA
 INT_SAMPLER_3D_EXT 0x8DCB
 INT_SAMPLER_CUBE_EXT 0x8DCC
 INT_SAMPLER_2D_RECT_EXT 0x8DCD
 INT_SAMPLER_1D_ARRAY_EXT 0x8DCE
 INT_SAMPLER_2D_ARRAY_EXT 0x8DCF
 INT_SAMPLER_BUFFER_EXT 0x8DD0
 UNSIGNED_INT_SAMPLER_1D_EXT 0x8DD1
 UNSIGNED_INT_SAMPLER_2D_EXT 0x8DD2
 UNSIGNED_INT_SAMPLER_3D_EXT 0x8DD3
 UNSIGNED_INT_SAMPLER_CUBE_EXT 0x8DD4
 UNSIGNED_INT_SAMPLER_2D_RECT_EXT 0x8DD5
 UNSIGNED_INT_SAMPLER_1D_ARRAY_EXT 0x8DD6
 UNSIGNED_INT_SAMPLER_2D_ARRAY_EXT 0x8DD7
 UNSIGNED_INT_SAMPLER_BUFFER_EXT 0x8DD8

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 MIN_PROGRAM_TEXEL_OFFSET_EXT 0x8904
 MAX_PROGRAM_TEXEL_OFFSET_EXT 0x8905

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL
Operation)

 Modify Section 2.7 "Vertex Specification", p.20

 Insert before last paragraph, p.22:

 The VertexAttrib* commands described so far sho uld not be used to load
 data for vertex attributes declared as signed o r unsigned integers or
 vectors thereof in a vertex shader. If they are used to load signed or
 unsigned integer vertex attributes, the value i n those attributes are
 undefined. Instead use the commands

 void VertexAttribI[1234]{i,ui}EXT(uint index, T values);
 void VertexAttribI[1234]{i,ui}vEXT(uint index , T values);
 void VertexAttribI4{b,s,ub,us}vEXT(uint index , T values);

 to specify fixed-point attributes that are not converted to
 floating-point. These attributes can be accesse d in vertex shaders that
 declare attributes as signed or unsigned intege rs or vectors. The
 VertexAttribI4* commands extend the data passed in to a full signed or
 unsigned integer. If a VertexAttribI* command i s used that does not match

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 94

 the type of the attribute declared in a vertex shader, the values in the
 attributes are undefined. This means that the u nsigned versions of the
 VertexAttribI* commands need to be used to load data for unsigned integer
 vertex attributes or vectors, and the signed ve rsions of the
 VertexAttribI* commands for signed integer vert ex attributes or
 vectors. Note that this also means that the Ver texAttribI* commands should
 not be used to load data for a vertex attribute declared as a float, float
 vector or matrix, otherwise their values are un defined.

 Insert at end of function list, p.24:

 void VertexAttribIPointerEXT(uint index, int si ze, enum type,
 sizei stride, const void *pointer);

 (modify last paragraph, p.24) The <index> param eter in the
 VertexAttribPointer and VertexAttribIPointerEXT commands identify the
 generic vertex attribute array being described. The error INVALID_VALUE is
 generated if <index> is greater than or equal t o
 MAX_VERTEX_ATTRIBS. Generic attribute arrays wi th integer <type> arguments
 can be handled in one of three ways: converted to float by normalizing to
 [0,1] or [-1,1] as specified in table 2.9, conv erted directly to float, or
 left as integers. Data for an array specified b y VertexAttribPointer will
 be converted to floating-point by normalizing i f the <normalized>
 parameter is TRUE, and converted directly to fl oating-point
 otherwise. Data for an array specified by Verte xAttribIPointerEXT will
 always be left as integer values.

 (modify Table 2.4, p. 25)
 Integer
 Command Sizes Handling Types
 ---------------------- ------- --------- -----------------
 VertexPointer 2,3,4 cast ...
 NormalPointer 3 normalize ...
 ColorPointer 3,4 normalize ...
 SecondaryColorPointer 3 normalize ...
 IndexPointer 1 cast ...
 FogCoordPointer 1 n/a ...
 TexCoordPointer 1,2,3,4 cast ...
 EdgeFlagPointer 1 integer ...
 VertexAttribPointer 1,2,3,4 flag ...
 VertexAttribIPointerEXT 1,2,3,4 integer byte, ubyte,
 short, ushort,
 int, uint

 Table 2.4: Vertex array sizes (values per vert ex) and data types. The
 "integer handling" column indicates how fixed-p oint data types are
 handled: "cast" means that they converted to fl oating-point directly,
 "normalize" means that they are converted to fl oating-point by normalizing
 to [0,1] (for unsigned types) or [-1,1] (for si gned types), "integer"
 means that they remain as integer values, and " flag" means that either
 "cast" or "normalized" applies, depending on th e setting of the
 <normalized> flag in VertexAttribPointer.

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 95

 (modify end of pseudo-code, pp. 27-28)

 for (j = 1; j < genericAttributes; j++) {
 if (generic vertex attribute j array enable d) {
 if (generic vertex attribute j array is a pure integer array)
 {
 VertexAttribI[size][type]vEXT(j, generi c vertex attribute j
 array e lement i);
 } else if (generic vertex attribute j arr ay normalization
 flag is set and <type> is not FLOAT or DOUBLE) {
 VertexAttrib[size]N[type]v(j, generic v erex attribute j
 array ele ment i);
 } else {
 VertexAttrib[size][type]v(j, generic ve rex attribute j
 array elem ent i);
 }
 }
 }

 if (generic vertex attribute 0 array enabled) {
 if (generic vertex attribute 0 array is a p ure integer array) {
 VertexAttribI[size][type]vEXT(0, generic verex attribute 0
 array ele ment i);
 } else if (generic vertex attribute 0 array normalization flag
 is set and <type> is not FLOAT o r DOUBLE) {
 VertexAttrib[size]N[type]v(0, generic vere x attribute 0
 array elemen t i);
 } else {
 VertexAttrib[size][type]v(0, generic vere x attribute 0
 array elemen t i);
 }
 }

 Modify section 2.14.7, "Flatshading", p. 69

 Add a new paragraph at the end of the section o n p. 70 as follows:

 If a vertex or geometry shader is active, the f lat shading control
 described so far applies to the built-in varyin g variables gl_FrontColor,
 gl_BackColor, gl_FrontSecondaryColor and gl_Bac kSecondaryColor. Through
 the OpenGL Shading Language varying qualifier f lat any vertex attribute
 can be flagged to be flat-shaded. See the OpenG L Shading Language
 Specification section 4.3.6 for more informatio n.

 Modify section 2.14.8, "Color and Associated Da ta Clipping", p. 71

 Add to the end of this section:

 For vertex shader varying variables specified t o be interpolated without
 perspective correction (using the noperspective keyword), the value of t
 used to obtain the varying value associated wit h P will be adjusted to
 produce results that vary linearly in screen sp ace.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 96

 Modify section 2.15.3, "Shader Variables", page 75

 Add the following new return types to the descr iption of GetActiveUniform
 on p. 81.

 SAMPLER_1D_ARRAY_EXT,
 SAMPLER_2D_ARRAY_EXT,
 SAMPLER_1D_ARRAY_SHADOW_EXT,
 SAMPLER_2D_ARRAY_SHADOW_EXT,
 SAMPLER_CUBE_SHADOW_EXT,
 SAMPLER_BUFFER_EXT,

 INT_SAMPLER_1D_EXT,
 INT_SAMPLER_2D_EXT,
 INT_SAMPLER_3D_EXT,
 INT_SAMPLER_CUBE_EXT,
 INT_SAMPLER_2D_RECT_EXT,
 INT_SAMPLER_1D_ARRAY_EXT,
 INT_SAMPLER_2D_ARRAY_EXT,
 INT_SAMPLER_BUFFER_EXT,

 UNSIGNED_INT,
 UNSIGNED_INT_VEC2_EXT,
 UNSIGNED_INT_VEC3_EXT,
 UNSIGNED_INT_VEC4_EXT,
 UNSIGNED_INT_SAMPLER_1D_EXT,
 UNSIGNED_INT_SAMPLER_2D_EXT,
 UNSIGNED_INT_SAMPLER_3D_EXT,
 UNSIGNED_INT_SAMPLER_CUBE_EXT,
 UNSIGNED_INT_SAMPLER_2D_RECT_EXT,
 UNSIGNED_INT_SAMPLER_1D_ARRAY_EXT,
 UNSIGNED_INT_SAMPLER_2D_ARRAY_EXT,
 UNSIGNED_INT_SAMPLER_BUFFER_EXT.

 Add the following uniform loading command proto types on p. 81 as follows:

 void Uniform{1234}uiEXT(int location, T value);
 void Uniform{1234}uivEXT(int location, sizei count, T value);

 (add the following paragraph to the description of the above
 commands)

 The Uniform*ui{v} commands will load count sets of one to four unsigned
 integer values into a uniform location defined as a unsigned integer, an
 unsigned integer vector, an array of unsigned i ntegers or an array of
 unsigned integer vectors.

 (change the first sentence of the last paragrap h as follows)

 When loading values for a uniform declared as a Boolean, the Uniform*i{v},
 Uniform*ui{v} and Uniform*f{v} set of commands can be used to load boolean
 values.

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 97

 Modify section 2.15.4 Shader execution, p. 84.

 Add a new section "2.15.4.1 Shader Only Texturi ng" before the sub-
 section "Texture Access" on p. 85

 This section describes texture functionality th at is only accessible
 through vertex, geometry or fragment shaders. A lso refer to the OpenGL
 Shading Language Specification, section 8.7 and Section 3.8 of the OpenGL
 2.0 specification.

 Note: For unextended OpenGL 2.0 and the OpenGL Shading Language version
 1.20, all supported texture internal formats st ore unsigned integer values
 but return floating-point results in the range [0, 1] and are considered
 unsigned "normalized" integers. The ARB_textur e_float extension
 introduces floating-point internal format where components are both stored
 and returned as floating-point values, and are not clamped. The
 EXT_texture_integer extension introduces format s that store either signed
 or unsigned integer values.

 This extension defines additional OpenGL Shadin g Language texture lookup
 functions, see section 8.7 of the OpenGL Shadin g Language, that return
 either signed or unsigned integer values if the internal format of the
 texture is signed or unsigned, respectively.

 Texel Fetches

 The OpenGL Shading Language texel fetch functio ns provide the ability to
 extract a single texel from a specified texture image. The integer
 coordinates passed to the texel fetch functions are used directly as the
 texel coordinates (i, j, k) into the texture im age. This in turn means the
 texture image is point-sampled (no filtering is performed).

 The level of detail accessed is computed by add ing the specified
 level-of-detail parameter <lod> to the base lev el of the texture,
 level_base.

 The texel fetch functions can not perform depth comparisons or access cube
 maps. Unlike filtered texel accesses, texel fet ches do not support LOD
 clamping or any texture wrap mode, and require a mipmapped minification
 filter to access any level of detail other than the base level.

 The results of the texel fetch are undefined:

 * if the computed LOD is less than the textu re's base level
 (level_base) or greater than the maximum l evel (level_max),

 * if the computed LOD is not the texture's b ase level and the texture's
 minification filter is NEAREST or LINEAR,

 * if the layer specified for array textures is negative or greater than
 the number of layers in the array texture,

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 98

 * if the texel at (i,j,k) coordinates refer to a border texel outside
 the defined extents of the specified LOD, where

 i < -b_s, j < -b_s, k < -b_s,
 i >= w_s - b_s, j >= h_s - b_s, or k >= d_s - b_s,

 where the size parameters (w_s, h_s, d_s, and b_s) refer to the
 width, height, depth, and border size of t he image, as in equations
 3.15, 3.16, and 3.17, or

 . if the texture being accessed is not compl ete (or cube complete for
 cubemaps).

 Texture Size Query

 The OpenGL Shading Language texture size functi ons provide the ability to
 query the size of a texture image. The LOD valu e <lod> passed in as an
 argument to the texture size functions is added to the level_base of the
 texture to determine a texture image level. Th e dimensions of that image
 level, excluding a possible border, are then re turned. If the computed
 texture image level is outside the range [level _base, level_max], the
 results are undefined. When querying the size o f an array texture, both
 the dimensions and the layer index are returned . Note that buffer textures
 do not support mipmapping, therefore the previo us lod discussion does not
 apply to buffer textures

 Make the section "Texture Access" a subsection of 2.15.4.1

 Modify the first paragraph on p. 86 as follows:

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 the R value (see section 3.8.14) used to perfor m the lookup. The
 comparison operation is requested in the shader by using any of the shadow
 sampler and in the texture using the TEXTURE CO MPARE MODE parameter. These
 requests must be consistent; the results of a t exture lookup are undefined
 if:

 * The sampler used in a texture lookup funct ion is not one of the
 shadow sampler types, and the texture obje ct's internal format is
 DEPTH COMPONENT, and the TEXTURE COMPARE M ODE is not NONE.

 * The sampler used in a texture lookup funct ion is one of the shadow
 sampler types, and the texture object's in ternal format is DEPTH
 COMPONENT, and the TEXTURE COMPARE MODE is NONE.

 * The sampler used in a texture lookup funct ion is one of the shadow
 sampler types, and the texture object's in ternal format is not DEPTH
 COMPONENT.

 Add a new section "2.15.4.2 Shader Inputs" befo re "Position
 Invariance" on p. 86

 Besides having access to vertex attributes and uniform variables,
 vertex shaders can access the read-only built-i n variables
 gl_VertexID and gl_InstanceID. The gl_VertexID variable holds the
 integer index <i> implicitly passed to ArrayEle ment() to specify

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 99

 the vertex. The variable gl_InstanceID holds th e integer index of
 the current primitive in an instanced draw call . See also section
 7.1 of the OpenGL Shading Language Specificatio n.

 Add a new section "2.15.4.3 Shader Outputs"

 A vertex shader can write to built-in as well a s user-defined varying
 variables. These values are expected to be inte rpolated across the
 primitive it outputs, unless they are specified to be flat shaded. Refer
 to section 2.15.3 and the OpenGL Shading Langua ge specification sections
 4.3.6, 7.1 and 7.6 for more detail.

 The built-in output variables gl_FrontColor, gl _BackColor,
 gl_FrontSecondaryColor, and gl_BackSecondaryCol or hold the front and back
 colors for the primary and secondary colors for the current vertex.

 The built-in output variable gl_TexCoord[] is a n array and holds the set
 of texture coordinates for the current vertex.

 The built-in output variable gl_FogFragCoord is used as the "c" value, as
 described in section 3.10 "Fog" of the OpenGL 2 .0 specification.

 The built-in special variable gl_Position is in tended to hold the
 homogeneous vertex position. Writing gl_Positio n is optional.

 The built-in special variable gl_ClipVertex hol ds the vertex coordinate
 used in the clipping stage, as described in sec tion 2.12 "Clipping" of the
 OpenGL 2.0 specification.

 The built in special variable gl_PointSize, if written, holds the size of
 the point to be rasterized, measured in pixels.

 Number section "Position Invariance", "Validati on" and "Undefined
 Behavior" as sections 2.15.4.4, 2.15.4.5, and 2 .15.4.6 respectively.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.8.1, Texture Image Specificati on, p. 150

 (modify 4th paragraph, p. 151 -- add cubemaps t o the list of texture
 targets that can be used with DEPTH_COMPONENT t extures)

 Textures with a base internal format of DEPTH_C OMPONENT are supported by
 texture image specification commands only if <t arget> is TEXTURE_1D,
 TEXTURE_2D, TEXTURE_CUBE_MAP, TEXTURE_RECTANGLE_ARB, PROXY_TEXTURE_1D,
 PROXY_TEXTURE_2D, PROXY_TEXTURE_CUBE_MAP, or
 PROXY_TEXTURE_RECTANGLE_ARB. Using this format in conjunction with any
 other target will result in an INVALID_OPERATIO N error.

 Modify Section 3.8.8, Texture Minification:

 (replace the last paragraph, p. 171): Let s(x, y) be the function that
 associates an s texture coordinate with each se t of window coordinates
 (x,y) that lie within a primitive; define t(x,y) and r(x,y) analogously.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 100

 Let

 u(x,y) = w_t * s(x,y)
 v(x,y) = h_t * t(x,y) (3.20a)
 w(x,y) = d_t * r(x,y)

 where w_t, h_t, and d_t are as defined by equat ions 3.15, 3.16, and 3.17
 with w_s, h_s, and d_s equal to the width, heig ht, and depth of the image
 array whose level is level_base. For a one-dime nsional texture, define
 v(x,y) == 0 and w(x,y) == 0; for two-dimensiona l textures, define w(x,y)
 == 0.

 (start a new paragraph with "For a polygon, rho is given at a fragment
 with window coordinates...", and then continue with the original spec
 text.)

 (replace text starting with the last paragraph on p. 172,
 continuing to the end of p. 174)

 The (u,v,w) coordinates are then modified, as f ollows:

 u'(x,y) = u(x,y) + offsetu_shader,
 v'(x,y) = v(x,y) + offsetv_shader,
 w'(x,y) = w(x,y) + offsetw_shader

 where (offsetu_shader, offsetv_shader, offsetw_ shader) is the texel offset
 specified in the OpenGL Shading Language textur e lookup functions that
 support offsets. If the texture function used d oes not support offsets, or
 for fixed-function texture accesses, all three shader offsets are taken to
 be zero.

 The (u',v',w') coordinates are then further mod ified according the texture
 wrap modes, as specified in Table X.19, to gene rate a new set of
 coordinates (u'',v'',w'').

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 101

 TEXTURE_WRAP_S Coordinate Transf ormation
 -------------------------- ----------------- ----------------------
 CLAMP u'' = clamp(u', 0 , w_t-0.5),
 if NEAREST filtering,
 clamp(u', 0 , w_t),
 otherwise
 CLAMP_TO_EDGE u'' = clamp(u', 0 .5, w_t-0.5)
 CLAMP_TO_BORDER u'' = clamp(u', - 0.5, w_t+0.5)
 REPEAT u'' = clamp(fmod(u', w_t), 0.5, w_t-0.5)
 MIRROR_CLAMP_EXT u'' = clamp(fabs(u'), 0.5, w_t-0.5),
 if NEAREST filtering, or
 = clamp(fabs(u'), 0.5, w_t),
 otherwise
 MIRROR_CLAMP_TO_EDGE_EXT u'' = clamp(fabs(u'), 0.5, w_t-0.5)
 MIRROR_CLAMP_TO_BORDER_EXT u'' = clamp(fabs(u'), 0.5, w_t+0.5)
 MIRRORED_REPEAT u'' = w_t -
 clamp(fabs(w_t - fmod(u', 2*w_t)),
 0.5, w _t-0.5)

 Table X.19: Texel coordinate wrap mode application. clamp(a, b,c)
 returns b if a<b, c if a>c, and a otherwise. fmod(a,b) returns a-
 b*floor(a/b), and fabs(a) returns the absolut e value of a. For the v
 and w coordinates, TEXTURE_WRAP_T and h_t, an d TEXTURE_WRAP_R and d_t,
 respectively, are used.

 When lambda indicates minification, the value a ssigned to
 TEXTURE_MIN_FILTER is used to determine how the texture value for a
 fragment is selected.

 When TEXTURE_MIN_FILTER is NEAREST the texel in the image array of level
 level_base that is nearest (in Manhattan distan ce) to (u'',v'',w'') is
 obtained. The coordinate (i,j,k) is then comput ed as (floor(u''),
 floor(v''), floor(w'')).

 For a three-dimensional texture, the texel at l ocation (i,j,k) becomes the
 texture value. For a two-dimensional texture, k is irrelevant, and the
 texel at location (i,j) becomes the texture val ue. For a one-dimensional
 texture, j and k are irrelevant, and the texel at location i becomes the
 texture value.

 If the selected (i,j,k), (i,j), or i location r efers to a border texel
 that satisfies any of the following conditions:

 i < -b_s,
 j < -b_s,
 k < -b_s,
 i >= w_l + b_s,
 j >= h_l + b_s, or
 j >= d_l + b_s,

 then the border values defined by TEXTURE_BORDE R_COLOR are used in place
 of the non-existent texel. If the texture conta ins color components, the
 values of TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match
 the texture's internal format in a manner consi stent with table 3.15. If
 the texture contains depth components, the firs t component of
 TEXTURE_BORDER_COLOR is interpreted as a depth value.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 102

 When TEXTURE_MIN_FILTER is LINEAR, a 2x2x2 cube of texels in the image
 array of level level_base is selected. Let:

 i_0 = floor(u'' - 0.5),
 j_0 = floor(v'' - 0.5),
 k_0 = floor(w'' - 0.5),
 i_1 = i_0 + 1,
 j_1 = j_0 + 1,
 k_1 = k_0 + 1,
 alpha = frac(u'' - 0.5),
 beta = frac(v'' - 0.5), and
 gamma = frac(w'' - 0.5),

 For a three-dimensional texture, the texture va lue tau is found as...

 (replace last paragraph, p.174) For any texel i n the equation above that
 refers to a border texel outside the defined ra nge of the image, the texel
 value is taken from the texture border color as with NEAREST filtering.

 Rename section 3.8.9 "Texture Magnification" to section 3.8.8

 modify the first paragraph of section 3.8.8 "Te xture
 Magnification" as follows:

 When lambda indicates magnification, the value assigned to
 TEXTURE_MAG_FILTER determines how the texture v alue is obtained. There are
 two possible values for TEXTURE_MAG_FILTER: NEA REST and LINEAR. NEAREST
 behaves exactly as NEAREST for TEXTURE_MIN_FILT ER and LINEAR behaves
 exactly as LINEAR for TEXTURE_MIN_FILTER, as de scribed in the previous
 section, including the wrapping calculations. T he level-of-detail
 level_base texture array is always used for mag nification.

 modify the last paragraph of section 3.8.8, p. 175, as follows:

 The rules for NEAREST or LINEAR filtering are t hen applied to the selected
 array. Specifically, the coordinate (u,v,w) is computed as in equation
 3.20a, with w_s, h_s, and d_s equal to the widt h, height, and depth of the
 image array whose level is 'd'.

 Modify the second paragraph on p. 176

 The rules for NEAREST or LINEAR filtering are t hen applied to each of the
 selected arrays, yielding two corresponding tex ture valutes Tau1 and
 Tau2. Specifically, for level d1, the coordinat e (u,v,w) is computed as in
 equation 3.20a, with w_s, h_s, and d_s equal to the width, height, and
 depth of the image array whose level is 'd1'. F or level d2 the coordinate
 (u', v', w') is computed as in equation 3.20a, with w_s, h_s, and d_s
 equal to the width, height, and depth of the im age array whose level is
 'd2'.

 Modify Section 3.8.14, Texture Comparison Modes (p. 185)

 (modify 2nd paragraph, p. 188, indicating that the Q texture coordinate is
 used for depth comparisons on cubemap textures)

 Let D_t be the depth texture value, in the rang e [0, 1]. For
 fixed-function texture lookups, let R be the in terpolated <r> texture

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 103

 coordinate, clamped to the range [0, 1]. For t exture lookups generated by
 an OpenGL Shading Language lookup function, let R be the reference value
 for depth comparisons provided in the lookup fu nction, also clamped to [0,
 1]. Then the effective texture value L_t, I_t, or A_t is computed as
 follows:

 Modify section 3.11, Fragment Shaders, p. 193

 Modify the third paragraph on p. 194 as follows :

 Additionally, when a vertex shader is active, i t may define one or more
 varying variables (see section 2.15.3 and the O penGL Shading Language
 Specification). These values are, if not flat s haded, interpolated across
 the primitive being rendered. The results of th ese interpolations are
 available when varying variables of the same na me are defined in the
 fragment shader.

 Add the following paragraph to the end of secti on 3.11.1, p. 194

 A fragment shader can also write to varying out variables. Values written
 to these variables are used in the subsequent p er-fragment operations.
 Varying out variables can be used to write floa ting-point, integer or
 unsigned integer values destined for buffers at tached to a framebuffer
 object, or destined for color buffers attached to the default
 framebuffer. The subsection 'Shader Outputs' of the next section describes
 API how to direct these values to buffers.

 Add a new paragraph at the beginning of the sec tion "Texture
 Access", p. 194

 Section 2.15.4.1 describes texture lookup funct ionality accessible to a
 vertex shader. The texel fetch and texture size query functionality
 described there also applies to fragment shader s.

 Modify the second paragraph on p. 195 as follow s:

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 the R value (see section 3.8.14) used to perfor m the lookup. The
 comparison operation is requested in the shader by using any of the shadow
 sampler and in the texture using the TEXTURE CO MPARE MODE parameter. These
 requests must be consistent; the results of a t exture lookup are undefined
 if:

 * The sampler used in a texture lookup funct ion is not one of the
 shadow sampler types, and the texture obje ct's internal format is
 DEPTH COMPONENT, and the TEXTURE COMPARE M ODE is not NONE.

 * The sampler used in a texture lookup funct ion is one of the shadow
 sampler types, and the texture object's in ternal format is DEPTH
 COMPONENT, and the TEXTURE COMPARE MODE is NONE.

 * The sampler used in a texture lookup funct ion is one of the shadow
 sampler types, and the texture object's in ternal format is not DEPTH
 COMPONENT.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 104

 Add the following paragraph to the section Shad er Inputs, p. 196

 If a geometry shader is active, the built-in va riable gl_PrimitiveID
 contains the ID value emitted by the geometry s hader for the provoking
 vertex. If no geometry shader is active, gl_Pri mitiveID is filled with the
 number of primitives processed by the rasterize r since the last time Begin
 was called (directly or indirectly via vertex a rray functions). The first
 primitive generated after a Begin is numbered z ero, and the primitive ID
 counter is incremented after every individual p oint, line, or polygon
 primitive is processed. For polygons drawn in point or line mode, the
 primitive ID counter is incremented only once, even though multiple points
 or lines may be drawn. For QUADS and QUAD_STRI P primitives that are
 decomposed into triangles, the primitive ID is incremented after each
 complete quad is processed. For POLYGON primit ives, the primitive ID
 counter is undefined. The primitive ID is unde fined for fragments
 generated by DrawPixels or Bitmap. Restarting a primitive topology using
 the primitive restart index has no effect on th e primitive ID counter.

 Modify the first paragraph of the section Shade r Outputs, p. 196 as
 follows

 The OpenGL Shading Language specification descr ibes the values that may be
 output by a fragment shader. These outputs are split into two
 categories. User-defined varying out variables and built-in variables. The
 built-in variables are gl_FragColor, gl_FragDat a[n], and gl_FragDepth. If
 fragment clamping is enabled, the final fragmen t color values or the final
 fragment data values or the final varying out v ariable values written by a
 fragment shader are clamped to the range [0,1] and then may be converted
 to fixed-point as described in section 2.14.9. Only user-defined varying
 out variables declared as a floating-point type are clamped and may be
 converted. If fragment clamping is disabled, th e final fragment color
 values or the final fragment data values or the final varying output
 variable values are not modified. The final fra gment depth written...

 Modify the second paragraph of the section Shad er Outputs, p. 196
 as follows

 ...A fragment shader may not statically assign values to more than one of
 gl_FragColor, gl_FragData or any user-defined v arying output variable. In
 this case, a compile or link error will result. A shader statically...

 Add the following to the end of the section Sha der Outputs, p. 197

 The values of user-defined varying out variable s are directed to a color
 buffer in a two step process. First the varying out variable is bound to a
 fragment color by using its number. The GL will assign a number to each
 varying out variable, unless overridden by the command
 BindFragDataLocationEXT(). The number of the fr agment color assigned for
 each user-defined varying out variable can be q ueried with
 GetFragDataLocationEXT(). Next, the DrawBuffer or DrawBuffers commands (see
 section 4.2.1) direct each fragment color to a particular buffer.

 The binding of a user-defined varying out varia ble to a fragment color
 number can be specified explicitly. The command

 void BindFragDataLocationEXT(uint program, uint colorNumber,
 const char *na me);

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 105

 specifies that the varying out variable name in program should be bound to
 fragment color colorNumber when the program is next linked. If name was
 bound previously, its assigned binding is repla ced with colorNumber. name
 must be a null terminated string. The error IN VALID_VALUE is generated if
 colorNumber is equal or greater than MAX_DRAW_B UFFERS.
 BindFragDataLocationEXT has no effect until the program is linked. In
 particular, it doesn't modify the bindings of v arying out variables in a
 program that has already been linked. The error INVALID OPERATION is
 generated if name starts with the reserved "gl_ " prefix.

 When a program is linked, any varying out varia bles without a binding
 specified through BindFragDataLocationEXT will automatically be bound to
 fragment colors by the GL. Such bindings can be queried using the command
 GetFragDataLocationEXT. LinkProgram will fail if the assigned binding of a
 varying out variable would cause the GL to refe rence a non-existant
 fragment color number (one greater than or equa l to MAX DRAW_BUFFERS).
 LinkProgram will also fail if more than one var ying out variable is bound
 to the same number. This type of aliasing is no t allowed.

 BindFragDataLocationEXT may be issued before an y shader objects are
 attached to a program object. Hence it is allow ed to bind any name (except
 a name starting with "gl_") to a color number, including a name that is
 never used as a varying out variable in any fra gment shader
 object. Assigned bindings for variables that do not exist are ignored.

 After a program object has been linked successf ully, the bindings of
 varying out variable names to color numbers can be queried. The command

 int GetFragDataLocationEXT(uint program, co nst char *name);

 returns the number of the fragment color that t he varying out variable
 name was bound to when the program object progr am was last linked. name
 must be a null terminated string. If program ha s not been successfully
 linked, the error INVALID OPERATION is generate d. If name is not a varying
 out variable, or if an error occurs, -1 will be returned.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Section 4.2.1, Selecting a Buffer for Wr iting (p. 212)

 (modify next-to-last paragraph, p. 213) If a fr agment shader writes to
 gl_FragColor, DrawBuffers specifies a set of dr aw buffers into which the
 single fragment color defined by gl_FragColor i s written. If a fragment
 shader writes to gl_FragData or a user-defined varying out variable,
 DrawBuffers specifies a set of draw buffers int o which each of the
 multiple output colors defined by these variabl es are separately written.
 If a fragment shader writes to neither gl_FragC olor, nor gl FragData, nor
 any user-defined varying out variables, the val ues of the fragment colors
 following shader execution are undefined, and m ay differ for each fragment
 color.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 106

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 Change section 5.4 Display Lists, p. 237

 Add the commands VertexAttribIPointerEXT and Bi ndFragDataLocationEXT to
 the list of commands that are not compiled into a display list, but
 executed immediately, under "Program and Shader Objects", p. 241

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 Modify section 6.1.14 "Shader and Program Queri es", p. 256

 Modify 2nd paragraph, p.259:

 Add the following to the list of GetVertexAttri b* commands:

 void GetVertexAttribIivEXT(uint index, enum p name, int *params);
 void GetVertexAttribIuivEXT(uint index, enum pname, uint *params);

 obtain the... <pname> must be one of VERTEX_AT TRIB_ARRAY_ENABLED ,.,
 VERTEX_ATTRIB_ARRAY_NORMALIZED, VERTEX_ATTRIB_A RRAY_INTEGER_EXT, or
 CURRENT_VERTEX_ATTRIB. ...

 Split 3rd paragraph, p.259

 ... The size, stride, type, normalized flag, an d unconverted integer flag
 are set by the commands VertexAttribPointer and VertexAttribIPointerEXT.
 The normalized flag is always set to FALSE by b y VertexAttribIPointerEXT.
 The unconverted integer flag is always set to F ALSE by VertexAttribPointer
 and TRUE by VertexAttribIPointerEXT.

 The query CURRENT_VERTEX_ATTRIB returns the cur rent value for the generic
 attribute <index>. GetVertexAttribdv and GetVe rtexAttribfv read and
 return the current attribute values as floating -point values;
 GetVertexAttribiv reads them as floating-point values and converts them
 to integer values; GetVertexAttribIivEXT reads and returns them as
 integers; GetVertexAttribIuivEXT reads and retu rns them as unsigned
 integers. The results of the query are undefin ed if the current attribute
 values are read using one data type but were sp ecified using a different
 one. The error INVALID_OPERATION is generated i f <index> is zero.

 Change the prototypes in the first paragraph on page 260 as
 follows:

 void GetUniformfv(uint program, int location, float *params);
 void GetUniformiv(uint program, int location, int *params);
 void GetUniformuivEXT(uint program, int locat ion, uint *params);

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 107

Interactions with GL_ARB_color_buffer_float

 If the GL_ARB_color_buffer_float extension is n ot supported then any
 reference to fragment clamping in section 3.11. 2 "Shader Execution" needs
 to be deleted.

Interactions with GL_ARB_texture_rectangle

 If the GL_ARB_texture_rectangle extension is no t supported then all
 references to texture lookup functions with 'Re ct' in the name need to be
 deleted.

Interactions with GL_EXT_texture_array

 If the GL_EXT_texture_array extension is not su pported, all references to
 one- and two-dimensional array texture sampler types (e.g.,
 sampler1DArray, sampler2DArray) and the texture lookup functions that use
 them need to be deleted.

Interactions with GL_EXT_geometry_shader4

 If the GL_EXT_geometry_shader4 extension is not supported, all references
 to a geometry shader need to be deleted.

Interactions with GL_NV_primitive_restart

 The spec describes the behavior that primitive restart does not affect the
 primitive ID counter, including for POLYGON pri mitives (where one could
 argue that the restart index starts a new primi tive without a new Begin to
 reset the count). If NV_primitive_restart is no t supported, references to
 that extension in the discussion of the primiti ve ID counter should be
 removed.

 If NV_primitive_restart is supported, index val ues causing a primitive
 restart are not considered as specifying an End command, followed by
 another Begin. Primitive restart is therefore n ot guaranteed to
 immediately update material properties when a v ertex shader is active. The
 spec language on p.64 of the OpenGL 2.0 specifi cation says "changes are
 not guaranteed to update material parameters, d efined in table 2.11, until
 the following End command."

Interactions with EXT_texture_integer

 If the EXT_texture_integer spec is not supporte d, the discussion about
 this spec in section 2.15.4.1 needs to be remov ed. All texture lookup
 functions that return integers or unsigned inte gers, as discussed in
 section 8.7 of the OpenGL Shading Language spec ification, also need to be
 removed.

Interactions with EXT_texture_buffer_object

 If EXT_texture_buffer_object is not supported, references to buffer
 textures, as well as the texelFetchBuffer and t exelSizeBuffer lookup
 functions and samplerBuffer types, need to be r emoved.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 108

Interactions with EXT_draw_instanced

 If EXT_draw_instanced is not supported, the val ue of gl_InstanceID
 is always zero.

Errors

 The error INVALID_VALUE is generated by BindFra gDataLocationEXT() if
 colorNumber is equal or greater than MAX_DRAW_B UFFERS.

 The error INVALID OPERATION is generated by Bin dFragDataLocationEXT() if
 name starts with the reserved "gl_" prefix.

 The error INVALID_OPERATOIN is generated by Bin dFragDataLocationEXT() or
 GetFragDataLocationEXT if program is not the na me of a program object.

 The error INVALID_OPERATION is generated by Get FragDataLocationEXT() if
 program has not been successfully linked.

New State

 (add to table 6.7, p. 268)
 In itial
 Get Value Type Get Command Va lue Description Sec. Attribute
 --------- ---- --------------- -- ----- -------------------- ---- ---------
 VERTEX_ATTRIB_ARRAY 16+xB GetVertexAttrib FA LSE vertex attrib array 2.8 vertex-array
 INTEGER_EXT has unconverted ints

New Implementation Dependent State

 Minimum
 Get Value Type Get Com mand Value Description Sec. Att rib
 -------------------------------- ---- ------- -------- ------- --------------------- ------ --- ---
 MIN_PROGRAM_TEXEL_OFFSET_EXT Z GetInte gerv -8 minimum texel offset 2.x.4.4 -
 allowed in lookup
 MAX_PROGRAM_TEXEL_OFFSET_EXT Z GetInte gerv +7 maximum texel offset 2.x.4.4 -
 allowed in lookup

Modifications to The OpenGL Shading Language Specif ication, Version 1.10.59

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_EXT_gpu_shader4 : <behavior>

 where <behavior> is as specified in section 3.3 .

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_EXT_gpu_shader4 1

 Add to section 3.6 "Keywords"

 Add the following keywords:

 noperspective, flat, centroid

 Remove the unsigned keyword from the list of ke ywords reserved for future

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 109

 use, and add it to the list of keywords.

 The following new vector types are added:

 uvec2, uvec3, uvec4

 The following new sampler types are added:

 sampler1DArray, sampler2DArray, sampler1DArra yShadow,
 sampler2DArrayShadow, samplerCubeShadow

 isampler1D, isampler2D, isampler3D, isamplerC ube, isampler2DRect,
 isampler1DArray, isampler2DArray

 usampler1D, usampler2D, usampler3D, usamplerC ube, usampler2DRect,
 usampler1DArray, usampler2DArray

 samplerBuffer, isamplerBuffer, usamplerBuffer

 Add to section 4.1 "Basic Types"

 Break the table in this section up in several t ables. The first table
 4.1.1 is named "scalar, vector and matrix data types". It includes the
 first row through the 'mat4" row.

 Add the following to the first section of this table:

 unsigned int An unsigned integer
 uvec2 A two-component unsign ed integer vector
 uvec3 A three-component unsi gned integer vector
 uvec4 A four-component unsig ned integer vector

 Break out the sampler types in a separate table , and name that table 4.1.2
 "default sampler types". Add the following samp ler types to this new
 table:

 sampler1DArray handle for accessing a 1D array texture
 sampler2DArray handle for accessing a 2D array texture
 sampler1DArrayShadow handle for accessing a 1D array depth texture
 with comparison
 sampler2DArrayShadow handle for accessing a 2D array depth texture
 with comparison
 samplerBuffer handle for accessing a buffer texture

 Add a table 4.1.3 called "integer sampler types ":

 isampler1D handle for accessing a n integer 1D texture
 isampler2D handle for accessing a n integer 2D texture
 isampler3D handle for accessing a n integer 3D texture
 isamplerCube handle for accessing a n integer cube map texture
 isampler2DRect handle for accessing a n integer rectangle texture
 isampler1DArray handle for accessing a n integer 1D array texture
 isampler2DArray handle for accessing a n integer 2D array texture
 isamplerBuffer handle for accessing a n integer buffer texture

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 110

 Add a table 4.1.4 called "unsigned integer samp ler types":

 usampler1D handle for accessing a n unsigned integer
 1D texture
 usampler2D handle for accessing a n unsigned integer
 2D texture
 usampler3D handle for accessing a n unsigned integer
 3D texture
 usamplerCube handle for accessing a n unsigned integer
 cube map texture
 usampler2DRect handle for accessing a n unsigned integer
 rectangle texture
 usampler1DArray handle for accessing a n unsigned integer 1D
 array texture
 usampler2DArray handle for accessing a n unsigned integer 2D
 array texture
 usamplerBuffer handle for accessing a n unsigned integer
 buffer texture

 Change section 4.1.3 "Integers"

 Remove the first two paragraphs and replace wit h the following:

 Signed, as well as unsigned integers, are fully supported. Integers hold
 whole numbers. Integers have at least 32 bits o f precision, including a
 sign bit. Signed integers are stored using a tw o's complement
 representation.

 Integers are declared and optionally initialize d with integer expressions
 as in the following example:

 int i, j = 42;
 unsigned int k = 3u;

 Literal integer constants can be expressed in d ecimal (base 10), octal
 (base 8), or hexadecimal (base 16) as follows.

 integer-constant:
 decimal-constant integer-suffix_opt
 octal-constant integer-suffix_opt
 hexadecimal-constant integer-suffix _opt

 integer-suffix: one of
 u U

 Change section 4.3 "Type Qualifiers"

 Change the "varying" and "out" qualifier as fol lows:

 varying - linkage between a vertex shader and f ragment shader, or between
 a fragment shader and the back end of the OpenG L pipeline.

 out - for function parameters passed back out o f a function, but not
 initialized for use when passed in. Also for ou tput varying variables
 (fragment only).

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 111

 In the qualifier table, add the following sub-q ualifiers under the varying
 qualifier:

 flat varying
 noperspective varying
 centroid varying

 Change section 4.3.4 "Attribute"

 Change the sentence:

 The attribute qualifier can be used only with t he data types float, vec2,
 vec3, vec4, mat2, mat3, and mat4.

 To:

 The attribute qualifier can be used only with t he data types int, ivec2,
 ivec3, ivec4, unsigned int, uvec2, uvec3, uvec4 , float, vec2, vec3, vec4,
 mat2, mat3, and mat4.

 Change the fourth paragraph to:

 It is expected that graphics hardware will have a small number of fixed
 locations for passing vertex attributes. Theref ore, the OpenGL Shading
 language defines each non-matrix attribute vari able as having space for up
 to four integer or floating-point values (i.e., a vec4, ivec4 or
 uvec4). There is an implementation dependent li mit on the number of
 attribute variables that can be used and if thi s is exceeded it will cause
 a link error. (Declared attribute variables tha t are not used do not count
 against this limit.) A scalar attribute counts the same amount against
 this limit as a vector of size four, so applica tions may want to consider
 packing groups of four unrelated scalar attribu tes together into a vector
 to better utilize the capabilities of the under lying hardware. A mat4
 attribute will...

 Change section 4.3.6 "Varying"

 Change the first paragraph to:

 Varying variables provide the interface between the vertex shader, the
 fragment shader, and the fixed functionality be tween the vertex and
 fragment shader, as well as the interface from the fragment shader to the
 back-end of the OpenGL pipeline.

 The vertex shader will compute values per verte x (such as color, texture
 coordinates, etc.) and write them to variables declared with the varying
 qualifier. A vertex shader may also read varyin g variables, getting back
 the same values it has written. Reading a varyi ng variable in a vertex
 shader returns undefined values if it is read b efore being written.

 The fragment shader will compute values per fra gment and write them to
 variables declared with the varying out qualifi er. A fragment shader may
 also read varying variables, getting back the s ame result it has
 written. Reading a varying variable in a fragme nt shader returns undefined
 values if it is read before being written.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 112

 Varying variables may be written more than once . If so, the last value
 assigned is the one used.

 Change the second paragraph to:

 Varying variables that are set per vertex are i nterpolated by default in a
 perspective-correct manner over the primitive b eing rendered, unless the
 varying is further qualified with noperspective . Interpolation in a
 perspective correct manner is specified in equa tions 3.6 and 3.8 in the
 OpenGL 2.0 specification. When noperspective is specified, interpolation
 must be linear in screen space, as described in equation 3.7 and the
 approximation that follows equation 3.8.

 If single-sampling, the value is interpolated t o the pixel's center, and
 the centroid qualifier, if present, is ignored. If multi-sampling, and the
 varying is not qualified with centroid, then th e value must be
 interpolated to the pixel's center, or anywhere within the pixel, or to
 one of the pixel's samples. If multi-sampling a nd the varying is qualified
 with centroid, then the value must be interpola ted to a point that lies in
 both the pixel and in the primitive being rende red, or to one of the
 pixel's samples that falls within the primitive .

 [NOTE: Language for centroid sampling taken fro m the GLSL 1.20.4
 specification]

 Varying variables, set per vertex, can be compu ted on a per-primitive
 basis (flat shading), or interpolated over a li ne or polygon primitive
 (smooth shading). By default, a varying variabl e is smooth shaded, unless
 the varying is further qualified with flat. Whe n smooth shading, the
 varying is interpolated over the primitive. Whe n flat shading, the varying
 is constant over the primitive, and is taken fr om the single provoking
 vertex of the primitive, as described in Sectio n 2.14.7 of the OpenGL 2.0
 specification.

 Change the fourth paragraph to:

 The type and any qualifications (flat, noperspe ctive, centroid) of varying
 variables with the same name declared in both t he vertex and fragment
 shaders must match, otherwise the link command will fail. Note that
 built-in varying variables, which have names st arting with "gl_", can not
 be further qualified with flat, noperspective o r centroid. The flat
 keyword cannot be used together with either the noperspective or centroid
 keywords to further qualify a single varying va riable, otherwise a compile
 error will occur. When using the keywords centr oid, flat or noperspective,
 it must immediately precede the varying keyword . When using both centroid
 and noperspective keywords, either one can be s pecified first. Only those
 varying variables used (i.e. read) in the frag ment shader must be written
 to by the vertex shader; declaring superfluous varying variables in the
 vertex shader is permissible. Varying out varia bles, set per fragment, can
 not be further qualified with flat, noperspecti ve or centroid.

 Fragment shaders output values to the back-end of the OpenGL pipeline
 using either user-defined varying out variables or built-in variables, as
 described in section 7.2, unless the discard ke yword is executed. If the
 back-end of the OpenGL pipeline consumes a user -defined varying out
 variable and an execution of a fragment shader does not write a value to
 that variable, then the value consumed is undef ined. If the back-end of

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 113

 the OpenGL pipeline consumes a varying out vari able and a fragment shader
 either writes values into less components of th e variable, or if the
 variable is declared to have less components, t han needed, the values of
 the missing component(s) are undefined. The Ope nGL specification, section
 3.x.x, describes API to route varying output va riables to color buffers.

 Add the following examples:

 noperspective varying float temperature;
 flat varying vec3 myColor;
 centroid varying vec2 myTexCoord;
 centroid noperspective varying vec2 myTexCoor d;
 varying out ivec3 foo;

 Change the third paragraph on p. 25 as follows:

 The "varying" qualifier can be used only with t he data types float, vec2,
 vec3, vec4, mat2, mat3, and mat4, int, ivec2, i vec3, ivec4, unsigned int,
 uvec2, uvec3, uvec4 or arrays of these. Struct ures cannot be varying. If
 the varying is declared as one of the integer o r unsigned integer data
 type variants, then it has to also be qualified as being flat shaded,
 otherwise a compile error will occur.

 The "varying out" qualifier can be used only wi th the data types float,
 vec2, vec3, vec4, int, ivec2, ivec3, ivec4, uns igned int, uvec2, uvec3 or
 uvec4. Structures or arrays cannot be declared as varying out.

 Change section 5.1 "Operators"

 Remove the "reserved" qualifications from the f ollowing operator
 precedence table entries:

 Precedence Operator class
 ---------- ------------------------- ----------
 3 (tilde is reserved)
 4 (modulus reserved)
 6 bit-wise shift (reserved)
 9 bit-wise and (reserved)
 10 bit-wise exclusive or (re served)
 11 bit-wise inclusive or (re served)
 16 (modulus, shift, and bit- wise are reserved)

 Change section 5.8 "Assignments"

 Change the first bullet from:

 * The arithmetic assignments add into (+=)..

 To:

 * The arithmetic assignments add into (+=), subtract from (-
 =), multiply into (*=), and divide into (/ =) as well as the
 assignments modulus into (%=), left shift by (<<=), right
 shift by (>>=), and into (&=), inclusive o r into (|=),
 exclusive or into (^=). The expression

 Delete the last bullet in this paragraph.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 114

 Remove the second bullet in the section startin g with: The assignments
 modulus into..

 Change section 5.9 "Expressions"

 Change the bullet: The operator modulus (%) is reserved for future
 use to:

 * The arithmetic operator % that operates on si gned or unsigned integer
 typed expressions (including vectors). The tw o operands must be of the
 same type, or one can be a signed or unsigned integer scalar and the
 other a signed or unsigned integer vector. I f the second operand is
 zero, results are undefined. If one operand i s scalar and the other is a
 vector, the scalar is applied component-wise to the vector, resulting in
 the same type as the vector. If both operands are non-negative, then the
 remainder is non-negative. Results are undefi ned if one, or both,
 operands are negative.

 Change the last bullet: "Operators and (&), or (|), exclusive or (^), not
 (~), right-shift (>>), left shift (<<). These o perators are reserved for
 future use." To the following bullets:

 * The one's complement operator ~. The operand must be of type signed or
 unsigned integer (including vectors), and the result is the one's
 complement of its operand. If the operand is a vector, the operator is
 applied component-wise to the vector. If the operand is unsigned, the
 result is computed by subtracting the value f rom the largest unsigned
 integer value. If the operand is signed, the result is computed by
 converting the operand to an unsigned integer , applying ~, and
 converting back to a signed integer.

 * The shift operators << and >>. For both opera tors, the operands must be
 of type signed or unsigned integer (including vectors). If the first
 operand is a scalar, the second operand has t o be a scalar as well. The
 result is undefined if the right operand is n egative, or greater than or
 equal to the number of bits in the left expre ssion's type. The value of
 E1 << E2 is E1 (interpreted as a bit pattern) left-shifted by E2
 bits. The value of E1 >> E2 is E1 right-shift ed by E2 bit positions. If
 E1 is a signed integer, the right-shift will extend the sign bit. If E1
 is an unsigned integer, the right-shift will zero-extend.

 * The bitwise AND operator &. The operands must be of type signed or
 unsigned integer (including vectors). The two operands must be of the
 same type, or one can be a signed or unsigned integer scalar and the
 other a signed or unsigned integer vector. If one operand is a scalar
 and the other a vector, the scalar is applied component-wise to the
 vector, resulting in the same type as the vec tor. The result is the
 bitwise AND function of the operands.

 * The bitwise exclusive OR operator ^. The oper ands must be of type signed
 or unsigned integer (including vectors). The two operands must be of the
 same type, or one can be a signed or unsigned integer scalar and the
 other a signed or unsigned integer vector. If one operand is a scalar
 and the other a vector, the scalar is applied component-wise to the
 vector, resulting in the same type as the vec tor. The result is the
 bitwise exclusive OR function of the operands .

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 115

 * The bitwise inclusive OR operator |. The oper ands must be of type signed
 or unsigned integer (including vectors). The two operands must be of the
 same type, or one can be a signed or unsigned integer scalar and the
 other a signed or unsigned integer vector. If one operand is a scalar
 and the other a vector, the scalar is applied component-wise to the
 vector, resulting in the same type as the vec tor. The result is the
 bitwise inclusive OR function of the operands .

 Change Section 7.1 "Vertex Shader Special Varia bles"

 Add the following definition to the list of bui lt-in variable definitions:

 int gl_VertexID // read-only
 int gl_InstanceID // read-only

 Add the following paragraph at the end of the s ection:

 The variable gl_VertexID is available as a read -only variable from within
 vertex shaders and holds the integer index <i> implicitly passed to
 ArrayElement() to specify the vertex. The value of gl_VertexID is defined
 if and only if:

 * the vertex comes from a vertex array comman d that specifies a complete
 primitive (e.g. DrawArrays, DrawElements),

 * all enabled vertex arrays have non-zero buf fer object bindings, and

 * the vertex does not come from a display lis t, even if the display list
 was compiled using DrawArrays / DrawElement s with data sourced from
 buffer objects.

 The variable gl_InstanceID is availale as a rea d-only variable from within
 vertex shaders and holds holds the integer inde x of the current primitive
 in an instanced draw call (DrawArraysInstancedE XT,
 DrawElementsInstancedEXT). If the current primi tive does not come from an
 instanced draw call, the value of gl_InstanceID is zero.

 Change Section 7.2 "Fragment Shader Special Var iables"

 Change the 8th and 9th paragraphs on p. 43 as f ollows:

 If a shader statically assigns a value to gl_Fr agColor, it may not assign
 a value to any element of gl_FragData nor to an y user-defined varying
 output variable (section 4.3.6). If a shader st atically writes a value to
 any element of gl_FragData, it may not assign a value to gl_FragColor nor
 to any user-defined varying output variable. Th at is, a shader may assign
 values to either gl_FragColor, gl_FragData, or any user-defined varying
 output variable, but not to a combination of th e three options.

 If a shader executes the discard keyword, the f ragment is discarded, and
 the values of gl_FragDepth, gl_FragColor, gl_Fr agData and any user-defined
 varying output variables become irrelevant.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 116

 Add the following paragraph to the top of p. 44 :

 The variable gl_PrimitiveID is available as a r ead-only variable from
 within fragment shaders and holds the id of the currently processed
 primitive. Section 3.11, subsection "Shader Inp uts" of the OpenGL 2.0
 specification describes what value it holds bas ed on the primitive type.

 Add the following prototype to the list of buil t-in variables accessible
 from a fragment shader:

 int gl_PrimitiveID;

 Change Chapter 8, sixth paragraph on page 50:

 Change the sentence:

 When the built-in functions are specified below , where the input arguments
 (and corresponding output)can be float, vec2, v ec3, or vec4, genType is
 used as the argument.

 To:

 When the built-in functions are specified below , where the input arguments
 (and corresponding output) can be float, vec2, vec3, or vec4, genType is
 used as the argument. Where the input arguments (and corresponding output)
 can be int, ivec2, ivec3 or ivec4, genIType is used as the argument. Where
 the input arguments (and corresponding output) can be unsigned int, uvec2,
 uvec3, or uvec4, genUType is used as the argume nt.

 Add to section 8.3 "Common functions"

 Add integer versions of the abs, sign, min, max and clamp functions, as
 follows:

 Syntax:

 genIType abs(genIType x)

 genIType sign(genIType x)

 genIType min(genIType x, genIType y)
 genIType min(genIType x, int y)
 genUType min(genUType x, genUType y)
 genUType min(genUType x, unsigned int y)

 genIType max(genIType x, genIType y)
 genIType max(genIType x, int y)
 genUType max(genUType x, genUType y)
 genUType max(genUType x, unsigned int y)

 genIType clamp(genIType x, genIType minval, g enIType maxval)
 genIType clamp(genIType x, int minval, int ma xval)
 genUType clamp(genUType x, genUType minval, g enUType maxval)
 genUType clamp(genUType x, unsigned int minva l,
 unsigned int maxval)

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 117

 Add the following new functions:

 Syntax:

 genType truncate(genType x)

 Description:

 Returns a value equal to the integer closest to x whose absolute value
 is not larger than the absolute value of x.

 Syntax:

 genType round(genType x)

 Description:

 Returns a value equal to the closest integer to x. If the fractional
 portion of the operand is 0.5, the nearest ev en integer is returned. For
 example, round (1.0) returns 1.0. round(-1.5) returns -2.0. round(3.5)
 and round (4.5) both return 4.0.

 Add to section 8.6 "Vector Relational Functions "

 Change the sentence:

 Below, "bvec" is a placeholder for one of bvec2 , bvec3, or bvec4, "ivec"
 is a placeholder for one of ivec2, ivec3, or iv ec4, and "vec" is a
 placeholder for vec2, vec3, or vec4.

 To:

 Below, "bvec" is a placeholder for one of bvec2 , bvec3, or bvec4, "ivec"
 is a placeholder for one of ivec2, ivec3, or iv ec4, "uvec" is a
 placeholder for one of uvec2, uvec3 or uvec4 an d "vec" is a placeholder
 for vec2, vec3, or vec4.

 Add uvec versions of all but the any, all and n ot functions to the table
 in this section, as follows:

 bvec lessThan(uvec x, uvec y)
 bvec lessThanEqual(uvec x, uvec y)

 bvec greaterThan(uvec x, uvec y)
 bvec greaterThanEqual(uvec x, uvec y)

 bvec equal(uvec x, uvec y)
 bvec notEqual(uvec x, uvec y)

 Add to section 8.7 "Texture Lookup Functions"

 Remove the first sentence in the last paragraph :

 "The built-ins suffixed with "Lod" are allowed only in a vertex shader.".

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 118

 Add to this section:

 Texture data can be stored by the GL as floatin g point, unsigned
 normalized integer, unsigned integer or signed integer data. This is
 determined by the type of the internal format o f the texture. Texture
 lookups on unsigned normalized integer and floa ting point data return
 floating point values in the range [0, 1]. See also section 2.15.4.1 of
 the OpenGL specification.

 Texture lookup functions are provided that can return their result as
 floating point, unsigned integer or signed inte ger, depending on the
 sampler type passed to the lookup function. Car e must be taken to use the
 right sampler type for texture access. Table 8. xxx lists the supported
 combinations of sampler types and texture inter nal formats.

 texture
 internal default (float) integer uns igned integer
 format sampler sampler sam pler
 float vec4 n/a n/ a
 normalized vec4 n/a n/ a
 signed int n/a ivec4 n/ a
 unsigned int n/a n/a uv ec4

 Table 8.xxx Valid combinations of the type of the internal for mat of a
 texture and the type of the sampler used to acc ess the texture. Each cell
 in the table indicates the type of the return v alue of a texture
 lookup. N/a means this combination is not suppo rted. A texture lookup
 using a n/a combination will return undefined v alues. The exceptions to
 this table are the "textureSize" lookup functio ns, which will return an
 integer or integer vector, regardless of the sa mpler type.

 If a texture with a signed integer internal for mat is accessed, one of the
 signed integer sampler types must be used. If a texture with an unsigned
 integer internal format is accessed, one of the unsigned integer sampler
 types must be used. Otherwise, one of the defau lt (float) sampler types
 must be used. If the types of a sampler and the corresponding texture
 internal format do not match, the result of a t exture lookup is undefined.

 If an integer sampler type is used, the result of a texture lookup is an
 ivec4. If an unsigned integer sampler type is u sed, the result of a
 texture lookup is a uvec4. If a default sampler type is used, the result
 of a texture lookup is a vec4, where each compo nent is in the range [0,
 1].

 Integer and unsigned integer functions of all t he texture lookup functions
 described in this section are also provided, ex cept for the "shadow"
 versions, using function overloading. Their pro totypes, however, are not
 listed separately. These overloaded functions u se the integer or
 unsigned-integer versions of the sampler types and will return an ivec4 or
 an uvec4 respectively, except for the "textureS ize" functions, which will
 always return an integer, or integer vector. Re fer also to table 8.xxxx
 for valid combinations of texture internal form ats and sampler types. For
 example, for the texture1D function, the comple te set of prototypes is:

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 119

 vec4 texture1D(sampler1D sampler, float coor d
 [, float bias])
 ivec4 texture1D(isampler1D sampler, float co ord
 [, float bias])
 uvec4 texture1D(usampler1D sampler, float co ord
 [, float bias])

 Add the following new texture lookup functions:

 Syntax:

 vec4 texelFetch1D(sampler1D sampler, int coor d, int lod)
 vec4 texelFetch2D(sampler2D sampler, ivec2 co ord, int lod)
 vec4 texelFetch3D(sampler3D sampler, ivec3 co ord, int lod)
 vec4 texelFetch2DRect(sampler2DRect sampler, ivec2 coord)
 vec4 texelFetch1DArray(sampler1DArray sampler , ivec2 coord, int lod)
 vec4 texelFetch2DArray(sampler2DArray sampler , ivec3 coord, int lod)

 Description:

 Use integer texture coordinate <coord> to looku p a single texel from the
 level-of-detail <lod> on the texture bound to < sampler> as described in
 section 2.15.4.1 of the OpenGL specification "T exel Fetches". For the
 "array" versions, the layer of the texture arra y to access is either
 coord.t or coord.p, depending on the use of the 1D or 2D texel fetch
 lookup, respectively. Note that texelFetch2DRec t does not take a
 level-of-detail input.

 Syntax:

 vec4 texelFetchBuffer(samplerBuffer sampler, int coord)

 Description:

 Use integer texture coordinate <coord> to looku p into the buffer texture
 bound to <sampler>.

 Syntax:

 int textureSizeBuffer(samplerBuffer sampler)
 int textureSize1D(sampler1D sampler, int lod)
 ivec2 textureSize2D(sampler2D sampler, int lo d)
 ivec3 textureSize3D(sampler3D sampler, int lo d)
 ivec2 textureSizeCube(samplerCube sampler, in t lod)
 ivec2 textureSize2DRect(sampler2DRect sampler , int lod)
 ivec2 textureSize1DArray(sampler1DArray sampl er, int lod)
 ivec3 textureSize2DArray(sampler2DArray sampl er, int lod)

 Description:

 Returns the dimensions, width, height, depth, a nd number of layers, of
 level <lod> for the texture bound to <sampler>, as described in section
 2.15.4.1 of the OpenGL specification section "T exture Size Query". For the
 textureSize1DArray function, the first (".x") c omponent of the returned
 vector is filled with the width of the texture image and the second
 component with the number of layers in the text ure array. For the
 textureSize2DArray function, the first two comp onents (".x" and ".y") of

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 120

 the returned vector are filled with the width a nd height of the texture
 image respectively. The third component (".z") is filled with the number
 of layers in the texture array.

 Syntax:

 vec4 texture1DArray(sampler1DArray sampler, v ec2 coord
 [, float bias])
 vec4 texture1DArrayLod(sampler1DArray sampler , vec2 coord,
 float lod)

 Description:

 Use the first element (coord.s) of texture coor dinate coord to do a
 texture lookup in the layer indicated by the se cond coordinate coord.t of
 the 1D texture array currently bound to sampler . The layer to access is
 computed by layer = max (0, min(d - 1, floor (c oord.t + 0.5)) where 'd' is
 the depth of the texture array.

 Syntax:

 vec4 texture2DArray(sampler2DArray sampler, v ec3 coord
 [, float bias])
 vec4 texture2DArrayLod(sampler2DArray sampler , vec3 coord,
 float lod)
 Description:

 Use the first two elements (coord.s, coord.t) o f texture coordinate coord
 to do a texture lookup in the layer indicated b y the third coordinate
 coord.p of the 2D texture array currently bound to sampler. The layer to
 access is computed by layer = max (0, min(d - 1 , floor (coord.p + 0.5))
 where 'd' is the depth of the texture array.

 Syntax:

 vec4 shadow1DArray(sampler1DArrayShadow sampl er, vec3 coord,
 [float bias])
 vec4 shadow1DArrayLod(sampler1DArrayShadow sa mpler,
 vec3 coord, float lod)
 Description:

 Use texture coordinate coord.s to do a depth co mparison lookup on an array
 layer of the depth texture bound to sampler, as described in section
 3.8.14 of version 2.0 of the OpenGL specificati on. The layer to access is
 indicated by the second coordinate coord.t and is computed by layer = max
 (0, min(d - 1, floor (coord.t + 0.5)) where 'd' is the depth of the
 texture array. The third component of coord (co ord.p) is used as the R
 value. The texture bound to sampler must be a d epth texture, or results
 are undefined.

 Syntax:

 vec4 shadow2DArray(sampler2DArrayShadow sampl er, vec4 coord)

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 121

 Description:

 Use texture coordinate (coord.s, coord.t) to do a depth comparison lookup
 on an array layer of the depth texture bound to sampler, as described in
 section 3.8.14 of version 2.0 of the OpenGL spe cification. The layer to
 access is indicated by the third coordinate coo rd.p and is computed by
 layer = max (0, min(d - 1, floor (coord.p + 0.5)) where 'd' is the depth
 of the texture array. The fourth component of c oord (coord.q) is used as
 the R value. The texture bound to sampler must be a depth texture, or
 results are undefined.

 Syntax:

 vec4 shadowCube(samplerCubeShadow sampler, vec4 coord)

 Description:

 Use texture coordinate (coord.s, coord.t, coord .p) to do a depth
 comparison lookup on the depth cubemap bound to sampler, as described in
 section 3.8.14. The direction of the vector (co ord.s, coord.t, coord.p) is
 used to select which face to do a two-dimension al texture lookup in, as
 described in section 3.8.6 of the OpenGL 2.0 sp ecification. The fourth
 component of coord (coord.q) is used as the R v alue. The texture bound to
 sampler must be a depth cubemap, otherwise resu lts are undefined.

 Syntax:

 vec4 texture1DGrad(sampler1D sampler, float c oord,
 float ddx, float ddy);
 vec4 texture1DProjGrad(sampler1D sampler, vec 2 coord,
 float ddx, float ddy);
 vec4 texture1DProjGrad(sampler1D sampler, vec 4 coord,
 float ddx, float ddy);
 vec4 texture1DArrayGrad(sampler1DArray sample r, vec2 coord,
 float ddx, float ddy) ;

 vec4 texture2DGrad(sampler2D sampler, vec2 co ord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DProjGrad(sampler2D sampler, vec 3 coord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DProjGrad(sampler2D sampler, vec 4 coord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DArrayGrad(sampler2DArray sample r, vec3 coord,
 vec2 ddx, vec2 ddy);

 vec4 texture3DGrad(sampler3D sampler, vec3 co ord,
 vec3 ddx, vec3 ddy);
 vec4 texture3DProjGrad(sampler3D sampler, vec 4 coord,
 vec3 ddx, vec3 ddy);

 vec4 textureCubeGrad(samplerCube sampler, vec 3 coord,
 vec3 ddx, vec3 ddy);

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 122

 vec4 shadow1DGrad(sampler1DShadow sampler, ve c3 coord,
 float ddx, float ddy);
 vec4 shadow1DProjGrad(sampler1DShadow sampler , vec4 coord,
 float ddx, float ddy);
 vec4 shadow1DArrayGrad(sampler1DArrayShadow s ampler, vec3 coord,
 float ddx, float ddy);

 vec4 shadow2DGrad(sampler2DShadow sampler, ve c3 coord,
 vec2 ddx, vec2 ddy);
 vec4 shadow2DProjGrad(sampler2DShadow sampler , vec4 coord,
 vec2 ddx, vec2 ddy);
 vec4 shadow2DArrayGrad(sampler2DArrayShadow s ampler, vec4 coord,
 vec2 ddx, vec2 ddy);

 vec4 texture2DRectGrad(sampler2DRect sampler, vec2 coord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DRectProjGrad(sampler2DRect samp ler, vec3 coord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DRectProjGrad(sampler2DRect samp ler, vec4 coord,
 vec2 ddx, vec2 ddy);

 vec4 shadow2DRectGrad(sampler2DRectShadow sam pler, vec3 coord,
 vec2 ddx, vec2 ddy);
 vec4 shadow2DRectProjGrad(sampler2DRectShadow sampler, vec4 coord,
 vec2 ddx, vec2 ddy) ;

 vec4 shadowCubeGrad(samplerCubeShadow sampler , vec4 coord,
 vec3 ddx, vec3 ddy);

 Description:

 The "Grad" functions map the partial derivative s ddx and ddy to ds/dx,
 dt/dx, dr/dx, and ds/dy, dt/dy, dr/dy respectiv ely and use texture
 coordinate "coord" to do a texture lookup as de scribed for their non
 "Grad" counterparts. The derivatives ddx and dd y are used as the explicit
 derivate of "coord" with respect to window x an d window y respectively and
 are used to compute lambda_base(x,y) as in equa tion 3.18 in the OpenGL 2.0
 specification. For the "Proj" versions, it is a ssumed that the partial
 derivatives ddx and ddy are already projected. I.e. the GL assumes that
 ddx and ddy represent d(s/q)/dx, d(t/q)/dx, d(r /q)/dx and d(s/q)/dy,
 d(t/q)/dy, d(r/q)/dy respectively. For the "Cub e" versions, the partial
 derivatives ddx and ddy are assumed to be in th e coordinate system used
 before texture coordinates are projected onto t he appropriate cube
 face. The partial derivatives of the post-proje ction texture coordinates,
 which are used for level-of-detail and anisotro pic filtering
 calculations, are derived from coord, ddx and d dy in an
 implementation-dependent manner.

 NOTE: Except for the "array" and shadowCubeGrad () functions, these
 functions are taken from the ARB_shader_texture _lod spec and are
 functionally equivalent.

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 123

 Syntax:

 vec4 texture1DOffset(sampler1D sampler, float coord,
 int offset [,float bias])
 vec4 texture1DProjOffset(sampler1D sampler, v ec2 coord,
 int offset [,float b ias])
 vec4 texture1DProjOffset(sampler1D sampler, v ec4 coord,
 int offset [,float b ias])
 vec4 texture1DLodOffset(sampler1D sampler, fl oat coord,
 float lod, int offset)
 vec4 texture1DProjLodOffset(sampler1D sampler , vec2 coord,
 float lod, int of fset)
 vec4 texture1DProjLodOffset(sampler1D sampler , vec4 coord,
 float lod, int of fset)

 vec4 texture2DOffset(sampler2D sampler, vec2 coord,
 ivec2 offset [,float bia s])
 vec4 texture2DProjOffset(sampler2D sampler, v ec3 coord,
 ivec2 offset [,float bias])
 vec4 texture2DProjOffset(sampler2D sampler, v ec4 coord,
 ivec2 offset [,float bias])
 vec4 texture2DLodOffset(sampler2D sampler, ve c2 coord,
 float lod, ivec2 offs et)
 vec4 texture2DProjLodOffset(sampler2D sampler , vec3 coord,
 float lod, ivec2 offset)
 vec4 texture2DProjLodOffset(sampler2D sampler , vec4 coord,
 float lod, ivec2 offset)

 vec4 texture3DOffset(sampler3D sampler, vec3 coord,
 ivec3 offset [,float bia s])
 vec4 texture3DProjOffset(sampler3D sampler, v ec4 coord,
 ivec3 offset [,float bias])
 vec4 texture3DLodOffset(sampler3D sampler, ve c3 coord,
 float lod, ivec3 offs et)
 vec4 texture3DProjLodOffset(sampler3D sampler , vec4 coord,
 float lod, ivec3 offset)

 vec4 shadow1DOffset(sampler1DShadow sampler, vec3 coord,
 int offset [,float bias])
 vec4 shadow2DOffset(sampler2DShadow sampler, vec3 coord,
 ivec2 offset [,float bias])
 vec4 shadow1DProjOffset(sampler1DShadow sampl er, vec4 coord,
 int offset [,float bi as])
 vec4 shadow2DProjOffset(sampler2DShadow sampl er, vec4 coord,
 ivec2 offset [,float bias])
 vec4 shadow1DLodOffset(sampler1DShadow sample r, vec3 coord,
 float lod, int offset)
 vec4 shadow2DLodOffset(sampler2DShadow sample r, vec3 coord,
 float lod, ivec2 offse t)
 vec4 shadow1DProjLodOffset(sampler1DShadow sa mpler, vec4 coord,
 float lod, int off set)
 vec4 shadow2DProjLodOffset(sampler2DShadow sa mpler, vec4 coord,
 float lod, ivec2 o ffset)

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 124

 vec4 texture2DRectOffset(sampler2DRect sample r, vec2 coord,
 ivec2 offset)
 vec4 texture2DRectProjOffset(sampler2DRect sa mpler, vec3 coord,
 ivec2 offset)
 vec4 texture2DRectProjOffset(sampler2DRect sa mpler, vec4 coord,
 ivec2 offset)
 vec4 shadow2DRectOffset(sampler2DRectShadow s ampler, vec3 coord,
 ivec2 offset)
 vec4 shadow2DRectProjOffset(sampler2DRectShad ow sampler, vec4 coord,
 ivec2 offset)

 vec4 texelFetch1DOffset(sampler1D sampler, in t coord, int lod,
 int offset)
 vec4 texelFetch2DOffset(sampler2D sampler, iv ec2 coord, int lod,
 ivec2 offset)
 vec4 texelFetch3DOffset(sampler3D sampler, iv ec3 coord, int lod,
 ivec3 offset)
 vec4 texelFetch2DRectOffset(sampler2DRect sam pler, ivec2 coord,
 ivec2 offset)
 vec4 texelFetch1DArrayOffset(sampler1DArray s ampler, ivec2 coord,
 int lod, int off set)
 vec4 texelFetch2DArrayOffset(sampler2DArray s ampler, ivec3 coord,
 int lod, ivec2 o ffset)

 vec4 texture1DArrayOffset(sampler1DArray samp ler, vec2 coord,
 int offset [, float bias])
 vec4 texture1DArrayLodOffset(sampler1DArray s ampler, vec2 coord,
 float lod, int o ffset)

 vec4 texture2DArrayOffset(sampler2DArray samp ler, vec3 coord,
 ivec2 offset [, flo at bias])
 vec4 texture2DArrayLodOffset(sampler2DArray s ampler, vec3 coord,
 float lod, ivec2 offset)

 vec4 shadow1DArrayOffset(sampler1DArrayShadow sampler, vec3 coord,
 int offset, [float b ias])
 vec4 shadow1DArrayLodOffset(sampler1DArraySha dow sampler, vec3 coord,
 float lod, int of fset)

 vec4 shadow2DArrayOffset(sampler2DArrayShadow sampler,
 vec4 coord, ivec2 of fset)

 vec4 texture1DGradOffset(sampler1D sampler, f loat coord,
 float ddx, float ddy , int offset);
 vec4 texture1DProjGradOffset(sampler1D sample r, vec2 coord,
 float ddx, float ddy, int offset);
 vec4 texture1DProjGradOffset(sampler1D sample r, vec4 coord,
 float ddx, float ddy, int offset);
 vec4 texture1DArrayGradOffset(sampler1DArray sampler, vec2 coord,
 float ddx, floa t ddy, int offset);

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 125

 vec4 texture2DGradOffset(sampler2D sampler, v ec2 coord,
 vec2 ddx, vec2 ddy, ivec2 offset);
 vec4 texture2DProjGradOffset(sampler2D sample r, vec3 coord,
 vec2 ddx, vec2 d dy, ivec2 offset);
 vec4 texture2DProjGradOffset(sampler2D sample r, vec4 coord,
 vec2 ddx, vec2 d dy, ivec2 offset);
 vec4 texture2DArrayGradOffset(sampler2DArray sampler, vec3 coord,
 vec2 ddx, vec2 ddy, ivec2 offset);

 vec4 texture3DGradOffset(sampler3D sampler, v ec3 coord,
 vec3 ddx, vec3 ddy, ivec3 offset);
 vec4 texture3DProjGradOffset(sampler3D sample r, vec4 coord,
 vec3 ddx, vec3 d dy, ivec3 offset);

 vec4 shadow1DGradOffset(sampler1DShadow sampl er, vec3 coord,
 float ddx, float ddy, int offset);
 vec4 shadow1DProjGradOffset(sampler1DShadow s ampler,
 vec4 coord, float ddx, float ddy,
 int offset);
 vec4 shadow1DArrayGradOffset(sampler1DArraySh adow sampler,
 vec3 coord, floa t ddx, float ddy,
 int offset);

 vec4 shadow2DGradOffset(sampler2DShadow sampl er, vec3 coord,
 vec2 ddx, vec2 ddy, i vec2 offset);
 vec4 shadow2DProjGradOffset(sampler2DShadow s ampler, vec4 coord,
 vec2 ddx, vec2 dd y, ivec2 offset);
 vec4 shadow2DArrayGradOffset(sampler2DArraySh adow sampler,
 vec4 coord, vec2 ddx, vec2 ddy,
 ivec2 offset);

 vec4 texture2DRectGradOffset(sampler2DRect sa mpler, vec2 coord,
 vec2 ddx, vec2 d dy, ivec2 offset);
 vec4 texture2DRectProjGradOffset(sampler2DRec t sampler, vec3 coord,
 vec2 ddx, ve c2 ddy, ivec2 offset);
 vec4 texture2DRectProjGradOffset(sampler2DRec t sampler, vec4 coord,
 vec2 ddx, ve c2 ddy, ivec2 offset);

 vec4 shadow2DRectGradOffset(sampler2DRectShad ow sampler,
 vec3 coord, vec2 ddx, vec2 ddy,
 ivec2 offset);
 vec4 shadow2DRectProjGradOffset(sampler2DRect Shadow sampler,
 vec4 coord, v ec2 ddx, vec2 ddy,
 ivec2 offset) ;

 Description:

 The "offset" version of each function provides an extra parameter <offset>
 which is added to the (u,v,w) texel coordinates before looking up each
 texel. The offset value must be a constant expr ession. A limited range
 of offset values are supported; the minimum and maximum offset values are
 implementation-dependent and given by MIN_PROGR AM_TEXEL_OFFSET_EXT and
 MAX_PROGRAM_TEXEL_OFFSET_EXT, respectively. Not e that <offset> does not
 apply to the layer coordinate for texture array s. This is explained in
 detail in section 3.8.7 of the OpenGL Specifica tion. Note that texel
 offsets are also not supported for cubemaps or buffer textures.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 126

 Add to section 9 "Grammar"

 type_qualifer:
 CONST
 ATTRIBUTE // Vertex only
 varying-modifier_opt VARYING
 UNIFORM

 varying-modifier:
 FLAT
 CENTROID
 NOPERSPECTIVE

 type_specifier:
 VOID
 FLOAT
 INT
 UNSIGNED_INT
 BOOL

Issues

 1. Should we support shorts in GLSL?

 DISCUSSION:

 RESOLUTION: UNRESOLVED

 2. Do bitwise shifts, AND, exclusive OR and inc lusive OR support all
 combinations of scalars and vectors for each operand?

 DISCUSSION: It seems sense to support scalar O P scalar, vector OP scalar
 and vector OP vector. But what about scalar OP vector? Should the scalar
 be promoted to a vector first?

 RESOLUTION: RESOLVED. Yes, this should work es sentially as the '+'
 operator. The scalar is applied to each compon ent of the vector.

 3. Which built-in functions should also operate on integers?

 DISCUSSION: There are several that don't make sense to define to operate
 on integers at all, but the following can be d ebated: pow, sqrt, dot (and
 the functions that use dot), cross.

 RESOLUTION: RESOLVED. Integer versions of the abs, sign, min, max and
 clamp functions are defined. Note that the mod ulus operator % has been
 defined for integer operands.

 4. Do we need to support integer matrices?

 DISCUSSION:

 RESOLUTION: RESOLVED No, not at the moment.

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 127

 5. Which texture array lookup functions do we ne ed to support?

 DISCUSSION: We don't want to support lookup fu nctions that need more than
 four components passed as parameters. Componen ts can be used for texture
 coordinates, layer selection, 'R' depth compar e and the 'q' coordinate
 for projection. However, texture projection mi ght be relatively easy to
 support through code-generation, thus we might be able to support
 functions that need five components, as long a s one of them is 'q' for
 projective texturing. Specifically, should we support:

 vec4 texture2DArrayProjLod(sampler2DArray sa mpler, vec4 coord,
 float lod)
 vec4 shadow1DArray(sampler1DArrayShadow samp ler, vec3 coord,
 [float bias])
 vec4 shadow1DArrayProj(sampler1DArrayShadow sampler, vec4 coord,
 [float bias])
 vec4 shadow1DArrayLod(sampler1DArrayShadow s ampler, vec3 coord,
 float lod)
 vec4 shadow1DArrayProjLod(sampler1DArrayShad ow sampler,
 vec4 coord, float lod)
 vec4 shadow2DArray(sampler2DArrayShadow samp ler, vec4 coord)
 vec4 shadow2DArrayProj(sampler2DArrayShadow sampler, vec4 coord,
 float refValue)

 RESOLUTION: RESOLVED, We'll support all but t he "Proj" versions. The
 assembly spec (NV_gpu_program4) doesn't suppo rt the equivalent
 functionality, either.

 6. How do we handle conversions between integer and unsigned
 integers?

 DISCUSSION: Do we allow automatic type conver sions between signed and
 unsigned integers?

 RESOLUTION: RESOLVED. We will not add this un til GLSL version 1.20 has
 been defined, and the implicit conversion rul es have been established
 there. If we do this, we would likely only su pport implicit conversion
 from int to unsigned int, just like C does.

 7. Should varying modifiers (flat, noperspectiv e) apply to built-in
 varying variables also?

 DISCUSSION: There is API to control flat vs s mooth shading for colors
 through glShadeModel(). There is also API to hint if colors should be
 interpolated perspective correct, or not, thr ough glHint(). These API
 commands apply to the built-in color varying variables (gl_FrontColor
 etc). If the varying modifiers in a shader al so apply to the color
 built-ins, which has precedence?

 RESOLUTION: RESOLVED. It is simplest and clea nest to only allow the
 varying modifiers to apply to user-defined va rying variables. The
 behavior of the built-in color varying variab les can still be controlled
 through the API.

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 128

 8. How should perspective-incorrect interpolati on (linear in screen space)
 and clipping interact?

 RESOLVED: Primitives with attributes specifi ed to be perspective-
 incorrect should be clipped so that the verti ces introduced by clipping
 should have attribute values consistent with the interpolation mode. We
 do not want to have large color shifts introd uced by clipping a
 perspective-incorrect attribute. For example , a primitive that
 approaches, but doesn't cross, a frustum clip plane should look pretty
 much identical to a similar primitive that ju st barely crosses the clip
 plane.

 Clipping perspective-incorrect interpolants t hat cross the W==0 plane is
 very challenging. The attribute clipping equ ation provided in the spec
 effectively projects all the original vertice s to screen space while
 ignoring the X and Y frustum clip plane. As W approaches zero, the
 projected X/Y window coordinates become extre mely large. When clipping
 an edge with one vertex inside the frustum an d the other out near
 infinity (after projection, due to W approach ing zero), the interpolated
 attribute for the entire visible portion of t he edge should almost
 exactly match the attribute value of the visi ble vertex.

 If an outlying vertex approaches and then goe s past W==0, it can be said
 to go "to infinity and beyond" in screen spac e. The correct answer for
 screen-linear interpolation is no longer obvi ous, at least to the author
 of this specification. Rather than trying to figure out what the
 "right" answer is or if one even exists, the results of clipping such
 edges is specified as undefined.

 9. Do we need to support a non-MRT fragment sha der writing to (unsigned)
 integer outputs?

 DISCUSSION: Fragment shaders with only one fr agment output are
 considered non-MRT shaders. This means that t he output of the shader
 gets smeared across all color buffers attache d to the
 framebuffer. Fragment shaders with multiple f ragment outputs are MRT
 shaders. Each output is directed to a color b uffer using the DrawBuffers
 API (for gl_FragData) and a combination of th e BindFragDataLocationEXT
 and DrawBuffers API (for varying out variable s). Before this extension,
 a non-MRT shader would write to gl_Color only . A shader writing to
 gl_FragData[] is a MRT shader. With the addi tion of varying out
 variables in this extension, any shader writi ng to a variable out
 variable is a MRT shader. It is not possible to construct a non-MRT
 shader writing to varying out variables. Vary ing out variables can be
 declared to be of type integer or unsigned in teger. In order to support
 a non-MRT shader that can write to (unsigned) integer outputs, we could
 define two new built-in variables:

 ivec4 gl_FragColorInt;
 uvec4 gl_FragColorUInt;

 Or we could add a special rule stating that i f the program object writes
 to exactly one varying out variable, it is co nsidered to be non-MRT.

 RESOLUTION: NO. We don't care enough to suppo rt this.

EXT_gpu_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 129

 10. Is section 2.14.8, "Color and Associated Dat a Clipping" in the core
 specification still correct?

 DISCUSSION: This section is in need of some u pdating, now that varying
 variables can be interpolated without perspec tive correction. Some (not
 so precise) language has been added in the sp ec body, suggesting that
 the interpolation needs to be performed in su ch a way as to produce
 results that vary linearly in screen space. H owever, we could define the
 exact interpolation method required to achiev e this. A suggested updated
 paragraph follows, but we'll leave updating s ection 2.14.8 to a future
 edit of the core specification, not this exte nsion.

 Replace Section 2.14.8, and rename it to "Ver tex Attribute Clipping"

 After lighting, clamping or masking and possi ble flatshading, vertex
 attributes, including colors, texture and fog coordinates, shader
 varying variables, and point sizes computed o n a per vertex basis, are
 clipped. Those attributes associated with a v ertex that lies within the
 clip volume are unaffected by clipping. If a primitive is clipped,
 however, the attributes assigned to vertices produced by clipping are
 produced by interpolating attributes along th e clipped edge.

 Let the attributes assigned to the two vertic es P_1 and P_2 of an
 unclipped edge be a_1 and a_2. The value of t (section 2.12) for a
 clipped point P is used to obtain the attribu te associated with P as

 a = t * a_1 + (1-t) * a_2

 unless the attribute is specified to be inter polated without perspective
 correction in a shader (using the noperspecti ve keyword). In that case,
 the attribute associated with P is

 a = t' * a_1 + (1-t') * a_2

 where

 t' = (t * w_1) / (t * w_1 + (1-t) * w_2)

 and w_1 and w_2 are the w clip coordinates of P_1 and P_2,
 respectively. If w_1 or w_2 is either zero or negative, the value of the
 associated attribute is undefined.

 For a color index color, multiplying a color by a scalar means
 multiplying the index by the scalar. For a ve ctor attribute, it means
 multiplying each vector component by the scal ar. Polygon clipping may
 create a clipped vertex along an edge of the clip volume's
 boundary. This situation is handled by noting that polygon clipping
 proceeds by clipping against one plane of the clip volume's boundary at
 a time. Attribute clipping is done in the sam e way, so that clipped
 points always occur at the intersection of po lygon edges (possibly
 already clipped) with the clip volume's bound ary.

 11. When and where in the texture filtering proce ss are texel offsets
 applied?

 DISCUSSION: Texel offsets are applied to the (u,v,w) coordinates of the
 base level of the texture if the texture filt er mode does not indicate

OpenGL Extension Specifcations for GeForce 8 Series EXT_gpu_shader4

NVIDIA Proprietary 130

 mipmapping. Otherwise, texel offsets are appl ied to the (u,v,w)
 coordinates of the mipmap level 'd', as found by equation 3.27 or to
 mipmap levels 'd1' and 'd2' as found by equat ion 3.28 in the OpenGL 2.0
 specification. In other words, texel offsets are applied to the
 (u,v,w) coordinate of whatever mipmap level i s accessed.

 12. Why is writing to the built-in output variabl e "gl_Position" in a vertex
 shader now optional?

 DISCUSSION: Before this specification, writin g to gl_Position in a
 vertex shader was mandatory. The GL pipeline required a vertex position
 to be written in order to produce well-define d output. This is still the
 case if the GL pipeline indeed needs a vertex position. However, with
 fourth-generation programmable hardware there are now cases where the GL
 pipeline no longer requires a vertex position in order to produce
 well-defined results. If a geometry shader is present, the vertex shader
 does not need to write to gl_Position anymore . Instead, the geometry
 shader can compute a vertex position and writ e to its gl_Position
 output. In case of transform-feedback, where the output of a vertex or
 geometry shader is streamed to one or more bu ffer objects, perfectly
 valid results can be obtained without either the vertex shader nor
 geometry shader writing to gl_Position. The t ransform-feedback
 specification adds a new enable to discard pr imitives right before
 rasterization, making it potentially unnecess ary to write to
 gl_Position.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 12 02/04/08 pbrown Fix errors in texture wrap mode handling.
 Added a missing clamp to avoid sampling border
 in REPEAT mode. Fixe d incorrectly specified
 weights for LINEAR fi ltering.

 11 05/08/07 pbrown Add VertexAttribIPoin terEXT to the list of
 commands that can't g o in display lists.

 10 01/23/07 pbrown Fix prototypes for a variety of functions
 that were specified w ith an incorrect sampler
 type.

 9 12/15/06 pbrown Documented that the ' #extension' token
 for this extension sh ould begin with "GL_",
 as apparently called for per convention.

 8 -- Pre-release revisions .

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 131

Name

 EXT_packed_float

Name Strings

 GL_EXT_packed_float
 WGL_EXT_pixel_format_packed_float
 GLX_EXT_fbconfig_packed_float

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Date: November 6, 2006
 Revision: 0.4

Number

 328

Dependencies

 OpenGL 1.1 required

 ARB_color_buffer_float affects this extension.

 EXT_texture_shared_exponent trivially affects t his extension.

 EXT_framebuffer_object affects this extension.

 WGL_ARB_pixel_format is required for use with W GL.

 WGL_ARB_pbuffer affects WGL pbuffer support for this extension.

 GLX 1.3 is required for use with GLX.

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 This extension adds a new 3-component floating- point texture format
 that fits within a single 32-bit word. This fo rmat stores 5 bits
 of biased exponent per component in the same ma nner as 16-bit
 floating-point formats, but rather than 10 mant issa bits, the red,
 green, and blue components have 6, 6, and 5 bit s respectively.
 Each mantissa is assumed to have an implied lea ding one except in the
 denorm exponent case. There is no sign bit so only non-negative
 values can be represented. Positive infinity, positive denorms,

OpenGL Extension Specifcations for GeForce 8 Series EXT_packed_float

NVIDIA Proprietary 132

 and positive NaN values are representable. The value of the fourth
 component returned by a texture fetch is always 1.0.

 This extension also provides support for render ing into an unsigned
 floating-point rendering format with the assump tion that the texture
 format described above could also be advertised as an unsigned
 floating-point format for rendering.

 The extension also provides a pixel external fo rmat for specifying
 packed float values directly.

New Procedures and Functions

 None

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D,
 TexImage2D, TexImage3D, CopyTexImage1D, CopyTex Image2D, and
 RenderbufferStorageEXT:

 R11F_G11F_B10F_EXT 0x8C3A

 Accepted by the <type> parameter of DrawPixels, ReadPixels,
 TexImage1D, TexImage2D, GetTexImage, TexImage3D , TexSubImage1D,
 TexSubImage2D, TexSubImage3D, GetHistogram, Get Minmax,
 ConvolutionFilter1D, ConvolutionFilter2D, Convo lutionFilter3D,
 GetConvolutionFilter, SeparableFilter2D, GetSep arableFilter,
 ColorTable, ColorSubTable, and GetColorTable:

 UNSIGNED_INT_10F_11F_11F_REV_EXT 0x8C3B

 Accepted by the <pname> parameters of GetIntege rv, GetFloatv, and
 GetDoublev:

 RGBA_SIGNED_COMPONENTS_EXT 0x8C3C

 Accepted as a value in the <piAttribIList> and <pfAttribFList>
 parameter arrays of wglChoosePixelFormatARB, an d returned in the
 <piValues> parameter array of wglGetPixelFormat AttribivARB, and the
 <pfValues> parameter array of wglGetPixelFormat AttribfvARB:

 WGL_TYPE_RGBA_UNSIGNED_FLOAT_EXT 0x20A8

 Accepted as values of the <render_type> argumen ts in the
 glXCreateNewContext and glXCreateContext functi ons

 GLX_RGBA_UNSIGNED_FLOAT_TYPE_EXT 0x20B1

 Returned by glXGetFBConfigAttrib (when <attribu te> is set to
 GLX_RENDER_TYPE) and accepted by the <attrib_li st> parameter of
 glXChooseFBConfig (following the GLX_RENDER_TYP E token):

 GLX_RGBA_UNSIGNED_FLOAT_BIT_EXT 0x00000008

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 133

Additions to Chapter 2 of the 2.0 Specification (Op enGL Operation)

 -- Add two new sections after Section 2.1.2, (page 6):

 2.1.A Unsigned 11-Bit Floating-Point Numbers

 An unsigned 11-bit floating-point number has no sign bit, a 5-bit
 exponent (E), and a 6-bit mantissa (M). The va lue of an unsigned
 11-bit floating-point number (represented as an 11-bit unsigned
 integer N) is determined by the following:

 0.0, if E == 0 and M = = 0,
 2^-14 * (M / 64), if E == 0 and M ! = 0,
 2^(E-15) * (1 + M/64), if 0 < E < 31,
 INF, if E == 31 and M == 0, or
 NaN, if E == 31 and M != 0,

 where

 E = floor(N / 64), and
 M = N mod 64.

 Implementations are also allowed to use any of the following
 alternative encodings:

 0.0, if E == 0 and M ! = 0
 2^(E-15) * (1 + M/64) if E == 31 and M == 0
 2^(E-15) * (1 + M/64) if E == 31 and M != 0

 When a floating-point value is converted to an unsigned 11-bit
 floating-point representation, finite values ar e rounded to the closet
 representable finite value. While less accurat e, implementations
 are allowed to always round in the direction of zero. This means
 negative values are converted to zero. Likewis e, finite positive
 values greater than 65024 (the maximum finite r epresentable unsigned
 11-bit floating-point value) are converted to 6 5024. Additionally:
 negative infinity is converted to zero; positiv e infinity is converted
 to positive infinity; and both positive and neg ative NaN are converted
 to positive NaN.

 Any representable unsigned 11-bit floating-poin t value is legal
 as input to a GL command that accepts 11-bit fl oating-point data.
 The result of providing a value that is not a f loating-point number
 (such as infinity or NaN) to such a command is unspecified, but must
 not lead to GL interruption or termination. Pr oviding a denormalized
 number or negative zero to GL must yield predic table results.

OpenGL Extension Specifcations for GeForce 8 Series EXT_packed_float

NVIDIA Proprietary 134

 2.1.B Unsigned 10-Bit Floating-Point Numbers

 An unsigned 10-bit floating-point number has no sign bit, a 5-bit
 exponent (E), and a 5-bit mantissa (M). The va lue of an unsigned
 10-bit floating-point number (represented as an 10-bit unsigned
 integer N) is determined by the following:

 0.0, if E == 0 and M = = 0,
 2^-14 * (M / 32), if E == 0 and M ! = 0,
 2^(E-15) * (1 + M/32), if 0 < E < 31,
 INF, if E == 31 and M == 0, or
 NaN, if E == 31 and M != 0,

 where

 E = floor(N / 32), and
 M = N mod 32.

 When a floating-point value is converted to an unsigned 10-bit
 floating-point representation, finite values ar e rounded to the closet
 representable finite value. While less accurat e, implementations
 are allowed to always round in the direction of zero. This means
 negative values are converted to zero. Likewis e, finite positive
 values greater than 64512 (the maximum finite r epresentable unsigned
 10-bit floating-point value) are converted to 6 4512. Additionally:
 negative infinity is converted to zero; positiv e infinity is converted
 to positive infinity; and both positive and neg ative NaN are converted
 to positive NaN.

 Any representable unsigned 10-bit floating-poin t value is legal
 as input to a GL command that accepts 10-bit fl oating-point data.
 The result of providing a value that is not a f loating-point number
 (such as infinity or NaN) to such a command is unspecified, but must
 not lead to GL interruption or termination. Pr oviding a denormalized
 number or negative zero to GL must yield predic table results.

Additions to Chapter 3 of the 2.0 Specification (Ra sterization)

 -- Section 3.6.4, Rasterization of Pixel Rectangle s

 Add a new row to Table 3.5 (page 128):

 type Parameter Correspon ding Special
 Token Name GL Data T ype Interpretation
 -------------------------------- --------- ---- --------------
 UNSIGNED_INT_10F_11F_11F_REV_EXT uint yes

 Add a new row to table 3.8: Packed pixel format s (page 132):

 type Parameter GL Data Number of Matching
 Token Name Type Components Pixel Formats
 -------------------------------- ------- ---------- -------------
 UNSIGNED_INT_10F_11F_11F_REV_EXT uint 3 RGB

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 135

 Add a new entry to table 3.11: UNSIGNED_INT for mats (page 134):

 UNSIGNED_INT_10F_11F_11F_REV_EXT:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 1 7 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +----------------------------+------------- -------------------+------------------------------- --+
 | 3rd | 2nd | 1st |
 +----------------------------+------------- -------------------+------------------------------- --+

 Add to the end of the 2nd paragraph starting "P ixels are draw using":

 "If type is UNSIGNED_INT_10F_11F_11F_REV_EXT an d format is not RGB
 then the error INVALID_ENUM occurs."

 Add UNSIGNED_INT_10F_11F_11F_REV_EXT to the lis t of packed formats
 in the 10th paragraph after the "Packing" subse ction (page 130).

 Add before the 3rd paragraph (page 135, startin g "Calling DrawPixels
 with a type of BITMAP...") from the end of the "Packing" subsection:

 "Calling DrawPixels with a type of UNSIGNED_INT _10F_11F_11F_REV_EXT
 and format of RGB is a special case in which th e data are a series
 of GL uint values. Each uint value specifies 3 packed components
 as shown in table 3.11. The 1st, 2nd, and 3rd components are
 called f_red (11 bits), f_green (11 bits), and f_blue (10 bits)
 respectively.

 f_red and f_green are treated as unsigned 11-bi t floating-point values
 and converted to floating-point red and green c omponents respectively
 as described in section 2.1.A. f_blue is treat ed as an unsigned
 10-bit floating-point value and converted to a floating-point blue
 component as described in section 2.1.B."

 -- Section 3.8.1, Texture Image Specification:

 "Alternatively if the internalformat is R11F_G1 1F_B10F_EXT, the red,
 green, and blue bits are converted to unsigned 11-bit, unsigned
 11-bit, and unsigned 10-bit floating-point valu es as described
 in sections 2.1.A and 2.1.B. These encoded val ues can be later
 decoded back to floating-point values due to te xture image sampling
 or querying."

 Add a new row to Table 3.16 (page 154).

 Sized Base R G B A L I D
 Internal Format Internal Format bit s bits bits bits bits bits bits
 --------------------- --------------- --- - ---- ---- ---- ---- ---- ----
 R11F_G11F_B10F_EXT RGB 11 11 10

OpenGL Extension Specifcations for GeForce 8 Series EXT_packed_float

NVIDIA Proprietary 136

Additions to Chapter 4 of the 2.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 -- Modify Chapter 4 Introduction, (page 198)

 Modify first sentence of third paragraph (page 198):

 "Color buffers consist of either signed or unsi gned integer color
 indices, R, G, B and optionally A signed or uns igned integer values,
 or R, G, B, and optionally A signed or unsigned floating-point
 values."

 -- Section 4.3.2, Reading Pixels

 Add a row to table 4.7 (page 224);

 Component
 type Parameter GL Data Type Conversion Formula
 -------------------------------- ------------ ------------------
 UNSIGNED_INT_10F_11F_11F_REV_EXT uint special

 Replace second paragraph of "Final Conversion" (page 222) to read:

 For an RGBA color, if <type> is not one of FLOA T,
 UNSIGNED_INT_5_9_9_9_REV_EXT, or UNSIGNED_INT_1 0F_11F_11F_REV_EXT,
 or if the CLAMP_READ_COLOR_ARB is TRUE, or CLAM P_READ_COLOR_ARB
 is FIXED_ONLY_ARB and the selected color (or te xture) buffer is
 a fixed-point buffer, each component is first c lamped to [0,1].
 Then the appropriate conversion formula from ta ble 4.7 is applied
 the component."

 Add a paragraph after the second paragraph of " Final Conversion"
 (page 222):

 "In the special case when calling ReadPixels wi th a type of
 UNSIGNED_INT_10F_11F_11F_REV_EXT and format of RGB, the conversion
 is done as follows: The returned data are pack ed into a series of
 GL uint values. The red, green, and blue compon ents are converted
 to unsigned 11-bit floating-point, unsigned 11- bit floating-point,
 and unsigned 10-bit floating point as described in section
 2.1.A and 2.1.B. The resulting red 11 bits, gr een 11 bits, and blue
 10 bits are then packed as the 1st, 2nd, and 3r d components of the
 UNSIGNED_INT_10F_11F_11F_REV_EXT format as show n in table 3.11."

Additions to Chapter 5 of the 2.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 2.0 Specification (St ate and State Requests)

 None

Additions to the OpenGL Shading Language specificat ion

 None

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 137

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and
Errors)

 Replace Section 3.3.3 (p.12) Paragraph 4 to:

 The attribute GLX_RENDER_TYPE has as its value a mask indicating
 what type of GLXContext a drawable created with the corresponding
 GLXFBConfig can be bound to. The following bit settings are supported:
 GLX_RGBA_BIT, GLX_RGBA_FLOAT_BIT, GLX_RGBA_UNSI GNED_FLOAT_BIT,
 GLX_COLOR_INDEX_BIT. If combinations of bits a re set in the mask
 then drawables created with the GLXFBConfig can be bound to those
 corresponding types of rendering contexts.

 Add to Section 3.3.3 (p.15) after first paragra ph:

 Note that unsigned floating point rendering is only supported
 for GLXPbuffer drawables. The GLX_DRAWABLE_TYP E attribute of
 the GLXFBConfig must have the GLX_PBUFFER_BIT b it set and the
 GLX_RENDER_TYPE attribute must have the GLX_RGB A_UNSIGNED_FLOAT_BIT
 set. Unsigned floating point rendering assumes the framebuffer
 format has no sign bits so all component values are non-negative.
 In contrast, conventional floating point render ing assumes signed
 components.

 Modify Section 3.3.7 (p.25 Rendering Contexts) remove period
 at end of second paragraph and replace with:

 ; if render_type is set to GLX_RGBA_UNSIGNED_FL OAT_TYPE then a
 context that supports unsigned floating point R GBA rendering is
 created.

GLX Protocol

 None.

Additions to the WGL Specification

 Modify the values accepted by WGL_PIXEL_TYPE_AR B to:

 WGL_PIXEL_TYPE_ARB
 The type of pixel data. This can be set to WGL_TYPE_RGBA_ARB,
 WGL_TYPE_RGBA_FLOAT_ARB, WGL_TYPE_RGBA_UNSI GNED_FLOAT_EXT,
 or WGL_TYPE_COLORINDEX_ARB.

 Add this explanation of unsigned floating point rendering:

 "Unsigned floating point rendering assumes the framebuffer format has
 no sign bits so all component values are non-ne gative. In contrast,
 conventional floating point rendering assumes s igned components."

Dependencies on WGL_ARB_pbuffer

 Ignore the "Additions to the WGL Specification" section if
 WGL_ARB_pbuffer is not supported.

OpenGL Extension Specifcations for GeForce 8 Series EXT_packed_float

NVIDIA Proprietary 138

Dependencies on WGL_ARB_pixel_format

 The WGL_ARB_pixel_format extension must be used to determine a
 pixel format with unsigned float components.

Dependencies on ARB_color_buffer_float

 If ARB_color_buffer_float is not supported, rep lace this amended
 sentence from 4.3.2 above

 For an RGBA color, if <type> is not one of FLOA T,
 UNSIGNED_INT_5_9_9_9_REV_EXT, or UNSIGNED_INT_1 0F_11F_11F_REV_EXT,
 or if the CLAMP_READ_COLOR_ARB is TRUE, or CLAM P_READ_COLOR_ARB
 is FIXED_ONLY_ARB and the selected color (or te xture) buffer is
 a fixed-point buffer, each component is first c lamped to [0,1]."

 with

 "For an RGBA color, if <type> is not one of FLO AT,
 UNSIGNED_INT_5_9_9_9_REV_EXT, or UNSIGNED_INT_1 0F_11F_11F_REV_EXT
 and the selected color buffer (or texture image for GetTexImage)
 is a fixed-point buffer (or texture image for G etTexImage), each
 component is first clamped to [0,1]."

Dependencies on EXT_texture_shared_exponent

 If EXT_texture_shared_exponent is not supported , delete the reference
 to UNSIGNED_INT_5_9_9_9_REV_EXT in section 4.3. 2.

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object is not supported, the n
 RenderbufferStorageEXT is not supported and the R11F_G11F_B10F_EXT
 internalformat is therefore not supported by Re nderbufferStorageEXT.

 If EXT_framebuffer_object is supported, glRende rbufferStorageEXT
 accepts GL_RG11F_B10F_EXT for its internalforma t parameter because
 GL_RG11F_B10F_EXT has a base internal format of GL_RGB that is listed
 as color-renderable by the EXT_framebuffer_obje ct specification.

Errors

 Relaxation of INVALID_ENUM errors

 TexImage1D, TexImage2D, TexImage3D, CopyTexImag e1D, CopyTexImage2D,
 and RenderbufferStorageEXT accept the new R11F_ G11F_B10F_EXT token
 for internalformat.

 DrawPixels, ReadPixels, TexImage1D, TexImage2D, GetTexImage,
 TexImage3D, TexSubImage1D, TexSubImage2D, TexSu bImage3D,
 GetHistogram, GetMinmax, ConvolutionFilter1D, C onvolutionFilter2D,
 ConvolutionFilter3D, GetConvolutionFilter, Sepa rableFilter2D,
 GetSeparableFilter, ColorTable, ColorSubTable, and GetColorTable
 accept the new UNSIGNED_INT_10F_11F_11F_REV_EXT token for type.

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 139

 New errors

 INVALID_OPERATION is generated by DrawPixels, R eadPixels, TexImage1D,
 TexImage2D, GetTexImage, TexImage3D, TexSubImag e1D, TexSubImage2D,
 TexSubImage3D, GetHistogram, GetMinmax, Convolu tionFilter1D,
 ConvolutionFilter2D, ConvolutionFilter3D, GetCo nvolutionFilter,
 SeparableFilter2D, GetSeparableFilter, ColorTab le, ColorSubTable,
 and GetColorTable if <type> is UNSIGNED_INT_10F _11F_11F_REV_EXT and
 <format> is not RGB.

New State

 In table 6.17, Textures (page 278), increment t he 42 in "n x Z42*"
 by 1 for the R11F_G11F_B10F_EXT format.

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

 (modify table 6.33, p. 294)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 -------------------------- ---- ----------- ------- ------------------ ---- ----------
 RGBA_SIGNED_COMPONENTS_EXT 4xB GetIntegerv - True if respective 4 -
 R, G, B, and A
 components are
 signed

New Implementation Dependent State

 None

Issues

 1) What should this extension be called?

 RESOLVED: EXT_packed_float

 This extension provides a new 3-component p acked float format
 for use as a texture internal format, pixel external format,
 and framebuffer color format.

 "packed" indicates the extension is packing components
 at reduced precisions (similar to EXT_packe d_pixels or
 NV_packed_depth_stencil).

 EXT_r11f_g11f_b10f_float was considered but there's no precedent
 for extension names to be so explicit (or c ryptic?) about format
 specifics in the extension name.

 2) Should there be an rgb11f_b10f framebuffer format?

 RESOLVED: Yes. Unsigned floating-point re ndering formats for GLX
 and WGL are provided. The assumption is th at this functionality
 could be used to advertise a pixel format w ith 11 bits of unsigned

OpenGL Extension Specifcations for GeForce 8 Series EXT_packed_float

NVIDIA Proprietary 140

 floating-point red, 11 bits of unsigned flo ating-point green,
 and 10 bits of floating-point blue.

 In theory, an implementation could advertis e other component sizes
 other than 11/11/10 for an unsigned floatin g-point framebuffer
 format but that is not expected.

 3) Should there be GLX and WGL extension strin gs?

 RESOLVED: Yes, there are WGL and GLX token s added to
 support querying unsigned floating-point co lor buffer
 formats named WGL_EXT_pixel_format_packed_f loat and
 GLX_EXT_fbconfig_packed_float respectively.

 4) Should there be an unequal distribution of red, green, and blue
 mantissa bits?

 RESOLVED: Yes. A 6-bit mantissa for red a nd green is unbalanced
 with the 5-bit mantissa for blue, but this allows all the bits of
 a 32 bit word (6+6+5+3*5=32) to be used. T he blue component is
 chosen to have fewer bits because 1) it is the third component,
 and 2) there's a belief that the human eye is less sensitive
 to blue variations..

 Developers should be aware that subtle yell owing or bluing
 of gray-scale values is possible because of the extra bit of
 mantissa in the red and green components.

 5) Should there be an external format for r11f _g11f_b10f?

 RESOLVED: Yes. This makes it fast to load GL_R11F_G11F_B10F_EXT
 textures without any translation by the dri ver.

 6) What is the exponent bias?

 RESOLVED: 15, just like 16-bit half-precis ion floating-point
 values.

 7) Can s10e5 floating-point filtering be used to filter
 r11f_g11f_b10f values? If so, how?

 RESOLVED: Yes. It is easy to promote r11f _g11f_b10f values to
 s10e5 components.

 8) Should automatic mipmap generation be suppo rted for r11f_g11f_b10f
 textures?

 RESOLVED: Yes.

 9) Should non-texture and non-framebuffer comm ands for loading
 pixel data accept the GL_UNSIGNED_INT_10F_1 1F_11F_REV_EXT type?

 RESOLVED: Yes.

 Once the pixel path has to support the new type/format combination
 of GL_UNSIGNED_INT_5_9_9_9_REV_EXT / GL_RGB for specifying and
 querying texture images, it might as well b e supported for all

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 141

 commands that pack and unpack RGB pixel dat a.

 The specification is written such that the glDrawPixels
 type/format parameters are accepted by glRe adPixels,
 glTexGetImage, glTexImage2D, and other comm ands that are specified
 in terms of glDrawPixels.

 10) Should non-texture internal formats (such a s for color tables,
 convolution kernels, histogram bins, and mi n/max tables) accept
 GL_R11F_G11F_B10F_EXT format?

 RESOLVED: No.

 That's pointless. No hardware is ever like ly to support
 GL_R11F_G11F_B10F_EXT internal formats for anything other than
 textures and maybe color buffers in the fut ure. This format is
 not interesting for color tables, convoluti on kernels, etc.

 11) Should a format be supported with sign bits for each component?

 RESOLVED: No. A sign bit for each of the three components would
 steal too many bits from the mantissa. Thi s format is intended
 for storing radiance and irradiance values that are physically
 non-negative.

 12) Should we support a non-REV version of the
 GL_UNSIGNED_INT_10F_11F_11F_REV_EXT token?

 RESOLVED: No. We don't want to promote di fferent arrangements
 of the bitfields for r11f_g11f_b10f values.

 13) Can you use the GL_UNSIGNED_INT_10F_11F_11F _REV_EXT format with
 just any format?

 RESOLVED: You can only use the
 GL_UNSIGNED_INT_10F_11F_11F_REV_EXT format with GL_RGB.
 Otherwise, the GL generates an GL_INVALID_O PERATION error.
 Just as the GL_UNSIGNED_BYTE_3_3_2 format j ust works with GL_RGB
 (or else the GL generates an GL_INVALID_OPE RATION error), so
 should GL_UNSIGNED_INT_10F_11F_11F_REV_EXT.

 14) Should blending be supported for a packed f loat framebuffer
 format?

 RESOLVED: Yes. Blending is required for o ther floating-point
 framebuffer formats introduced by ARB_color _buffer_float.
 The equations for blending should be evalua ted with signed
 floating-point math but the result will hav e to be clamped to
 non-negative values to be stored back into the packed float
 format of the color buffer.

 15) Should unsigned floating-point framebuffers be queried
 differently from conventional (signed) floa ting-point
 framebuffers?

 RESOLVED: Yes. An existing application us ing
 ARB_color_buffer_float can rightfully expec t a floating-point

OpenGL Extension Specifcations for GeForce 8 Series EXT_packed_float

NVIDIA Proprietary 142

 color buffer format to provide signed compo nents. The packed
 float format does not provide a sign bit. Simply treating packed
 float color buffer formats as floating-poin t might break some
 existing applications that depend on a floa t color buffer to be
 signed.

 For this reason, there are new WGL_TYPE_RGB A_UNSIGNED_FLOAT_EXT
 (for WGL) and GLX_RGBA_UNSIGNED_FLOAT_BIT_E XT (for GLX)
 framebuffer format parameters.

 16) What should glGet of GL_RGBA_FLOAT_MODE_ARB return for unsigned
 float color buffer formats?

 RESOLVED. GL_RGBA_FLOAT_MODE_ARB should re turn true. The packed
 float components are unsigned but still flo ating-point.

 17) Can you query with glGet to determine if th e color buffer has
 unsigned float components?

 RESOLVED: Yes. Call glGetIntegerv
 on GL_RGBA_SIGNED_COMPONENTS_EXT. The valu e returned is
 a 4-element array. Element 0 corresponds t o red, element 1
 corresponds to green, element 2 corresponds to blue, and element
 3 corresponds to alpha. If a color compone nt is signed, its
 corresponding element is true (GL_TRUE). T his is the same way
 the GL_COLOR_WRITEMASK bits are formatted.

 For the packed float format, all the elemen ts are zeroed since
 the red, green, and blue components are uns igned and the alpha
 component is non-existent. All elements ar e also zeroed for
 conventional fixed-point color buffer forma ts. Elements are
 set for signed floating-point formats such as those introduced
 by ARB_color_buffer_float. If a component (such as alpha) has
 zero bits, the component should not be cons idered signed and so
 the bit for the respective component should be zeroed.

 This generality allows a future extension t o specify float
 color buffer formats that had a mixture of signed and unsigned
 floating-point components. However, this e xtension only provides
 a packed float color format with all unsign ed components.

 18) How many bits of alpha should GL_ALPHA_BITS return for the packed
 float color buffer format?

 RESOLVED: Zero.

 19) Can you render to a packed float texture wi th the
 EXT_framebuffer_object functionality?

 RESOLVED: Yes.

 Potentially an implementation could return
 GL_FRAMEBUFFER_UNSUPPORTED_EXT when glCheck FramebufferStatusEXT
 for a framebuffer object including a packed float color buffer,
 but implementations are likely to support (and strongly encouraged
 to support) the packed float format for use with a framebuffer
 object because the packed float format is e xpected to be a

EXT_packed_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 143

 memory-efficient floating-point color forma t well-suited for
 rendering, particularly rendering involving high-dynamic range.

 20) This extension is for a particular packed f loat format. What if
 new packed float formats come along?

 RESOLVED: A new extension could be introdu ced with a name like
 EXT_packed_float2, but at this time, no oth er such extensions
 are expected except for the EXT_texture_sha red_exponent
 extension. It simply hard to justify packi ng three or more
 components into a single 32-bit word in lot s of different ways
 since any approach is going to be a comprom ise of some sort.
 For two-component or one-component floating -point formats, the
 existing ARB_texture_float formats fit nice ly into 16 or 32 bits
 by simply using half precision floating-poi nt. If 64 bits are
 allowed for a pixel, the GL_RGBA16F_ARB is a good choice.

 The packed float format is similar to the f ormat introduced by
 the EXT_texture_shared_exponent extension, but that extension
 is not a pure packed float format. Unlike the packed float
 format, the EXT_texture_shared_exponent for mat shares a single
 exponent between the RGB components rather than providing
 an independent exponent for each component. Because the
 EXT_texture_shared_exponent uses fewer bits to store exponent
 values, more mantissa precision is provided .

 21) Should this extension provide pbuffer suppo rt?

 RESOLVED: Yes. Pbuffers are core GLX 1.3 functionality.
 While using FBO is probably the preferred w ay to render to
 r11f_g11f_b10f framebuffers but pbuffer sup port is natural
 to provide. WGL should have r11f_g11f_b10f pbuffer support too.

 22) Must an implementation support NaN, Infinit y, and/or denorms?

 RESOLVED: The preferred implementation is to support NaN,
 Infinity, and denorms. Implementations are allowed to flush
 denorms to zero, and treat NaN and Infinity values as large
 finite values.

 This allowance flushes denorms to zero:

 0.0, if E == 0 and M != 0

 This allowance treats Infinity as a finite value:

 2^16 if E == 31 an d M == 0

 This allowance treats NaN encodings as fini te values:

 2^16 * (1 + M/64) if E == 31 an d M != 0

 The expectation is that mainstream GPUs wil l support NaN,
 Infinity, and denorms while low-end impleme ntations such as for
 OpenGL ES 2.0 will likely support denorms b ut neither NaN nor
 Infinity.

OpenGL Extension Specifcations for GeForce 8 Series EXT_packed_float

NVIDIA Proprietary 144

 There is not an indication of how these flo ating-point special
 values are treated (though an application c ould test an
 implementation if necessary).

 23) Should this extension interoperate with fra mebuffer objects?

 RESOLVED: Definitely. No particular speci fication language is
 required.

 In particular, glRenderbufferStorageEXT sho uld accept
 GL_R11F_G11F_B10F_EXT for its internalforma t parameter (true
 because this extension adds a new format to Table 3.16).

 24) Are negative color components clamped to ze ro when written into
 an unsigned floating-point color buffer? I f so, do we need to
 say in the Blending or Dithering language t hat negative color
 components are clamped to zero?

 RESOLVED: Yes, negative color components a re clamped to
 zero when written to an unsigned floating-p oint color buffer.
 No specification language is required for t his behavior because
 the ARB_color_buffer_float extension says

 "In RGBA mode dithering selects, for each c olor component, either
 the most positive representable color value (for that particular
 color component) that is less than or equal to the incoming
 color component value, c, or the most negat ive representable
 color value that is greater than or equal t o c.

 If dithering is disabled, then each incomin g color component
 c is replaced with the most positive repres entable color value
 (for that particular component) that is les s than or equal to c,
 or by the most negative representable value , if no representable
 value is less than or equal to c;"

 The most negative representable value for u nsigned
 floating-point values is zero. So the exis ting language from
 ARB_color_buffer_float already indicates th at negative values
 are clamped to zero for unsigned floating-p oint color buffers.
 No additional specification language is req uired.

 25) Prior texture internal formats have generic formats (example:
 GL_RGB) and corresponding sized formats (GL _RGB8, GL_RGB10,
 etc.). Should we add a generic format corr esponding to
 GL_R11F_G11F_B10F_EXT?

 RESOLVED: No. It's unlikely there will be any other unsigned
 floating-point texture formats.

Revision History

 None

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 145

Name

 EXT_texture_array

Name Strings

 GL_EXT_texture_array

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006, R elease 95)

Version

 Last Modified Date: 02/04/2008
 Author revision: 6

Number

 329

Dependencies

 This extension is written against the OpenGL 2. 0 specification and version
 1.10.59 of the OpenGL Shading Language specific ation.

 This extension is interacts with EXT_framebuffe r_object.

 This extension interacts with NV_geometry_progr am4.

 This extension interacts with NV_gpu_program4 o r the OpenGL Shading
 Language, which provide the mechanisms necessar y to access array textures.

 This extension interacts with EXT_texture_compr ession_s3tc and
 NV_texture_compression_vtc.

Overview

 This extension introduces the notion of one- an d two-dimensional array
 textures. An array texture is a collection of one- and two-dimensional
 images of identical size and format, arranged i n layers. A
 one-dimensional array texture is specified usin g TexImage2D; a
 two-dimensional array texture is specified usin g TexImage3D. The height
 (1D array) or depth (2D array) specify the numb er of layers in the image.

 An array texture is accessed as a single unit i n a programmable shader,
 using a single coordinate vector. A single lay er is selected, and that
 layer is then accessed as though it were a one- or two-dimensional
 texture. The layer used is specified using the "t" or "r" texture
 coordinate for 1D and 2D array textures, respec tively. The layer
 coordinate is provided as an unnormalized float ing-point value in the
 range [0,<n>-1], where <n> is the number of lay ers in the array texture.
 Texture lookups do not filter between layers, t hough such filtering can be

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 146

 achieved using programmable shaders. When mipm apping is used, each level
 of an array texture has the same number of laye rs as the base level; the
 number of layers is not reduced as the image si ze decreases.

 Array textures can be rendered to by binding th em to a framebuffer object
 (EXT_framebuffer_object). A single layer of an array texture can be bound
 using normal framebuffer object mechanisms, or an entire array texture can
 be bound and rendered to using the layered rend ering mechanisms provided
 by NV_geometry_program4.

 This extension does not provide for the use of array textures with
 fixed-function fragment processing. Such suppo rt could be added by
 providing an additional extension allowing appl ications to pass the new
 target enumerants (TEXTURE_1D_ARRAY_EXT and TEX TURE_2D_ARRAY_EXT) to
 Enable and Disable.

New Procedures and Functions

 void FramebufferTextureLayerEXT(enum target, en um attachment,
 uint texture, i nt level, int layer);

New Tokens

 Accepted by the <target> parameter of TexParame teri, TexParameteriv,
 TexParameterf, TexParameterfv, and BindTexture:

 TEXTURE_1D_ARRAY_EXT 0x8C18
 TEXTURE_2D_ARRAY_EXT 0x8C1A

 Accepted by the <target> parameter of TexImage3 D, TexSubImage3D,
 CopyTexSubImage3D, CompressedTexImage3D, and Co mpressedTexSubImage3D:

 TEXTURE_2D_ARRAY_EXT
 PROXY_TEXTURE_2D_ARRAY_EXT 0x8C1B

 Accepted by the <target> parameter of TexImage2 D, TexSubImage2D,
 CopyTexImage2D, CopyTexSubImage2D, CompressedTe xImage2D, and
 CompressedTexSubImage2D:

 TEXTURE_1D_ARRAY_EXT
 PROXY_TEXTURE_1D_ARRAY_EXT 0x8C19

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev, GetIntegerv
 and GetFloatv:

 TEXTURE_BINDING_1D_ARRAY_EXT 0x8C1C
 TEXTURE_BINDING_2D_ARRAY_EXT 0x8C1D
 MAX_ARRAY_TEXTURE_LAYERS_EXT 0x88FF

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 147

 Accepted by the <param> parameter of TexParamet erf, TexParameteri,
 TexParameterfv, and TexParameteriv when the <pn ame> parameter is
 TEXTURE_COMPARE_MODE_ARB:

 COMPARE_REF_DEPTH_TO_TEXTURE_EXT 0x884E

 (Note: COMPARE_REF_DEPTH_TO_TEXTURE_EXT is sim ply an alias for the
 existing COMPARE_R_TO_TEXTURE token in OpenGL 2 .0; the alternate name
 reflects the fact that the R coordinate is not always used.)

 Accepted by the <internalformat> parameter of T exImage3D and
 CompressedTexImage3D, and by the <format> param eter of
 CompressedTexSubImage3D:

 COMPRESSED_RGB_S3TC_DXT1_EXT
 COMPRESSED_RGBA_S3TC_DXT1_EXT
 COMPRESSED_RGBA_S3TC_DXT3_EXT
 COMPRESSED_RGBA_S3TC_DXT5_EXT

 Accepted by the <pname> parameter of
 GetFramebufferAttachmentParameterivEXT:

 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT 0x8CD4

 (Note: FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER is simply an alias for the
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT token provided in
 EXT_framebuffer_object. This extension general izes the notion of
 "<zoffset>" to include layers of an array textu re.)

 Returned by the <type> parameter of GetActiveUn iform:

 SAMPLER_1D_ARRAY_EXT 0x8DC0
 SAMPLER_2D_ARRAY_EXT 0x8DC1
 SAMPLER_1D_ARRAY_SHADOW_EXT 0x8DC3
 SAMPLER_2D_ARRAY_SHADOW_EXT 0x8DC4

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify section 2.15.3, "Shader Variables", page 75

 Add the following new return types to the descr iption of GetActiveUniform
 on p. 81.

 SAMPLER_1D_ARRAY_EXT,
 SAMPLER_2D_ARRAY_EXT,
 SAMPLER_1D_ARRAY_SHADOW_EXT,
 SAMPLER_2D_ARRAY_SHADOW_EXT

 Modify Section 2.15.4, Shader Execution (p. 84)

 (modify first paragraph, p. 86 -- two simple ed its:

 (1) Change reference to the "r" coordinate to simply indicate that the
 reference value for shadow mapping is pro vided in the lookup
 function. It's still usually in the "r" coordinate, except for
 two-dimensional array textures, where it' s in "q".

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 148

 (2) Add new EXT_gpu_shader4 sampler types use d for array textures.)

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 a reference depth value specified in the coordi nates passed to the texture
 lookup function, as described in section 3.8.14 . The comparison operation
 is requested in the shader by using the shadow sampler types
 (sampler1DShadow, sampler2DShadow, sampler1DArr ayShadow, or
 sampler2DArrayShadow) and in the texture using the TEXTURE_COMPARE_MODE
 parameter. ...

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.8, Texturing (p. 149).

 (add new paragraph at the top of p. 150) Six ty pes of texture are
 supported; each is a collection of images built from one-, two-, or
 three-dimensional array of image elements refer red to as texels. One-,
 two-, and three-dimensional textures consist of a one-, two-, or
 three-dimensional texel arrays. One- and two-d imensional array textures
 are arrays of one- or two-dimensional images, c onsisting of one or more
 layers. Finally, a cube map is a special two-d imensional array texture
 with six layers that represent the faces of a c ube. When accessing a cube
 map, the texture coordinates are projected onto one of the six faces.

 Modify Section 3.8.1, Texture Image Specificati on (p. 150).

 (modify first paragraph of section, p. 150) The command

 void TexImage3D(enum target, int level, int internalformat,
 sizei width, sizei height, s izei depth, int border,
 enum format, enum type, void *data);

 is used to specify a three-dimensional texture image. target must be one
 of TEXTURE_3D for a three-dimensional texture o r TEXTURE_2D_ARRAY_EXT for
 an two-dimensional array texture. Additionally , target may be either
 PROXY_TEXTURE_3D for a three-dimensional proxy texture, or
 PROXY_TEXTURE_2D_ARRAY_EXT for a two-dimensiona l proxy array texture. ...

 (modify the fourth paragraph on p. 151) Texture s with a base internal
 format of DEPTH_COMPONENT are supported by text ure image specification
 commands only if target is TEXTURE_1D, TEXTURE_ 2D, TEXTURE_1D_ARRAY_EXT,
 TEXTURE_2D_ARRAY_EXT, PROXY_TEXTURE_1D, PROXY_T EXTURE_2D,
 PROXY_TEXTURE_1D_ARRAY_EXT, or PROXY_TEXTURE_2D _ARRAY_EXT. Using this
 format in conjunction with any other target wil l result in an INVALID
 OPERATION error.

 (modify the first paragraph on p. 153 -- In par ticular, add new terms w_b,
 h_b, and d_b to represent border width, height, or depth, instead of a
 single border size term b_s. Subsequent equati ons referring to b_s should
 be modified to refer to w_b, h_b, and d_b, as a ppropriate.)

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 149

 ... Counting from zero, each resulting Nth texe l is assigned internal
 integer coordinates (i, j, k), where

 i = (N mod width) - w_b
 j = (floor(N/width) mod height) - h_b
 k = (floor(N/(width*height)) mod depth) - d_b

 and w_b, h_b, and d_b are the specified border width, height, and depth.
 w_b and h_b are the specified <border> value; d _b is the specified
 <border> value if <target> is TEXTURE_3D or zer o if <target> is
 TEXTURE_2D_ARRAY_EXT. ...

 (modify equations 3.15-3.17 and third paragraph of p. 155)

 w_s = w_t + 2 * w_b (3.15)
 h_s = h_t + 2 * h_b (3.16)
 d_s = d_t + 2 * d_b (3.17)

 ... If <border> is less than zero, or greater t han b_t, then the error
 INVALID_VALUE is generated.

 (modify the last paragraph on p. 155 on to p. 1 56)

 The maximum allowable width, height, or depth o f a texel array for a
 three-dimensional texture is an implementation dependent function of the
 level-of-detail and internal format of the resu lting image array. It must
 be at least 2^(k-lod) + 2 * b_t for image array s of level-of-detail 0
 through k, where k is the log base 2 of MAX_3D_ TEXTURE_SIZE, lod is the
 level-of-detail of the image array, and b_t is the maximum border width.
 It may be zero for image arrays of any level-of -detail greater than k. The
 error INVALID VALUE is generated if the specifi ed image is too large to be
 stored under any conditions.

 In a similar fashion, the maximum allowable wid th of a texel array for a
 one- or two-dimensional, or one- or two-dimensi onal array texture, and the
 maximum allowable height of a two-dimensional o r two-dimensional array
 texture, must be at least 2^(k-lod) + 2 * b_t f or image arrays of level 0
 through k, where k is the log base 2 of MAX_TEX TURE_SIZE. The maximum
 allowable width and height of a cube map textur e must be the same, and
 must be at least 2^(k-lod) + 2 * b_t for image arrays level 0 through k,
 where k is the log base 2 of MAX_CUBE_MAP_TEXTU RE_SIZE. The maximum
 number of layers for one- and two-dimensional a rray textures (height or
 depth, respectively) must be at least MAX_ARRAY _TEXTURE_LAYERS_EXT for all
 levels.

 (modify the fourth paragraph on p. 156) The com mand

 void TexImage2D(enum target, int level,
 int internalformat, sizei wi dth, sizei height,
 int border, enum format, enu m type, void *data);

 is used to specify a two-dimensional texture im age. target must be one of
 TEXTURE_2D for a two-dimensional texture, TEXTU RE_1D_ARRAY_EXT for a
 one-dimensional array texture, or one of TEXTUR E_CUBE_MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or
 TEXTURE_CUBE_MAP_NEGATIVE_Z for a cube map text ure. Additionally, target

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 150

 may be either PROXY_TEXTURE_2D for a two-dimens ional proxy texture,
 PROXY_TEXTURE_1D_ARRAY_EXT for a one-dimensiona l proxy array texture, or
 PROXY TEXTURE_CUBE_MAP for a cube map proxy tex ture in the special case
 discussed in section 3.8.11. The other paramet ers match the corresponding
 parameters of TexImage3D.

 For the purposes of decoding the texture image, TexImage2D is equivalent
 to calling TexImage3D with corresponding argume nts and depth of 1, except
 that

 * The border depth, d_b, is zero, and the dep th of the image is always 1
 regardless of the value of border.

 * The border height, h_b, is zero if <target> is TEXTURE_1D_ARRAY_EXT,
 and <border> otherwise.

 * Convolution will be performed on the image (possibly changing its width
 and height) if SEPARABLE 2D or CONVOLUTION 2D is enabled.

 * UNPACK SKIP IMAGES is ignored.

 (modify the fourth paragraph on p. 157) For the purposes of decoding the
 texture image, TexImage1D is equivalent to call ing TexImage2D with
 corresponding arguments and height of 1, except that

 * The border height and depth (h_b and d_b) a re always zero, regardless
 of the value of <border>.

 * Convolution will be performed on the image (possibly changing its
 width) only if CONVOLUTION 1D is enabled.

 (modify the last paragraph on p. 157 and the fi rst paragraph of p. 158 --
 changing the phrase "texture array" to "texel a rray" to avoid confusion
 with array textures. All subsequent references to "texture array" in the
 specification should also be changed to "texel array".)

 We shall refer to the (possibly border augmente d) decoded image as the
 texel array. A three-dimensional texel array h as width, height, and depth
 ws, hs, and ds as defined respectively in equat ions 3.15, 3.16, and
 3.17. A two-dimensional texel array has depth d s = 1, with height hs and
 width ws as above, and a one-dimensional texel array has depth ds = 1,
 height hs = 1, and width ws as above.

 An element (i,j,k) of the texel array is called a texel (for a
 two-dimensional texture or one-dimensional arra y texture, k is irrelevant;
 for a one-dimensional texture, j and k are both irrelevant). The texture
 value used in texturing a fragment is determine d by that fragment’s
 associated (s,t,r) coordinates, but may not cor respond to any actual
 texel. See figure 3.10.

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 151

 Modify Section 3.8.2, Alternate Texture Image S pecification Commands
 (p. 159)

 (modify second paragraph, p. 159 -- allow 1D ar ray textures) The command

 void CopyTexImage2D(enum target, int level,
 enum internalformat, int x, int y, sizei width,
 sizei height, int border);

 defines a two-dimensional texture image in exac tly the manner of
 TexImage2D, except that the image data are take n from the framebuffer
 rather than from client memory. Currently, targ et must be one of
 TEXTURE_2D, TEXTURE_1D_ARRAY_EXT, TEXTURE_CUBE_ MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or
 TEXTURE_CUBE_MAP_NEGATIVE_Z.

 (modify last paragraph, p. 160) ... Currently t he target arguments of
 TexSubImage1D and CopyTexSubImage1D must be TEX TURE_1D, the target
 arguments of TexSubImage2D and CopyTexSubImage2 D must be one of
 TEXTURE_2D, TEXTURE_1D_ARRAY_EXT, TEXTURE_CUBE_ MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or
 TEXTURE_CUBE_MAP_NEGATIVE_Z, and the target arg uments of TexSubImage3D and
 CopyTexSubImage3D must be TEXTURE_3D or TEXTURE _2D_ARRAY_EXT. ...

 (modify last paragraph, p. 161 and subsequent i nequalities)

 Negative values of xoffset, yoffset, and zoffse t correspond to the
 coordinates of border texels, addressed as in f igure 3.10. Taking w_s,
 h_s, d_s, w_b, h_b, and d_b to be the specified width, height, depth, and
 border width, height, and depth of the texture array, and taking x, y, z,
 w, h, and d to be the xoffset, yoffset, zoffset , width, height, and depth
 argument values, any of the following relations hips generates the error
 INVALID VALUE:

 x < -w_b
 x + w > w_s - w_b
 y < -h_b
 y + h > h_s - h_b
 z < -d_b
 z + d > d_s - d_b

 Modify Section 3.8.4, Texture Parameters (p. 16 6)

 (modify first paragraph of section, p. 166) Var ious parameters control how
 the texel array is treated when specified or ch anged, and when applied to
 a fragment. Each parameter is set by calling

 void TexParameter{if}(enum target, enum pnam e, T param);
 void TexParameter{if}v(enum target, enum pna me, T params);

 target is the target, either TEXTURE_1D, TEXTUR E_2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or TEXT URE_2D_ARRAY_EXT.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 152

 Modify Section 3.8.8, Texture Minification (p. 170)

 (modify first paragraph, p. 172) ... For a one- dimensional or
 one-dimensional array texture, define v(x, y) = = 0 and w(x, y) == 0; for a
 two-dimensional, two-dimensional array, or cube map texture, define w(x,
 y) == 0. ...

 (modify second paragraph, p. 173) For one-dimen sional or one-dimensional
 array textures, j and k are irrelevant; the tex el at location i becomes
 the texture value. For two-dimensional, two-dim ensional array, or cube map
 textures, k is irrelevant; the texel at locatio n (i, j) becomes the
 texture value. For one- and two-dimensional ar ray textures, the texel is
 obtained from image layer l, where

 l = clamp(floor(t + 0.5), 0, h_t-1), for one- dimensional array textures,
 clamp(floor(r + 0.5), 0, d_t-1), for two- dimensional array textures.

 (modify third paragraph, p. 174) For a two-dim ensional, two-dimensional
 array, or cube map texture,

 tau = ...

 where tau_ij is the texel at location (i, j) in the two-dimensional
 texture image. For two-dimensional array textu res, all texels are
 obtained from layer l, where

 l = clamp(floor(r + 0.5), 0, d_t-1).

 And for a one-dimensional or one-dimensional ar ray texture,

 tau = ...

 where tau_i is the texel at location i in the o ne-dimensional texture.
 For one-dimensional array textures, both texels are obtained from layer l,
 where

 l = clamp(floor(t + 0.5), 0, h_t-1).

 (modify first two paragraphs of "Mipmapping", p . 175) TEXTURE_MIN_FILTER
 values NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_L INEAR,
 LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR each require the use of a
 mipmap. A mipmap is an ordered set of arrays re presenting the same image;
 each array has a resolution lower than the prev ious one.

 If the image array of level level_base, excludi ng its border, has
 dimensions, w_t × h_t × d_t, then there are flo or(log2(maxsize)) + 1
 levels in the mipmap, where

 maxsize = w_t, for one-dimen sional and one-dimensional
 array texture s,
 max(w_t, h_t), for two-dimen sional, two-dimensional
 array, and cu be map textures
 max(w_t, h_t, d_t), for three dim ensional textures.

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 153

 Numbering the levels such that level level_base is the 0th level, the ith
 array has dimensions

 max(1, floor(w_t/w_d)) x max(1, floor(h_t/h_d)) x max(1, floor(d_t/d_d))

 where

 w_d = 2 ^ i;
 h_d = 1, for one-dimensional array textures an d
 2 ^ i, otherwise; and
 d_d = 1, for two-dimensional array textures an d
 2 ^ i, otherwise,

 until the last array is reached with dimension 1 × 1 × 1.

 Each array in a mipmap is defined using TexImag e3D, TexImage2D,
 CopyTexImage2D, TexImage1D, or CopyTexImage1D; the array being set is
 indicated with the level-of-detail argument lev el. Level-of-detail numbers
 proceed from level_base for the original textur e array through p =
 floor(log2(maxsize)) + level_base with each uni t increase indicating an
 array of half the dimensions of the previous on e (rounded down to the next
 integer if fractional) as already described. A ll arrays from level_base
 through q = min{p, level_max} must be defined, as discussed in section
 3.8.10.

 (modify third paragraph in the "Mipmap Generati on" section, p. 176)

 The contents of the derived arrays are computed by repeated, filtered
 reduction of the level_base array. For one- an d two-dimensional array
 textures, each layer is filtered independently. ...

 Modify Section 3.8.10, Texture Completeness (p. 177)

 (modify second paragaph of section, p. 177) For one-, two-, or
 three-dimensional textures and one- or two-dime nsional array textures, a
 texture is complete if the following conditions all hold true: ...

 Modify Section 3.8.11, Texture State and Proxy State (p. 178)

 (modify second and third paragraphs, p. 179, ad ding array textures and
 making minor wording changes)

 In addition to image arrays for one-, two-, and three-dimensional
 textures, one- and two-dimensional array textur es, and the six image
 arrays for the cube map texture, partially inst antiated image arrays are
 maintained for one-, two-, and three-dimensiona l textures and one- and
 two-dimensional array textures. Additionally, a single proxy image array
 is maintained for the cube map texture. Each p roxy image array includes
 width, height, depth, border width, and interna l format state values, as
 well as state for the red, green, blue, alpha, luminance, and intensity
 component resolutions. Proxy image arrays do no t include image data, nor
 do they include texture properties. When TexIma ge3D is executed with
 target specified as PROXY_TEXTURE_3D, the three -dimensional proxy state
 values of the specified level-of-detail are rec omputed and updated. If the
 image array would not be supported by TexImage3 D called with target set to
 TEXTURE 3D, no error is generated, but the prox y width, height, depth,
 border width, and component resolutions are set to zero. If the image

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 154

 array would be supported by such a call to TexI mage3D, the proxy state
 values are set exactly as though the actual ima ge array were being
 specified. No pixel data are transferred or pro cessed in either case.

 Proxy arrays for one- and two-dimensional textu res and one- and
 two-dimensional array textures are operated on in the same way when
 TexImage1D is executed with target specified as PROXY_TEXTURE_1D,
 TexImage2D is executed with target specified as PROXY_TEXTURE_2D or
 PROXY_TEXTURE_1D_ARRAY_EXT, or TexImage3D is ex ecuted with target
 specified as PROXY_TETXURE_2D_ARRAY_EXT.

 Modify Section 3.8.12, Texture Objects (p. 180)

 (update most of the beginning of the section to allow array textures)

 In addition to the default textures TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, and TEX TURE_2D_EXT, named one-,
 two-, and three-dimensional, cube map, and one- and two-dimensional array
 texture objects can be created and operated upo n. The name space for
 texture objects is the unsigned integers, with zero reserved by the GL.

 A texture object is created by binding an unuse d name to TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTU RE_1D_ARRAY_EXT, or
 TEXTURE_2D_ARRAY_EXT. The binding is effected b y calling

 void BindTexture(enum target, uint texture) ;

 with <target> set to the desired texture target and <texture> set to the
 unused name. The resulting texture object is a new state vector,
 comprising all the state values listed in secti on 3.8.11, set to the same
 initial values. If the new texture object is bo und to TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTU RE_1D_ARRAY_EXT, or
 TEXTURE_2D_ARRAY_EXT, it is and remains a one-, two-, three-dimensional,
 cube map, one- or two-dimensional array texture respectively until it is
 deleted.

 BindTexture may also be used to bind an existin g texture object to either
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_CUB E_MAP,
 TEXTURE_1D_ARRAY_EXT, or TEXTURE_2D_ARRAY_EXT. The error INVALID_OPERATION
 is generated if an attempt is made to bind a te xture object of different
 dimensionality than the specified target. If th e bind is successful no
 change is made to the state of the bound textur e object, and any previous
 binding to target is broken.

 While a texture object is bound, GL operations on the target to which it
 is bound affect the bound object, and queries o f the target to which it is
 bound return state from the bound object. If te xture mapping of the
 dimensionality of the target to which a texture object is bound is
 enabled, the state of the bound texture object directs the texturing
 operation.

 In the initial state, TEXTURE_1D, TEXTURE_2D, T EXTURE_3D,
 TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, and TEX TURE_2D_ARRAY_EXT have
 one-, two-, three-dimensional, cube map, and on e- and two-dimensional
 array texture state vectors respectively associ ated with them. In order
 that access to these initial textures not be lo st, they are treated as
 texture objects all of whose names are 0. The i nitial one-, two-,

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 155

 three-dimensional, cube map, one- and two-dimen sional array textures are
 therefore operated upon, queried, and applied a s TEXTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, and
 TEXTURE_2D_ARRAY_EXT respectively while 0 is bo und to the corresponding
 targets.

 (modify second paragraph, p. 181) ... If a tex ture that is currently
 bound to one of the targets TEXTURE_1D, TEXTURE _2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or TEXT URE_2D_ARRAY_EXT is
 deleted, it is as though BindTexture had been e xecuted with the same
 target and texture zero. ...

 (modify second paragraph, p. 182) The texture o bject name space, including
 the initial one-, two-, and three dimensional, cube map, and one- and
 two-dimensional array texture objects, is share d among all texture
 units. ...

 Modify Section 3.8.14, Texture Comparison Modes (p. 185)

 (modify second through fourth paragraphs, p. 18 8, reflecting that the
 texture coordinate used for depth comparisons v aries, including a new enum
 name)

 Let D_t be the depth texture value, in the rang e [0, 1]. For
 fixed-function texture lookups, let R be the in terpolated <r> texture
 coordinate, clamped to the range [0, 1]. For t exture lookups generated by
 a program instruction, let R be the reference v alue for depth comparisons
 provided in the instruction, also clamped to [0 , 1]. Then the effective
 texture value L_t, I_t, or A_t is computed as f ollows: ...

 If the value of TEXTURE_COMPARE_MODE is NONE, t hen

 r = Dt

 If the value of TEXTURE_COMPARE_MODE is COMPARE _REF_DEPTH_TO_TEXTURE_EXT),
 then r depends on the texture comparison functi on as shown in table 3.27.

 Modify Section 3.11.2, Shader Execution (p. 194)

 (modify second paragraph, p. 195 -- two simple edits:

 (1) Change reference to the "r" coordinate to simply indicate that the
 reference value for shadow mapping is pro vided in the lookup
 function. It's still usually in the "r" coordinate, except for
 two-dimensional array textures, where it' s in "q".
 (2) Add new EXT_gpu_shader4 sampler types use d for array textures.)

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 a reference depth value specified in the coordi nates passed to the texture
 lookup function. The comparison operation is r equested in the shader by
 using the shadow sampler types (sampler1DShadow , sampler2DShadow,
 sampler1DArrayShadow, and sampler2DArrayShadow) and in the texture using
 the TEXTURE COMPARE MODE parameter. ...

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 156

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 Modify Section 5.4, Display Lists (p. 237)

 (modify first paragraph, p. 242) TexImage3D, Te xImage2D, TexImage1D,
 Histogram, and ColorTable are executed immediat ely when called with the
 corresponding proxy arguments PROXY_TEXTURE_3D or
 PROXY_TEXTURE_2D_ARRAY_EXT; PROXY_TEXTURE_2D, PROXY_TEXTURE_CUBE_MAP, or
 PROXY_TEXTURE_1D_ARRAY_EXT; PROXY_TEXTURE_1D; PROXY_HISTOGRAM; and
 PROXY_COLOR_TABLE, PROXY_POST_CONVOLUTION_COLOR_TABLE, or
 PROXY_POST_COLOR_MATRIX_COLOR_TABLE.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.3, Enumerated Queries (p. 24 6)

 (modify second paragraph, p. 247)

 GetTexParameter parameter <target> may be one o f TEXTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or
 TEXTURE_2D_ARRAY_EXT, indicating the currently bound one-, two-,
 three-dimensional, cube map, or one- or two-dim ensional array texture.
 GetTexLevelParameter parameter target may be on e of TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP_POSITI VE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z,
 TEXTURE_CUBE_MAP_NEGATIVE_Z, TEXTURE_1D_ARRAY_EXT, TEXTURE_2D_ARRAY_EXT,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D,
 PROXY_TEXTURE_CUBE_MAP, PROXY_TEXTURE_1D_ARRAY, or PROXY_TEXTURE_2D_ARRAY,
 indicating the one-, two-, or three-dimensional texture, one of the six
 distinct 2D images making up the cube map textu re, the one- or
 two-dimensional array texture, or the one-, two -, three-dimensional, cube
 map, or one- or two-dimensional array proxy sta te vector. ...

 Modify Section 6.1.4, Texture Queries (p. 248)

 (modify first three paragraphs of section, p. 2 48) The command

 void GetTexImage(enum tex, int lod, enum for mat,
 enum type, void *img);

 is used to obtain texture images. It is somewha t different from the other
 get commands; tex is a symbolic value indicatin g which texture (or texture
 face in the case of a cube map texture target n ame) is to be obtained.
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ ARRAY_EXT, and
 TEXTURE_2D_ARRAY_EXT indicate a one-, two-, or three-dimensional texture,
 or one- or two-dimensional array texture, respe ctively.
 TEXTURE_CUBE_MAP_POSITIVE_X, ...

 GetTexImage obtains... from the first image to the last for
 three-dimensional textures. One- and two-dimen sional array textures are

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 157

 treated as two- and three-dimensional images, r espectively, where the
 layers are treated as rows or images. These gr oups are then...

 For three-dimensional and two-dimensional array textures, pixel storage
 operations are applied as if the image were two -dimensional, except that
 the additional pixel storage state values PACK_ IMAGE_HEIGHT and
 PACK_SKIP_IMAGES are applied. ...

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object is supported, a singl e layer of an array texture
 can be bound to a framebuffer attachment point, and manual mipmap
 generation support is extended to include array textures.

 Several modifications are made to the EXT_frame buffer_object
 specification. First, the token identifying th e attached layer of a 3D
 texture, FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFF SET_EXT, is renamed to
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT. This is done because this
 extension generalizes the "z offset" concept to become notion of attaching
 a layer of a multi-layer texture, which is appl icable for both
 three-dimensional and array textures. All refe rences to this token in
 EXT_framebuffer_object should be changed to the new token, and references
 to "z offset" in the specification text should be replaced with "layer" as
 appropriate. Additional edits follow.

 (modify "Manual Mipmap Generation" in edits to Section 3.8.8)

 Mipmaps can be generated manually with the comm and

 void GenerateMipmapEXT(enum target);

 where <target> is one of TEXTURE_1D, TEXTURE_2D , TEXTURE_CUBE_MAP,
 TEXTURE_3D, TEXTURE_1D_ARRAY, or TEXTURE_2D_ARR AY. Mipmap generation
 affects the texture image attached to <target>. ...

 (modify Section 4.4.2.3, Attaching Texture Imag es to a Framebuffer -- add
 to the end of the section)

 The command

 void FramebufferTextureLayerEXT(enum target, enum attachment,
 uint texture, int level, int layer);

 operates identically to FramebufferTexture3DEXT , except that it attaches a
 single layer of a three-dimensional texture or a one- or two-dimensional

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 158

 array texture. <layer> is an integer indicatin g the layer number, and is
 treated identically to the <zoffset> parameter in FramebufferTexture3DEXT.
 The error INVALID_VALUE is generated if <layer> is negative. The error
 INVALID_OPERATION is generated if <texture> is non-zero and is not the
 name of a three dimensional texture or one- or two-dimensional array
 texture. Unlike FramebufferTexture3D, no <text arget> parameter is
 accepted.

 If <texture> is non-zero and the command does n ot result in an error, the
 framebuffer attachment state corresponding to < attachment> is updated as
 in the other FramebufferTexture commands, excep t that
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is set to <layer>.

 (modify Section 4.4.4.1, Framebuffer Attachment Completeness)

 The framebuffer attachment point <attachment> i s said to be "framebuffer
 attachment complete" if ...:

 ...

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a one- or two-dimensional
 array texture, then FRAMEBUFFER_ATTACHMENT_ TEXTURE_LAYER_EXT must be
 smaller than the number of layers in the te xture.

 (modify Section 6.1.3, Enumerated Queries)

 ...

 If <pname> is FRAMEBUFFER_ATTACHMENT_TEXTUR E_LAYER_EXT and the texture
 object named FRAMEBUFFER_ATTACHMENT_OBJECT_ NAME_EXT is a
 three-dimensional texture or a one- or two- dimensional array texture,
 then <params> will contain the number of te xture layer attached to the
 attachment point. Otherwise, <params> will contain the value zero.

Dependencies on NV_geometry_program4

 NV_geometry_program4 provides additional modifi cations to
 EXT_framebuffer_object to support layered rende ring, which allows
 applications to bind entire three-dimensional, cube map, or array textures
 to a single attachment point, and select a laye r to render to according to
 a layer number written by the geometry program.

 The framebuffer object modifications provided i n NV_geometry_program4 are
 more extensive than the more limited support pr ovided for array textures.
 The edits in this spec are a functional subset of the edits in
 NV_geometry_program4. All of the modifications that this extension makes
 to EXT_framebuffer_object are superseded by NV_ geometry_program4, except
 for the minor language changes made to Generate MipmapsEXT().

Dependencies on NV_gpu_program4 and the OpenGL Shad ing Language (GLSL)

 If NV_gpu_program4, EXT_gpu_shader4, and the Op enGL Shading Language
 (GLSL) are not supported, and no other mechanis m is provided to perform
 texture lookups into array textures, this exten sion is pointless, given
 that it provides no fixed-function mechanism to access texture arrays.

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 159

 If GLSL is supported, the language below descri bes the modifications to
 the shading language to support array textures. The extension
 EXT_gpu_shader4 provides a broader set of shadi ng language modifications
 that include array texture lookup functions des cribed here, plus a number
 of additional functions.

 If GLSL is not supported, the shading language below and references to the
 SAMPLER_{1D,2D}_ARRAY_EXT and SAMPLER_{1D,2D}_A RRAY_SHADOW_EXT tokens
 should be removed.

Dependencies on EXT_texture_compression_s3tc and NV _texture_compression_vtc

 S3TC texture compression is supported for two-d imensional array textures.
 When <target> is TEXTURE_2D_ARRAY_EXT, each lay er is stored independently
 as a compressed two-dimensional textures. When specifying or querying
 compressed images using one of the S3TC formats , the images are provided
 and/or returned as a series of two-dimensional textures stored
 consecutively in memory, with the layer closest to zero specified first.
 For array textures, images are not arranged in 4x4x4 or 4x4x2 blocks as in
 the three-dimensional compression format provid ed in the
 EXT_texture_compression_vtc extension. Pixel s tore parameters, including
 those specific to three-dimensional images, are ignored when compressed
 image data are provided or returned, as in the
 EXT_texture_compression_s3tc extension.

 S3TC compression is not supported for one-dimen sional texture targets in
 EXT_texture_compression_s3tc, and is not suppor ted for one-dimensional
 array textures in this extension. If compresse d one-dimensional arrays
 are needed, use a two-dimensional texture with a height of one.

 As with NV_texture_compression_vtc, this extens ion allows the use of the
 four S3TC internal format types in TexImage3D, CompressedTexImage3D, and
 CompressedTexSubImage3D calls. Unlike NV_textu re_compression_vtc (for 3D
 textures), compressed sub-image updates are all owed at arbitrary locations
 along the Z axis. The language describing Comp ressedTexSubImage* APIs,
 edited by EXT_texture_compression_s3tc (allowin g updates at 4x4 boundaries
 for 2D textures) and NV_texture_compression_vtc (allowing updates at 4x4x4
 boundaries for 3D textures) is updated as follo ws:

 "If the internal format of the texture image being modified is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_ RGBA_S3TC_DXT5_EXT, the
 texture is stored using one of several S3TC o r VTC compressed texture
 image formats. Since these algorithms suppor t only 2D and 3D images,
 CompressedTexSubImage1DARB produces an INVALI D_ENUM error if <format> is
 an S3TC/VTC format. Since S3TC/VTC images ar e easily edited along 4x4,
 4x4x1, or 4x4x4 texel boundaries, the limitat ions on
 CompressedTexSubImage2D and CompressedTexSubI mage3D are relaxed.
 CompressedTexSubImage2D and CompressedTexSubI mage3D will result in an
 INVALID_OPERATION error only if one of the fo llowing conditions occurs:

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 160

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
 * <xoffset> or <yoffset> is not a multiple of four.
 * <depth> is not a multiple of four or equa l to TEXTURE_DEPTH, and
 <target> is TEXTURE_3D.
 * <zoffset> is not a multiple of four and < target> is TEXTURE_3D."

 (Note: The original version of this specificati on incorrectly failed to
 allow compressed subimage updates of array text ures via
 CompressedTexSubImage3D, except at 4x4x4 bounda ries/sizes. This
 undesirable behavior was also implemented by al l NVIDIA OpenGL drivers
 published prior to February 2008.)

Errors

 None. Some error conditions are removed, due t o the ability to use the
 new TEXTURE_1D_ARRAY_EXT and TEXTURE_2D_ARRAY_E XT enums.

New State

 (add to table 6.15, p. 276)
 Initial
 Get Value Type Get Comman d Value Description Sec. Attribute
 ---------------------------- ----- ---------- - ----- -------------------- ------ ---------
 TEXTURE_BINDING_1D_ARRAY_EXT 2*xZ+ GetInteger v 0 texture object bound 3.8.12 texture
 to TEXTURE_1D_ARRAY
 TEXTURE_BINDING_2D_ARRAY_EXT 2*xZ+ GetInteger v 0 texture object bound 3.8.12 texture
 to TEXTURE_2D_ARRAY

New Implementation Dependent State

 (add to Table 6.32, p. 293)
 Minimum
 Get Value Type Get Command Value Description Sec. Attribute
 ---------------------------- ---- ----------- ------- ------------------ ----- ---------
 MAX_TEXTURE_ARRAY_LAYERS_EXT Z+ GetIntegerv 64 maximum number of 3.8.1 -
 layers for texture
 arrays

Modifications to The OpenGL Shading Language Specif ication, Version 1.10.59

 (This section describes additions to GLSL to al low shaders to access array
 textures. This is a subset of the new shading language provided by the
 EXT_gpu_shader4 extension, limited to array te xture support. It is
 provided here in case implementations choose t o support EXT_texture_array
 without supporting EXT_gpu_shader4 or equivale nt functionality.

 Note that if the EXT_gpu_shader4 extension is enabled in a shader via an
 "#extension" line, there is no need to separat ely enable
 EXT_texture_array.)

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_EXT_texture_array : <behavior>

 where <behavior> is as specified in section 3.3 .

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 161

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_EXT_texture_array 1

 Add to section 3.6 "Keywords"

 The following new sampler types are added:

 sampler1DArray, sampler2DArray, sampler1DArra yShadow,
 sampler2DArrayShadow

 Add to section 4.1 "Basic Types"

 Add the following entries to the type table:

 sampler1DArray handle for accessing a 1D array texture
 sampler2DArray handle for accessing a 2D array texture
 sampler1DArrayShadow handle for accessing a 1D array depth texture
 with comparison
 sampler2DArrayShadow handle for accessing a 2D array depth texture
 with comparison

 Add to section 8.7 "Texture Lookup Functions"

 Add new functions to the set of allowed texture lookup functions:

 Syntax:

 vec4 texture1DArray(sampler1DArray sampler, v ec2 coord
 [, float bias])
 vec4 texture1DArrayLod(sampler1DArray sampler , vec2 coord,
 float lod)

 Description:

 Use the first element (coord.s) of texture coor dinate coord to do a
 texture lookup in the layer indicated by the se cond coordinate coord.t of
 the 1D texture array currently bound to sampler . The layer to access is
 computed by layer = max (0, min(d - 1, floor (c oord.t + 0.5)) where 'd' is
 the depth of the texture array.

 Syntax:

 vec4 texture2DArray(sampler2DArray sampler, v ec3 coord
 [, float bias])
 vec4 texture2DArrayLod(sampler2DArray sampler , vec3 coord,
 float lod)
 Description:

 Use the first two elements (coord.s, coord.t) o f texture coordinate coord
 to do a texture lookup in the layer indicated b y the third coordinate
 coord.p of the 2D texture array currently bound to sampler. The layer to
 access is computed by layer = max (0, min(d - 1 , floor (coord.p + 0.5))
 where 'd' is the depth of the texture array.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 162

 Syntax:

 vec4 shadow1DArray(sampler1DArrayShadow sampl er, vec3 coord,
 [float bias])
 vec4 shadow1DArrayLod(sampler1DArrayShadow sa mpler,
 vec3 coord, float lod)
 Description:

 Use texture coordinate coord.s to do a depth co mparison lookup on an array
 layer of the depth texture bound to sampler, as described in section
 3.8.14 of version 2.0 of the OpenGL specificati on. The layer to access is
 indicated by the second coordinate coord.t and is computed by layer = max
 (0, min(d - 1, floor (coord.t + 0.5)) where 'd' is the depth of the
 texture array. The third component of coord (co ord.p) is used as the R
 value. The texture bound to sampler must be a d epth texture, or results
 are undefined.

 Syntax:

 vec4 shadow2DArray(sampler2DArrayShadow sampl er, vec4 coord)

 Description:

 Use texture coordinate (coord.s, coord.t) to do a depth comparison lookup
 on an array layer of the depth texture bound to sampler, as described in
 section 3.8.14 of version 2.0 of the OpenGL spe cification. The layer to
 access is indicated by the third coordinate coo rd.p and is computed by
 layer = max (0, min(d - 1, floor (coord.p + 0.5)) where 'd' is the depth
 of the texture array. The fourth component of c oord (coord.q) is used as
 the R value. The texture bound to sampler must be a depth texture, or
 results are undefined.

Issues

 (1) Should this extension generalize the notion of 1D and 2D textures to
 be arrays of 1D or 2D images, or simply int roduce new targets?

 RESOLVED: Introduce new targets.

 It would have been possible to simply extend the notion of 1D and 2D
 textures, and allow applications to pass TEXT URE_1D to TexImage2D (1D
 arrays) or TEXTURE_2D to TexImage3D (2D array s). This would have
 avoided introducing a new set of texture targ ets (and proxy targets),
 and a "default texture" (object zero) for eac h new target.

 It is desirable to have a distinction between array and non-array
 textures in programmable shaders, so compiler s can generate code
 appropriate to the texture type. For "normal " textures, a 2D texture
 requires two component texture coordinates, w hile a 2D array texture
 requires three. Without a distinction betwee n array and non-array
 textures, implementations must choose between compiling shaders to the
 most general form (2D arrays) or recompiling shaders based on texture
 usage. Texture lookups with shadow mapping, LOD bias, or per-pixel LOD
 have additional complexity, and the interpret ation of a coordinate
 vector may need to depend on whether the text ure was an array or
 non-array texture.

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 163

 It would be possible to limit the distinction between array and
 non-array textures to the shaders, but it cou ld then become the
 responsibility of the application developer t o ensure that a texture
 with multiple layers is used when an "array l ookup" is performed, and
 that a single-layer texture is used when a "n on-array lookup" is
 performed. That begs the question of what th e distinction between an
 "array texture" and a "non-array texture" is. At least two possible
 distinctions have been identified: one vs. m ultiple layers, or the API
 call used to specify the texture (TexImage3D with TEXTURE_2D == array
 texture, TexImage2D == non-array texture). T he former does not allow
 for the possibility of single-layer array tex tures; it may be the case
 that application developers want to use a gen eral shader supporting
 array textures, but there may be cases where only a single layer might
 be provided. The latter approach allows for single-layer array
 textures, but the distinction is now based on the API call.

 Adding separate targets eliminates the need f or such a distinction.
 "Array lookups" refer to the TEXTURE_1D_ARRAY _EXT or
 TEXTURE_2D_ARRAY_EXT targets; "non-array look ups" refer to TEXTURE_1D or
 TEXTURE_2D. There is never a case where the wrong kind of texture can
 be used, as TEXTURE_1D_ARRAY_EXT and TEXTURE_ 2D_ARRAY_EXT textures are
 always arrays by definition.

 This distinction should also be helpful if an d when fixed-function
 fragment processing is supported; the enabled texture target is used to
 generate an internal fragment shader using th e proper "array lookup".
 There would be no need to recompile shaders d epending on whether an
 enabled texture is an "array texture" or not.

 (2) Should texture arrays be supported for fixe d-function fragment
 processing?

 RESOLVED: No; it's not believed to be worth the effort. Fixed-function
 fragment processing could be easily supported by allowing applications
 to enable or disable TEXTURE_1D_ARRAY_EXT or TEXTURE_2D_ARRAY_EXT.

 Note that for fixed-function fragment process ing, there would be issues
 with texture lookups of two-dimensional array textures with shadow
 mapping. Given that all texture lookups are projective, a total of five
 coordinate components would be required (s, t , layer, depth, q).

 (3) If fixed-function were supported, should th e layer number (T or R) be
 divided by Q in projective texture lookups?

 RESOLVED: It doesn't need to be resolved in this extension, but it
 would be a problem. There are probably cases where an application would
 want the divide (handle R more-or-less like S /T); there are probably
 other cases where the divide would not be wan ted. Many developers won't
 care, and may not even know what the Q coordi nate is used for! The
 default of 1.0 allows applications that don't care about projective
 lookups to simply ignore that fact.

 For programmable fragment shading, an applica tion can code it either way
 and use non-projective lookups. To the exten t that the divide by Q for
 projective lookups is "free" or "cheap" on Op enGL hardware, compilers
 may be able to recognize a projective pattern in the computed
 coordinates and generate code appropriately.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 164

 (4) Should DEPTH_COMPONENT textures be supporte d for texture arrays?

 RESOLVED: Yes; multi-layer shadow maps are u seful.

 (5) How should shadow mapping in texture arrays work with programmable
 shaders, and fixed-function shaders (if eve r supported)?

 RESOLVED: The layer number is in the "next" coordinate following the
 normal 1D or 2D coordinate. That's the "t" c oordinate for 1D arrays and
 the "r" coordinate for 2D arrays. For shadow maps, this is a problem,
 as the "r" coordinate is generally used as th e depth reference value.
 This is resolved by instead taking the depth reference value from the
 "q" coordinate.

 For some programmable texture lookups (explic it LOD, LOD bias,
 projective), "too many" coordinates are requi red. Such lookups are not
 possible with four-component vectors; it woul d require at least two
 parameters to perform such operations.

 For fixed-function shading, it is recommended that shadow mapping
 lookups in two-dimensional array textures be treated as non-projective,
 even though all other lookups would be projec tive. Additionally, the
 "q" coordinate should be used for the depth r eference value in this
 case.

 (6) How do texture borders interact with array textures?

 RESOLVED: Each individual layer of an array texture can have a border,
 as though it were a normal one- or two-dimens ional texture. However,
 there are no "border layers".

 (7) How does mipmapping work with array texture s?

 RESOLVED: Level <N+1> is half the size of le vel <N> in width and/or
 height, but the number of layers is always th e same for each level --
 layer <M> of level <N+1> is expected to be a filtered version of layer
 <M> of the higher mipmap levels. This behavi or impacts the texture
 consistency rules for array textures.

 (8) Are compressed textures supported for array textures?

 RESOLVED: Yes; they may be loaded via normal TexImage APIs, as well as
 CompressedTexImage2D and CompressedTexImage3D . Compressed array
 textures are treated as arrays of compressed 1D or 2D images.

 (9) Should these things be called "array textur es" or "texture arrays"?

 RESOLVED: "Array textures", mostly because i t was easier spec wording.
 Calling them "array textures" also seems like better disambiguation;
 there are several different things that can b e thought of as "texture
 arrays":

 * the array of texture levels (mipmapping)
 * the array of texture layers (array textur es)
 * the array of texels in each image

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 165

 This spec changes the use of "texture array" in the core specification
 (which means the array of texels) to instead refer to "texel array".

 (10) If they're called "array textures", why do es the extension name
 include "texture_array"?

 RESOLVED: Because this is primarily a textur e extension, and all such
 extensions start with "texture".

 (11) Should new functions be provided for loadi ng or modifying array
 textures?

 RESOLVED: No. Existing TexImage2D (1D array s) and TexImage3D (2D
 arrays), plus corresponding TexSubImage, Copy TexImage, and
 CopyTexSubImage calls are sufficient.

 (12) Should ARB_imaging functionality to be ext ended to support
 two-dimensional array textures?

 RESOLVED: No. Convolution is rarely used wh en texture images are
 defined, and is even less likely for array te ture images. This could be
 addressed via a separate extension if the nee d were identified, and such
 operations could be defined for 3D textures a s well at that time.

 Note that with the API chosen, one-dimensiona l array textures do have
 convolution applied (if enabled), because ima ge data is treated as a
 normal two-dimensional image.

 (13) What if an application wants to populate a n array texture using
 separate mipmap chains a layer at a time r ather than specifying all
 layers of a given mipmap level at once?

 RESOLVED: For 2D array textures, call TexIma ge3D once with a NULL image
 pointer for each level to establish the texel array sizes. Then, call
 TexSubImage3D for each layer/mipmap level to define individual images.

 (14) Should we provide a way to query a single layer of an array texture?

 RESOLVED: No; we don't expect this to be an issue in practice.
 GetTexImage() will return a two- or three-dim ensional image for one- and
 two-dimensional arrays, including all levels. If this were identified
 as an important need, a follow-on extension c ould be added in the
 future.

 (15) How is the LOD (lambda) computed for array textures?

 RESOLVED: LOD is computed in the same manner for 1D and 2D array
 textures as it is for normal 1D and 2D textur es. The layer coordinate
 has no effect on LOD computations.

 (16) What's the deal with this new "COMPARE_REF _DEPTH_TO_TEXTURE_EXT"?

 RESOLVED: It's a new name for the existing e numerant
 "COMPARE_R_TO_TEXTURE". This alternate name is provided to reflect the
 fact that it's not always the R coordinate th at is used for depth
 comparisons.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_array

NVIDIA Proprietary 166

 (17) How do array textures work with framebuffe r objects
 (EXT_framebuffer_object extension, also kn own as "FBO")?

 RESOLVED: A new function, FramebufferTexture LayerEXT(), is provided to
 attach a single layer of a one- or two-dimens ional array texture to an
 framebuffer attachment point. That new funct ion can also be used to
 attach a layer of a three-dimensional texture .

 In addition to supporting FBO attachments, th e manual mipmap generation
 support provided by glGenerateMipmapEXT is ex tended to array textures.
 Mipmap generation applies to each layer of th e array texture
 independently, as is the case with the GENERA TE_MIPMAPS texture
 parameter.

 This support provided here a limited subset o f the FBO support added by
 NV_geometry_program4, which additionally prov ides the ability to attach
 an entire level of a three-dimensional, cube map, or array texture.
 When such attachments are performed, a geomet ry program can be used to
 select a layer to render each emitted primiti ve to.

 (18) Should array texture targets be supported for creation of "render
 buffers"?

 RESOLVED: No. These are inherently two-dime nsional images.

 (19) Should we provide a mipmap generation func tion to generate mipmaps
 for only a single layer of an array textur e?

 RESOLVED: Not in this extension. We conside red adding this toward the
 end of the development of this extension, but decided not to add it
 because this mipmap generation function would have very different
 requirements from the GenerateMipmapEXT funct ion provided by
 EXT_framebuffer_object.

 The existing GenerateMipmapEXT function repla ces all levels of detail
 below the base level with generated mipmaps. If those mipmap levels are
 unpopulated or inconsistent with the base lev el, they are completely
 overwritten with a generated image that is co nsistent with the base
 level. If we were to provide a function to g enerate mipmaps for only a
 single layer, all other layers of non-base le vels would need to be
 preserved. However, since there are not sepa rate formats or sizes per
 level, this form of mipmap generation would r equire that all non-base
 levels be present and consistent with the bas e level, or mipmap
 generation wouldn't work.

 We expect that future revisions of the GL wil l change the specification
 of mipmapped textures in

 (20) This extension allows the use of S3TC text ure internal formats in
 TexImage3D and CompressedTexImage3D. Does this mean that they are
 now supported for 3D textures?

 RESOLVED: No. With this extension alone, Te xImage3D and
 CompressedTexImage3D only support S3TC compre ssed formats with a target
 of TEXTURE_2D_ARRAY_EXT. The S3TC tokens wer e added to the list of
 internal formats supported by TexImage3D and friends because

EXT_texture_array OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 167

 two-dimensional array textures are specified using the three-dimensional
 TexImage functions.

 The existing extension NV_texture_compression _vtc does provides support
 for S3TC-style compressed 3D textures.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 6 02/04/08 pbrown Added a missing inter action with the VTC texture
 compression spec allo wing updates of compressed
 2D array textures alo ng 4x4x1 boundaries (we
 previously inherited the VTC restriction of
 4x4x4).

 5 12/15/06 pbrown Documented that the ' #extension' token
 for this extension sh ould begin with "GL_",
 as apparently called for per convention.

 4 -- Pre-release revisions .

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_buffer_object

NVIDIA Proprietary 168

Name

 EXT_texture_buffer_object

Name Strings

 GL_EXT_texture_buffer_object

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006, R elease 95)

Version

 Last Modified Date: 10/30/2007
 NVIDIA Revision: 4

Number

 330

Dependencies

 OpenGL 2.0 is required.

 NV_gpu_program4 is required.

 This extension is written against the OpenGL 2. 0 specification.

 This extension depends trivially on EXT_texture _array.

 This extension depends trivially on NV_texture_ shader.

 This extension depends trivially on EXT_texture _integer.

 This extension depends trivially on ARB_texture _float.

 This extension depends trivially on ARB_half_fl oat_pixel.

Overview

 This extension provides a new texture type, cal led a buffer texture.
 Buffer textures are one-dimensional arrays of t exels whose storage comes
 from an attached buffer object. When a buffer object is bound to a buffer
 texture, a format is specified, and the data in the buffer object is
 treated as an array of texels of the specified format.

 The use of a buffer object to provide storage a llows the texture data to
 be specified in a number of different ways: vi a buffer object loads
 (BufferData), direct CPU writes (MapBuffer), fr amebuffer readbacks
 (EXT_pixel_buffer_object extension). A buffer object can also be loaded
 by transform feedback (NV_transform_feedback ex tension), which captures
 selected transformed attributes of vertices pro cessed by the GL. Several

EXT_texture_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 169

 of these mechanisms do not require an extra dat a copy, which would be
 required when using conventional TexImage-like entry points.

 Buffer textures do not support mipmapping, text ure lookups with normalized
 floating-point texture coordinates, and texture filtering of any sort, and
 may not be used in fixed-function fragment proc essing. They can be
 accessed via single texel fetch operations in p rogrammable shaders. For
 assembly shaders (NV_gpu_program4), the TXF ins truction is used. For
 GLSL, a new sampler type and texel fetch functi on are used.

 While buffer textures can be substantially larg er than equivalent
 one-dimensional textures; the maximum texture s ize supported for buffer
 textures in the initial implementation of this extension is 2^27 texels,
 versus 2^13 (8192) texels for otherwise equival ent one-dimensional
 textures. When a buffer object is attached to a buffer texture, a size is
 not specified; rather, the number of texels in the texture is taken by
 dividing the size of the buffer object by the s ize of each texel.

New Procedures and Functions

 void TexBufferEXT(enum target, enum internalfor mat, uint buffer);

New Tokens

 Accepted by the <target> parameter of BindBuffe r, BufferData,
 BufferSubData, MapBuffer, BindTexture, UnmapBuf fer, GetBufferSubData,
 GetBufferParameteriv, GetBufferPointerv, and Te xBufferEXT, and
 the <pname> parameter of GetBooleanv, GetDouble v, GetFloatv, and
 GetIntegerv:

 TEXTURE_BUFFER_EXT 0x8C2A

 Accepted by the <pname> parameters of GetBoolea nv, GetDoublev,
 GetFloatv, and GetIntegerv:

 MAX_TEXTURE_BUFFER_SIZE_EXT 0x8C2B
 TEXTURE_BINDING_BUFFER_EXT 0x8C2C
 TEXTURE_BUFFER_DATA_STORE_BINDING_EXT 0x8C2D
 TEXTURE_BUFFER_FORMAT_EXT 0x8C2E

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 (Insert new Section 3.8.4, Buffer Textures. Re number subsequent
 sections.)

 In addition to one-, two-, and three-dimensiona l and cube map textures
 described in previous sections, one additional type of texture is
 supported. A buffer texture is similar to a on e-dimensional texture.
 However, unlike other texture types, the texel array is not stored as part
 of the texture. Instead, a buffer object is at tached to a buffer texture
 and the texel array is taken from the data stor e of an attached buffer
 object. When the contents of a buffer object's data store are modified,
 those changes are reflected in the contents of any buffer texture to which

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_buffer_object

NVIDIA Proprietary 170

 the buffer object is attached. Also unlike oth er textures, buffer
 textures do not have multiple image levels; onl y a single data store is
 available.

 The command

 void TexBufferEXT(enum target, enum internalf ormat, uint buffer);

 attaches the storage for the buffer object name d <buffer> to the active
 buffer texture, and specifies an internal forma t for the texel array found
 in the attached buffer object. If <buffer> is zero, any buffer object
 attached to the buffer texture is detached, and no new buffer object is
 attached. If <buffer> is non-zero, but is not the name of an existing
 buffer object, the error INVALID_OPERATION is g enerated. <target> must be
 TEXTURE_BUFFER_EXT. <internalformat> specifies the storage format, and
 must be one of the sized internal formats found in Table X.1.

 When a buffer object is attached to a buffer te xture, the buffer object's
 data store is taken as the texture's texel arra y. The number of texels in
 the buffer texture's texel array is given by

 floor(<buffer_size> / (<components> * sizeof(<base_type>)),

 where <buffer_size> is the size of the buffer o bject, in basic machine
 units and <components> and <base_type> are the element count and base data
 type for elements, as specified in Table X.1. The number of texels in the
 texel array is then clamped to the implementati on-dependent limit
 MAX_TEXTURE_BUFFER_SIZE_EXT. When a buffer tex ture is accessed in a
 shader, the results of a texel fetch are undefi ned if the specified texel
 number is greater than or equal to the clamped number of texels in the
 texel array.

 When a buffer texture is accessed in a shader, an integer is provided to
 indicate the texel number being accessed. If n o buffer object is bound to
 the buffer texture, the results of the texel ac cess are undefined.
 Otherwise, the attached buffer object's data st ore is interpreted as an
 array of elements of the GL data type correspon ding to <internalformat>.
 Each texel consists of one to four elements tha t are mapped to texture
 components (R, G, B, A, L, and I). Element <m> of the texel numbered <n>
 is taken from element <n> * <components> + <m> of the attached buffer
 object's data store. Elements and texels are b oth numbered starting with
 zero. For texture formats with normalized comp onents, the extracted
 values are converted to floating-point values a ccording to Table 2.9. The
 components of the texture are then converted to an (R,G,B,A) vector
 according to Table X.21, and returned to the sh ader as a four-component
 result vector with components of the appropriat e data type for the
 texture's internal format. The base data type, component count,
 normalized component information, and mapping o f data store elements to
 texture components is specified in Table X.1.

EXT_texture_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 171

 Component
 Sized Internal Format Base Type Componen ts Norm 0 1 2 3
 ------------------------ --------- -------- -- ---- -------
 ALPHA8 ubyte 1 Y A . . .
 ALPHA16 ushort 1 Y A . . .
 ALPHA16F_ARB half 1 N A . . .
 ALPHA32F_ARB float 1 N A . . .
 ALPHA8I_EXT byte 1 N A . . .
 ALPHA16I_EXT short 1 N A . . .
 ALPHA32I_EXT int 1 N A . . .
 ALPHA8UI_EXT ubyte 1 N A . . .
 ALPHA16UI_EXT ushort 1 N A . . .
 ALPHA32UI_EXT uint 1 N A . . .

 LUMINANCE8 ubyte 1 Y L . . .
 LUMINANCE16 ushort 1 Y L . . .
 LUMINANCE16F_ARB half 1 N L . . .
 LUMINANCE32F_ARB float 1 N L . . .
 LUMINANCE8I_EXT byte 1 N L . . .
 LUMINANCE16I_EXT short 1 N L . . .
 LUMINANCE32I_EXT int 1 N L . . .
 LUMINANCE8UI_EXT ubyte 1 N L . . .
 LUMINANCE16UI_EXT ushort 1 N L . . .
 LUMINANCE32UI_EXT uint 1 N L . . .

 LUMINANCE8_ALPHA8 ubyte 2 Y L A . .
 LUMINANCE16_ALPHA16 ushort 2 Y L A . .
 LUMINANCE_ALPHA16F_ARB half 2 N L A . .
 LUMINANCE_ALPHA32F_ARB float 2 N L A . .
 LUMINANCE_ALPHA8I_EXT byte 2 N L A . .
 LUMINANCE_ALPHA16I_EXT short 2 N L A . .
 LUMINANCE_ALPHA32I_EXT int 2 N L A . .
 LUMINANCE_ALPHA8UI_EXT ubyte 2 N L A . .
 LUMINANCE_ALPHA16UI_EXT ushort 2 N L A . .
 LUMINANCE_ALPHA32UI_EXT uint 2 N L A . .

 INTENSITY8 ubyte 1 Y I . . .
 INTENSITY16 ushort 1 Y I . . .
 INTENSITY16F_ARB half 1 N I . . .
 INTENSITY32F_ARB float 1 N I . . .
 INTENSITY8I_EXT byte 1 N I . . .
 INTENSITY16I_EXT short 1 N A . . .
 INTENSITY32I_EXT int 1 N A . . .
 INTENSITY8UI_EXT ubyte 1 N A . . .
 INTENSITY16UI_EXT ushort 1 N A . . .
 INTENSITY32UI_EXT uint 1 N A . . .

 RGBA8 ubyte 4 Y R G B A
 RGBA16 ushort 4 Y R G B A
 RGBA16F_ARB half 4 N R G B A
 RGBA32F_ARB float 4 N R G B A
 RGBA8I_EXT byte 4 N R G B A
 RGBA16I_EXT short 4 N R G B A
 RGBA32I_EXT int 4 N R G B A
 RGBA8UI_EXT ubyte 4 N R G B A
 RGBA16UI_EXT ushort 4 N R G B A
 RGBA32UI_EXT uint 4 N R G B A

 Table X.1, Internal Formats for Buffer Textures. For each fo rmat, the
 data type of each element is indicated in the "Base Type" column and the
 element count is in the "Components" column. The "Norm" column
 indicates whether components should be treate d as normalized
 floating-point values. The "Component 0, 1, 2, and 3" columns indicate
 the mapping of each element of a texel to tex ture components.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_buffer_object

NVIDIA Proprietary 172

 In addition to attaching buffer objects to text ures, buffer objects can be
 bound to the buffer object target named TEXTURE _BUFFER_EXT, in order to
 specify, modify, or read the buffer object's da ta store. The buffer
 object bound to TEXTURE_BUFFER_EXT has no effec t on rendering. A buffer
 object is bound to TEXTURE_BUFFER_EXT by callin g BindBuffer with <target>
 set to TEXTURE_BUFFER_EXT. If no corresponding buffer object exists, one
 is initialized as defined in section 2.9.

 The commands BufferData, BufferSubData, MapBuff er, and UnmapBuffer may all
 be used with <target> set to TEXTURE_BUFFER_EXT . In this case, these
 commands operate in the same fashion as describ ed in section 2.9, but on
 the buffer currently bound to the TEXTURE_BUFFE R_EXT target.

 Modify Section 3.8.11, Texture State and Proxy State (p. 178)

 (insert into the first paragraph of the section , p. 178) ... a zero
 compressed size, and zero-sized components). T he buffer texture target
 contains an integer identifying the buffer obje ct that buffer that
 provided the data store for the texture, initia lly zero, and an integer
 identifying the internal format of the texture, initially LUMINANCE8.
 Next, there are the two sets of texture propert ies; ...

 Modify Section 3.8.12, Texture Objects (p. 180)

 (modify first paragraphs of section, p. 180, si mply adding references to
 buffer textures, which are treated as texture objects)

 In addition to the default textures TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP, and TEXTURE_BUFFER_EXT, named one-, two-, and
 three-dimensional, cube map, and buffer texture objects can be created and
 operated upon. The name space for texture objec ts is the unsigned
 integers, with zero reserved by the GL.

 A texture object is created by binding an unuse d name to TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, or TE XTURE_BUFFER_EXT. The
 binding is effected by calling

 void BindTexture(enum target, uint texture) ;

 with target set to the desired texture target a nd texture set to the
 unused name. The resulting texture object is a new state vector,
 comprising all the state values listed in secti on 3.8.11, set to the same
 initial values. If the new texture object is bo und to TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, or TE XTURE_BUFFER_EXT, it is and
 remains a one-, two-, three-dimensional, cube m ap, or buffer texture
 respectively until it is deleted.

 BindTexture may also be used to bind an existin g texture object to either
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_CUB E_MAP, or
 TEXTURE_BUFFER_EXT. The error INVALID_OPERATION is generated if an attempt
 is made to bind a texture object of different d imensionality than the
 specified target. If the bind is successful no change is made to the state
 of the bound texture object, and any previous b inding to target is broken.

 ...

EXT_texture_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 173

 In the initial state, TEXTURE_1D, TEXTURE_2D, T EXTURE_3D,
 TEXTURE_CUBE_MAP, and TEXTURE_BUFFER_EXT have o ne-, two-,
 three-dimensional, cube map, and buffer texture state vectors respectively
 associated with them. In order that access to t hese initial textures not
 be lost, they are treated as texture objects al l of whose names are 0. The
 initial one-, two-, three-dimensional, cube map , and buffer texture is
 therefore operated upon, queried, and applied a s TEXTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP, or TEXTURE_BUFFER _EXT respectively while 0
 is bound to the corresponding targets.

 Texture objects are deleted by calling

 void DeleteTextures(sizei n, uint *textures);

 textures contains n names of texture objects to be deleted. After a
 texture object is deleted, it has no contents o r dimensionality, and its
 name is again unused. If a texture that is curr ently bound to one of the
 targets TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEX TURE_CUBE_MAP, or
 TEXTURE_BUFFER_EXT is deleted, it is as though BindTexture had been
 executed with the same target and texture zero. Unused names in textures
 are silently ignored, as is the value zero.

 (modify second paragraph, p. 182, adding buffer textures, plus cube map
 textures, which is an oversight in the core spe cification)

 The texture object name space, including the in itial one-, two-, and
 three-dimensional, cube map, and buffer texture objects, is shared among
 all texture units. A texture object may be boun d to more than one texture
 unit simultaneously. After a texture object is bound, any GL operations on
 that target object affect any other texture uni ts to which the same
 texture object is bound.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 Modify Section 5.4, Display Lists (p. 237)

 (modify "Vertex buffer objects" portion of the list of non-listable
 commands, p. 241)

 Buffer objects: GenBuffers, DeleteBuffers, Bi ndBuffer, BufferData,
 BufferSubData, MapBuffer, UnmapBuffer, and Te xBufferEXT.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.13, Buffer Object Queries (p . 255)

 (modify the first paragraph on p. 256) The comm and

 void GetBufferSubData(enum target, intptr of fset,
 sizeiptr size, void *d ata);

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_buffer_object

NVIDIA Proprietary 174

 queries the data contents of a buffer object. t arget is ARRAY_BUFFER,
 ELEMENT_ARRAY_BUFFER, or TEXTURE_BUFFER_EXT. .. .

 (modify the last paragraph of the section, p. 2 56) While the data store of
 a buffer object is mapped, the pointer to the d ata store can be queried by
 calling

 void GetBufferPointerv(enum target, enum pna me, void **params);

 with target set to ARRAY_BUFFER, ELEMENT_ARRAY_ BUFFER, or
 TEXTURE_BUFFER_EXT, and pname set to BUFFER MAP POINTER.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on EXT_texture_array

 If EXT_texture_array is supported, the introduc tory language describing
 buffer textures should acknowledge the existenc e of array textures. Other
 than that, there are no dependencies between th e two extensions.

Dependencies on NV_texture_shader

 If NV_texture_shader is not supported, referenc es to the signed normalized
 internal formats provided by that extension sho uld be removed, and such
 formats may not be passed to TexBufferEXT.

Dependencies on EXT_texture_integer

 If EXT_texture_integer is not supported, refere nces to the signed and
 unsigned integer internal formats provided by t hat extension should be
 removed, and such formats may not be passed to TexBufferEXT.

Dependencies on ARB_texture_float

 If ARB_texture_float is not supported, referenc es to the floating-point
 internal formats provided by that extension sho uld be removed, and such
 formats may not be passed to TexBufferEXT.

Dependencies on ARB_half_float_pixel

 If ARB_texture_float is not supported, referenc es to the 16-bit
 floating-point internal formats provided by ARB _texture_float should be
 removed, and such formats may not be passed to TexBufferEXT. If an
 implementation supports ARB_texture_float, but does not support
 ARB_half_float_pixel, 16-bit floating-point tex ture formats may be
 available using normal texture mechanisms, but not with buffer textures.

Errors

 INVALID_OPERATION is generated by TexBufferEXT if <buffer> is non-zero and
 is not the name of an existing buffer object.

EXT_texture_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 175

New State

 (add to table 6.15, Texture State Per Texture U nit/Binding Point p. 276)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------------------------------- ---- --- -------- ------- --------------------------- ------ ---------
 TEXTURE_BINDING_BUFFER_EXT 2*xZ+ Get Integerv 0 Texture object bound to 3.8.12 texture
 TEXTURE_BUFFER_EXT

 (add to table 6.16, Texture State Per Texture O bject, p. 276)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------------------------------- ---- --- -------- ------- --------------------------- ------ ---------
 TEXTURE_BUFFER_DATA_STORE_ nxZ+ Get Integerv 0 Buffer object bound as 3.8.12 texture
 BINDING_EXT the data store for the
 active image unit's buffer
 texture
 TEXTURE_BUFFER_FORMAT_EXT nxZ+ Get Integerv LUMIN- Internal format for the 3.8.12 texture
 ANCE8 active image unit's buffer
 texture

 (add to table 6.37, Miscellaneous State, p. 298)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------------------------------- ---- --- -------- ------- --------------------------- ------ ---------
 TEXTURE_BUFFER_EXT Z+ Get Integerv 0 Buffer object bound to 3.8.12 texture
 the generic buffer texture
 binding point

New Implementation Dependent State

 (modify Table 6.32, p. 293)
 Minimum
 Get Value Type Get Command Value Description Sec. Attribute
 --------------------------- ---- ----------- ------- --------------------- ----- ---------
 MAX_TEXTURE_BUFFER_SIZE_EXT Z+ GetIntegerv 65536 number of addressable 3.8.4 -
 texels for buffer
 textures

Issues

 (1) Buffer textures are potentially large one-d imensional arrays that can
 be accessed with single-texel fetches. How should this functionality
 be exposed?

 RESOLVED: Several options were considered. The final approach creates
 a new type of texture object, called a buffer texture, whose texel array
 is taken from the data store from a buffer ob ject. The combined set of
 extensions using buffer objects provides nume rous locations where the GL
 can read and write data to a buffer object:

 EXT_vertex_buffer_object allows vertex attr ibutes to be pulled from a
 buffer object.

 EXT_pixel_buffer_object allows pixel operat ions (DrawPixels,
 ReadPixels, TexImage) to read or write data to a buffer object.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_buffer_object

NVIDIA Proprietary 176

 EXT_parameter_buffer_object and EXT_bindabl e_uniform allows assembly
 vertex, fragment, and geometry programs, an d all GLSL shaders to read
 program parameter / uniform data from a buf fer object.

 EXT_texture_buffer_object allows programs t o read texture data from a
 buffer object.

 NV_transform_feedback allows programs to wr ite transformed vertex
 attributes to a buffer object.

 When combined, interesting feedback paths are possible, where large
 arrays of data can be generated by the GPU an d the consumed by it in
 multi-pass algorithms, using the buffer objec t's storage to hold
 intermediate data. This allows applications to run complicated
 algorithms on the GPU without necessarily pul ling data back to host CPU
 for additional processing.

 Given that buffer object memory is visible to users as raw memory, all
 uses of the memory must have well-defined dat a formats. For VBO and
 PBO, those formats are explicitly given by ca lls such as VertexPointer,
 TexImage2D, or ReadPixels. When used as a bu ffer texture, it is
 necessary to specify an internal format with which the bytes of the
 buffer object's data store are interpreted.

 Another option considered was to greatly incr ease the maximum texture
 size for 1D texture. This has the advantage of not requiring new
 mechanisms. However, there are a couple limi tations of this approach.
 First, conventional textures have their own s torage that is not
 accessible elsewhere, which limits some of th e sharing opportunities
 described above. Second, buffer textures do have slightly different
 hardware implementations than 1D textures. I n the hardware of interest,
 "normal" 1D textures can be mipmapped and fil tered, but have a maximum
 size that is considerably smaller than that s upported for buffer
 textures. If both texture types used the sam e API mechanism, it might
 be necessary to reprogram texture hardware an d/or shaders depending on
 the size of the textures used. This will inc ur CPU overhead to
 determine if such reprogramming is necessary and to perform the
 reprogramming if so.

 (2) Since buffer textures borrow storage from b uffer objects, whose
 storage is visible to applications, a forma t must be imposed on the
 bytes of the buffer object. What texture f ormats are supported for
 buffer objects?

 RESOLVED: All sized one-, two-, and four-com ponent internal formats
 with 8-, 16-, and 32-bit components are suppo rted. Unsized internal
 formats, and sized formats with other compone nt sizes are also not
 supported. Three-component (RGB) formats are not supported due to
 hardware limitations.

 All component data types supported for normal textures are also
 supported for buffer textures. This includes unsigned [0,1] normalized
 components (e.g., RGBA8), floating-point comp onents from
 ARB_texture_float (e.g., RGBA32F_ARB), signed and unsigned integer
 components from EXT_texture_integer (e.g., RG BA8I_EXT, RGBA16UI_EXT),

EXT_texture_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 177

 and signed [-1,+1] normalized components from NV_texture_shader (e.g.,
 SIGNED_RGBA8_NV).

 (3) How can arrays of three-component vectors b e accessed by applications?

 RESOLVED: Several approaches are possible.

 First, the vectors can be padded out to four components (RGBA), with an
 extra unused component for each texel. This has a couple undesirable
 properties: it adds 33% to the required stor age and adding the extra
 component may require reformatting of origina l data generated by the
 application. However, the data in this forma t can be retrieved with a
 single 32-, 64-, or 128-bit lookup.

 Alternately, the buffer texture can be define d using a single component,
 and a shader can perform three lookups to sep arately fetch texels 3*N,
 3*N+1, and 3*N+2, combining the result in a t hree-component vector
 representing "RGB" texel N. This doesn't req uire extra storage or
 reformatting and doesn't require additional b andwidth for texture
 fetches. But it does require additional shad er instructions to obtain
 each texel.

 (4) Does this extension support fixed-function fragment processing,
 somehow allowing buffer textures to be acce ssed without programmable
 shaders?

 RESOLVED: No. We expect that it would be di fficult to properly access
 a buffer texture and combine the returned tex el with other color or
 texture data, given the extremely limited pro gramming model provided by
 fixed-function fragment processing.

 Note also that the single-precision floating- point representation
 commonly used by current graphics hardware is not sufficiently precise
 to exactly represent all texels in a large bu ffer texture. For example,
 it is not possible to represent 2^24+1 using the 32-bit IEEE
 floating-point representation.

 (5) What happens if a buffer object is deleted or respecified when bound
 to a buffer texture?

 RESOLVED: BufferData is allowed to be used to update a buffer object that
 has already been bound to a texture with TexB uffer. The update to the data
 is not guaranteed to affect the texture until next time it is bound to a
 texture image unit. When DeleteBuffers is ca lled, any buffer that is
 bound to a texture is removed from the names array, but remains as long as
 it is bound to a texture. The buffer is full y removed when the texture
 unbinds it or when the texture buffer object is deleted.

 (6) Should applications be able to modify the d ata store of a buffer
 object while it is bound to a buffer textur e?

 RESOLVED: An application is allowed to update the data store for a buffer
 object when the buffer object is bound to a t exture.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_buffer_object

NVIDIA Proprietary 178

 (7) Do buffer textures support texture paramete rs (TexParameter) or
 queries (GetTexParameter, GetTexLevelParame ter, GetTexImage)?

 RESOLVED: No. None of the existing paramete rs apply to buffer
 textures, and this extension doesn't introduc e the need for any new
 ones. Buffer textures have no levels, and th e size in texels is
 implicit (based on the data store). Given th at the texels themselves
 are obtained from a buffer object, it seems m ore appropriate to retrieve
 such data with buffer object queries. The on ly "parameter" of a buffer
 texture is the internal format, which is spec ified at the same time the
 buffer object is bound.

 Note that the spec edits above don't add expl icit error language for any
 of these cases. That is because each of the functions enumerate the set
 of valid <target> parameters. Not editing th e spec to allow
 TEXTURE_BUFFER_EXT in these cases means that target is not legal, and an
 INVALID_ENUM error should be generated.

 (8) What about indirect rendering with a mix of big- and little-endian
 clients? If components are 16- or 32-bit, how are they interpreted?

 RESOLVED: Buffer object data are interpreted according to the native
 representation of the server. If the server and client have different
 endianness, applications must perform byte sw apping as needed to match
 the server's representation. No mechanism is provided to perform this
 byte swapping on buffer object updates or whe n texels are fetched.

 The same problem also exists when buffer obje cts are used for vertex
 arrays (VBO). For buffer objects used for pi xel packing and unpacking
 (ARB_pixel_buffer_object), the PixelStore byt e swapping parameters
 (PACK_SWAP_BYTES, UNPACK_SWAP_BYTES) would pr esumably apply and could be
 used to perform the necessary byte swapping.

 (9) Should the set of formats supported for buf fer textures be enumerated,
 or should the extension instead nominally s upport all formats, but
 accept only an implementation-dependent sub set?

 RESOLVED: Provide a specified set of support ed formats. This
 extension simply enumerates all 8-, 16-, and 32-byte internal formats
 with 1, 2, or 4 components, and specifies the mapping of unformatted
 buffer object data to texture components. A follow-on extension could
 be done to support 3-component texels when be tter native hardware
 support is available.

 Other than 3-component texels, the set of for mats supported seems pretty
 compehensive. We expect that buffer textures would be used for general
 computational tasks, where there is little ne ed for formats with smaller
 components (e.g., RGBA4444). Such formats ar e generally not supported
 natively on CPUs today. With the general com putational model provided
 by NV_gpu_program4 and EXT_gpu_shader4, it wo uld be possible to treat
 such "packed" formats as larger single-compon ent formats and unpack them
 with a small number of shader instructions.

 If and when double-precision floats or 64-bit integers are supported as
 basic types usable by shaders, we would expec t that an extension would
 add new texture internal formats with 64-bit components and that those

EXT_texture_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 179

 formats would also be supported for general-p urpose textures and buffer
 textures as well.

 (10) How are buffer textures supported in GLSL?

 RESOLVED: Create a new sampler type (sampler Buffer) for buffer textures
 and add a new lookup function (texelFetchBuff er) to explicitly access
 them using texture hardware.

 Other possibilities considered included exten ding the notion of bindable
 uniforms to support uniforms whose correspond ing buffer objects can be
 bound to texture resources (e.g., "texture bi ndable uniform" instead of
 "bindable uniform"). We also considered auto matically assigning
 bindable uniforms to texture or shader resour ces as appropriate. Note
 that the restrictions, size limits, and perfo rmance characterstics of
 buffer textures and parameter buffers (NV_par ameter_buffer_object)
 differ. Automatic handling of uniforms adds driver complexity and may
 tend to hide performance characteristics sinc e it isn't clear what
 resource would be used for what variable. Ad ditionally, it could
 require shader recompilation if the size of a uniform array is variable,
 and the hardware resource used depended on th e size.

 In the end, the texture approach seemed the s implest, and we chose that.
 It might be worth doing something more comple x in the future.

 (11) What is the TEXTURE_BUFFER_EXT buffer obje ct binding point good for?

 RESOLVED: It can be used for loading data in to buffer objects, and for
 mapping and unmapping buffers, both without d isturbing other binding
 points. Otherwise, it has no effect on GL op erations, since buffer
 objects are bound to textures using the TexBu fferEXT() command that does
 not affect the buffer object binding point.

 Buffer object binding points have mixed usage . In the
 EXT_vertex_buffer_object extension (OpenGL 1. 5), there are two binding
 points. The ELEMENT_ARRAY_BUFFER has a direc t effect on rendering, as
 it modifies DrawElements() calls. The effect of ARRAY_BUFFER is much
 more indirect; it is only used to affect subs equent vertex array calls
 (e.g., VertexPointer) and has no direct effec t on rendering. The reason
 for this is that the API was retrofitted on t op of existing vertex array
 APIs. If a new vertex array API were created that emphasized or even
 required the use of buffer objects, it seems likely that the buffer
 object would be included in the calls equival ent to today's
 VertexPointer() call.

 (12) How is the various buffer texture-related state queried?

 RESOLVED: There are three pieces of state th at can be queried: (a) the
 texture object bound to buffer texture bindin g point for the active
 texture image unit, (b) the buffer object who se data store was used by
 that texture object, and (c) the buffer objec t bound to the
 TEXTURE_BUFFER_EXT binding point.

 All three are queried with GetIntegerv, becau se it didn't seem worth the
 trouble to add one or more new query function s. Note that for (a) and
 (b), the texture queried is the one bound to TEXTURE_BUFFER_EXT on the
 active texture image unit.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_buffer_object

NVIDIA Proprietary 180

 (13) Should we provide a new set of names for t he signed normalized
 textures introduced in NV_texture_shader t hat match the convention
 used for floating-point and integer textur es?

 RESOLVED: No.

 (14) Can a buffer object be attached to more th an one buffer texture at
 once?

 RESOLVED: Multiple buffer textures may attach to the same buffer object
 simultaneously.

 (15) How does this extension interact with disp lay lists?

 RESOLVED: Buffer object commands can't be co mpiled into a display list.
 The new command in this extension uses buffer objects, so we specify
 that it also can't be compiled into a display list.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 4 10/30/07 ewerness Add resolutions to va rious issues

 3 -- Pre-release revisions .

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 181

Name

 EXT_texture_compression_latc

Name Strings

 GL_EXT_texture_compression_latc
 GL_NV_texture_compression_latc (legacy)

Contributors

 Mark J. Kilgard, NVIDIA
 Pat Brown, NVIDIA
 Yanjun Zhang, S3

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 1/21/2008
 Revision: 1.2

Number

 331

Dependencies

 OpenGL 1.3 or ARB_texture_compression required

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 This extension introduces four new block-based texture compression
 formats suited for unsigned and signed luminanc e and luminance-alpha
 textures (hence the name "latc" for Luminance-A lpha Texture
 Compression).

 These formats are designed to reduce the storag e requirements and
 memory bandwidth required for luminance and lum inance-alpha textures
 by a factor of 2-to-1 over conventional uncompr essed luminance and
 luminance-alpha textures with 8-bit components (GL_LUMINANCE8 and
 GL_LUMINANCE8_ALPHA8).

 The compressed signed luminance-alpha format is reasonably suited
 for storing compressed normal maps.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

NVIDIA Proprietary 182

New Procedures and Functions

 None.

New Tokens

 Accepted by the <internalformat> parameter of T exImage2D,
 CopyTexImage2D, and CompressedTexImage2D and th e <format> parameter
 of CompressedTexSubImage2D:

 COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
 COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT 0x8C71
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT 0x8C73

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 -- Section 3.8.1, Texture Image Specification

 Add to Table 3.17 (page 155): Specific compres sed internal formats

 Compressed Internal Format Base Internal Format
 --- --------------------
 COMPRESSED_LUMINANCE_LATC1_EXT LUMINANCE
 COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT LUMINANCE
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT LUMINANCE_ALPHA
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT LUMINANCE_ALPHA

 -- Section 3.8.2, Alternative Texture Image Specif ication Commands

 Add to the end of the section (page 163):

 "If the internal format of the texture image be ing modified is
 COMPRESSED_LUMINANCE_LATC1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT, th e texture is stored
 using one of the two LATC compressed texture im age encodings (see
 appendix). Such images are easily edited along 4x4 texel boundaries,
 so the limitations on TexSubImage2D or CopyTexS ubImage2D parameters
 are relaxed. TexSubImage2D and CopyTexSubImage 2D will result in
 an INVALID_OPERATION error only if one of the f ollowing conditions
 occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH,
 unless <xoffset> and <yoffset> are both z ero.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT,
 unless <xoffset> and <yoffset> are both z ero.
 * <xoffset> or <yoffset> is not a multiple of four.

 The contents of any 4x4 block of texels of an L ATC compressed texture
 image that does not intersect the area being mo dified are preserved
 during valid TexSubImage2D and CopyTexSubImage2 D calls."

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 183

 -- Section 3.8.3, Compressed Texture Images

 Add after the 4th paragraph (page 164) at the e nd of the
 CompressedTexImage discussion:

 "If <internalformat> is COMPRESSED_LUMINANCE_LA TC1_EXT,
 COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT, th e compressed texture is
 stored using one of several LATC compressed tex ture image formats.
 The LATC texture compression algorithm supports only 2D images
 without borders. CompressedTexImage1D and Comp ressedTexImage3D
 produce an INVALID_ENUM error if <internalforma t> is an LATC format.
 CompressedTexImage2D will produce an INVALID_OP ERATION error if
 <border> is non-zero.

 Add to the end of the section (page 166) at the end of the
 CompressedTexSubImage discussion:

 "If the internal format of the texture image be ing modified is
 COMPRESSED_LUMINANCE_LATC1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT, th e texture is stored
 using one of the several LATC compressed textur e image formats.
 Since the LATC texture compression algorithm su pports only 2D images,
 CompressedTexSubImage1D and CompressedTexSubIma ge3D produce an
 INVALID_ENUM error if <format> is an LATC forma t. Since LATC images
 are easily edited along 4x4 texel boundaries, t he limitations on
 CompressedTexSubImage2D are relaxed. Compresse dTexSubImage2D will
 result in an INVALID_OPERATION error only if on e of the following
 conditions occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
 * <xoffset> or <yoffset> is not a multiple of four.

 The contents of any 4x4 block of texels of an L ATC compressed texture
 image that does not intersect the area being mo dified are preserved
 during valid TexSubImage2D and CopyTexSubImage2 D calls."

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

NVIDIA Proprietary 184

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Dependencies on ARB_texture_compression

 If ARB_texture_compression is supported, all th e
 errors and accepted tokens for CompressedTexIma ge1D,
 CompressedTexImage2D, CompressedTexImage3D, Com pressedTexSubImage1D,
 CompressedTexSubImage2D, and CompressedTexSubIm age3D also apply
 respectively to the ARB-suffixed CompressedTexI mage1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge2DARB, and
 CompressedTexSubImage3DARB.

Errors

 INVALID_ENUM is generated by CompressedTexImage 1D
 or CompressedTexImage3D if <internalformat> is
 COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT.

 INVALID_OPERATION is generated by CompressedTex Image2D
 if <internalformat> is COMPRESSED_LUMINANCE_LAC T1_EXT,
 COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT and <border> is not
 equal to zero.

 INVALID_ENUM is generated by CompressedTexSubIm age1D
 or CompressedTexSubImage3D if <format> is
 COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT.

 INVALID_OPERATION is generated by TexSubImage2D CopyTexSubImage2D,
 or CompressedTexSubImage2D if TEXTURE_INTERNAL_ FORMAT is
 COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT and any of the following
 apply: <width> is not a multiple of four or equ al to TEXTURE_WIDTH;
 <height> is not a multiple of four or equal to TEXTURE_HEIGHT;
 <xoffset> or <yoffset> is not a multiple of fou r.

 The following restrictions from the ARB_texture _compression
 specification do not apply to LATC texture form ats, since subimage
 modification is straightforward as long as the subimage is properly
 aligned.

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 185

 DELETE: INVALID_OPERATION is generated by TexSu bImage1D, TexSubImage2D,
 DELETE: TexSubImage3D, CopyTexSubImage1D, CopyT exSubImage2D, or
 DELETE: CopyTexSubImage3D if the internal forma t of the texture image is
 DELETE: compressed and <xoffset>, <yoffset>, or <zoffset> does not equal
 DELETE: -b, where b is value of TEXTURE_BORDER.

 DELETE: INVALID_VALUE is generated by Compresse dTexSubImage1D,
 DELETE: CompressedTexSubImage2D, or CompressedT exSubImage3D if the
 DELETE: entire texture image is not being edite d: if <xoffset>,
 DELETE: <yoffset>, or <zoffset> is greater than -b, <xoffset> + <width> is
 DELETE: less than w+b, <yoffset> + <height> is less than h+b, or <zoffset>
 DELETE: + <depth> is less than d+b, where b is the value of
 DELETE: TEXTURE_BORDER, w is the value of TEXTU RE_WIDTH, h is the value of
 DELETE: TEXTURE_HEIGHT, and d is the value of T EXTURE_DEPTH.

 See also errors in the GL_ARB_texture_compressi on specification.

New State

 4 new state values are added for the per-textur e object
 GL_TEXTURE_INTERNAL_FORMAT state.

 In the "Textures" state table(page 278), incre ment the
 TEXTURE_INTERNAL_FORMAT subscript for Z by 4 in the "Type" row.

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

New Implementation Dependent State

 None

Appendix

 LATC Compressed Texture Image Formats

 Compressed texture images stored using the LATC compressed image
 encodings are represented as a collection of 4x 4 texel blocks,
 where each block contains 64 or 128 bits of tex el data. The image
 is encoded as a normal 2D raster image in which each 4x4 block is
 treated as a single pixel. If an LATC image ha s a width or height
 less than four, the data corresponding to texel s outside the image
 are irrelevant and undefined.

 When an LATC image with a width of <w>, height of <h>, and block
 size of <blocksize> (8 or 16 bytes) is decoded, the corresponding
 image size (in bytes) is:

 ceil(<w>/4) * ceil(<h>/4) * blocksize.

 When decoding an LATC image, the block containi ng the texel at offset
 (<x>, <y>) begins at an offset (in bytes) relat ive to the base of the
 image of:

 blocksize * (ceil(<w>/4) * floor(<y>/4) + f loor(<x>/4)).

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

NVIDIA Proprietary 186

 The data corresponding to a specific texel (<x> , <y>) are extracted
 from a 4x4 texel block using a relative (x,y) v alue of

 (<x> modulo 4, <y> modulo 4).

 There are four distinct LATC image formats:

 COMPRESSED_LUMINANCE_LATC1: Each 4x4 block of texels consists of
 64 bits of unsigned luminance image data.

 Each luminance image data block is encoded as a sequence of 8 bytes,
 called (in order of increasing address):

 lum0, lum1, bits_0, bits_1, bits_2, bit s_3, bits_4, bits_5

 The 6 "bits_*" bytes of the block are decod ed into a 48-bit bit
 vector:

 bits = bits_0 +
 256 * (bits_1 +
 256 * (bits_2 +
 256 * (bits_3 +
 256 * (bi ts_4 +
 25 6 * bits_5))))

 lum0 and lum1 are 8-bit unsigned integers t hat are unpacked to
 luminance values LUM0 and LUM1 as though th ey were pixels with
 a <format> of LUMINANCE and a type of UNSIG NED_BTYE.

 bits is a 48-bit unsigned integer, from whi ch a three-bit control
 code is extracted for a texel at location (x,y) in the block
 using:

 code(x,y) = bits[3*(4*y+x)+2..3*(4*y+x) +0]

 where bit 47 is the most significant and bi t 0 is the least
 significant bit.

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 187

 The luminance value L for a texel at locati on (x,y) in the block
 is given by:

 LUM0, if lum0 > lum1 and c ode(x,y) == 0
 LUM1, if lum0 > lum1 and c ode(x,y) == 1
 (6*LUM0+ LUM1)/7, if lum0 > lum1 and c ode(x,y) == 2
 (5*LUM0+2*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 3
 (4*LUM0+3*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 4
 (3*LUM0+4*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 5
 (2*LUM0+5*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 6
 (LUM0+6*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 7

 LUM0, if lum0 <= lum1 and code(x,y) == 0
 LUM1, if lum0 <= lum1 and code(x,y) == 1
 (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2
 (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3
 (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4
 (LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5
 MINLUM, if lum0 <= lum1 and code(x,y) == 6
 MAXLUM, if lum0 <= lum1 and code(x,y) == 7

 MINLUM and MAXLUM are 0.0 and 1.0 respectiv ely.

 Since the decoded texel has a luminance format, the resulting RGBA
 value for the texel is (L,L,L,1).

 COMPRESSED_SIGNED_LUMINANCE_LATC1: Each 4x4 block of texels consists
 of 64 bits of signed luminance image data. The luminance values of
 a texel are extracted in the same way as COMPRE SSED_LUMINANCE_LATC1
 except lum0, lum1, LUM0, LUM1, MINLUM, and MAXL UM are signed values
 defined as follows:

 lum0 and lum1 are 8-bit signed (two's compl ement) integers.

 { lum0 / 127.0, lum0 > -128
 LUM0 = {
 { -1.0, lum0 == -128

 { lum1 / 127.0, lum1 > -128
 LUM1 = {
 { -1.0, lum1 == -128

 MINLUM = -1.0

 MAXLUM = 1.0

 CAVEAT for signed lum0 and lum1 values: the exp ressions "lum0 >
 lum1" and "lum0 <= lum1" above are considered u ndefined (read: may
 vary by implementation) when lum0 equals -127 a nd lum1 equals -128,
 This is because if lum0 were remapped to -127 p rior to the comparison
 to reduce the latency of a hardware decompresso r, the expressions
 would reverse their logic. Encoders for the si gned LA formats should
 avoid encoding blocks where lum0 equals -127 an d lum1 equals -128.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

NVIDIA Proprietary 188

 COMPRESSED_LUMINANCE_ALPHA_LATC2: Each 4x4 block of texels consists
 of 64 bits of compressed unsigned luminance ima ge data followed by
 64 bits of compressed unsigned alpha image data .

 The first 64 bits of compressed luminance are d ecoded exactly like
 COMPRESSED_LUMINANCE_LATC1 above.

 The second 64 bits of compressed alpha are deco ded exactly like
 COMPRESSED_LUMINANCE_LATC1 above except the dec oded value L for this
 second block is considered the resulting alpha value A.

 Since the decoded texel has a luminance-alpha f ormat, the resulting
 RGBA value for the texel is (L,L,L,A).

 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2: Each 4x4 block of texels
 consists of 64 bits of compressed signed lumina nce image data followed
 by 64 bits of compressed signed alpha image dat a.

 The first 64 bits of compressed luminance are d ecoded exactly like
 COMPRESSED_SIGNED_LUMINANCE_LATC1 above.

 The second 64 bits of compressed alpha are deco ded exactly like
 COMPRESSED_SIGNED_LUMINANCE_LATC1 above except the decoded value L
 for this second block is considered the resulti ng alpha value A.

 Since this image has a luminance-alpha format, the resulting RGBA
 value is (L,L,L,A).

Issues

 1) What should these new formats be called?

 RESOLVED: "latc" for Luminance-Alpha Textur e Compression.

 2) How should the uncompressed and filtered te xels be returned by
 texture fetches?

 RESOLVED: Luminance values show up as they do conventionally as
 (L,L,L,1) where the luminance value L is re plicated in the red,
 green, and blue components and alpha is for ced to 1. Likewise,
 luminance-alpha values show up as (L,L,L,A) where A is the alpha
 value.

 Alternatively, prior extensions such as NV_ float_buffer and
 NV_texture_shader have introduced formats s uch as GL_FLOAT_R_NV
 and GL_DSDT_NV where one- and two-component texture formats show
 up as (X,0,0,1) or (X,Y,0,1) RGBA texels. Such formats have
 not proven popular. In particular, they in teract awkwardly with
 the pixel path and conventional texture env ironment modes.

 The (X,Y,0,1) convention, particularly with signed components,
 is nice for normal maps because a normalize d vector can be
 formed by a shader program by computing sqr t(abs(1-X*X-Y*Y))
 for the Z component. However, this nicenes s is mostly conceptual
 however since the same effect can be accomp lished with swizzling
 as shown in this GLSL code:

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 189

 vec2 texLA = texture2D(samplerLA, gl_T exCoord[0]).xw;
 vec3 normal = vec3(texLA.x,
 texLA.y,
 sqrt(abs(1-texLA.x*t exLA.x-texLA.y*texLA.y)));

 The most important reason to make these new compressed formats
 show up identically to conventional luminan ce and luminance-alpha
 texels is to allow applications to seamless ly substitute
 the new compressed formats for existing GL_ LUMINANCE and
 GL_LUMINANCE_ALPHA textures. Alternative c omponent arrangements
 would make it more cumbersome for existing applications to switch
 over luminance and luminance-alpha textures to these compressed
 formats.

 3) Should luminance and luminance-alpha compre ssion formats with
 signed components be introduced when the co re specification
 lacked uncompressed luminance and luminance -alpha texture formats?

 RESOLVED: Yes, signed luminance and lumina nce-alpha compression
 formats should be added.

 Signed luminance-alpha formats are suited f or compressed normal
 maps. Compressed normal maps may well be t he dominant use of
 this extension.

 Unsigned luminance-alpha formats require an extra "expand normal"
 operation to convert [0,1] to [-1,+1]. Dir ect support for signed
 luminance-alpha formats avoids this step in a shader program.

 4) Should there be a mix of signed luminance a nd unsigned alpha or
 vice versa?

 RESOLVED: No.

 NV_texture_shader provided an internal form at
 (GL_SIGNED_RGB_UNSIGNED_ALPHA_NV) with mixe d signed and unsigned
 components. The format saw little usage. There's no reason to
 think a GL_SIGNED_LUMINANCE_UNSIGNED_ALPHA format would be any
 more useful or popular.

 5) How are signed integer values mapped to flo ating-point values?

 RESOLVED: A signed 8-bit two's complement value X is computed to
 a floating-point value Xf with the formula:

 { X / 127.0, X > -128
 Xf = {
 { -1.0, X == -128

 This conversion means -1, 0, and +1 are all exactly representable,
 however -128 and -127 both map to -1.0. Ma pping -128 to -1.0
 avoids the numerical awkwardness of have a representable value
 slightly more negative than -1.0.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

NVIDIA Proprietary 190

 This conversion is intentionally NOT the "b yte" conversion listed
 in Table 2.9 for component conversions. Th at conversion says:

 Xf = (2*X + 1) / 255.0

 The Table 2.9 conversion is incapable of ex actly representing
 zero.

 6) How will signed components resulting from
 GL_COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT an d
 GL_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_ EXT texture fetches
 interact with fragment coloring?

 RESOLVED: The specification language for t his extension is silent
 about clamping behavior leaving this to the core specification
 and other extensions. The clamping or lack of clamping is left
 to the core specification and other extensi ons.

 For assembly program extensions supporting texture fetches
 (ARB_fragment_program, EXT_fragment_program , EXT_vertex_program3,
 etc.) or the OpenGL Shading Language, these signed formats will
 appear as expected with unclamped signed co mponents as a result
 of a texture fetch instruction.

 If ARB_color_buffer_float is supported, its clamping controls
 will apply.

 NV_texture_shader extension, if supported, adds support for
 fixed-point textures with signed components and relaxed the
 fixed-function texture environment clamping appropriately. If the
 NV_texture_shader extension is supported, i ts specified behavior
 for the texture environment applies where i ntermediate values
 are clamped to [-1,1] unless stated otherwi se as in the case
 of explicitly clamped to [0,1] for GL_COMBI NE. or clamping the
 linear interpolation weight to [0,1] for GL _DECAL and GL_BLEND.

 Otherwise, the conventional core texture en vironment clamps
 incoming, intermediate, and output color co mponents to [0,1].

 This implies that the conventional texture environment
 functionality of unextended OpenGL 1.5 or O penGL 2.0 without
 using GLSL (and with none of the extensions referred to above)
 is unable to make proper use of the signed texture formats added
 by this extension because the conventional texture environment
 requires texture source colors to be clampe d to [0,1]. Texture
 filtering of these signed formats would be still signed, but
 negative values generated post-filtering wo uld be clamped to
 zero by the core texture environment functi onality. The
 expectation is clearly that this extension would be co-implemented
 with one of the previously referred to exte nsions or used with
 GLSL for the new signed formats to be usefu l.

 7) Should a specific normal map compression fo rmat be added?

 RESOLVED: No.

 It's probably short-sighted to design a for mat just for normal

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 191

 maps. Indeed, NV_texture_shader added a GL _SIGNED_HILO_NV
 format with exactly the kind of "hemisphere remap" useful for
 normal maps and the format went basically u nused. Instead,
 this extension provides the mechanism for c ompressed normal maps
 based on the more conventional luminance-al pha format.

 The GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT and
 GL_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_ EXT formats are
 sufficient for normal maps with additional shader instructions
 used to generate the 3rd component.

 8) Should uncompressed signed luminance and lu minance-alpha formats
 be added by this extension?

 RESOLVED: No, this extension is focused on just adding compressed
 texture formats.

 The NV_texture_shader extension adds such u ncompressed signed
 texture formats. A distinct multi-vendor e xtension for signed
 fixed-point texture formats could provide a ll or a subset of
 the signed fixed-point uncompressed texture formats introduced
 by NV_texture_shader.

 9) What compression ratios does this extension provide?

 The LATC1 formats are 8 bytes (64 bits) per 4x4 pixel block.
 A 4x4 block of GL_LUMINANCE8 data requires 16 bytes (1 byte
 per texel). This is a 2-to-1 compression r atio.

 The LATC2 formats are 16 bytes (128 bits) p er 4x4 pixel block.
 A 4x4 block of GL_LUMINANCE8_ALPHA8 data re quires 32 bytes
 (2 bytes per texel). This is again a 2-to- 1 compression ratio.

 In contrast, the comparable compression rat io for the S3TC
 formats is 4-to-1.

 Arguably, the lower compression ratio allow s better compression
 quality particularly because the LATC forma ts compress each
 component separately.

 10) How do these new formats compare with the e xisting GL_LUMINANCE4,
 GL_LUMINANCE4_ALPHA4, and GL_LUMINANCE6_ALP HA2 internal formats?

 RESOLVED: The existing GL_LUMINANCE4, GL_L UMINANCE4_ALPHA4,
 and GL_LUMINANCE6_ALPHA2 internal formats p rovide a similar
 2-to-1 compression ratio but mandate a unif orm quantization
 for all components. In contrast, this exte nsion provides a
 compression format with 3-bit quantization over a specifiable
 min/max range that can vary per 4x4 texel t ile.

 Additionally, many OpenGL implementations d o not natively support
 the GL_LUMINANCE4, GL_LUMINANCE4_ALPHA4, an d GL_LUMINANCE6_ALPHA2
 internal formats but rather silently promot e these formats
 to store 8 bits per component, thereby elim inating any
 storage/bandwidth advantage for these forma ts.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_latc

NVIDIA Proprietary 192

 11) Does this extension require EXT_texture_com pression_s3tc?

 RESOLVED: No.

 As written, this specification does not rel y on wording of the
 EXT_texture_compression_s3tc extension. Fo r example, certain
 discussion added to Sections 3.8.2 and 3.8. 3 is quite similar
 to corresponding EXT_texture_compression_s3 tc language.

 12) Should anything be said about the precision of texture filtering
 for these new formats?

 RESOLVED: No precision requirements are pa rt of the specification
 language since OpenGL extensions typically leave precision
 details to the implementation.

 Realistically, at least 8-bit filtering pre cision can be expected
 from implementations (and probably more).

 13) Should these formats be allowed to specify 3D texture images
 when NV_texture_compression_vtc is supporte d?

 RESOLVED: The NV_texture_compression_vtc st acks 4x4 blocks into
 4x4x4 bricks. It may be more desirable to represent compressed
 3D textures as simply slices of 4x4 blocks.

 However the NV_texture_compression_vtc exte nsion expects
 data passed to the glCompressedTexImage com mands to be "bricked"
 rather than blocked slices.

 14) Why is GL_NV_texture_compression_latc also listed in the Name Strings
 section?

 The very first GeForce 8800 driver shipped with the extension
 designated as NV before EXT-ization with S3 was agreed.
 Subsequent NVIDIA drivers will rename the e xtension to its EXT
 name only.

 15) Should the the generic formats
 GL_COMPRESSED_LUMINANCE and GL_COMPRESSED_L UMINANCE_ALPHA
 correspond to COMPRESSED_LUMINANCE_LATC1_EX T and
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT respec itively when this
 extension is supported?

 RESOLVED: Yes. While no generic compressi on is strictly
 required for an implementation and there mi ght exist superior
 compression schemes for luminance and lumin ance-alpha textures
 in the future, an application should reason ably expect that an
 implementation that supports EXT_texture_co mpression_latc will
 also use these formats for the generic comp ressed luminance and
 luminance-alpha formats.

 The COMPRESSED_LUMINANCE_LATC1_EXT and
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT are ge neric enough in their
 respective luminance and luminance-alpha be havior that these
 compression formats are acceptable generic compressed formats
 for luminance and luminance-alpha generic c ompressed formats.

EXT_texture_compression_latc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 193

 16) Should the GL_NUM_COMPRESSED_TEXTURE_FORMAT S and
 GL_COMPRESSED_TEXTURE_FORMATS queries retur n the LATC formats?

 RESOLVED: No.

 The OpenGL 2.1 specification says "The only values returned
 by this query [GL_COMPRESSED_TEXTURE_FORMAT S"] are those
 corresponding to formats suitable for gener al-purpose usage.
 The renderer will not enumerate formats wit h restrictions that
 need to be specifically understood prior to use."

 Historically, OpenGL implementation have ad vertised the RGB and
 RGBA versions of the S3TC extensions compre ssed format tokens
 through this mechanism.

 The specification is not sufficiently clear about what "suitable
 for general-purpose usage" means. Historic ally that seems to mean
 unsigned RGB or unsigned RGBA. The DXT1 fo rmat supporting alpha
 (GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) is not e xposed in the list (at
 least for NVIDIA drivers) because the alpha is always 1.0 expect
 when it is 0.0 when RGB is required to be b lack. NVIDIA's even
 limits itself to true linear RGB or RGBA fo rmats, specifically
 not including EXT_texture_sRGB's sRGB S3TC compressed formats.

 Adding luminance and luminance-alpha textur e formats (and
 certainly signed versions of luminance and luminance-alpha
 formats!) invites potential comptaibility p roblems with old
 applications using this mechanism since old applications are
 unlikely to expect non-RGB or non-RGBA form ats to be advertised
 through this mechanism. However no specifi c misinteractions
 with old applications is known.

 Applications that seek to use the LATC form ats should do so
 by looking for this extension's name in the string returned by
 glGetString(GL_EXTENSIONS) rather than
 what GL_NUM_COMPRESSED_TEXTURE_FORMATS and
 GL_COMPRESSED_TEXTURE_FORMATS return.

Revision History

 Revision 1.1, April 24, 2007: mjk
 - Add caveat about how signed LA decompres sion happens when
 lum0 equals -127 and lum1 equals -128. This caveat matches
 a decoding allowance in DirectX 10.

 Revision 1.2, January 21, 2008: mjk
 - Add issues #15 and #16.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_rgtc

NVIDIA Proprietary 194

Name

 EXT_texture_compression_rgtc

Name Strings

 GL_EXT_texture_compression_rgtc

Contributors

 Mark J. Kilgard, NVIDIA
 Pat Brown, NVIDIA
 Yanjun Zhang, S3
 Attila Barsi, Holografika

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Shipping for GeForce 8 Series (November 2006, R elease 95)

Version

 Date: January 21, 2008
 Revision: 1.2

Number

 332

Dependencies

 OpenGL 1.3 or ARB_texture_compression required

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 This extension introduces four new block-based texture compression
 formats suited for unsigned and signed red and red-green textures
 (hence the name "rgtc" for Red-Green Texture Co mpression).

 These formats are designed to reduce the storag e requirements
 and memory bandwidth required for red and red-g reen textures by
 a factor of 2-to-1 over conventional uncompress ed luminance and
 luminance-alpha textures with 8-bit components (GL_LUMINANCE8 and
 GL_LUMINANCE8_ALPHA8).

 The compressed signed red-green format is reaso nably suited for
 storing compressed normal maps.

 This extension uses the same compression format as the
 EXT_texture_compression_latc extension except t he color data is stored
 in the red and green components rather than lum inance and alpha.

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 195

 Representing compressed red and green component s is consistent with
 the BC4 and BC5 compressed formats supported by DirectX 10.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <internalformat> parameter of T exImage2D,
 CopyTexImage2D, and CompressedTexImage2D and th e <format> parameter
 of CompressedTexSubImage2D:

 COMPRESSED_RED_RGTC1_EXT 0x8DBB
 COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC
 COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD
 COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 -- Section 3.8.1, Texture Image Specification

 Add to Table 3.17 (page 155): Specific compres sed internal formats

 Compressed Internal Format Base Internal Format
 --- --------------------
 COMPRESSED_RED_RGTC1_EXT RGB
 COMPRESSED_SIGNED_RED_RGTC1_EXT RGB
 COMPRESSED_RED_GREEN_RGTC2_EXT RGB
 COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT RGB

 -- Section 3.8.2, Alternative Texture Image Specif ication Commands

 Add to the end of the section (page 163):

 "If the internal format of the texture image
 being modified is COMPRESSED_RED_RGTC1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the t exture is stored
 using one of the two RGTC compressed texture im age encodings (see
 appendix). Such images are easily edited along 4x4 texel boundaries,
 so the limitations on TexSubImage2D or CopyTexS ubImage2D parameters
 are relaxed. TexSubImage2D and CopyTexSubImage 2D will result in
 an INVALID_OPERATION error only if one of the f ollowing conditions
 occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH,
 unless <xoffset> and <yoffset> are both z ero.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT,
 unless <xoffset> and <yoffset> are both z ero.
 * <xoffset> or <yoffset> is not a multiple of four.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_rgtc

NVIDIA Proprietary 196

 The contents of any 4x4 block of texels of an R GTC compressed texture
 image that does not intersect the area being mo dified are preserved
 during valid TexSubImage2D and CopyTexSubImage2 D calls."

 -- Section 3.8.3, Compressed Texture Images

 Add after the 4th paragraph (page 164) at the e nd of the
 CompressedTexImage discussion:

 "If <internalformat> is COMPRESSED_RED_RGTC1_EX T,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the c ompressed texture is
 stored using one of several RGTC compressed tex ture image formats.
 The RGTC texture compression algorithm supports only 2D images
 without borders. CompressedTexImage1D and Comp ressedTexImage3D
 produce an INVALID_ENUM error if <internalforma t> is an RGTC format.
 CompressedTexImage2D will produce an INVALID_OP ERATION error if
 <border> is non-zero.

 Add to the end of the section (page 166) at the end of the
 CompressedTexSubImage discussion:

 "If the internal format of the texture image
 being modified is COMPRESSED_RED_RGTC1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the t exture is stored
 using one of the several RGTC compressed textur e image formats.
 Since the RGTC texture compression algorithm su pports only 2D images,
 CompressedTexSubImage1D and CompressedTexSubIma ge3D produce an
 INVALID_ENUM error if <format> is an RGTC forma t. Since RGTC images
 are easily edited along 4x4 texel boundaries, t he limitations on
 CompressedTexSubImage2D are relaxed. Compresse dTexSubImage2D will
 result in an INVALID_OPERATION error only if on e of the following
 conditions occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
 * <xoffset> or <yoffset> is not a multiple of four.

 The contents of any 4x4 block of texels of an R GTC compressed texture
 image that does not intersect the area being mo dified are preserved
 during valid TexSubImage2D and CopyTexSubImage2 D calls."

 -- Section 3.8.8, Texture Minification

 Add a sentence to the last paragraph (page 174) just prior to the
 "Mipmapping" subheading:

 "If the texture's internal format lacks compone nts that exist in
 the texture's base internal format, such compon ents are considered
 zero when the texture border color is sampled. (So despite the
 RGB base internal format of the COMPRESSED_RED_ RGTC1_EXT and
 COMPRESSED_SIGNED_RED_RGTC1_EXT formats, the gr een and blue
 components of the texture border color are alwa ys considered
 zero. Likewise for the COMPRESSED_RED_GREEN_RG TC2_EXT, and
 COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT formats, the blue component
 is always considered zero.)"

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 197

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Dependencies on ARB_texture_compression

 If ARB_texture_compression is supported, all th e
 errors and accepted tokens for CompressedTexIma ge1D,
 CompressedTexImage2D, CompressedTexImage3D, Com pressedTexSubImage1D,
 CompressedTexSubImage2D, and CompressedTexSubIm age3D also apply
 respectively to the ARB-suffixed CompressedTexI mage1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge2DARB, and
 CompressedTexSubImage3DARB.

Errors

 INVALID_ENUM is generated by CompressedTexImage 1D
 or CompressedTexImage3D if <internalformat> is
 COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGNED_RED_RGTC1_EXT,
 COMPRESSED_RED_GREEN_RGTC2_EXT, or
 COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT.

 INVALID_OPERATION is generated by CompressedTex Image2D
 if <internalformat> is COMPRESSED_LUMINANCE_LAC T1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT and <b order> is not equal
 to zero.

 INVALID_ENUM is generated by CompressedTexSubIm age1D
 or CompressedTexSubImage3D if
 <format> is COMPRESSED_LUMINANCE_LACT1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_rgtc

NVIDIA Proprietary 198

 INVALID_OPERATION is generated by TexSubImage2D
 CopyTexSubImage2D, or CompressedTexSubImage2D i f
 TEXTURE_INTERNAL_FORMAT is COMPRESSED_LUMINANCE_LACT1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT and an y of the following
 apply: <width> is not a multiple of four or equ al to TEXTURE_WIDTH;
 <height> is not a multiple of four or equal to TEXTURE_HEIGHT;
 <xoffset> or <yoffset> is not a multiple of fou r.

 The following restrictions from the ARB_texture _compression
 specification do not apply to RGTC texture form ats, since subimage
 modification is straightforward as long as the subimage is properly
 aligned.

 DELETE: INVALID_OPERATION is generated by TexSu bImage1D, TexSubImage2D,
 DELETE: TexSubImage3D, CopyTexSubImage1D, CopyT exSubImage2D, or
 DELETE: CopyTexSubImage3D if the internal forma t of the texture image is
 DELETE: compressed and <xoffset>, <yoffset>, or <zoffset> does not equal
 DELETE: -b, where b is value of TEXTURE_BORDER.

 DELETE: INVALID_VALUE is generated by Compresse dTexSubImage1D,
 DELETE: CompressedTexSubImage2D, or CompressedT exSubImage3D if the
 DELETE: entire texture image is not being edite d: if <xoffset>,
 DELETE: <yoffset>, or <zoffset> is greater than -b, <xoffset> + <width> is
 DELETE: less than w+b, <yoffset> + <height> is less than h+b, or <zoffset>
 DELETE: + <depth> is less than d+b, where b is the value of
 DELETE: TEXTURE_BORDER, w is the value of TEXTU RE_WIDTH, h is the value of
 DELETE: TEXTURE_HEIGHT, and d is the value of T EXTURE_DEPTH.

 See also errors in the GL_ARB_texture_compressi on specification.

New State

 4 new state values are added for the per-textur e object
 GL_TEXTURE_INTERNAL_FORMAT state.

 In the "Textures" state table(page 278), incre ment the
 TEXTURE_INTERNAL_FORMAT subscript for Z by 4 in the "Type" row.

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

New Implementation Dependent State

 None

Appendix

 RGTC Compressed Texture Image Formats

 Compressed texture images stored using the RGTC compressed image
 encodings are represented as a collection of 4x 4 texel blocks,
 where each block contains 64 or 128 bits of tex el data. The image
 is encoded as a normal 2D raster image in which each 4x4 block is
 treated as a single pixel. If an RGTC image ha s a width or height

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 199

 less than four, the data corresponding to texel s outside the image
 are irrelevant and undefined.

 When an RGTC image with a width of <w>, height of <h>, and block
 size of <blocksize> (8 or 16 bytes) is decoded, the corresponding
 image size (in bytes) is:

 ceil(<w>/4) * ceil(<h>/4) * blocksize.

 When decoding an RGTC image, the block containi ng the texel at offset
 (<x>, <y>) begins at an offset (in bytes) relat ive to the base of the
 image of:

 blocksize * (ceil(<w>/4) * floor(<y>/4) + f loor(<x>/4)).

 The data corresponding to a specific texel (<x> , <y>) are extracted
 from a 4x4 texel block using a relative (x,y) v alue of

 (<x> modulo 4, <y> modulo 4).

 There are four distinct RGTC image formats:

 COMPRESSED_RED_RGTC1: Each 4x4 block of texels consists of
 64 bits of unsigned red image data.

 Each red image data block is encoded as a seque nce of 8 bytes, called
 (in order of increasing address):

 red0, red1, bits_0, bits_1, bits_2, bit s_3, bits_4, bits_5

 The 6 "bits_*" bytes of the block are decod ed into a 48-bit bit
 vector:

 bits = bits_0 +
 256 * (bits_1 +
 256 * (bits_2 +
 256 * (bits_3 +
 256 * (bi ts_4 +
 25 6 * bits_5))))

 red0 and red1 are 8-bit unsigned integers t hat are unpacked to red
 values RED0 and RED1 as though they were pi xels with a <format>
 of LUMINANCE and a type of UNSIGNED_BTYE.

 bits is a 48-bit unsigned integer, from whi ch a three-bit control
 code is extracted for a texel at location (x,y) in the block
 using:

 code(x,y) = bits[3*(4*y+x)+2..3*(4*y+x) +0]

 where bit 47 is the most significant and bi t 0 is the least
 significant bit.

 The red value R for a texel at location (x, y) in the block is
 given by:

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_rgtc

NVIDIA Proprietary 200

 RED0, if red0 > red1 and c ode(x,y) == 0
 RED1, if red0 > red1 and c ode(x,y) == 1
 (6*RED0+ RED1)/7, if red0 > red1 and c ode(x,y) == 2
 (5*RED0+2*RED1)/7, if red0 > red1 and c ode(x,y) == 3
 (4*RED0+3*RED1)/7, if red0 > red1 and c ode(x,y) == 4
 (3*RED0+4*RED1)/7, if red0 > red1 and c ode(x,y) == 5
 (2*RED0+5*RED1)/7, if red0 > red1 and c ode(x,y) == 6
 (RED0+6*RED1)/7, if red0 > red1 and c ode(x,y) == 7

 RED0, if red0 <= red1 and code(x,y) == 0
 RED1, if red0 <= red1 and code(x,y) == 1
 (4*RED0+ RED1)/5, if red0 <= red1 and code(x,y) == 2
 (3*RED0+2*RED1)/5, if red0 <= red1 and code(x,y) == 3
 (2*RED0+3*RED1)/5, if red0 <= red1 and code(x,y) == 4
 (RED0+4*RED1)/5, if red0 <= red1 and code(x,y) == 5
 MINRED, if red0 <= red1 and code(x,y) == 6
 MAXRED, if red0 <= red1 and code(x,y) == 7

 MINRED and MAXRED are 0.0 and 1.0 respectiv ely.

 Since the decoded texel has a red format, the r esulting RGBA value
 for the texel is (R,0,0,1).

 COMPRESSED_SIGNED_RED_RGTC1: Each 4x4 block of texels consists of
 64 bits of signed red image data. The red valu es of a texel are
 extracted in the same way as COMPRESSED_RED_RGT C1 except red0, red1,
 RED0, RED1, MINRED, and MAXRED are signed value s defined as follows:

 red0 and red1 are 8-bit signed (two's compl ement) integers.

 { red0 / 127.0, red0 > -128
 RED0 = {
 { -1.0, red0 == -128

 { red1 / 127.0, red1 > -128
 RED1 = {
 { -1.0, red1 == -128

 MINRED = -1.0

 MAXRED = 1.0

 CAVEAT for signed red0 and red1 values: the exp ressions "red0 >
 red1" and "red0 <= red1" above are considered u ndefined (read: may
 vary by implementation) when red0 equals -127 a nd red1 equals -128,
 This is because if red0 were remapped to -127 p rior to the comparison
 to reduce the latency of a hardware decompresso r, the expressions
 would reverse their logic. Encoders for the si gned LA formats should
 avoid encoding blocks where red0 equals -127 an d red1 equals -128.

 COMPRESSED_RED_GREEN_RGTC2: Each 4x4 block of texels consists of
 64 bits of compressed unsigned red image data f ollowed by 64 bits
 of compressed unsigned green image data.

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 201

 The first 64 bits of compressed red are decoded exactly like
 COMPRESSED_RED_RGTC1 above.

 The second 64 bits of compressed green are deco ded exactly like
 COMPRESSED_RED_RGTC1 above except the decoded v alue R for this
 second block is considered the resulting green value G.

 Since the decoded texel has a red-green format, the resulting RGBA
 value for the texel is (R,G,0,1).

 COMPRESSED_SIGNED_RED_GREEN_RGTC2: Each 4x4 block of texels consists
 of 64 bits of compressed signed red image data followed by 64 bits
 of compressed signed green image data.

 The first 64 bits of compressed red are decoded exactly like
 COMPRESSED_SIGNED_RED_RGTC1 above.

 The second 64 bits of compressed green are deco ded exactly like
 COMPRESSED_SIGNED_RED_RGTC1 above except the de coded value R
 for this second block is considered the resulti ng green value G.

 Since this image has a red-green format, the re sulting RGBA value is
 (R,G,0,1).

Issues

 1) What should these new formats be called?

 RESOLVED: "rgtc" for Red-Green Texture Comp ression.

 2) How should the uncompressed and filtered te xels be returned by
 texture fetches?

 RESOLVED: Red values show up as (R,0,0,1) where R is the red
 value, green and blue are forced to 0, and alpha is forced to 1.
 Likewise, red-green values show up as (R,G, 0,1) where G is the
 green value.

 Prior extensions such as NV_float_buffer an d NV_texture_shader
 have introduced formats such as GL_FLOAT_R_ NV and GL_DSDT_NV where
 one- and two-component texture formats show up as (X,0,0,1) or
 (X,Y,0,1) RGBA texels. The RGTC formats mi mic these two-component
 formats.

 The (X,Y,0,1) convention, particularly with signed components,
 is nice for normal maps because a normalize d vector can be
 formed by a shader program by computing sqr t(abs(1-X*X-Y*Y))
 for the Z component.

 While GL_RED is a valid external format, co re OpenGL provides
 no GL_RED_GREEN external format. Applicati ons can either use
 GL_RGB or GL_RGBA and pad out the blue and alpha components,
 or use the two-component GL_LUMINANCE_ALPHA color format and
 use the color matrix functionality to swizz le the luminance and
 alpha values into red and green respectivel y.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_rgtc

NVIDIA Proprietary 202

 3) Should red and red-green compression format s with signed
 components be introduced when the core spec ification lacked
 uncompressed red and red-green texture form ats?

 RESOLVED: Yes, signed red and red-green co mpression formats
 should be added.

 Signed red-green formats are suited for com pressed normal maps.
 Compressed normal maps may well be the domi nant use of this
 extension.

 Unsigned red-green formats require an extra "expand normal"
 operation to convert [0,1] to [-1,+1]. Dir ect support for signed
 red-green formats avoids this step in a sha der program.

 4) Should there be a mix of signed red and uns igned green or
 vice versa?

 RESOLVED: No.

 NV_texture_shader provided an internal form at
 (GL_SIGNED_RGB_UNSIGNED_ALPHA_NV) with mixe d signed and unsigned
 components. The format saw little usage. There's no reason to
 think a GL_SIGNED_RED_UNSIGNED_GREEN format would be any more
 useful or popular.

 5) How are signed integer values mapped to flo ating-point values?

 RESOLVED: A signed 8-bit two's complement value X is computed to
 a floating-point value Xf with the formula:

 { X / 127.0, X > -128
 Xf = {
 { -1.0, X == -128

 This conversion means -1, 0, and +1 are all exactly representable,
 however -128 and -127 both map to -1.0. Ma pping -128 to -1.0
 avoids the numerical awkwardness of have a representable value
 slightly more negative than -1.0.

 This conversion is intentionally NOT the "b yte" conversion listed
 in Table 2.9 for component conversions. Th at conversion says:

 Xf = (2*X + 1) / 255.0

 The Table 2.9 conversion is incapable of ex actly representing
 zero.

 6) How will signed components resulting
 from GL_COMPRESSED_SIGNED_RED_RGTC1_EXT and
 GL_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT te xture fetches interact
 with fragment coloring?

 RESOLVED: The specification language for t his extension is silent
 about clamping behavior leaving this to the core specification
 and other extensions. The clamping or lack of clamping is left
 to the core specification and other extensi ons.

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 203

 For assembly program extensions supporting texture fetches
 (ARB_fragment_program, NV_fragment_program, NV_vertex_program3,
 etc.) or the OpenGL Shading Language, these signed formats will
 appear as expected with unclamped signed co mponents as a result
 of a texture fetch instruction.

 If ARB_color_buffer_float is supported, its clamping controls
 will apply.

 NV_texture_shader extension, if supported, adds support for
 fixed-point textures with signed components and relaxed the
 fixed-function texture environment clamping appropriately. If the
 NV_texture_shader extension is supported, i ts specified behavior
 for the texture environment applies where i ntermediate values
 are clamped to [-1,1] unless stated otherwi se as in the case
 of explicitly clamped to [0,1] for GL_COMBI NE. or clamping the
 linear interpolation weight to [0,1] for GL _DECAL and GL_BLEND.

 Otherwise, the conventional core texture en vironment clamps
 incoming, intermediate, and output color co mponents to [0,1].

 This implies that the conventional texture environment
 functionality of unextended OpenGL 1.5 or O penGL 2.0 without
 using GLSL (and with none of the extensions referred to above)
 is unable to make proper use of the signed texture formats added
 by this extension because the conventional texture environment
 requires texture source colors to be clampe d to [0,1]. Texture
 filtering of these signed formats would be still signed, but
 negative values generated post-filtering wo uld be clamped to
 zero by the core texture environment functi onality. The
 expectation is clearly that this extension would be co-implemented
 with one of the previously referred to exte nsions or used with
 GLSL for the new signed formats to be usefu l.

 7) Should a specific normal map compression fo rmat be added?

 RESOLVED: No.

 It's probably short-sighted to design a for mat just for normal
 maps. Indeed, NV_texture_shader added a GL _SIGNED_HILO_NV
 format with exactly the kind of "hemisphere remap" useful for
 normal maps and the format went basically u nused. Instead,
 this extension provides the mechanism for c ompressed normal maps
 based on the more conventional red-green fo rmat.

 The GL_COMPRESSED_RED_GREEN_RGTC2_EXT and
 GL_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT fo rmats are sufficient
 for normal maps with additional shader inst ructions used to
 generate the 3rd component.

 8) Should uncompressed signed red and red-gree n formats be added
 by this extension?

 RESOLVED: No, this extension is focused on just adding compressed
 texture formats.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_rgtc

NVIDIA Proprietary 204

 The NV_texture_shader extension adds such u ncompressed signed
 texture formats. A distinct multi-vendor e xtension for signed
 fixed-point texture formats could provide a ll or a subset of
 the signed fixed-point uncompressed texture formats introduced
 by NV_texture_shader.

 9) What compression ratios does this extension provide?

 The RGTC1 formats are 8 bytes (64 bits) per 4x4 pixel block.
 A 4x4 block of GL_LUMINANCE8 data requires 16 bytes (1 byte
 per texel). This is a 2-to-1 compression r atio.

 The RGTC2 formats are 16 bytes (128 bits) p er 4x4 pixel block.
 A 4x4 block of GL_LUMINANCE8_ALPHA8 data re quires 32 bytes
 (2 bytes per texel). This is again a 2-to- 1 compression ratio.

 In contrast, the comparable compression rat io for the S3TC
 formats is 4-to-1.

 Arguably, the lower compression ratio allow s better compression
 quality particularly because the RGTC forma ts compress each
 component separately.

 10) How do these new formats compare with the e xisting GL_LUMINANCE4,
 GL_LUMINANCE4_ALPHA4, and GL_LUMINANCE6_ALP HA2 internal formats?

 RESOLVED: The existing GL_LUMINANCE4, GL_L UMINANCE4_ALPHA4,
 and GL_LUMINANCE6_ALPHA2 internal formats p rovide a similar
 2-to-1 compression ratio but mandate a unif orm quantization
 for all components. In contrast, this exte nsion provides a
 compression format with 3-bit quantization over a specifiable
 min/max range that can vary per 4x4 texel t ile.

 Additionally, many OpenGL implementations d o not natively support
 the GL_LUMINANCE4, GL_LUMINANCE4_ALPHA4, an d GL_LUMINANCE6_ALPHA2
 internal formats but rather silently promot e these formats
 to store 8 bits per component, thereby elim inating any
 storage/bandwidth advantage for these forma ts.

 11) Does this extension require EXT_texture_com pression_s3tc?

 RESOLVED: No.

 As written, this specification does not rel y on wording of the
 EXT_texture_compression_s3tc extension. Fo r example, certain
 discussion added to Sections 3.8.2 and 3.8. 3 is quite similar
 to corresponding EXT_texture_compression_s3 tc language.

 12) Should anything be said about the precision of texture filtering
 for these new formats?

 RESOLVED: No precision requirements are pa rt of the specification
 language since OpenGL extensions typically leave precision
 details to the implementation.

 Realistically, at least 8-bit filtering pre cision can be expected
 from implementations (and probably more).

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 205

 13) Should these formats be allowed to specify 3D texture images
 when NV_texture_compression_vtc is supporte d?

 RESOLVED: The NV_texture_compression_vtc st acks 4x4 blocks into
 4x4x4 bricks. It may be more desirable to represent compressed
 3D textures as simply slices of 4x4 blocks.

 However the NV_texture_compression_vtc exte nsion expects data
 passed to the glCompressedTexImage commands to be "bricked"
 rather than blocked slices.

 14) How is the texture border color handled for the blue component
 of an RGTC2 texture and the green and blue components of an
 RGTC1 texture?

 RESOLVED: The base texture format is RGB f or the RGTC1 and
 RGTC2 texture formats. This would mean tab le 3.15 would be
 used to determine how the texture border co lor is interpreted
 and which components are considered.

 However since only red or red/green compone nts exist for the
 RGTC1 and RGTC2 formats, it makes little se nse to require
 the blue component be supplied by the textu re border color and
 hence be involved (meaningfully only when t he border is sampled)
 in texture filtering.

 For this reason, a statement is added to se ction 3.8.8 says that
 if a texture's internal format lacks compon ents that exist in
 the texture's base internal format, such co mponents contain
 zero (ignoring the texture's corresponding texture border color
 component value) when the texture border co lor is sampled.

 So the green and blue components of the fil tered result of a
 RGTC1 texture are always zero, even when th e border is sampled.
 Similarly the blue component of the filtere d result of a RGTC2
 texture is always zero, even when the borde r is sampled.

 15) What should glGetTexLevelParameter return f or
 GL_TEXTURE_GREEN_SIZE and GL_TEXTURE_BLUE_S IZE for the RGTC1
 formats? What should glGetTexLevelParamete r return for
 GL_TEXTURE_BLUE_SIZE for the RGTC2 formats?

 RESOLVED: Zero bits.

 These formats always return 0.0 for these r espective components
 and have no bits devoted to these component s.

 Returning 8 bits for red size of RGTC1 and the red and green
 sizes of RGTC2 makes sense because that's t he maximum potential
 precision for the uncompressed texels.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_compression_rgtc

NVIDIA Proprietary 206

 16) Should the token names contain R and RG or RED and RED_GREEN?

 RESOLVED: RED and RED_GREEN.

 Saying RGB and RGBA makes sense for three- and four-component
 formats rather than spelling out the compon ent names because
 RGB and RGBA are used so commonly and spell ing out the names it
 too wordy.

 But for 1- and 2-component names, we follow the precedent by
 GL_LUMINANCE and GL_LUMINANCE_ALPHA. This extension spells out
 the component names of 1- and 2-component n ames.

 Another reason to avoid R and RG is the exi sting meaning of
 the GL_R and GL_RED tokens. GL_RED already exists as a token
 name for a single-component external format . GL_R also already
 exists as a token name but refers to the R texture coordinate,
 not the red color component.

 17) Can you use the GL_RED external format with glTexImage2D and other
 such commands to load textures with the
 GL_COMPRESSED_RED_RGTC1_EXT or GL_COMPRESSE D_SIGNED_RED_RGTC1_EXT
 internal formats?

 RESOLVED: Yes.

 GL_RED has been a valid external format par ameter to glTexImage
 and similar commands since OpenGL 1.0.

 18) Should any of the generic compression GL_CO MPRESSED_* tokens in
 OpenGL 2.1 map to RGTC formats?

 RESOLVED: No. The RGTC formats are missin g color components
 so are not adequate implementations for any of the generic
 compression formats.

 19) Should the GL_NUM_COMPRESSED_TEXTURE_FORMAT S and
 GL_COMPRESSED_TEXTURE_FORMATS queries retur n the RGTC formats?

 RESOLVED: No.

 The OpenGL 2.1 specification says "The only values returned
 by this query [GL_COMPRESSED_TEXTURE_FORMAT S"] are those
 corresponding to formats suitable for gener al-purpose usage.
 The renderer will not enumerate formats wit h restrictions that
 need to be specifically understood prior to use."

 Compressed textures with just red or red-gr een components are
 not general-purpose so should not be return ed by these queries
 because they have restrictions.

 Applications that seek to use the RGTC form ats should do so
 by looking for this extension's name in the string returned by
 glGetString(GL_EXTENSIONS) rather than
 what GL_NUM_COMPRESSED_TEXTURE_FORMATS and
 GL_COMPRESSED_TEXTURE_FORMATS return.

EXT_texture_compression_rgtc OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 207

Revision History

 Revision 1.1, April 24, 2007: mjk
 - Add caveat about how signed LA decompres sion happens when
 lum0 equals -127 and lum1 equals -128. This caveat matches
 a decoding allowance in DirectX 10.

 Revision 1.2, January 21, 2008: mjk
 - Add issues #18 and #19.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

NVIDIA Proprietary 208

Name

 EXT_texture_integer

Name Strings

 GL_EXT_texture_integer

Contact

 Michael Gold, NVIDIA Corporation (gold 'at' nvi dia.com)
 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 07/15/2006
 NVIDIA Revision: 5

Number

 343

Dependencies

 OpenGL 2.0 is required.

 NV_gpu_program4 or EXT_gpu_shader4 is required.

 ARB_texture_float affects the definition of thi s extension.

 ARB_color_buffer_float affects the definition o f this extension.

 EXT_framebuffer_object affects the definition o f this extension.

 This extension is written against the OpenGL 2. 0 specification.

Overview

 Fixed-point textures in unextended OpenGL have integer components,
 but those values are taken to represent floatin g-point values in
 the range [0,1]. These integer components are considered
 "normalized" integers. When such a texture is accessed by a
 shader or by fixed-function fragment processing , floating-point
 values are returned.

 This extension provides a set of new "unnormali zed" integer texture
 formats. Formats with both signed and unsigned integers are provided. In
 these formats, the components are treated as tr ue integers. When such
 textures are accessed by a shader, actual integ er values are returned.

 Pixel operations that read from or write to a t exture or color
 buffer with unnormalized integer components fol low a path similar
 to that used for color index pixel operations, except that more

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 209

 than one component may be provided at once. In teger values flow
 through the pixel processing pipe, and no pixel transfer
 operations are performed. Integer format enume rants used for such
 operations indicate unnormalized integer data.

 Textures or render buffers with unnormalized in teger formats may also be
 attached to framebuffer objects to receive frag ment color values written
 by a fragment shader. Per-fragment operations that require floating-point
 color components, including multisample alpha o perations, alpha test,
 blending, and dithering, have no effect when th e corresponding colors are
 written to an integer color buffer. The NV_gpu _program4 and
 EXT_gpu_shader4 extensions add the capability t o fragment programs and
 fragment shaders to write signed and unsigned i nteger output values.

 This extension does not enforce type consistenc y for texture accesses or
 between fragment shaders and the corresponding framebuffer attachments.
 The results of a texture lookup from an integer texture are undefined:

 * for fixed-function fragment processing, or

 * for shader texture accesses expecting float ing-point return values.

 The color components used for per-fragment oper ations and written into a
 color buffer are undefined:

 * for fixed-function fragment processing with an integer color buffer,

 * for fragment shaders that write floating-po int color components to an
 integer color buffer, or

 * for fragment shaders that write integer col or components to a color
 buffer with floating point or normalized in teger components.

New Procedures and Functions

 void ClearColorIiEXT (int r, int g, int b, int a);
 void ClearColorIuiEXT (uint r, uint g, uint b, uint a);
 void TexParameterIivEXT(enum target, enum pnam e, int *params);
 void TexParameterIuivEXT(enum target, enum pna me, uint *params);
 void GetTexParameterIivEXT (enum target, enum pname, int *params);
 void GetTexParameterIuivEXT (enum target, enum pname, uint *params);

New Tokens

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 RGBA_INTEGER_MODE_EXT 0x8D9E

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

NVIDIA Proprietary 210

 Accepted by the <internalFormat> parameter of T exImage1D,
 TexImage2D, and TexImage3D:

 RGBA32UI_EXT 0x8D70
 RGB32UI_EXT 0x8D71
 ALPHA32UI_EXT 0x8D72
 INTENSITY32UI_EXT 0x8D73
 LUMINANCE32UI_EXT 0x8D74
 LUMINANCE_ALPHA32UI_EXT 0x8D75

 RGBA16UI_EXT 0x8D76
 RGB16UI_EXT 0x8D77
 ALPHA16UI_EXT 0x8D78
 INTENSITY16UI_EXT 0x8D79
 LUMINANCE16UI_EXT 0x8D7A
 LUMINANCE_ALPHA16UI_EXT 0x8D7B

 RGBA8UI_EXT 0x8D7C
 RGB8UI_EXT 0x8D7D
 ALPHA8UI_EXT 0x8D7E
 INTENSITY8UI_EXT 0x8D7F
 LUMINANCE8UI_EXT 0x8D80
 LUMINANCE_ALPHA8UI_EXT 0x8D81

 RGBA32I_EXT 0x8D82
 RGB32I_EXT 0x8D83
 ALPHA32I_EXT 0x8D84
 INTENSITY32I_EXT 0x8D85
 LUMINANCE32I_EXT 0x8D86
 LUMINANCE_ALPHA32I_EXT 0x8D87

 RGBA16I_EXT 0x8D88
 RGB16I_EXT 0x8D89
 ALPHA16I_EXT 0x8D8A
 INTENSITY16I_EXT 0x8D8B
 LUMINANCE16I_EXT 0x8D8C
 LUMINANCE_ALPHA16I_EXT 0x8D8D

 RGBA8I_EXT 0x8D8E
 RGB8I_EXT 0x8D8F
 ALPHA8I_EXT 0x8D90
 INTENSITY8I_EXT 0x8D91
 LUMINANCE8I_EXT 0x8D92
 LUMINANCE_ALPHA8I_EXT 0x8D93

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 211

 Accepted by the <format> parameter of TexImage1 D, TexImage2D,
 TexImage3D, TexSubImage1D, TexSubImage2D, TexSu bImage3D,
 DrawPixels and ReadPixels:

 RED_INTEGER_EXT 0x8D94
 GREEN_INTEGER_EXT 0x8D95
 BLUE_INTEGER_EXT 0x8D96
 ALPHA_INTEGER_EXT 0x8D97
 RGB_INTEGER_EXT 0x8D98
 RGBA_INTEGER_EXT 0x8D99
 BGR_INTEGER_EXT 0x8D9A
 BGRA_INTEGER_EXT 0x8D9B
 LUMINANCE_INTEGER_EXT 0x8D9C
 LUMINANCE_ALPHA_INTEGER_EXT 0x8D9D

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.6.4 (Rasterization of Pixel Re ctangles), p. 126:

 (modify the last paragraph, p. 126)
 Pixels are drawn using

 void DrawPixels(sizei width, sizei height, enum format,
 enum type, void *data);

 <format> is a symbolic constant indicating what the values in
 memory represent. <width> and <height> are the width and height,
 respectively, of the pixel rectangle to be draw n. <data> is a
 pointer to the data to be drawn. These data are represented with
 one of seven GL data types, specified by <type> . The
 correspondence between the twenty type token va lues and the GL
 data types they indicate is given in table 3.5. If the GL is in
 color index mode and <format> is not one of COL OR_INDEX,
 STENCIL_INDEX, or DEPTH_COMPONENT, then the err or
 INVALID_OPERATION occurs. If the GL is in RGBA mode and the color
 buffer is an integer format and no fragment sha der is active, the
 error INVALID_OPERATION occurs. If <type> is B ITMAP and <format>
 is not COLOR_INDEX or STENCIL_INDEX then the er ror INVALID_ENUM
 occurs. If <format> is one of the integer comp onent formats as
 defined in table 3.6, and <type> is FLOAT, then the error
 INVALID_ENUM occurs. Some additional constrain ts on the
 combinations of format and type values that are accepted is
 discussed below.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

NVIDIA Proprietary 212

 (add the following to table 3.6, p. 129)
 Format Name Element Meaning an d Order Target Buffer
 ------ ---- ------- ------- -- - ----- ------ ------
 RED_INTEGER_EXT iR Color
 GREEN_INTEGER_EXT iG Color
 BLUE_INTEGER_EXT iB Color
 ALPHA_INTEGER_EXT iA Color
 RGB_INTEGER_EXT iR, iG, iB Color
 RGBA_INTEGER_EXT iR, iG, iB, iA Color
 BGR_INTEGER_EXT iB, iG, iR Color
 BGRA_INTEGER_EXT iB, iG, iR, iA Color
 LUMINANCE_INTEGER_EXT iLuminance Color
 LUMINANCE_ALPHA_INTEGER_EXT iLuminance, iA Color

 Table 3.6: DrawPixels and ReadPixels formats. The second colu mn
 gives a description of and the number and order of elements in a
 group. Unless specified as an index, formats yi eld components.
 Components are floating-point unless prefixed w ith the letter 'i'
 which indicates they are integer.

 (modify first paragraph, p. 129)
 Data are taken from host memory as a sequence o f signed or
 unsigned bytes (GL data types byte and ubyte), signed or unsigned
 short integers (GL data types short and ushort) , signed or
 unsigned integers (GL data types int and uint), or floating point
 values (GL data type float). These elements are grouped into sets
 of one, two, three, or four values, depending o n the format, to
 form a group. Table 3.6 summarizes the format of groups obtained
 from memory; it also indicates those formats th at yield indices
 and those that yield floating-point or integer components.

 (modify the last paragraph, p. 135)
 Conversion to floating-point

 This step applies only to groups of floating-po int components. It
 is not performed on indices or integer componen ts.

 (modify the third paragraph, p. 136)
 Final Expansion to RGBA

 This step is performed only for non-depth compo nent groups. Each
 group is converted to a group of 4 elements as follows: if a group
 does not contain an A element, then A is added and set to 1 for
 integer components or 1.0 for floating-point co mponents. If any of
 R, G, or B is missing from the group, each miss ing element is
 added and assigned a value of 0 for integer com ponents or 0.0 for
 floating-point components.

 (modify the last paragraph, p. 136)
 Final Conversion

 For a color index, final conversion consists of masking the bits
 of the index to the left of the binary point by 2^n - 1, where n is
 the number of bits in an index buffer. For flo ating-point RGBA
 components, each element is clamped to [0, 1]. The resulting
 values are converted to fixed-point according t o the rules given
 in section 2.14.9 (Final Color Processing). Fo r integer RGBA

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 213

 components, no conversion is applied. For a de pth component, an
 element is first clamped to [0, 1] and then con verted to
 fixed-point as if it were a window z value (see section 2.11.1,
 Controlling the Viewport). Stencil indices are masked by 2^n - 1,
 where n is the number of bits in the stencil bu ffer.

 Modify Section 3.6.5 (Pixel Transfer Operations), p. 137

 (modify last paragraph, p. 137)
 The GL defines five kinds of pixel groups:

 1. Floating-point RGBA component: Each group co mprises four color
 components in floating point format: red, gr een, blue, and
 alpha.

 2. Integer RGBA component: Each group comprises four color
 components in integer format: red, green, bl ue, and alpha.

 3. Depth component: Each group comprises a sing le depth component.

 4. Color index: Each group comprises a single c olor index.

 5. Stencil index: Each group comprises a single stencil index.

 (modify second paragraph, p. 138)
 Each operation described in this section is app lied sequentially
 to each pixel group in an image. Many operation s are applied only
 to pixel groups of certain kinds; if an operati on is not
 applicable to a given group, it is skipped. No ne of the
 operations defined in this section affect integ er RGBA component
 pixel groups.

 Modify Section 3.8 (Texturing), p. 149

 (insert between the first and second paragraphs , p. 150)
 The internal data type of a texture may be fixe d-point,
 floating-point, signed integer or unsigned inte ger, depending on
 the internalformat of the texture. The corresp ondence between
 internalformat and the internal data type is gi ven in table 3.16.
 Fixed-point and floating-point textures return a floating-point
 value and integer textures return signed or uns igned integer
 values. When a fragment shader is active, the shader is
 responsible for interpreting the result of a te xture lookup as the
 correct data type, otherwise the result is unde fined. Fixed
 functionality assumes floating-point data, henc e the result of
 using fixed functionality with integer textures is undefined.

 Modify Section 3.8.1 (Texture Image Specificati on), p. 150

 (modify second paragraph, p. 151) The selected groups are
 processed exactly as for DrawPixels, stopping j ust before final
 conversion. If the <internalformat> of the tex ture is integer,
 the components are clamped to the representable range of the
 internal format: for signed formats, this is [- 2^(n-1), 2^(n-1)-1]
 where n is the number of bits per component; fo r unsigned formats,
 the range is [0, 2^n-1]. For R, G, B, and A, i f the

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

NVIDIA Proprietary 214

 <internalformat> of the texture is fixed-point, the components are
 clamped to [0, 1]. Otherwise, the components a re not modified.

 (insert between paragraphs five and six, p. 151)
 Textures with integer internal formats (table 3 .16) require
 integer data. The error INVALID_OPERATION is g enerated if the
 internal format is integer and <format> is not one of the integer
 formats listed in table 3.6, or if the internal format is not
 integer and <format> is an integer format, or i f <format> is an
 integer format and <type> is FLOAT.

 (add the following to table 3.16, p. 154)
 Sized Base R G B A L I
 Internal Format Internal Format bits b its bits bits bits bits
 ----------------------- --------------- ---- - --- ---- ---- ---- ----
 ALPHA8I_EXT ALPHA i8
 ALPHA8UI_EXT ALPHA ui8
 ALPHA16I_EXT ALPHA i16
 ALPHA16UI_EXT ALPHA ui16
 ALPHA32I_EXT ALPHA i32
 ALPHA32UI_EXT ALPHA ui32
 LUMINANCE8I_EXT LUMINANCE i8
 LUMINANCE8UI_EXT LUMINANCE ui8
 LUMINANCE16I_EXT LUMINANCE i16
 LUMINANCE16UI_EXT LUMINANCE ui16
 LUMINANCE32I_EXT LUMINANCE i32
 LUMINANCE32UI_EXT LUMINANCE ui32
 LUMINANCE_ALPHA8I_EXT LUMINANCE_ALPHA i8 i8
 LUMINANCE_ALPHA8UI_EXT LUMINANCE_ALPHA ui8 ui8
 LUMINANCE_ALPHA16I_EXT LUMINANCE_ALPHA i16 i16
 LUMINANCE_ALPHA16UI_EXT LUMINANCE_ALPHA ui16 ui16
 LUMINANCE_ALPHA32I_EXT LUMINANCE_ALPHA i32 i32
 LUMINANCE_ALPHA32UI_EXT LUMINANCE_ALPHA ui32 ui32
 INTENSITY8I_EXT INTENSITY i8
 INTENSITY8UI_EXT INTENSITY ui8
 INTENSITY16I_EXT INTENSITY i16
 INTENSITY16UI_EXT INTENSITY ui16
 INTENSITY32I_EXT INTENSITY i32
 INTENSITY32UI_EXT INTENSITY ui32
 RGB8I_EXT RGB i8 i8 i8
 RGB8UI_EXT RGB ui8 ui8 ui8
 RGB16I_EXT RGB i16 i16 i16
 RGB16UI_EXT RGB ui16 u i16 ui16
 RGB32I_EXT RGB i32 i32 i32
 RGB32UI_EXT RGB ui32 u i32 ui32
 RGBA8I_EXT RGBA i8 i8 i8 i8
 RGBA8UI_EXT RGBA ui8 ui8 ui8 ui8
 RGBA16I_EXT RGBA i16 i16 i16 i16
 RGBA16UI_EXT RGBA ui16 u i16 ui16 ui16
 RGBA32I_EXT RGBA i32 i32 i32 i32
 RGBA32UI_EXT RGBA ui32 u i32 ui32 ui32

 Table 3.16: Correspondence of sized internal formats to base
 internal formats, internal data type and desire d component
 resolutions for each sized internal format. Th e component
 resolution prefix indicates the internal data t ype: <f> is

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 215

 floating point, <i> is signed integer, <ui> is unsigned integer,
 and no prefix is fixed-point.

 Modify Section 3.8.2 (Alternate Texture Image S pecification
 Commands), p. 159:

 (modify the second paragraph, p. 159)
 The error INVALID_OPERATION is generated if dep th component data
 is required and no depth buffer is present, or if integer RGBA
 data is required and the format of the current color buffer is not
 integer, or if floating-point or fixed-point RG BA data is required
 and the format of the current color buffer is i nteger.

 Modify Section 3.8.4 (Texture Parameters), p. 1 66:

 Various parameters control how the texture arra y is treated when
 specified or changed, and when applied to a fra gment. Each
 parameter is set by calling

 void TexParameter{if}(enum target, enum pn ame, T param);
 void TexParameter{if}v(enum target, enum p name, T params);
 void TexParameterIivEXT(enum target, enum pname, int *params);
 void TexParameterIuivEXT(enum target, enum pname, uint *params);

 <target> is the target, either TEXTURE_1D, TEXT URE_2D, TEXTURE_3D,
 or TEXTURE_CUBE_MAP. <pname> is a symbolic cons tant indicating the
 parameter to be set; the possible constants and corresponding
 parameters are summarized in table 3.19. In the first form of the
 command, <param> is a value to which to set a s ingle-valued
 parameter; in the second and third forms of the command, <params>
 is an array of parameters whose type depends on the parameter
 being set.

 If the value for TEXTURE_PRIORITY is specified as an integer, the
 conversion for signed integers from table 2.9 i s applied to
 convert the value to floating-point. The float ing point value of
 TEXTURE_PRIORITY is clamped to lie in [0, 1].

 If the values for TEXTURE_BORDER_COLOR are spec ified with
 TexParameterIivEXT or TexParameterIuivEXT, the values are
 unmodified and stored with an internal data typ e of integer. If
 specified with TexParameteriv, the conversion f or signed integers
 from table 2.9 is applied to convert these valu es to
 floating-point. Otherwise the values are unmod ified and stored as
 floating-point.

 (modify table 3.19, p. 167)
 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_BORDER_COLOR 4 floats or any 4 values
 4 ints or
 4 uints

 Table 3.19: Texture parameters and their values.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

NVIDIA Proprietary 216

 Modify Section 3.8.8 (Texture Minification), p. 170

 (modify last paragraph, p. 174)

 ... If the texture contains color components, t he values of
 TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the
 texture's internal format in a manner consisten t with table 3.15.
 The internal data type of the border values mus t be consistent
 with the type returned by the texture as descri bed in section 3.8,
 or the result is undefined. The border values for texture
 components stored as fixed-point values are cla mped to [0, 1]
 before they are used. If the texture contains depth components,
 the first component of TEXTURE_BORDER_COLOR is interpreted as a
 depth value

 Modify Section 3.8.10 (Texture Completeness), p . 177:

 (add to the requirements for one-, two-, or thr ee-dimensional
 textures)
 If the internalformat is integer, TEXTURE_MAG_F ILTER must be
 NEAREST and TEXTURE_MIN_FILTER must be NEAREST or
 NEAREST_MIPMAP_NEAREST.

 Modify Section 3.11.2 (Shader Execution), p. 19 4

 (modify Shader Outputs, first paragraph, p. 196)
 ... These are gl_FragColor, gl_FragData[n], and gl_FragDepth. If
 fragment clamping is enabled and the color buff er has a
 fixed-point or floating-point format, the final fragment color
 values or the final fragment data values writte n by a fragment
 shader are clamped to the range [0, 1]. If fra gment clamping is
 disabled or the color buffer has an integer for mat, the final
 fragment color values or the final fragment dat a values are not
 modified. The final fragment depth...

 (insert between the first paragraph and second paragraphs of
 "Shader Outputs", p. 196)
 Colors values written by the fragment shader ma y be floating-
 point, signed integer or unsigned integer. If the color buffer
 has a fixed-point format, the color values are assumed to be
 floating-point and are converted to fixed-point as described in
 section 2.14.9; otherwise no type conversion is applied. If the
 values written by the fragment shader do not ma tch the format(s)
 of the corresponding color buffer(s), the resul t is undefined.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Chapter 4 Introduction, (p. 198)

 (modify third paragraph, p. 198)
 Color buffers consist of unsigned integer color indices, R, G, B
 and optionally A floating-point components repr esented as
 fixed-point unsigned integer or floating-point values, or R, G, B
 and optionally A integer components represented as signed or
 unsigned integer values. The number of bitplan es...

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 217

 Modify Section 4.1.3 (Multisample Fragment Oper ations), p. 200

 (modify the second paragraph in this section)
 ... If SAMPLE_ALPHA_TO_COVERAGE is enabled and the color buffer
 has a fixed-point or floating-point format, a t emporary coverage
 value is generated ...

 Modify Section 4.1.4 (Alpha Test), p. 201

 (modify the first paragraph in this section)
 This step applies only in RGBA mode and only if the color buffer
 has a fixed-point or floating-point format. In color index mode or
 if the color buffer has an integer format, proc eed to the next
 operation. The alpha test discards ...

 Modify Section 4.1.8 (Blending), p. 205

 (modify the second paragraph, p. 206)
 ... Blending is dependent on the incoming fragm ent's alpha value
 and that of the corresponding currently stored pixel. Blending
 applies only in RGBA mode and only if the color buffer has a
 fixed-point or floating-point format; in color index mode or if
 the color buffer has an integer format, it is b ypassed. ...

 Modify Section 4.2.3 (Clearing the Buffers), p. 215

 void ClearColor(float r, float g, float b, f loat a);

 sets the clear value for fixed-point and floati ng-point color
 buffers in RGBA mode. The specified components are stored as
 floating-point values.

 void ClearColorIiEXT(int r, int g, int b, in t a);
 void ClearColorIuiEXT(uint r, uint g, uint b , uint a);

 set the clear value for signed integer and unsi gned integer color
 buffers, respectively, in RGBA mode. The speci fied components are
 stored as integer values.

 (add to the end of first partial paragraph, p. 217) ... then a
 Clear directed at that buffer has no effect. W hen fixed-point
 RGBA color buffers are cleared, the clear color values are assumed
 to be floating-point and are clamped to [0,1] b efore being
 converted to fixed-point according to the rules of section 2.14.9.
 The result of clearing fixed-point or floating- point color buffers
 is undefined if the clear color was specified a s integer values.
 The result of when clearing integer color buffe rs is undefined if
 the clear color was specified as floating-point values.

 Modify Section 4.3.2 (Reading Pixels), p. 219

 (append to the last paragraph, p. 221)
 The error INVALID_OPERATION occurs if <format> is an integer
 format and the color buffer is not an integer f ormat, or if the
 color buffer is an integer format and <format> is not. The error
 INVALID_ENUM occurs if <format> is an integer f ormat and <type> is
 FLOAT.

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

NVIDIA Proprietary 218

 (modify the first paragraph, p. 222)
 ... For a fixed-point color buffer, each elemen t is taken to be a
 fixed-point value in [0, 1] with m bits, where m is the number of
 bits in the corresponding color component of th e selected buffer
 (see section 2.14.9). For an integer or floati ng-point color
 buffer, the elements are unmodified.

 (modify the section labeled "Conversion to L", p. 222)
 This step applies only to RGBA component groups . If the format is
 either LUMINANCE or LUMINANCE_ALPHA, a value L is computed as

 L = R + G + B

 otherwise if the format is either LUMINANCE_INT EGER_EXT or
 LUMINANCE_ALPHA_INTEGER_EXT, L is computed as

 L = R

 where R, G, and B are the values of the R, G, a nd B
 components. The single computed L component rep laces the R, G, and
 B components in the group.

 (modify the section labeled "Final Conversion", p. 222)

 For a floating-point RGBA color, each component is first clamped
 to [0, 1]. Then the appropriate conversion form ula from table 4.7
 is applied to the component. For an integer RG BA color, each
 component is clamped to the representable range of <type>.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.3 (Enumerated Queries), p. 2 46

 (insert in the list of query functions, p. 246)
 void GetTexParameterIivEXT(enum target, enum v alue, int *data);
 void GetTexParameterIuivEXT(enum target, enum value, uint *data);

 (modify the second paragraph, p. 247)
 ... For GetTexParameter, value must be either T EXTURE_RESIDENT, or
 one of the symbolic values in table 3.19. Quer ying <value>
 TEXTURE_BORDER_COLOR with GetTexParameterIivEXT or
 GetTexParameterIuivEXT returns the border color values as signed
 integers or unsigned integers, respectively; ot herwise the values
 are returned as described in section 6.1.2. If the border color
 is queried with a type that does not match the original type with
 which it was specified, the result is undefined . The <lod>
 argument ...

 (add to end of third paragraph, p. 247) Queries with a <value> of
 TEXTURE_RED_TYPE_ARB, TEXTURE_GREEN_TYPE_ARB, TEXTURE_BLUE_TYPE_ARB,
 TEXTURE_ALPHA_TYPE_ARB, TEXTURE_LUMINANCE_TYPE_ARB,
 TEXTURE_INTENSITY_TYPE_ARB, or TEXTURE_DEPTH_TY PE_ARB, return the data
 type used to store the component. Values of NO NE,
 UNSIGNED_NORMALIZED_ARB, FLOAT, INT, or UNSIGNE D_INT, indicate missing,

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 219

 unsigned normalized integer, floating-point, si gned unnormalized integer,
 and unsigned unnormalized integer components, r espectively.

GLX Protocol

 TBD

Dependencies on ARB_texture_float

 The following changes should be made if ARB_tex ture_float is not
 supported:

 The references to floating-point data types in section 3.8, p. 150
 should be deleted.

 The language in section 3.8.1 should indicate t hat final
 conversion always clamps when the internalforma t is not integer.

 The description of table 3.16 should not mentio n the <f>
 floating-point formats.

 Section 3.8.4 should indicate that border color values should be
 clamped to [0,1] before being stored, if not sp ecified with one of
 the TexParameterI* functions.

 Section 3.8.8 should not mention clamping borde r color values to
 [0,1] for fixed-point textures, since this occu rs in 3.8.4 at
 TexParameter specification.

Dependencies on ARB_color_buffer_float

 The following changes should be made if ARB_col or_buffer_float is
 not supported:

 Section 3.11.2, subsection "Shader Outputs: p. 196 should not
 mention fragment clamping or color buffers with floating-point
 formats.

 Chapter 4, p. 198 should not mention components represented as
 floating-point values.

 Section 4.1.3, p. 200, section 4.1.4 p. 205, se ction 4.1.8 p. 206,
 section 4.2.3 p. 215 and section 4.3.2 p. 222 s hould not mention
 color buffers with a floating-point format.

 Section 4.2.3 p. 217 should not mention clampin g the clear color
 values to [0,1].

Errors

 INVALID_OPERATION is generated by Begin, DrawPi xels, Bitmap,
 CopyPixels, or a command that performs an expli cit Begin if the
 color buffer has an integer RGBA format and no fragment shader is
 active.

 INVALID_ENUM is generated by DrawPixels, TexIma ge* and
 SubTexImage* if <format> is one of the integer component formats

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_integer

NVIDIA Proprietary 220

 described in table 3.6 and <type> is FLOAT.

 INVALID_OPERATION is generated by TexImage* and SubTexImage* if
 the texture internalformat is an integer format as described in
 table 3.16 and <format> is not one of the integ er component
 formats described in table 3.6, or if the inter nalformat is not an
 integer format and <format> is an integer forma t.

 INVALID_OPERATION is generated by CopyTexImage* and
 CopyTexSubImage* if the texture internalformat is an integer
 format and the read color buffer is not an inte ger format, or if
 the internalformat is not an integer format and the read color
 buffer is an integer format.

 INVALID_ENUM is generated by ReadPixels if <for mat> is an integer
 format and <type> is FLOAT.

 INVALID_OPERATON is generated by ReadPixels if <format> is an
 integer format and the color buffer is not an i nteger format, or
 if <format> is not an integer format and the co lor buffer is an
 integer format.

New State

 (modify table 6.33, p. 294)

 Minimum
 Get Value Type Get Command Value Description Sec. Attribute
 ------------------------ ---- ----------- ------- ---------------- ---- ----------
 RGBA_INTEGER_MODE_EXT B GetBooleanv - True if RGBA 2.7 -
 components are
 integers

Issues

 How should the integer pixel path be triggered: by the destination
 type, new source types, or new source formats?

 RESOLVED: New source formats, based on the precedence of
 COLOR_INDEX and STENCIL_INDEX formats which invoke distinct
 pixel path behavior with identical data typ es and independent
 of the destination.

 Should pixel transfer operations be defined for the integer pixel
 path?

 RESOLVED: No. Fragment shaders can achieve similar results
 with more flexibility. There is no need to aggrandize this
 legacy mechanism.

 What happens if a shader reads a float texel fr om an integer
 texture or vice-versa?

 RESOLVED: The result is undefined. The sha der must have
 knowledge of the texture internal data type .

EXT_texture_integer OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 221

 How do integer textures behave in fixed functio n fragment
 processing?

 RESOLVED: The fixed function texture pipeli ne assumes textures
 return floating-point values, hence the ret urn value from an
 integer texture will not be in a meaningful format.

 How does TEXTURE_BORDER_COLOR work with integer textures?

 RESOLVED: The internal storage of border va lues effectively
 becomes a union, and the returned values ar e interpreted as
 the same type as the texture. New versions of TexParameter
 allow specification of signed and unsigned integer border
 values.

 How does logic op behave with RGBA mode renderi ng into integer
 color buffer?

 RESOLVED: The color logic op operates when enabled when
 rendering into integer color buffers.

 Logic op operations make sense for integer color buffers so the
 COLOR_LOGIC_OP enable is respected when ren dering into integer
 color buffers.

 Blending does not apply to RGBA mode render ing when rendering
 into integer color buffers (as section 4.1. 8 is updated to say).
 The color logic op (described in section 4. 1.10) is not a blending
 operation (though it does take priority ove r the blending enable).

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 5 07/15/07 pbrown Fix typo in GetTexPar ameterIuivEXT function
 name in "New Procedur es and Functions".

 4 -- Pre-release revisions .

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

NVIDIA Proprietary 222

Name

 EXT_texture_shared_exponent

Name Strings

 GL_EXT_texture_shared_exponent

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Contributors

 Pat Brown
 Jon Leech

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Date: February 6, 2007
 Revision: 0.5

Number

 333

Dependencies

 OpenGL 1.1 required

 ARB_color_buffer_float affects this extension.

 EXT_framebuffer_object affects this extension.

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 Existing texture formats provide either fixed-p oint formats with
 limited range and precision but with compact en codings (allowing 32
 or fewer bits per multi-component texel), or fl oating-point formats
 with tremendous range and precision but without compact encodings
 (typically 16 or 32 bits per component).

 This extension adds a new packed format and new internal texture
 format for encoding 3-component vectors (typica lly RGB colors) with
 a single 5-bit exponent (biased up by 15) and t hree 9-bit mantissas
 for each respective component. There is no sig n bit so all three
 components must be non-negative. The fractiona l mantissas are
 stored without an implied 1 to the left of the decimal point.
 Neither infinity nor not-a-number (NaN) are rep resentable in this
 shared exponent format.

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 223

 This 32 bits/texel shared exponent format is pa rticularly well-suited
 to high dynamic range (HDR) applications where light intensity is
 typically stored as non-negative red, green, an d blue components
 with considerable range.

New Procedures and Functions

 None

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D,
 TexImage2D, TexImage3D, CopyTexImage1D, CopyTex Image2D, and
 RenderbufferStorageEXT:

 RGB9_E5_EXT 0x8C3D

 Accepted by the <type> parameter of DrawPixels, ReadPixels,
 TexImage1D, TexImage2D, GetTexImage, TexImage3D , TexSubImage1D,
 TexSubImage2D, TexSubImage3D, GetHistogram, Get Minmax,
 ConvolutionFilter1D, ConvolutionFilter2D, Convo lutionFilter3D,
 GetConvolutionFilter, SeparableFilter2D, GetSep arableFilter,
 ColorTable, ColorSubTable, and GetColorTable:

 UNSIGNED_INT_5_9_9_9_REV_EXT 0x8C3E

 Accepted by the <pname> parameter of GetTexLeve lParameterfv and
 GetTexLevelParameteriv:

 TEXTURE_SHARED_SIZE_EXT 0x8C3F

Additions to Chapter 2 of the 2.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 2.0 Specification (Ra sterization)

 -- Section 3.6.4, Rasterization of Pixel Rectangle s

 Add a new row to Table 3.5 (page 128):

 type Parameter Correspondin g Special
 Token Name GL Data Type Interpretation
 ----------------------------- ------------ - --------------
 UNSIGNED_INT_5_9_9_9_REV_EXT uint yes

 Add a new row to table 3.8: Packed pixel format s (page 132):

 type Parameter GL Data Num ber of Matching
 Token Name Type Com ponents Pixel Formats
 ----------------------------- ------- --- ------- -------------
 UNSIGNED_INT_5_9_9_9_REV_EXT uint 4 RGB

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

NVIDIA Proprietary 224

 Add a new entry to table 3.11: UNSIGNED_INT for mats (page 134):

 UNSIGNED_INT_5_9_9_9_REV_EXT:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 1 7 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +-------------+--------------------------+- --------------------------+------------------------ --+
 | 4th | 3rd | 2nd | 1st |
 +-------------+--------------------------+- --------------------------+------------------------ --+

 Add to the end of the 2nd paragraph starting "P ixels are draw using":

 "If type is UNSIGNED_INT_5_9_9_9_REV_EXT and fo rmat is not RGB then
 the error INVALID_ENUM occurs."

 Add UNSIGNED_INT_5_9_9_9_REV_EXT to the list of packed formats in
 the 10th paragraph after the "Packing" subsecti on (page 130).

 Add before the 3rd paragraph (page 135, startin g "Calling DrawPixels
 with a type of BITMAP...") from the end of the "Packing" subsection:

 "Calling DrawPixels with a type of UNSIGNED_INT _5_9_9_9_REV_EXT and
 format of RGB is a special case in which the da ta are a series of GL
 uint values. Each uint value specifies 4 packe d components as shown
 in table 3.11. The 1st, 2nd, 3rd, and 4th comp onents are called
 p_red, p_green, p_blue, and p_exp respectively and are treated as
 unsigned integers. These are then used to comp ute floating-point
 RGB components (ignoring the "Conversion to flo ating-point" section
 below in this case) as follows:

 red = p_red * 2^(p_exp - B)
 green = p_green * 2^(p_exp - B)
 blue = p_blue * 2^(p_exp - B)

 where B is 15."

 -- Section 3.8.1, Texture Image Specification:

 "Alternatively if the internalformat is RGB9_E5 _EXT, the red, green,
 and blue bits are converted to a shared exponen t format according
 to the following procedure:

 Components red, green, and blue are first clamp ed (in the process,
 mapping NaN to zero) so:

 red_c = max(0, min(sharedexp_max, red))
 green_c = max(0, min(sharedexp_max, green))
 blue_c = max(0, min(sharedexp_max, blue))

 where sharedexp_max is (2^N-1)/2^N * 2^(Emax-B) , N is the number
 of mantissa bits per component, Emax is the max imum allowed biased
 exponent value (careful: not necessarily 2^E-1 when E is the number
 of exponent bits), bits, and B is the exponent bias. For the
 RGB9_E5_EXT format, N=9, Emax=30 (careful: not 31!), and B=15.

 The largest clamped component, max_c, is determ ined:

 max_c = max(red_c, green_c, blue_c)

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 225

 A shared exponent is computed:

 exp_shared = max(-B-1, floor(log2(max_c))) + 1 + B

 These integers values in the range 0 to 2^N-1 a re then computed:

 red_s = floor(red_c / 2^(exp_shared - B + N) + 0.5)
 green_s = floor(green_c / 2^(exp_shared - B + N) + 0.5)
 blue_s = floor(blue_c / 2^(exp_shared - B + N) + 0.5)

 Then red_s, green_s, and blue_s are stored alon g with exp_shared in
 the red, green, blue, and shared bits respectiv ely of the texture
 image.

 An implementation accepting pixel data of type
 UNSIGNED_INT_5_9_9_9_REV_EXT with a format of R GB is allowed to store
 the components "as is" if the implementation ca n determine the current
 pixel transfer state act as an identity transfo rm on the components."

 Add a new row and the "shared bits" column (bla nk for all existing
 rows) to Table 3.16 (page 154).

 Sized Base R G B A L I D shared
 Internal Format Internal Format bit s bits bits bits bits bits bits bits
 --------------------- --------------- --- - ---- ---- ---- ---- ---- ---- ------
 RGB9_E5_EXT RGB 9 9 9 5

 -- Section 3.8.x, Shared Exponent Texture Color Co nversion

 Insert this section AFTER section 3.8.14 Textur e Comparison Modes
 and BEFORE section 3.8.15 Texture Application (and after the "sRGB
 Texture Color Conversion" if EXT_texture_sRGB i s supported).

 "If the currently bound texture's internal form at is RGB9_E5_EXT, the
 red, green, blue, and shared bits are converted to color components
 (prior to filtering) using the following shared exponent decoding.

 The components red_s, green_s, blue_s, and exp_ shared values (see
 section 3.8.1) are treated as unsigned integers and are converted
 to red, green, blue as follows:

 red = red_s * 2^(exp_shared - B)
 green = green_s * 2^(exp_shared - B)
 blue = blue_s * 2^(exp_shared - B)"

Additions to Chapter 4 of the 2.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 -- Section 4.3.2, Reading Pixels

 Add a row to table 4.7 (page 224);

 Co mponent
 type Parameter GL Data Type Co nversion Formula
 ----------------------------- ------------ -- ----------------
 UNSIGNED_INT_5_9_9_9_REV_EXT uint sp ecial

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

NVIDIA Proprietary 226

 Replace second paragraph of "Final Conversion" (page 222) to read:

 For an RGBA color, if <type> is not FLOAT or
 UNSIGNED_INT_5_9_9_9_REV_EXT, or if the CLAMP_R EAD_COLOR_ARB is
 TRUE, or CLAMP_READ_COLOR_ARB is FIXED_ONLY_ARB and the selected
 color (or texture) buffer is a fixed-point buff er, each component
 is first clamped to [0,1]. Then the appropriat e conversion formula
 from table 4.7 is applied the component.

 In the special case when calling ReadPixels wit h a type of
 UNSIGNED_INT_5_9_9_9_REV_EXT and format of RGB, the conversion
 is done as follows: The returned data are pack ed into a series of
 GL uint values. The red, green, and blue compon ents are converted
 to red_s, green_s, blue_s, and exp_shared integ ers as described in
 section 3.8.1 when the internalformat is RGB9_E 5_EXT. The red_s,
 green_s, blue_s, and exp_shared are then packed as the 1st, 2nd,
 3rd, and 4th components of the UNSIGNED_INT_5_9 _9_9_REV_EXT format
 as shown in table 3.11."

Additions to Chapter 5 of the 2.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 2.0 Specification (St ate and State Requests)

-- Section 6.1.3, Enumerated Queries

 Add TEXTURE_SHARED_SIZE_EXT to the list of quer ies in the first
 sentence of the fifth paragraph (page 247) so i t reads:

 "For texture images with uncompressed internal formats, queries of
 value of TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_BLUE_SIZE,
 TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE, TEX TURE_DEPTH_SIZE,
 TEXTURE_SHARED_SIZE_EXTT, and TEXTURE_INTENSITY _SIZE return the
 actual resolutions of the stored image array co mponents, not the
 resolutions specified when the image array was defined."
Additions to the OpenGL Shading Language specificat ion

 None

Additions to the GLX Specification

 None

GLX Protocol

 None.

Dependencies on ARB_color_buffer_float

 If ARB_color_buffer_float is not supported, rep lace this amended
 sentence from 4.3.2 above

 "For an RGBA color, if <type> is not FLOAT or
 UNSIGNED_INT_5_9_9_9_REV_EXT, or if the CLAMP_R EAD_COLOR_ARB is TRUE, or
 CLAMP_READ_COLOR_ARB is FIXED_ONLY_ARB and the selected color buffer

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 227

 (or texture image for GetTexImage) is a fixed-p oint buffer (or texture
 image for GetTexImage), each component is first clamped to [0,1]."

 with

 "For an RGBA color, if <type> is not FLOAT or
 UNSIGNED_INT_5_9_9_9_REV_EXT and the selected c olor buffer (or
 texture image for GetTexImage) is a fixed-point buffer (or texture
 image for GetTexImage), each component is first clamped to [0,1]."

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object is not supported, the n
 RenderbufferStorageEXT is not supported and the RGB9_E5_EXT
 internalformat is therefore not supported by Re nderbufferStorageEXT.

Errors

 Relaxation of INVALID_ENUM errors

 TexImage1D, TexImage2D, TexImage3D, CopyTexImag e1D, CopyTexImage2D,
 and RenderbufferStorageEXT accept the new RGB9_ E5_EXT token for
 internalformat.

 DrawPixels, ReadPixels, TexImage1D, TexImage2D, GetTexImage,
 TexImage3D, TexSubImage1D, TexSubImage2D, TexSu bImage3D,
 GetHistogram, GetMinmax, ConvolutionFilter1D, C onvolutionFilter2D,
 ConvolutionFilter3D, GetConvolutionFilter, Sepa rableFilter2D,
 GetSeparableFilter, ColorTable, ColorSubTable, and GetColorTable
 accept the new UNSIGNED_INT_5_9_9_9_REV_EXT tok en for type.

 GetTexLevelParameterfv and GetTexLevelParameter iv accept the new
 TEXTURE_SHARED_SIZE_EXT token for <pname>.

 New errors

 INVALID_OPERATION is generated by DrawPixels, R eadPixels, TexImage1D,
 TexImage2D, GetTexImage, TexImage3D, TexSubImag e1D, TexSubImage2D,
 TexSubImage3D, GetHistogram, GetMinmax, Convolu tionFilter1D,
 ConvolutionFilter2D, ConvolutionFilter3D, GetCo nvolutionFilter,
 SeparableFilter2D, GetSeparableFilter, ColorTab le, ColorSubTable,
 and GetColorTable if <type> is UNSIGNED_INT_5_9 _9_9_REV_EXT
 and <format> is not RGB.

New State

 In table 6.17, Textures (page 278), increment t he 42 in "n x Z42*"
 by 1 for the RGB9_E5_EXT format.

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

NVIDIA Proprietary 228

 Add the following entry to table 6.17:

Get Value Type Get Command Value Description Sec. Attribute
----------------------- ------ ------------------ -- ------- -------------------------------------- ---- ---------
TEXTURE_SHARED_SIZE_EXT n x Z+ GetTexLevelParamet er 0 xD texture image i's shared exponent 3.8 -
 field size

New Implementation Dependent State

 None

Appendix

 This source code provides ANSI C routines. It assumes the C "float"
 data type is stored with the IEEE 754 32-bit fl oating-point format.
 Make sure you define __LITTLE_ENDIAN or __BIG_E NDIAN appropriate
 for your target system.

 XXX: code below not tested on big-endian platfo rm...

------------------- start of source code ---------- --------------

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define __LITTLE_ENDIAN 1
#define __BIG_ENDIAN 2

#ifdef _WIN32
#define __BYTE_ORDER __LITTLE_ENDIAN
#endif

#define RGB9E5_EXPONENT_BITS 5
#define RGB9E5_MANTISSA_BITS 9
#define RGB9E5_EXP_BIAS 15
#define RGB9E5_MAX_VALID_BIASED_EXP 31

#define MAX_RGB9E5_EXP (RGB9E5_MAX_VA LID_BIASED_EXP - RGB9E5_EXP_BIAS)
#define RGB9E5_MANTISSA_VALUES (1<<RGB9E5_MAN TISSA_BITS)
#define MAX_RGB9E5_MANTISSA (RGB9E5_MANTIS SA_VALUES-1)
#define MAX_RGB9E5 ((float)MAX_RGB9E5_MANTIS SA)/RGB9E5_MANTISSA_VALUES * (1<<MAX_RGB9E5_EXP))
#define EPSILON_RGB9E5 ((1.0/RGB9E5_MANTIS SA_VALUES) / (1<<RGB9E5_EXP_BIAS))

typedef struct {
#ifdef __BYTE_ORDER
#if __BYTE_ORDER == __BIG_ENDIAN
 unsigned int negative:1;
 unsigned int biasedexponent:8;
 unsigned int mantissa:23;
#elif __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned int mantissa:23;
 unsigned int biasedexponent:8;
 unsigned int negative:1;
#endif
#endif
} BitsOfIEEE754;

typedef union {
 unsigned int raw;
 float value;
 BitsOfIEEE754 field;
} float754;

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 229

typedef struct {
#ifdef __BYTE_ORDER
#if __BYTE_ORDER == __BIG_ENDIAN
 unsigned int biasedexponent:RGB9E5_EXPONENT_BITS;
 unsigned int b:RGB9E5_MANTISSA_BITS;
 unsigned int g:RGB9E5_MANTISSA_BITS;
 unsigned int r:RGB9E5_MANTISSA_BITS;
#elif __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned int r:RGB9E5_MANTISSA_BITS;
 unsigned int g:RGB9E5_MANTISSA_BITS;
 unsigned int b:RGB9E5_MANTISSA_BITS;
 unsigned int biasedexponent:RGB9E5_EXPONENT_BITS;
#endif
#endif
} BitsOfRGB9E5;

typedef union {
 unsigned int raw;
 BitsOfRGB9E5 field;
} rgb9e5;

float ClampRange_for_rgb9e5(float x)
{
 if (x > 0.0) {
 if (x >= MAX_RGB9E5) {
 return MAX_RGB9E5;
 } else {
 return x;
 }
 } else {
 /* NaN gets here too since comparisons with NaN always fail! */
 return 0.0;
 }
}

float MaxOf3(float x, float y, float z)
{
 if (x > y) {
 if (x > z) {
 return x;
 } else {
 return z;
 }
 } else {
 if (y > z) {
 return y;
 } else {
 return z;
 }
 }
}

/* Ok, FloorLog2 is not correct for the denorm and zero values, but we
 are going to do a max of this value with the min imum rgb9e5 exponent
 that will hide these problem cases. */
int FloorLog2(float x)
{
 float754 f;

 f.value = x;
 return (f.field.biasedexponent - 127);
}

int Max(int x, int y)
{
 if (x > y) {
 return x;
 } else {
 return y;
 }
}

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

NVIDIA Proprietary 230

rgb9e5 float3_to_rgb9e5(const float rgb[3])
{
 rgb9e5 retval;
 float maxrgb;
 int rm, gm, bm;
 float rc, gc, bc;
 int exp_shared;
 double denom;

 rc = ClampRange_for_rgb9e5(rgb[0]);
 gc = ClampRange_for_rgb9e5(rgb[1]);
 bc = ClampRange_for_rgb9e5(rgb[2]);

 maxrgb = MaxOf3(rc, gc, bc);
 exp_shared = Max(-RGB9E5_EXP_BIAS-1, FloorLog2(ma xrgb)) + 1 + RGB9E5_EXP_BIAS;
 assert(exp_shared <= RGB9E5_MAX_VALID_BIASED_EXP) ;
 assert(exp_shared >= 0);
 /* This pow function could be replaced by a table . */
 denom = pow(2, exp_shared - RGB9E5_EXP_BIAS - RGB 9E5_MANTISSA_BITS);

 rm = (int) floor(rc / denom + 0.5);
 gm = (int) floor(gc / denom + 0.5);
 bm = (int) floor(bc / denom + 0.5);

 assert(rm <= MAX_RGB9E5_MANTISSA);
 assert(gm <= MAX_RGB9E5_MANTISSA);
 assert(bm <= MAX_RGB9E5_MANTISSA);
 assert(rm >= 0);
 assert(gm >= 0);
 assert(bm >= 0);

 retval.field.r = rm;
 retval.field.g = gm;
 retval.field.b = bm;
 retval.field.biasedexponent = exp_shared;

 return retval;
}

void rgb9e5_to_float3(rgb9e5 v, float retval[3])
{
 int exponent = v.field.biasedexponent - RGB9E5_EX P_BIAS - RGB9E5_MANTISSA_BITS;
 float scale = (float) pow(2, exponent);

 retval[0] = v.field.r * scale;
 retval[1] = v.field.g * scale;
 retval[2] = v.field.b * scale;
}

------------------- end of source code ------------ ------------

Issues

 1) What should this extension be called?

 RESOLVED: EXT_texture_shared_exponent

 The "EXT_texture" part indicates the extens ion is in the texture
 domain and "shared_exponent" indicates the extension is adding
 a new shared exponent formats.

 EXT_texture_rgb9e5 was considered but there 's no precedent for
 extension names to be so explicit (or crypt ic?) about format
 specifics in the extension name.

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 231

 2) There are many possible encodings for a sha red exponent format.
 Which encoding does this extension specify?

 RESOLVED: A single 5-bit exponent stored a s an unsigned
 value biased by 15 and three 9-bit mantissa s for each of 3
 components. There are no sign bits so all three components
 must be non-negative. The fractional manti ssas assume an implied
 0 left of the decimal point because having an implied leading
 1 is inconsistent with sharing the exponent . Neither Infinity
 nor Not-a-Number (NaN) are representable in this shared exponent
 format.

 We chose this format because it closely mat ches the range and
 precision of the s10e5 half-precision float ing-point described
 in the ARB_half_float_pixel and ARB_texture _float specifications.

 3) Why not an 8-bit shared exponent?

 RESOLVED: Greg Ward's RGBE shared exponent encoding uses an
 8-bit exponent (same as a single-precision IEEE value) but we
 believe the rgb9e5 is more generally useful than rgb8e8.

 An 8-bit exponent provides far more range t han is typically
 required for graphics applications. Howeve r, an extra bit
 of precision for each component helps in si tuations where a
 high magnitude component dominates a low ma gnitude component.
 Having an 8-bit shared exponent and 8-bit m antissas are amenable
 to CPUs that facilitate 8-bit sized reads a nd writes over non-byte
 aligned fields, but GPUs do not suffer from this issue.

 Indeed GPUs with s10e5 texture filtering ca n use that same
 filtering hardware for rgb9e5 textures.

 However, future extensions could add other shared exponent formats
 so we name the tokens to indicate the

 4) Should there be an external format and type for rgb9e5?

 RESOLVED: Yes, hence the external format G L_RGB9_E5_EXT and
 type GL_UNSIGNED_INT_5_9_9_9_REV_EXT. This makes it fast to load
 GL_RGB9_E5_EXT textures without any transla tion by the driver.

 5) Why is the exponent bias 15?

 RESOLVED: The best technical choice of 15. Hopefully, this
 discussion sheds insight into the numerics of the shared exponent
 format in general.

 With conventional floating-point formats, t he number corresponding
 to a finite, non-denorm, non-zero floating- point value is

 value = -1^sgn * 2^(exp-bias) * 1.frac

 where sgn is the sign bit (so 1 for sgn neg ative because -1^-1
 == -1 and 0 means positive because -1^0 == +1), exp is an
 (unsigned) BIASED exponent and bias is the format's constant bias
 to subtract to get the unbiased (possibly n egative) exponent;

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

NVIDIA Proprietary 232

 and frac is the fractional portion of the m antissa with the
 "1." indicating an implied leading 1.

 An exp value of zero indicates so-called de normalized values
 (denorms). With conventional floating-poin t formats, the number
 corresponding to a denorm floating-point va lue is

 value = -1^sgn * 2^(exp-bias+1) * 0.fra c

 where the only difference between the denor m and non-denorm case
 is the bias is one greater in the denorm ca se and the implied
 leading digit is a zero instead of a one.

 Ideally, the rgb9e5 shared exponent format would represent
 roughly the same range of finite values as the s10e5 format
 specified by the ARB_texture_float extensio n. The s10e5 format
 has an exponent bias of 15.

 While conventional floating-point formats c leverly use an implied
 leading 1 for non-denorm, finite values, a shared exponent format
 cannot use an implied leading 1 because eac h component may have
 a different magnitude for its most-signific ant binary digit.
 The implied leading 1 assumes we have the f lexibility to adjust
 the mantissa and exponent together to ensur e an implied leading 1.
 That flexibility is not present when the ex ponent is shared.

 So the rgb9e5 format cannot assume an impli ed leading one.
 Instead, an implied leading zero is assumed (much like the
 conventional denorm case).

 The rgb9e5 format eliminate support represe nting negative,
 Infinite, not-a-number (NaN), and denorm va lues.

 We've already discussed how the BIASED zero exponent is used to
 encode denorm values (and zero) with conven tional floating-point
 formats. The largest BIASED exponent (31 f or s10e5, 127 for
 s23e8) indicates Infinity and NaN values. This means these two
 extrema exponent values are "off limits" fo r run-of-the-mill
 values.

 The numbers corresponding to a shared expon ent format value are:

 value_r = 2^(exp-bias) * 0.frac_r
 value_g = 2^(exp-bias) * 0.frac_g
 value_b = 2^(exp-bias) * 0.frac_b

 where there is no sgn since all values are non-negative, exp is
 the (unsigned) BIASED exponent and bias is the format's constant
 bias to subtract to get the unbiased (possi bly negative) exponent;
 and frac_r, frac_g, and frac_b are the frac tional portion of
 the mantissas of the r, g, and b components respectively with
 "0." indicating an implied leading 0.

 There should be no "off limits" exponents f or the shared exponent
 format since there is no requirement for re presenting Infinity
 or NaN values and denorm is not a special c ase. Because of

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 233

 the implied leading zero, any component wit h all zeros for its
 mantissa is zero, no matter the shared expo nent's value.

 So the run-of-the-mill BIASED range of expo nents for s10e5 is
 1 to 30. But the rgb9e5 shared exponent fo rmat consistently
 uses the same rule for all exponents from 0 to 31.

 What exponent bias best allows us to repres ent the range of
 s10e5 with the rgb9e5 format? 15.

 Consider the maximum representable finite s 10e5 magnitude.
 The exponent would be 30 (31 would encode a n Infinite or NaN
 value) and the binary mantissa would be 1 f ollowed by ten
 fractional 1's. Effectively:

 s10e5_max = 1.1111111111 * 2^(30-15)
 = 1.1111111111 * 2^15

 For an rgb9e5 value with a bias of 15, the largest representable
 value is:

 rgb9e5_max = 0.111111111 * 2^(31-15)
 = 0.111111111 * 2^16
 = 1.11111111 * 2^15

 If you ignore two LSBs, these values are ne arly identical.
 The rgb9e5_max value is exactly representab le as an s10e5 value.

 For an rgb9e5 value with a bias of 15, the smallest non-zero
 representable value is:

 rgb9e5_min = 0.000000001 * 2^(0-15)
 rgb9e5_min = 0.000000001 * 2^-15
 rgb9e5_min = 0.0000000001 * 2^-14

 So the s10e5_min and rgb9e5_min values exac tly match (of course,
 this assumes the shared exponent bias is 15 which might not be
 the case if other components demand higher exponents).

 8) Should there be an rgb9e5 framebuffer forma t?

 RESOLVED: No. Rendering to rgb9e5 is bett er left to another
 extension and would require the hardware to convert from a
 (floating-point) RGBA value into an rgb9e5 encoding.

 Interactions with EXT_framebuffer_object ar e specified,
 but the expectation is this is not a render able
 format and glCheckFramebufferStatusEXT woul d return
 GL_FRAMEBUFFER_UNSUPPORTED_EXT.

 An implementation certainly could make this texture internal
 format renderable when used with a framebuf fer object. Note that
 the shared exponent means masked components may be lossy in
 their masking. For example, a very small b ut non-zero value in
 a masked component could get flushed to zer o if a large enough
 value is written into an unmasked component .

OpenGL Extension Specifcations for GeForce 8 Series EXT_texture_shared_exponent

NVIDIA Proprietary 234

 9) Should automatic mipmap generation be suppo rted for rgb9e5
 textures?

 RESOLVED: Yes.

 10) Should non-texture and non-framebuffer comm ands for loading
 pixel data accept the GL_UNSIGNED_INT_5_9_9 _9_REV_EXT type?

 RESOLVED: Yes.

 Once the pixel path has to support the new type/format combination
 of GL_UNSIGNED_INT_5_9_9_9_REV_EXT / GL_RGB for specifying and
 querying texture images, it might as well b e supported for all
 commands that pack and unpack RGB pixel dat a.

 The specification is written such that the glDrawPixels
 type/format parameters are accepted by glRe adPixels,
 glTexGetImage, glTexImage2D, and other comm ands that are specified
 in terms of glDrawPixels.

 11) Should non-texture internal formats (such a s for color tables,
 convolution kernels, histogram bins, and mi n/max tables) accept
 GL_RGB9_E5_EXT format?

 RESOLVED: No.

 That's pointless. No hardware is ever like ly to support
 GL_RGB9_E5_EXT internalformats for anything other than textures
 and maybe color buffers in the future. Thi s format is not
 interesting for color tables, convolution k ernels, etc.

 12) Should a format be supported with sign bits for each component?

 RESOLVED: No.

 An srgb8e5 format with a sign bit per compo nent could be useful
 but is better left to another extension.

 13) The rgb9e5 allows two 32-bit values encoded as rgb9e5 to
 correspond to the exact same 3 components w hen expanded to
 floating-point. Is this a problem?

 RESOLVED: No, there's no problem here.

 An encoder is likely to always pack compone nts so at least
 one mantissa will have an explicit leading one, but there's no
 requirement for that.

 Applications might be able to take advantag e of this by quickly
 dividing all three components by a power-of -two by simply
 subtracting log2 of the power-of-two from t he shared exponent (as
 long as the exponent is greater than zero p rior to the subtract).

 Arguably, the shared exponent format could maintain a slight
 amount of extra precision (one bit per mant issa) if the format
 said if the most significant bits of all th ree mantissas are
 either all one or all zero and the biased s hared exponent was not

EXT_texture_shared_exponent OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 235

 zero, then an implied leading 1 should be a ssumed and the shared
 exponent should be treated as one smaller t han it really is.
 While this would preserve an extra least-si gnificant bit of
 mantissa precision for components of approx imately the same
 magnitude, it would complicate the encoding and decoding of
 shared exponent values.

 14) Can you provide some C code for encoding th ree floating-point
 values into the rgb9e5 format?

 RESOLVED: Sure. See the Appendix.

 15) Should we support a non-REV version of the
 GL_UNSIGNED_INT_5_9_9_9_REV_EXT token?

 RESOLVED: No. The shared exponent is alwa ys the 5 most
 significant bits of the 32 bit word. The f irst (red) mantissa
 is in the least significant 9 bits, followe d by 9 bits for the
 second (green) mantissa, followed by 9 bits for the third (blue)
 mantissa. We don't want to promote differe nt arrangements of
 the bitfields for rgb9e5 values.

 16) Can you use the GL_UNSIGNED_INT_5_9_9_9_REV _EXT format with
 just any format?

 RESOLVED: You can only use the GL_UNSIGNED _INT_5_9_9_9_REV_EXT
 format with GL_RGB. Otherwise, the GL gene rates
 an GL_INVALID_OPERATION error. Conceptuall y,
 GL_UNSIGNED_INT_5_9_9_9_REV_EXT is a 3-comp onent format
 that just happens to have 5 shared bits too . Just as the
 GL_UNSIGNED_BYTE_3_3_2 format just works wi th GL_RGB (or else
 the GL generates an GL_INVALID_OPERATION er ror), so should
 GL_UNSIGNED_INT_5_9_9_9_REV_EXT.

 17) What should GL_TEXTURE_SHARED_SIZE_EXT retu rn when queried with
 GetTexLevelParameter?

 RESOLVED: Return 5 for the RGB9_E5_EXT int ernal format and 0
 for all other existing formats.

 This is a count of the number of bits in th e shared exponent.

 18) What should GL_TEXTURE_RED_SIZE, GL_TEXTURE _GREEN_SIZE, and
 GL_TEXTURE_BLUE_SIZE return when queried wi th GetTexLevelParameter
 for a GL_RGB9_E5_EXT texture?

 RESOLVED: Return 9 for each.

Revision History

 None

OpenGL Extension Specifcations for GeForce 8 Series NV_conditional_render

NVIDIA Proprietary 236

Name

 NV_conditional_render

Name Strings

 GL_NV_conditional_render

Status

 Shipping.

Version

 Last Modified Date: 11/29/2007
 NVIDIA Revision: 2

Number

 Unassigned.

Dependencies

 The extension is written against the OpenGL 2.0 Specification.

 ARB_occlusion_query or OpenGL 1.5 is required.

Overview

 This extension provides support for conditional rendering based on the
 results of an occlusion query. This mechanism allows an application to
 potentially reduce the latency between the comp letion of an occlusion
 query and the rendering commands depending on i ts result. It additionally
 allows the decision of whether to render to be made without application
 intervention.

 This extension defines two new functions, Begin ConditionalRenderNV and
 EndConditionalRenderNV, between which rendering commands may be discarded
 based on the results of an occlusion query. If the specified occlusion
 query returns a non-zero value, rendering comma nds between these calls are
 executed. If the occlusion query returns a val ue of zero, all rendering
 commands between the calls are discarded.

 If the occlusion query results are not availabl e when
 BeginConditionalRenderNV is executed, the <mode > parameter specifies
 whether the GL should wait for the query to com plete or should simply
 render the subsequent geometry unconditionally.

 Additionally, the extension provides a set of " by region" modes, allowing
 for implementations that divide rendering work by screen regions to
 perform the conditional query test on a region- by-region basis without
 checking the query results from other regions. Such a mode is useful for
 cases like split-frame SLI, where a frame is di vided between multiple
 GPUs, each of which has its own occlusion query hardware.

NV_conditional_render OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 237

New Procedures and Functions

 void BeginConditionalRenderNV(uint id, enum mod e);
 void EndConditionalRenderNV(void);

New Tokens

 Accepted by the <mode> parameter of BeginCondit ionalRenderNV:

 QUERY_WAIT_NV 0x8E13
 QUERY_NO_WAIT_NV 0x8E14
 QUERY_BY_REGION_WAIT_NV 0x8E15
 QUERY_BY_REGION_NO_WAIT_NV 0x8E16

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 (Incorporate the spec edits from the EXT_transfo rm_feedback specification
 that move the "Occlusion Queries" Section 4.1.7 -- to between Section 2.11,
 Coordinate Transforms and Section 2.12, Clipping , and rename it to
 "Asynchronous Queries". Insert a new section im mediately after the moved
 "Asynchronous Queries" section. If EXT_transfor m_feedback is incorporated,
 this section should be inserted prior the the "T ransform Feedback"
 section.)

 Section 2.X, Conditional Rendering

 Conditional rendering can be used to discard re ndering commands based on
 the result of an occlusion query. Conditional rendering is started and
 stopped using the commands

 void BeginConditionalRenderNV(uint id, enum mode);
 void EndConditionalRenderNV(void);

 <id> specifies the name of an occlusion query o bject whose results are
 used to determine if the rendering commands are discarded. If the result
 (SAMPLES_PASSED) of the query is zero, all rend ering commands between
 BeginConditionalRenderNV and the corresponding EndConditionalRenderNV
 are discarded. In this case, Begin, End, all v ertex array commands
 performing an implicit Begin and End, DrawPixel s (section 3.6), Bitmap
 (section 3.7), Clear (section 4.2.3), Accum (se ction 4.2.4), CopyPixels
 (section 4.3.3), EvalMesh1, and EvalMesh2 (sect ion 5.1) have no effect.
 The effect of commands setting current vertex s tate (e.g., Color,
 VertexAttrib) is undefined. If the result of t he occlusion query is
 non-zero, such commands are not discarded.

 <mode> specifies how BeginConditionalRenderNV i nterprets the results of
 the occlusion query given by <id>. If <mode> i s QUERY_WAIT_NV, the GL
 waits for the results of the query to be availa ble and then uses the
 results to determine if subsquent rendering com mands are discarded. If
 <mode> is QUERY_NO_WAIT_NV, the GL may choose t o unconditionally execute
 the subsequent rendering commands without waiti ng for the query to
 complete.

 If <mode> is QUERY_BY_REGION_WAIT_NV, the GL wi ll also wait for occlusion
 query results and discard rendering commands if the result of the
 occlusion query is zero. If the query result i s non-zero, subsequent
 rendering commands are executed, but the GL may discard the results of the

OpenGL Extension Specifcations for GeForce 8 Series NV_conditional_render

NVIDIA Proprietary 238

 commands for any region of the framebuffer that did not contribute to the
 sample count in the specified occlusion query. Any such discarding is
 done in an implementation-dependent manner, but the rendering command
 results may not be discarded for any samples th at contributed to the
 occlusion query sample count. If <mode> is QUE RY_BY_REGION_NO_WAIT_NV,
 the GL operates as in QUERY_BY_REGION_WAIT_NV, but may choose to
 unconditionally execute the subsequent renderin g commands without waiting
 for the query to complete.

 If BeginConditionalRenderNV is called while con ditional rendering is in
 progress, or if EndConditionalRenderNV is calle d while conditional
 rendering is not in progress, the error INVALID _OPERATION is generated.
 The error INVALID_VALUE is generated if <id> is not the name of an
 existing query object query. The error INVALID _OPERATION is generated if
 <id> is the name of a query object with a targe t other than
 SAMPLES_PASSED, or <id> is the name of a query currently in progress.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 TBD.

Errors

 INVALID_OPERATION is generated by BeginConditio nalRenderNV if a previous
 BeginConditionalRenderNV command has been execu ted without a
 corresponding EndConditionalRenderNV command.

 INVALID_OPERATION is generated by EndConditiona lRenderNV if no
 corresponding BeginConditionalRenderNV command has been executed.

NV_conditional_render OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 239

 INVALID_VALUE is generated by BeginConditionalR enderNV if <id> is not the
 name of an existing occlusion query object.

 INVALID_OPERATION is generated by BeginConditio nalRenderNV if <id> is the
 name of a query object with a <target> other th an SAMPLES_PASSED.

 INVALID_OPERAITON is generated by BeginConditio nalRenderNV if the query
 identified by <id> is still in progress.

Issues

 (1) How should rendering commands other than "n ormal" Begin/End-style
 geometry be affected by conditional rendering?

 RESOLVED: All rendering commands (DrawPixels , Bitmap, Clear, Accum,
 etc...) are performed conditionally.

 (2) What does NO_WAIT do, and why would anyone care?

 RESOLVED: Hardware OpenGL implementations ar e heavily pipelined. After
 vertices are transformed, they are assembled into primitives and
 rasterized. While a GPU is rasterizing a pri mitive, it may be
 simultaneously transforming the vertices of t he next primitive provided
 to the GL. At the same time, the CPU may be preparing hardware commands
 to process primitives following that one.

 Conditional rendering uses the results of ras terizing one primitive (an
 occlusion query) to determine whether it will process subsequent ones.
 In a pipelined implementation, the initial se t of primitives may not be
 finished drawing by the time the GL needs the occlusion query results.
 Waiting for the query results will leave port ions of the GPU temporarily
 idle. It may be preferable to avoid the idle time by proceeding with a
 conservative assumption that the primitives r endered during the
 occlusion query will hit at least one sample. The NO_WAIT <mode>
 parameter tells the driver move ahead in that case.

 For best performance, applications should att empt to insert some amount
 of non-dependent rendering between an occlusi on query and the
 conditionally-rendered primitives that depend on the query result.

 (3) What does BY_REGION do, and why should anyo ne care?

 RESOLVED: Conditional rendering may be used for a variety of effects.
 Some of these use conditional rendering only for performance. One
 common use would be to draw a bounding box fo r a primitive
 unconditionally with an occlusion query activ e, and then conditionally
 execute a DrawElements call to draw the full (complex) primitive. If
 the bounding box is not visible, any work nee ded to process the full
 primitive can be skipped in the conditional r endering pass.

 In a split-screen SLI implementation, one GPU might draw the top half of
 the scene while a second might draw the botto m half. The results of the
 occlusion query would normally be obtained by combining individual
 occlusion query results from each half of the screen. However, it is
 not necessary to do this for the bounding box algorithm. We could skip
 this synchronization point, and each region c ould instead use only its
 local occlusion query results. If the boundi ng box hits only the bottom

OpenGL Extension Specifcations for GeForce 8 Series NV_conditional_render

NVIDIA Proprietary 240

 half of the screen, the complex primitive nee d not be drawn on the top
 half, because that portion is known not to be visible. The bottom half
 would still be drawn, but the GPU used for th e top half could skip it
 and start drawing the next primitive specifie d. The
 QUERY_BY_REGION_*_NV modes would be useful in that case.

 However, some algorithms may require conditio nal rendering for
 correctness. For example, an application may want to render a
 post-processing effect that should be drawn i f and only if a point is
 visible in the scene. Drawing only half of s uch an effect due to
 BY_REGION tests would not be desirable.

 For QUERY_BY_REGION_NO_WAIT_NV, we expect tha t GL implementations using
 region-based rendering will discard rendering commands in any region
 where query results are available and the reg ion's sample count is zero.
 Rendering would proceed normally in all other regions. The spec
 language doesn't require such behavior, howev er.

 (4) Should the <mode> parameter passed to Begin ConditionalRenderNV be
 specified as a hint instead?

 RESOLVED: The "wait" or "don't wait" portion of the <mode> parameter
 could be a hint. But it doesn't fit nicely w ith the FASTEST or NICEST
 values that are normally passed to Hint. Pro viding this functionality
 via a <mode> parameter to BeginConditionalRen derNV seems to make the
 most sense. Note that the <mode> parameter i s specified such that
 QUERY_NO_WAIT_NV can be implemented as though QUERY_WAIT_NV were
 specified, which makes the "NO_WAIT" part of the mode a hint.

 The "BY_REGION" part is also effectively a hi nt. These modes may be
 implemented as though the equivalent non-BY_R EGION mode were provided.
 Many OpenGL implementations will do all of th eir processing in a single
 region.

 (5) What happens if BeginQuery is called while the specified occlusion
 query is begin used for conditional rendering?

 RESOLVED: An INVALID_OPERATION error is gene rated.

 (6) Should conditional rendering work with any type of query other than
 SAMPLES_PASSED (occlusion)?

 RESOLVED: Not in this extension. The spec c urrently requires that <id>
 be the name of an occlusion query. There mig ht be other query types
 where such an operation would make sense, but there aren't any in the
 current OpenGL spec.

 (7) What is the effect on current state for imm ediate mode attribute calls
 (e.g., Color, VertexAttrib) made during conditi onal rendering if the
 corresponding occlusion query failed?

 RESOLVED: The effect of these calls is undef ined. If subsequent
 primitives depend on a vertex attribute set i nside a conditional
 rendering block, and application should re-se nd the values after
 EndConditionalRenderNV.

NV_conditional_render OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 241

 (8) Should we provide any new query object type s for conditional
 rendering?

 RESOLVED: No. It may be useful to some GL i mplementations to provide
 an occlusion query type that only returns "ze ro" or "non-zero", or to
 provide a query type that is used only for co nditional rendering but
 doesn't have to maintain results that can be returned to the
 application. However, performing conditional rendering using only the
 occlusion query mechanisms already in core Op enGL is sufficient for
 the platforms targeted by this extension.

 (9) What happens if QUERY_BY_REGION_* is used, a nd the application switches
 between windows or FBOs between the occlusion qu ery and conditional
 rendering blocks? The "regions" used for the tw o operations may not be
 identical.

 RESOLVED: The spec language doesn't specifica lly address this issue, and
 implementations may choose to define regions a rbitrarily in this case.

 We strongly recommend that applications using QUERY_BY_REGION_* should
 not change windows or FBO configuration betwee n the occlusion query and
 the dependent rendering.

Usage Example

 GLuint queryID = 0x12345678;

 // Use an occlusion query while rendering the b ounding box of the real
 // object.
 glBeginQuery(GL_SAMPLES_PASSED, queryID);
 drawBoundingBox();
 glEndQuery(GL_SAMPLES_PASSED);

 // Do some unrelated rendering in hope that the query result will be
 // available by the time we call glBeginConditi onalRenderNV.

 // Now conditionally render the real object if any portion of its
 // bounding box is visible.
 glBeginConditionalRenderNV(queryID, GL_QUERY_WA IT_NV);
 drawComplicatedObject();
 glEndConditionalRenderNV();

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 2 11/29/07 ewerness First public release
 1 Internal revisions

OpenGL Extension Specifcations for GeForce 8 Series NV_depth_buffer_float

NVIDIA Proprietary 242

Name

 NV_depth_buffer_float

Name Strings

 GL_NV_depth_buffer_float

Contributors

 Pat Brown
 Mike Strauss

Contact

 Mike Strauss, NVIDIA Corporation (mstrauss 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 11/06/2006
 NVIDIA Revision: 8

Number

 334

Dependencies

 OpenGL 2.0 is required.

 ARB_color_buffer_float is required.

 EXT_packed_depth_stencil is required.

 EXT_framebuffer_object is required.

 This extension modifies EXT_depth_bounds_test.

 This extension modifies NV_copy_depth_to_color.

 This extension is written against the OpenGL 2. 0 specification.

Overview

 This extension provides new texture internal fo rmats whose depth
 components are stored as 32-bit floating-point values, rather than the
 normalized unsigned integers used in existing d epth formats.
 Floating-point depth textures support all the f unctionality supported for
 fixed-point depth textures, including shadow ma pping and rendering support
 via EXT_framebuffer_object. Floating-point dep th textures can store
 values outside the range [0,1].

NV_depth_buffer_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 243

 By default, OpenGL entry points taking depth va lues implicitly clamp the
 values to the range [0,1]. This extension prov ides new DepthClear,
 DepthRange, and DepthBoundsEXT entry points tha t allow applications to
 specify depth values that are not clamped.

 Additionally, this extension provides new packe d depth/stencil pixel
 formats (see EXT_packed_depth_stencil) that hav e 64-bit pixels consisting
 of a 32-bit floating-point depth value, 8 bits of stencil, and 24 unused
 bites. A packed depth/stencil texture internal format is also provided.

 This extension does not provide support for WGL or GLX pixel formats with
 floating-point depth buffers. The existing (bu t not commonly used)
 WGL_EXT_depth_float extension could be used for this purpose.

New Procedures and Functions

 void DepthRangedNV(double n, double f);
 void ClearDepthdNV(double d);
 void DepthBoundsdNV(double zmin, double zmax);

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D, TexImage2D,
 TexImage3D, CopyTexImage1D, CopyTexImage2D, and RenderbufferStorageEXT,
 and returned in the <data> parameter of GetTexL evelParameter and
 GetRenderbufferParameterivEXT:

 DEPTH_COMPONENT32F_NV 0x8DAB
 DEPTH32F_STENCIL8_NV 0x8DAC

 Accepted by the <type> parameter of DrawPixels, ReadPixels, TexImage1D,
 TexImage2D, TexImage3D, TexSubImage1D, TexSubIm age2D, TexSubImage3D, and
 GetTexImage:

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV 0x8DAD

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 DEPTH_BUFFER_FLOAT_MODE_NV 0x8DAF

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify Section 2.11.1 (Controling the Viewport) , p. 41

 (modify second paragraph) The factor and offset applied to z_d
 encoded by n and f are set using

 void DepthRange(clampd n, clampd f);
 void DepthRangedNV(double n, double f);

 z_w is represented as either fixed-point or flo ating-point
 depending on whether the framebuffer's depth bu ffer uses
 fixed-point or floating-point representation. If the depth buffer
 uses fixed-point representation, we assume that the representation
 used represents each value k/(2^m - 1), where k is in
 {0,1,...,2^m-1}, as k (e.g. 1.0 is represented in binary as a

OpenGL Extension Specifcations for GeForce 8 Series NV_depth_buffer_float

NVIDIA Proprietary 244

 string of all ones). The parameters n and f ar e clamped to [0, 1]
 when using DepthRange, but not when using Depth RangedNV. When n
 and f are applied to z_d, they are clamped to t he range appropriate
 given the depth buffer's representation.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.5.5 (Depth Offset), p. 112

 (modify third paragraph) The minimum resolvable difference r is
 an implementation dependent parameter that depe nds on the depth
 buffer representation. It is the smallest diff erence in window
 coordinate z values that is guaranteed to remai n distinct
 throughout polygon rasterization and in the dep th buffer. All
 pairs of fragments generated by the rasterizati on of two polygons
 with otherwise identical vertices, but z_w valu es that differ by r,
 will have distinct depth values.

 For fixed-point depth buffer representations, r is constant
 throughout the range of the entire depth buffer . For
 floating-point depth buffers, there is no singl e minimum resolvable
 difference. In this case, the minimum resolvab le difference for a
 given polygon is dependent on the maximum expon ent, e, in the range
 of z values spanned by the primitive. If n is the number of bits
 in the floating-point mantissa, the minimum res olvable difference,
 r, for the given primitive is defined as

 r = 2^(e - n). (3.11)

 (modify fourth paragraph) The offset value o fo r a polygon is

 o = m * factor + r * units. (3.12)

 m is computed as described above. If the depth buffer uses a
 fixed-point representation, m is a function of depth values in the
 range [0, 1], and o is applied to depth values in the same range.

 (modify last paragraph) For fixed-point depth b uffers, fragment
 depth values are always limited to the range [0 , 1], either by
 clamping after offset addition is performed (pr eferred), or by
 clamping the vertex values used in the rasteriz ation of the
 polygons. Fragment depth values are not clampe d when the depth
 buffer uses a floating-point representation.

 Add a row to table 3.5, p. 128

 type Parameter GL Type Special
 --- -

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV N/A Yes

 Modify Section 3.6.4 (Rasterization of Pixel Re ctangles), p. 128

 (modify second paragraph as updated by EXT_pack ed_depth_stencil)
 ... If the GL is in color index mode and <forma t> is not one of
 COLOR_INDEX, STENCIL_INDEX, DEPTH_COMPONENT, or DEPTH_STENCIL_EXT,

NV_depth_buffer_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 245

 then the error INVALID_OPERATION occurs. If <t ype> is BITMAP and
 <format> is not COLOR_INDEX or STENCIL_INDEX th en the error
 INVALID_ENUM occurs. If <format> is DEPTH_STEN CIL_EXT and <type>
 is not UNSIGNED_INT_24_8_EXT or FLOAT_32_UNSIGN ED_INT_24_8_REV_NV,
 then the error INVALID_ENUM occurs. Some addit ional constraints
 on the combinations of <format> and <type> valu es that are accepted
 are discussed below.

 (modify fifth paragraph of "Unpacking," p 130. as updated by
 EXT_packed_depth_stencil) Calling DrawPixels wi th a <type> of
 UNSIGNED_BYTE_3_3_2, ..., UNSIGNED_INT_2_10_10_ 10_REV, or
 UNSIGNED_INT_24_8_EXT is a special case in whic h all the components
 of each group are packed into a single unsigned byte, unsigned
 short, or unsigned int, depending on the type. If <type> is
 FLOAT_32_UNSIGNED_INT_24_8_REV_NV, the componen ts of each group
 are two 32-bit words. The first word contains the float component.
 The second word contains packed 24-bit and 8-bi t components.

 Add two rows to table 3.8, p. 132

 type Parameter GL Type C omponents Pixel Formats
 --- -------------------

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV N/A 2 DEPTH_STENCIL_EXT

 Add a row to table 3.11, p. 134

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV:

 31 30 29 28 ... 4 3 2 1 0 31 30 29 ... 9 8 7 6 5 ... 2 1 0
 +-------------------------+ +--------------- -----------------+
 | Float Component | | 2nd Component | 1st Component |
 +-------------------------+ +--------------- -----------------+

 (modify last paragraph of "Final Conversion," p . 136) For a depth
 component, an element is processed according to the depth buffer's
 representation. For fixed-point depth buffers, the element is first
 clamped to [0, 1] and then converted to fixed-p oint as if it were a
 window z value (see section 2.11.1, Controling the Viewport).
 Clamping and conversion are not necessary when the depth buffer uses
 a floating-point representation.

 Modify Section 3.8.1 (Texture Image Specificati on), p. 150

 (modify the second paragraph, p. 151, as modifi ed by
 ARB_color_buffer_float) The selected groups are processed exactly
 as for DrawPixels, stopping just before final c onversion. Each R,
 G, B, A, or depth value so generated is clamped based on the
 component type in the <internalFormat>. Fixed- point components
 are clamped to [0, 1]. Floating-point componen ts are clamped to
 the limits of the range representable by their format. 32-bit
 floating-point components are in the standard I EEE float format.
 16-bit floating-point components have 1 sign bi t, 5 exponent bits,
 and 10 mantissa bits. Stencil index values are masked by 2^n-1
 where n is the number of stencil bits in the in ternal format
 resolution (see below). If the base internal f ormat is

OpenGL Extension Specifcations for GeForce 8 Series NV_depth_buffer_float

NVIDIA Proprietary 246

 DEPTH_STENCIL_EXT and <format> is not DEPTH_STE NCIL_EXT, then the
 values of the stencil index texture components are undefined.

 Add two rows to table 3.16, p. 154

 Sized Base R G B A L I D S
 Internal Format InternalFormat bits bits bits bits bits bits bits bits
 --- -------------------------------

 DEPTH_COMPONENT32F_NV DEPTH_COMPONENT f32
 DEPTH32F_STENCIL8_NV DEPTH_STENCIL_EXT f32 8

 Modify Section 3.8.14 (Texture Comparison Modes), p. 185

 (modify second paragraph of "Depth Texture Comp arison Mode," p.
 188) Let D_t be the depth texture value, and R be the interpolated
 texture coordinate. If the texture's internal format indicates a
 fixed-point depth texture, then D_t and R are c lamped to [0, 1],
 otherwise no clamping is performed. The effect ive texture value
 L_t, I_t, or A_t is computed as follows:

 Modify Section 3.11.2 (Shader Execution), p. 19 4

 (modify first paragraph of "Shader Outputs," p, 196, as modified by
 ARB_color_buffer_float) The OpenGL Shading Lang uage specification
 describes the values that may be output by a fr agment shader.
 These are gl_FragColor, gl_FragData[n], and gl_ FragDepth. If
 fragment clamping is enabled, the final fragmen t color values or
 the final fragment data values written by a fra gment shader are
 clamped to the range [0, 1] and then may be con verted to
 fixed-point as described in section 2.14.9. If fragment clamping
 is disabled, the final fragment color values or the final fragment
 data values are not modified. For fixed-point depth buffers the
 final fragment depth written by a fragment shad er is first clamped
 to [0, 1] and then converted to fixed-point as if it were a window
 z value (see section 2.11.1). Clamping and con version are not
 applied for floating-point depth buffers. Note that the depth
 range computation is not applied here.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 (modify third paragraph in the introduction, p. 198, as modified by
 ARB_color_buffer_float) Color buffers consist o f either unsigned
 integer color indices, R, G, B and optionally A unsigned integer
 values, or R, G, B, and optionally A floating-p oint values. Depth
 buffers consist of either unsigned integer valu es of the format
 described in section 2.11.1, or floating-point values. The number
 of bitplanes...

NV_depth_buffer_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 247

 Modify Section 4.2.3 (Clearing the Buffers), p. 215

 (modify fourth paragraph)

 The functions

 void ClearDepth(clampd d);
 void ClearDepthdNV(double d);

 are used to set the depth value used when clear ing the depth buffer.
 ClearDepth takes a floating-point value that is clamped to the range
 [0, 1]. ClearDepthdNV takes a floating-point v alue that is not
 clamped. When clearing a fixed-point depth buf fer, the depth clear
 value is clamped to the range [0, 1], and conve rted to fixed-point
 according to the rules for a window z value giv en in section 2.11.1.
 No clamping or conversion are applied when clea ring a floating-point
 depth buffer.

 Modify Section 4.3.1 (Writing to the Stencil Bu ffer), p. 218

 (modify paragraph added by EXT_packed_depth_ste ncil, p. 219)
 If the <format> is DEPTH_STENCIL_EXT, then valu es are taken from
 both the depth buffer and the stencil buffer. If there is no depth
 buffer or if there is no stencil buffer, then t he error
 INVALID_OPERATION occurs. If the <type> parame ter is not
 UNSIGNED_INT_24_8_EXT, or FLOAT_32_UNSIGNED_INT _24_8_NV then the
 error INVALID_ENUM occurs.

 Modify Section 4.3.2 (Reading Pixels), p. 219

 (modify "Conversion of Depth values," p. 222, a s modified by
 EXT_packed_depth_stencil) This step only applie s if <format> is
 DEPTH_COMPONENT or DEPTH_STENCIL_EXT and the d epth buffer uses a
 fixed-point representation. An element taken f rom the depth buffer
 is taken to be a fixed-point value in [0, 1] wi th m bits, where
 m is the number of bits in the depth buffer (se e section 2.11.1).
 No conversion is necessary if <format> is DEPTH _COMPONENT or
 DEPTH_STENCIL_EXT and the depth buffer uses a f loating-point
 representation.

 Add a row to table 4.6, p. 223

 type Parameter Index Mas k
 --- -

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV 2^8-1

 Add a row to table 4.7, p. 224

 type Parameter GL Type C omponent Conversion
 --- -------------------

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV float c = f (depth only)

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

OpenGL Extension Specifcations for GeForce 8 Series NV_depth_buffer_float

NVIDIA Proprietary 248

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify DEPTH_RANGE entry in table 6.9 (Transfor mation State) p. 270

 Init
 Get Value Type Get Command Value Description Sec. Attribute
 ----------- ---- ----------- ----- ------------ ---------- ------ ---------
 DEPTH_RANGE 2xR GetFloatv 0,1 Depth range near & far 2.11.1 viewport

 Modify DEPTH_BOUNDS_EXT entry in table 6.19 (Pi xel Operation) p. 280

 Init
 Get Value Type Get Command Value Descrip tion Sec Attribute
 --------------------- ----------- ----- ------- ----------------- ----- ------------
 DEPTH_BOUNDS_EXT 2xR GetFloatv 0,1 Depth b ounds zmin & zmax 4.1.X depth-buffer

 Modify DEPTH_CLEAR_VALUE entry in table 6.21 (F ramebuffer Control) p. 280

 Init
 Get Value Type Get Command Value Descri ption Sec Attribute
 ----------------- ---- ----------- ---- ------ ------------------ ----- ------------
 DEPTH_CLEAR_VALUE R GetFloatv 1 Depth buffer clear value 4.2.3 depth-buffer

 Add DEPTH_BUFFER_FLOAT_MODE entry to table 6.32 (Implementation Dependent
 Values) p. 293

 Init
 Get Value Type Get Command Value Description Sec Attribute
 ----------------------- ---- ----------- ---- --------------------------- ---- ------------
 DEPTH_BUFFER_FLOAT_MODE B GetBooleanv - True if depth buffer uses a 4 -
 floating-point represnetation

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Dependencies on EXT_depth_bounds_test:

 Modify the definition of DepthBoundsEXT in sect ion 4.1.x Depth
 Bounds Test.

NV_depth_buffer_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 249

 Modify section 4.1.x (Depth Bounds Test)

 (modify first paragraph) ...These values are se t with

 void DepthBoundsEXT(clampd zmin, clampd zma x);
 void DepthBoundsdNV(double zmin, double zma x);

 The paramerters to DepthBoundsEXT are clamped t o the range [0, 1].
 No clamping is applied to the parameters of Dep thBoundsdNV. Each
 of zmin and zmax are subject to clamping to the range of the depth
 buffer at the time the depth bounds test is app lied. For
 fixed-point depth buffers, the applied zmin and zmax are clamped to
 [0, 1]. For floating-point depth buffers, the applied zmin and
 zmax are unmodified. If zmin <= Zpixel <= zmax , then the depth
 bounds test passes. Otherwise, the test fails and the fragment is
 discarded. The test is enabled or disabled usi ng Enable or Disable
 using the constant DEPTH_BOUNDS_TEST_EXT. When disabled, it is as
 if the depth bounds test always passes. If zmi n is greater than
 zmax, then the error INVALID_VALUE is generated . The state
 required consists of two floating-point values and a bit indicating
 whether the test is enabled or disabled. In th e initial state,
 zmin and zmax are set to 0.0 and 1.0 respective ly; and the depth
 bounds test is disabled.

Errors

 Modify the following error in the EXT_packed_depth_ stencil
 specification by adding mention of
 FLOAT_32_UNSIGNED_INT_24_8_REV_NV:

 The error INVALID_ENUM is generated if DrawPixe ls or ReadPixels is
 called where format is DEPTH_STENCIL_EXT and ty pe is not
 UNSIGNED_INT_24_8_EXT, or FLOAT_32_UNSIGNED_INT _24_8_REV_NV.

 Modify the following error in the EXT_packed_de pth_stencil
 specification by adding mention of
 FLOAT_32_UNSIGNED_INT_24_8_REV_NV:

 The error INVALID_OPERATION is generated if Dra wPixels or
 ReadPixels is called where type is UNSIGNED_INT _24_8_EXT,
 or FLOAT_32_UNSIGNED_INT_24_8_REV_NV and format is not
 DEPTH_STENCIL_EXT.

 Add the following error to the NV_copy_depth_to _color
 specification:

 The error INVALID_OPERATION is generated if Cop yPixels is called
 where type is DEPTH_STENCIL_TO_RGBA_NV or DEPTH _STENCL_TO_BGRA_NV
 and the depth buffer uses a floating point repr esentation.

New State

 None.

OpenGL Extension Specifcations for GeForce 8 Series NV_depth_buffer_float

NVIDIA Proprietary 250

Issues

 1. Should this extension expose floating-point depth buffers through
 WGL/GLX "pixel formats?"

 RESOLVED: No. The WGL_EXT_depth_float ext ension already provides a
 mechanism for requesting a floating-point d epth buffer.

 2. How does an application access the full ran ge of a floating-point
 depth buffer?

 RESOLVED: New functions have been introduc ed that set existing GL
 state without clamping to the range [0, 1]. These functions are
 DepthRangedNV, ClearDepthdNV, and DepthBoun dsdNV.

 3. Should we add a new state query to determin e if the depth buffer is
 using a floating-point representation?

 RESOLVED: Yes. An application can query DE PTH_FLOAT_MODE_NV to see
 if the depth buffer is using a floating-poi nt representation.

 4. How does polygon offset work with floating- point depth buffers?

 RESOLVED: The third paragraph of section 3 .5.5 (Depth Offset)
 describes the minimum resolvable difference r as "the smallest
 difference in window coordinate z values th at is guaranteed to remain
 distinct throughout polygon rasterization a nd in the depth buffer."
 The polygon offset value o is computed as a function of r. The
 minimum resolvable difference r makes sense for fixed-point depth
 values, and even floating-point depth value s in the range [-1, 1].
 For unclamped floating-point depth values, there is no constant
 minimum resolvable difference -- the minimu m difference necessary to
 change the mantissa of a floating-point val ue by one bit depends on
 the exponent of the value being offset. To remedy this problem, the
 minimum resolvable difference is defined to be relative to the range
 of depth values for the given primitive whe n the depth buffer is
 floating-point.

 5. How does NV_copy_depth_to_color work with fl oating-point depth values?

 RESOLVED: It isn't clear that there is any usefulness to copying the
 data for 32-bit floating-point depth values to a fixed-point color
 buffer. It is even less clear how copying packed data from a
 FLOAT_32_UNSIGNED_24_8_NV depth/stencil buf fer to a fixed-point color
 buffer would be useful or even how it shoul d be implemented. An error
 should be generated if CopyPixels is called where <type> is
 DEPTH_STENCIL_TO_RGBA_NV or DEPTH_STENCIL_T O_BGRA and the depth buffer
 uses a floating-point representation.

 6. Other OpenGL hardware implementations may be capable of supporting
 floating-point depth buffers. Why is this a n NV extension?

 RESOLVED: When rendering to floating-point depth buffers, we expect
 that other implementations may only be capa ble of supporting Z values
 in the range [0,1]. For such implementatio ns, floating-point Z
 buffers do not improve the range of Z value s supported, but do offer

NV_depth_buffer_float OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 251

 increased precision than conventional 24-bi t fixed-point Z buffers,
 particularly around zero.

 This extension was initially proposed as an EXT, but we have changed
 it to an NV extension in the expectation th at an EXT may be offered at
 some point in the not-too-distant future. We expect that the EXT
 could be supported by a larger range of ven dors. NVIDIA would
 continue to support both extensions, where the NV extension could be
 thought of as taking the capability of the EXT version and extending
 it to support Z values outside the range [0 ,1].

Revision History

 None

OpenGL Extension Specifcations for GeForce 8 Series NV_fragment_program4

NVIDIA Proprietary 252

Name

 NV_fragment_program4

Name Strings

 (none)

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 11/06/2007
 NVIDIA Revision: 4

Number

 335

Dependencies

 OpenGL 1.1 is required.

 NV_gpu_program4 is required. This extension is supported if
 "GL_NV_gpu_program4" is found in the extension string.

 ATI_draw_buffers and ARB_draw_buffers trivially affects the definition of
 this specification.

 ARB_fragment_program_shadow trivially affects t he definition of this
 specification.

 NV_primitive_restart trivially affects the defi nition of this extension.

 This extension is written against the OpenGL 2. 0 specification.

Overview

 This extension builds on the common assembly in struction set
 infrastructure provided by NV_gpu_program4, add ing fragment
 program-specific features.

 This extension provides interpolation modifiers to fragment program
 attributes allowing programs to specify that sp ecified attributes be
 flat-shaded (constant over a primitive), centro id-sampled (multisample
 rendering), or interpolated linearly in screen space. The set of input
 and output bindings provided includes all bindi ngs supported by
 ARB_fragment_program. Additional input binding s are provided to determine
 whether fragments were generated by front- or b ack-facing primitives
 ("fragment.facing"), to identify the individual primitive used to generate
 the fragment ("primitive.id"), and to determine distances to user clip

NV_fragment_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 253

 planes ("fragment.clip[n]"). Additionally gene ric input attributes allow
 a fragment program to receive a greater number of attributes from previous
 pipeline stages than possible using only the pr e-defined fixed-function
 attributes.

 By and large, programs written to ARB_fragment_ program can be ported
 directly by simply changing the program header from "!!ARBfp1.0" to
 "!!NVfp4.0", and then modifying instructions to take advantage of the
 expanded feature set. There are a small number of areas where this
 extension is not a functional superset of previ ous fragment program
 extensions, which are documented in the NV_gpu_ program4 specification.

New Procedures and Functions

 None.

New Tokens

 None.

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify Section 2.X, GPU Programs

 (insert after second paragraph)

 Fragment Programs

 Fragment programs are used to compute the trans formed attributes of a
 fragment, in lieu of the set of fixed-function operations described in
 sections 3.8 through 3.10. Fragment programs a re run on a single fragment
 at a time, and the state of neighboring fragmen ts is not explicitly
 available. (In practice, fragment programs may be run on a block of
 fragments, and neighboring fragments' attribute s may be used for texture
 LOD calculations or partial derivative approxim ation.) The inputs
 available to a fragment program are the interpo lated attributes of a
 fragment, which include (among other things) wi ndow-space position,
 primary and secondary colors, and texture coord inates. The results of the
 program are one (or more) colors and possibly a new window Z coordinate.
 A fragment program can not modify the (X,Y) loc ation of the fragment.

 Modify Section 2.X.2, Program Grammar

 (replace third paragraph)

 Fragment programs are required to begin with th e header string
 "!!NVfp4.0". This header string identifies the subsequent program body as
 being a fragment program and indicates that it should be parsed according
 to the base NV_gpu_program4 grammar plus the ad ditions below. Program
 string parsing begins with the character immedi ately following the header
 string.

OpenGL Extension Specifcations for GeForce 8 Series NV_fragment_program4

NVIDIA Proprietary 254

 (add the following grammar rules to the NV_gpu_ program4 base grammar)

 <instruction> ::= <SpecialInstruction >

 <varModifier> ::= <interpModifier>

 <SpecialInstruction> ::= "KIL" <opModifiers> <killCond>
 | "DDX" <opModifiers> <instResult> ","
 <instOperandV>
 | "DDY" <opModifiers> <instResult> ","
 <instOperandV>

 <killCond> ::= <instOperandV>

 <interpModifier> ::= "FLAT"
 | "CENTROID"
 | "NOPERSPECTIVE"

 <attribBasic> ::= <fragPrefix> "fogco ord"
 | <fragPrefix> "posit ion"
 | <fragPrefix> "facin g"
 | <attribTexCoord> <o ptArrayMemAbs>
 | <attribClip> <array MemAbs>
 | <attribGeneric> <ar rayMemAbs>
 | "primitive" "." "id "

 <attribColor> ::= <fragPrefix> "color "

 <attribMulti> ::= <attribTexCoord> <a rrayRange>
 | <attribClip> <array Range>
 | <attribGeneric> <ar rayRange>

 <attribTexCoord> ::= <fragPrefix> "texco ord"

 <attribClip> ::= <fragPrefix> "clip"

 <attribGeneric> ::= <fragPrefix> "attri b"

 <fragPrefix> ::= "fragment" "."

 <resultBasic> ::= <resPrefix> "color" <resultOptColorNum>
 | <resPrefix> "depth"

 <resultOptColorNum> ::= /* empty */

 <resPrefix> ::= "result" "."

 (add the following subsection to section 2.X.3. 1, Program Variable Types)

 Explicitly declared fragment program attribute variables may have one or
 more interpolation modifiers that control how p er-fragment values are
 computed.

 An attribute variable declared as "FLAT" will b e flat-shaded. For such
 variables, the value of the attribute will be c onstant over an entire
 primitive and will taken from the provoking ver tex of the primitive, as
 described in Section 2.14.7. If "FLAT" is not specified, attributes will

NV_fragment_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 255

 be interpolated as described in Chapter 3, with the exception that
 attribute variables bound to colors will still be flat-shaded if the shade
 model (section 2.14.7) is FLAT. If an attribut e variable declared as
 "FLAT" corresponds to a texture coordinate repl aced by a point sprite
 (s,t) value (section 3.3.1), the value of the a ttribute is undefined.

 An attribute variable declared as "CENTROID" wi ll be interpolated using a
 point on or inside the primitive, if possible, when doing multisample line
 or polygon rasterization (sections 3.4.4 and 3. 5.6). This method can
 avoid artifacts during multisample rasterizatio n when some samples of a
 pixel are covered, but the sample location used is outside the primitive.
 Note that when centroid sampling, the sample po ints used to generate
 attribute values for adjacent pixels may not be evenly spaced, which can
 lead to artifacts when evaluating partial deriv atives or performing
 texture LOD calculations needed for mipmapping. If "CENTROID" is not
 specified, attributes may be sampled anywhere i nside the pixel as
 permitted by the specification, including at po ints outside the primitive.

 An attribute variable declared as "NOPERSPECTIV E" will be interpolated
 using a method that is linear in screen space, as described in equation
 3.7 and the appoximation that follows equation 3.8. If "NOPERSPECTIVE" is
 not specified, attributes must be interpolated with perspective
 correction, as described in equations 3.6 and 3 .8. When clipping lines or
 polygons, an alternate method is used to comput e the attributes of
 vertices introduced by clipping when they are s pecified as "NOPERSPECTIVE"
 (section 2.14.8).

 Implicitly declared attribute variables (bindin gs used directly in a
 program instruction) will inherit the interpola tion modifiers of any
 explicitly declared attribute variable using th e same binding. If no such
 variable exists, default interpolation modes wi ll be used.

 For fragments generated by point primitives, Dr awPixels, and Bitmap,
 interpolation modifiers have no effect.

 Implementations are not required to support ari thmetic interpolation of
 integer values written by a previous pipeline s tage. Integer fragment
 program attribute variables must be flat-shaded ; a program will fail to
 load if it declares a variable with the "INT" o r "UINT" data type
 modifiers without the "FLAT" interpolation modi fier.

 There are several additional limitations on the use of interpolation
 modifiers. A fragment program will fail to loa d:

 * if an interpolation modifier is specified w hen declaring a
 non-attribute variable,

 * if the same interpolation modifier is speci fied more than once in a
 single declaration (e.g., "CENTROID CENTROI D ATTRIB"),

 * if the "FLAT" modifier is used together wit h either "CENTROID" or
 "NOPERSPECTIVE" in a single declaration,

 * if any interpolation modifier is specified when declaring a variable
 bound to a fragment's position, face direct ion, fog coordinate, or any
 interpolated clip distance,

OpenGL Extension Specifcations for GeForce 8 Series NV_fragment_program4

NVIDIA Proprietary 256

 * if multiple attribute variables with differ ent interpolation modifiers
 are bound to the same fragment attribute, o r

 * if one variable is bound to the fragment's primary color and a second
 variable with different interpolation modif iers is bound the the
 fragment's secondary color.

 (add the following subsection to section 2.X.3. 2, Program Attribute
 Variables)

 Fragment program attribute variables describe t he attributes of a fragment
 produced during rasterization. The set of avai lable bindings is
 enumerated in Table X.X.

 Most attributes correspond to per-vertex attrib utes that are interpolated
 over a primitive; such attributes are subject t o the interpolation
 modifiers described in section 2.X.3.1. The fr agment's position, facing,
 and primitive IDs are the exceptions, and are g enerated specially during
 rasterization. Since two-sided color selection occurs prior to
 rasterization, there are no distinct "front" or "back" colors available to
 fragment programs. A single set of colors is a vailable, which corresponds
 to interpolated front or back vertex colors.

 If geometry programs are enabled, attributes wi ll be obtained by
 interpolating per-vertex outputs written by the geometry program. If
 geometry programs are disabled, but vertex prog rams are enabled,
 attributes will be obtained by interpolating pe r-vertex outputs written by
 the vertex program. In either case, the fragme nt program attributes
 should be read using the same component data ty pe used to write the vertex
 output attributes in the geometry or vertex pro gram. The value of any
 attribute corresponding to a vertex output not written by the geometry or
 vertex program is undefined.

 If neither geometry nor vertex programs are use d, attributes will be
 obtained by interpolating per-vertex values com puted by fixed-function
 vertex processing. All interpolated fragment a ttributes should be read as
 floating-point values.

NV_fragment_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 257

 Fragment Attribute Binding Components Under lying State
 -------------------------- ---------- ----- -----------------------
 fragment.color (r,g,b,a) prima ry color
 fragment.color.primary (r,g,b,a) prima ry color
 fragment.color.secondary (r,g,b,a) secon dary color
 fragment.texcoord (s,t,r,q) textu re coordinate, unit 0
 fragment.texcoord[n] (s,t,r,q) textu re coordinate, unit n
 fragment.fogcoord (f,-,-,-) fog d istance/coordinate
 * fragment.clip[n] (c,-,-,-) inter polated clip distance n
 fragment.attrib[n] (x,y,z,w) gener ic interpolant n
 fragment.texcoord[n..o] (s,t,r,q) textu re coordinates n thru o
 * fragment.clip[n..o] (c,-,-,-) clip distances n thru o
 fragment.attrib[n..o] (x,y,z,w) gener ic interpolants n thru o
 * fragment.position (x,y,z,1/w) windo w position
 * fragment.facing (f,-,-,-) fragm ent facing
 * primitive.id (id,-,-,-) primi tive number

 Table X.X: Fragment Attribute Bindings. The "Components" co lumn
 indicates the mapping of the state in the "Un derlying State" column.
 Bindings containing "[n]" require an integer value of <n> to select an
 individual item. Interpolation modifiers are not supported on variables
 that use bindings labeled with "*".

 If a fragment attribute binding matches "fragme nt.color" or
 "fragment.color.primary", the "x", "y", "z", an d "w" components of the
 fragment attribute variable are filled with the "r", "g", "b", and "a"
 components, respectively, of the fragment's pri mary color.

 If a fragment attribute binding matches "fragme nt.color.secondary", the
 "x", "y", "z", and "w" components of the fragme nt attribute variable are
 filled with the "r", "g", "b", and "a" componen ts, respectively, of the
 fragment's secondary color.

 If a fragment attribute binding matches "fragme nt.texcoord" or
 "fragment.texcoord[n]", the "x", "y", "z", and "w" components of the
 fragment attribute variable are filled with the "s", "t", "r", and "q"
 components, respectively, of the fragment textu re coordinates for texture
 unit <n>. If "[n]" is omitted, texture unit ze ro is used.

 If a fragment attribute binding matches "fragme nt.fogcoord", the "x"
 component of the fragment attribute variable is filled with either the
 fragment eye distance or the fog coordinate, de pending on whether the fog
 source is set to FRAGMENT_DEPTH_EXT or FOG_COOR DINATE_EXT, respectively.
 The "y", "z", and "w" coordinates are undefined .

 If a fragment attribute binding matches "fragme nt.clip[n]", the "x"
 component of the fragment attribute variable is filled with the
 interpolated value of clip distance <n>, as wri tten by the vertex or
 geometry program. The "y", "z", and "w" compon ents of the variable are
 undefined. If fixed-function vertex processing or position-invariant
 vertex programs are used with geometry programs disabled, clip distances
 are obtained by interpolating the per-clip plan e dot product:

 (p_1' p_2' p_3' p_4') dot (x_e y_e z_e w_e),

 for clip plane <n> as described in section 2.12 . The clip distance for
 clip plane <n> is undefined if clip plane <n> i s disabled.

OpenGL Extension Specifcations for GeForce 8 Series NV_fragment_program4

NVIDIA Proprietary 258

 If a fragment attribute binding matches "fragme nt.attrib[n]", the "x",
 "y", "z", and "w" components of the fragment at tribute variable are filled
 with the "x", "y", "z", and "w" components of g eneric interpolant <n>.
 All generic interpolants will be undefined when used with fixed-function
 vertex processing with no geometry program enab led.

 If a fragment attribute binding matches "fragme nt.texcoord[n..o]",
 "fragment.clip[n..o]", or "fragment.attrib[n..o]", a sequence of 1+<o>-<n>
 bindings is created. For texture coordinate bi ndings, it is as though the
 sequence "fragment.texcoord[n], fragment.texcoo rd[n+1],
 ... fragment.texcoord[o]" were specfied. These bindings are available
 only in explicit declarations of array variable s. A program will fail to
 load if <n> is greater than <o>.

 If a fragment attribute binding matches "fragme nt.position", the "x" and
 "y" components of the fragment attribute variab le are filled with the
 floating-point (x,y) window coordinates of the fragment center, relative
 to the lower left corner of the window. The "z " component is filled with
 the fragment's z window coordinate. If z windo w coordinates are
 represented internally by the GL as fixed-point values, the z window
 coordinate undergoes an implied conversion to f loating point. This
 conversion must leave the values 0 and 1 invari ant. The "w" component is
 filled with the reciprocal of the fragment's cl ip w coordinate.

 If a fragment attribute binding matches "fragme nt.facing", the "x"
 component of the fragment attribute variable is filled with +1.0 or -1.0,
 depending on the orientation of the primitive p roducing the fragment. If
 the fragment is generated by a back-facing poly gon (including point- and
 line-mode polygons), the facing is -1.0; otherw ise, the facing is +1.0.
 The "y", "z", and "w" coordinates are undefined .

 If a fragment attribute binding matches "primit ive.id", the "x" component
 of the fragment attribute variable is filled wi th a single integer. If a
 geometry program is active, this value is obtai ned by taking the primitive
 ID value emitted by the geometry program for th e provoking vertex. If no
 geometry program is active, the value is the nu mber of primitives
 processed by the rasterizer since the last time Begin was called (directly
 or indirectly via vertex array functions). The first primitive generated
 after a Begin is numbered zero, and the primiti ve ID counter is
 incremented after every individual point, line, or polygon primitive is
 processed. For polygons drawn in point or line mode, the primitive ID
 counter is incremented only once, even though m ultiple points or lines may
 be drawn. For QUADS and QUAD_STRIP primitives that are decomposed into
 triangles, the primitive ID is incremented afte r each complete quad is
 processed. For POLYGON primitives, the primiti ve ID counter is zero. The
 primitive ID is zero for fragments generated by DrawPixels or Bitmap.
 Restarting a primitive topology using the primi tive restart index has no
 effect on the primitive ID counter. The "y", " z", and "w" components of
 the variable are always undefined.

 (add the following subsection to section 2.X.3. 5, Program Results.)

 Fragment programs produce final fragment values , and the set of result
 variables available to such programs correspond to the final attributes of
 a fragment. Fragment program result variables may not be declared as
 arrays.

NV_fragment_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 259

 The set of allowable result variable bindings i s given in Table X.X.

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.color (r,g,b,a) co lor
 result.color[n] (r,g,b,a) co lor output n
 result.depth (*,*,d,*) de pth coordinate

 Table X.X: Fragment Result Variable Bindings.
 Components labeled "*" are unused.

 If a result variable binding matches "result.co lor", updates to the "x",
 "y", "z", and "w" components of the result vari able modify the "r", "g",
 "b", and "a" components, respectively, of the f ragment's output color.

 If a result variable binding matches "result.co lor[n]" and the
 ARB_draw_buffers program option is specified, u pdates to the "x", "y",
 "z", and "w" components of the color result var iable modify the "r", "g",
 "b", and "a" components, respectively, of the f ragment output color
 numbered <n>. If the ARB_draw_buffers program option is not specified,
 the "result.color[n]" binding is unavailable.

 If a result variable binding matches "result.de pth", updates to the "z"
 component of the result variable modify the fra gment's output depth value.
 If the "result.depth" binding is not in used in a variable written to by
 any instruction in the fragment program, the in terpolated depth value
 produced by rasterization is used as if fragmen t program mode is not
 enabled. Otherwise, the value written by the f ragment program is used,
 and the fragment's final depth value is undefin ed if the program did not
 end up writing a depth value due to flow contro l or write masks. Writes
 to any component of depth other than the "z" co mponent have no effect.

 (modify Table X.13 in section 2.X.4, Program In structions, to include the
 following.)

 Modifiers
 Instruction F I C S H D Inputs Out Descri ption
 ----------- - - - - - - ---------- --- ------ --------------------------
 DDX X - X X X F v v partia l derivative relative to X
 DDY X - X X X F v v partia l derivative relative to Y
 KIL X X - - X F vc - kill f ragment

 (add the following subsection to section 2.X.5, Program Options.)

 Section 2.X.5.Y, Fragment Program Options

 + Fixed-Function Fog Emulation (ARB_fog_exp, AR B_fog_exp2, ARB_fog_linear)

 If a fragment program specifies one of the opti ons "ARB_fog_exp",
 "ARB_fog_exp2", or "ARB_fog_linear", the progra m will apply fog to the
 program's final color using a fog mode of EXP, EXP2, or LINEAR,
 respectively, as described in section 3.10.

 When a fog option is specified in a fragment pr ogram, semantic
 restrictions are added to indicate that a fragm ent program will fail to
 load if the number of temporaries it contains e xceeds the

OpenGL Extension Specifcations for GeForce 8 Series NV_fragment_program4

NVIDIA Proprietary 260

 implementation-dependent limit minus 1, if the number of attributes it
 contains exceeds the implementation-dependent l imit minus 1, or if the
 number of parameters it contains exceeds the im plementation-dependent
 limit minus 2.

 Additionally, when the ARB_fog_exp option is sp ecified in a fragment
 program, a semantic restriction is added to ind icate that a fragment
 program will fail to load if the number of inst ructions or ALU
 instructions it contains exceeds the implementa tion-dependent limit minus
 3. When the ARB_fog_exp2 option is specified i n a fragment program, a
 semantic restriction is added to indicate that a fragment program will
 fail to load if the number of instructions or A LU instructions it contains
 exceeds the implementation-dependent limit minu s 4. When the
 ARB_fog_linear option is specified in a fragmen t program, a semantic
 restriction is added to indicate that a fragmen t program will fail to load
 if the number of instructions or ALU instructio ns it contains exceeds the
 implementation-dependent limit minus 2.

 Only one fog application option may be specifie d by any given fragment
 program. A fragment program that specifies mor e than one of the program
 options "ARB_fog_exp", "ARB_fog_exp2", and "ARB _fog_linear", will fail to
 load.

 + Precision Hints (ARB_precision_hint_fastest, ARB_precision_hint_nicest)

 Fragment program computations are carried out a t an implementation-
 dependent precision. However, some implementat ions may be able to perform
 fragment program computations at more than one precision, and may be able
 to trade off computation precision for performa nce.

 If a fragment program specifies the "ARB_precis ion_hint_fastest" program
 option, implementations should select precision to minimize program
 execution time, with possibly reduced precision . If a fragment program
 specifies the "ARB_precision_hint_nicest" progr am option, implementations
 should maximize the precision, with possibly in creased execution time.

 Only one precision control option may be specif ied by any given fragment
 program. A fragment program that specifies bot h the
 "ARB_precision_hint_fastest" and "ARB_precision _hint_nicest" program
 options will fail to load.

 + Multiple Color Outputs (ARB_draw_buffers, ATI _draw_buffers)

 If a fragment program specifies the "ARB_draw_b uffers" or
 "ATI_draw_buffers" option, it will generate mul tiple output colors, and
 the result binding "result.color[n]" is allowed , as described in section
 2.X.3.5. If this option is not specified, a fr agment program that
 attempts to bind "result.color[n]" will fail to load, and only
 "result.color" will be allowed.

 The multiple color outputs will typically be wr itten to an ordered list of
 draw buffers in the manner described in the ARB _draw_buffers extension
 specification.

NV_fragment_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 261

 + Fragment Program Shadows (ARB_fragment_progra m_shadow)

 The ARB_fragment_program_shadow option introduc ed a set of "SHADOW"
 texture targets and made the results of depth t exture lookups undefined
 unless the texture format and compare mode were consistent with the target
 provided in the fragment program instruction. This behavior is enabled by
 default in NV_gpu_program4; specifying the opti on is not illegal but has
 no additional effect.

 (add the following subsection to section 2.X.8, Program Instruction Set.)

 Section 2.X.8.Z, DDX: Partial Derivative Relat ive to X

 The DDX instruction computes approximate partia l derivatives of the four
 components of the single floating-point vector operand with respect to the
 X window coordinate to yield a result vector. The partial derivatives are
 evaluated at the sample location of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialX(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may not
 yield accurate second derivatives. Note also t hat the sample locations
 for attributes declared with the CENTROID inter polation modifier may not
 be evenly spaced, which can lead to artifacts i n derivative calculations.

 DDX supports only floating-point data type modi fiers and is available only
 to fragment programs.

 Section 2.X.8.Z, DDY: Partial Derivative Relat ive to Y

 The DDY instruction computes approximate partia l derivatives of the four
 components of the single operand with respect t o the Y window coordinate
 to yield a result vector. The partial derivati ves are evaluated at the
 center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialY(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may not
 yield accurate second derivatives. Note also t hat the sample locations
 for attributes declared with the CENTROID inter polation modifier may not
 be evenly spaced, which can lead to artifacts i n derivative calculations.

 DDY supports only floating-point data type modi fiers and is available only
 to fragment programs.

 Section 2.X.8.Z, KIL: Kill Fragment

 The KIL instruction evaluates a condition and k ills a fragment if the test
 passes. A fragment killed by the KIL instructi on is discarded, and will
 not be seen by subsequent stages of the pipelin e.

 A KIL instruction may be specified using either a floating-point vector
 operand or a condition code test.

OpenGL Extension Specifcations for GeForce 8 Series NV_fragment_program4

NVIDIA Proprietary 262

 If a floating-point vector is provided, the fra gment is discarded if any
 of its components are negative:

 tmp = VectorLoad(op0);
 if ((tmp.x < 0) || (tmp.y < 0) ||
 (tmp.z < 0) || (tmp.w < 0))
 {
 exit;
 }

 If a condition code test is provided, the fragm ent is discarded if any
 component of the test passes:

 if (TestCC(rc.c***) || TestCC(rc.*c**) ||
 TestCC(rc.**c*) || TestCC(rc.***c))
 {
 exit;
 }

 KIL supports no data type modifiers. If a vect or operand is provided, it
 must have floating-point components.

 KIL is available only to fragment programs.

 Replace Section 2.14.8, and rename it to "Verte x Attribute Clipping"
 (p. 70).

 After lighting, clamping or masking and possibl e flatshading, vertex
 attributes, including colors, texture and fog c oordinates, shader varying
 variables, and point sizes computed on a per ve rtex basis, are clipped.
 Those attributes associated with a vertex that lies within the clip volume
 are unaffected by clipping. If a primitive is clipped, however, the
 attributes assigned to vertices produced by cli pping are produced by
 interpolating attributes along the clipped edge .

 Let the attributes assigned to the two vertices P_1 and P_2 of an
 unclipped edge be a_1 and a_2. The value of t (section 2.12) for a
 clipped point P is used to obtain the attribute associated with P as

 a = t * a_1 + (1-t) * a_2

 unless the attribute is specified to be interpo lated without perspective
 correction in a fragment program. In that case , the attribute associated
 with P is

 a = t' * a_1 + (1-t') * a_2

 where

 t' = (t * w_1) / (t * w_1 + (1-t) * w_2)

 and w_1 and w_2 are the w clip coordinates of P _1 and P_2,
 respectively. If w_1 or w_2 is either zero or n egative, the value of the
 associated attribute is undefined.

NV_fragment_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 263

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None

Additions to the AGL/GLX/WGL Specifications

 None

Dependencies on ARB_draw_buffers and ATI_draw_buffe rs

 If neither ARB_draw_buffers nor ATI_draw_buffer s is supported, then the
 discussion of the ARB_draw_buffers option in se ction 2.X.5.Y should be
 removed, as well as the result bindings of the form "result.color[n]" and
 "result.color[n..o]".

Dependencies on ARB_fragment_program_shadow

 If ARB_fragment_program_shadow is not supported , then the discussion of
 the ARB_fragment_program_shadow option in secti on 2.X.5.Y should be
 removed.

Dependencies on NV_primitive_restart

 The spec describes the behavior that primitive restart does not affect the
 primitive ID counter, including for POLYGON pri mitives (where one could
 argue that the restart index starts a new primi tive without a new Begin to
 reset the count. If NV_primitive_restart is no t supported, references to
 that extension in the discussion of the "primit ive.id" attribute should be
 removed.

Errors

 None

New State

 None

New Implementation Dependent State

 None

OpenGL Extension Specifcations for GeForce 8 Series NV_fragment_program4

NVIDIA Proprietary 264

Issues

 (1) How should special interpolation controls b e specified?

 RESOLVED: As a special modifier to fragment program attribute variable
 declarations. It was decided that the fragme nt program was the most
 natural place to put the control. This would n't require making a large
 number of related state changes controlling i nterpolation whenever the
 fragment program used. The final mechanism u sing special interpolation
 modifiers was chosen because it fit well with the other variable
 modifiers (for data storage size and data typ e) provided by
 NV_gpu_program4. Examples:

 FLAT ATTRIB texcoords[4] = { fragment.t excoord[0..3] };
 CENTROID ATTRIB texcoord4 = fragment.te xcoord[4];
 CENTROID NOPERSPECTIVE ATTRIB
 attribs[3] = { fragment.attrib[0..2] };

 There were a variety of options considered, i ncluding:

 * special declarations in vertex or geometr y programs to specify the
 interpolation type,

 * special declarations in the fragment prog ram to specify one or more
 interpolation type modifiers per binding, such as:

 INTERPOLATE fragment.texcoord[0..3], FL AT;
 INTERPOLATE fragment.texcoord[4], CENTR OID;
 INTERPOLATE fragment.attrib[0..2], CENT ROID, NOPERSPECTIVE;

 * fixed-function state specifying the inter polation mode

 glInterpolateAttribNV(GL_TEXTURE0, GL_F LAT);
 glInterpolateAttribNV(GL_GENERIC_ATTRIB 0, GL_CENTROID_NV);

 Recent updates to GLSL provide similar functi onality (for centroid) with
 a similar approach, using a modifier on varyi ng variable declarations.

 (2) How should perspective-incorrect interpolat ion (linear in screen
 space) and clipping interact?

 RESOLVED: Primitives with attributes specifi ed to be
 perspective-incorrect should be clipped so th at the vertices introduced
 by clipping should have attribute values cons istent with the
 interpolation mode. We do not want to have l arge color shifts
 introduced by clipping a perspective-incorrec t attribute. For example,
 a primitive that approaches, but doesn't cros s, a frustum clip plane
 should look pretty much identical to a simila r primitive that just
 barely crosses the clip plane.

 Clipping perspective-incorrect interpolants t hat cross the W==0 plane is
 very challenging. The attribute clipping equ ation provided in the spec
 effectively projects all the original vertice s to screen space while
 ignoring the X and Y frustum clip plane. As W approaches zero, the
 projected X/Y window coordinates become extre mely large. When clipping
 an edge with one vertex inside the frustum an d the other out near
 infinity (after projection, due to W approach ing zero), the interpolated

NV_fragment_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 265

 attribute for the entire visible portion of t he edge should almost
 exactly match the attribute value of the visi ble vertex.

 If an outlying vertex approaches and then goe s past W==0, it can be said
 to go "to infinity and beyond" in screen spac e. The correct answer for
 screen-linear interpolation is no longer obvi ous, at least to the author
 of this specification. Rather than trying to figure out what the
 "right" answer is or if one even exists, the results of clipping such
 edges is specified as undefined.

 (3) If a shader wants to use interpolation modi fiers without using
 declared variables, is that possible?

 RESOLVED: Yes. If "dummy" variables are dec lared, all interpolants
 bound to that variable will get the variable' s interpolation modifiers.
 In the following program:

 FLAT ATTRIB tc02[3] = { fragment.texcoord[0 ..2] };
 MOV R0, fragment.texcoord[1];
 MOV R1, fragment.texcoord[3];

 The variable R0 will get texture coordinate s et 1, which will be
 flat-shaded due to the declaration of "tc02". The variable R1 will get
 texture coordinate set 3, which will be smoot h shaded (default).

 (4) Is it possible to read the same attribute w ith different interpolation
 modifiers?

 RESOLVED: No. A program that tries to do th at will fail to compile.

 (5) Why can't fragment program results be decla red as arrays?

 RESOLVED: This is a limitation of the progra mming model. If an
 implementation needs to do run-time indexing of fragment program result
 variables (effectively writing to "result.col or[A0.x]"), code such as
 the following can be used:

 TEMP colors[4];
 ...
 MOV colors[A0.x], R1;
 MOV colors[3], 12.3;
 ...
 # end of the program
 MOV result.color[0], colors[0];
 MOV result.color[1], colors[1];
 MOV result.color[2], colors[2];
 MOV result.color[3], colors[3];

 (6) Do clip distances require that the correspo nding clip planes be
 enabled to be read by a fragment program?

 RESOLVED: No.

 (7) How do primitive IDs work with fragment pro grams?

 RESOLVED: If a geometry program is enabled, the primitive ID is
 consumed by the geometry program and is not a utomatically available to

OpenGL Extension Specifcations for GeForce 8 Series NV_fragment_program4

NVIDIA Proprietary 266

 the fragment program. If the fragment progra m needs a primitive ID in
 this case, the geometry program can write out a primitive ID using the
 "result.primid" binding, and the fragment pro gram will see the primitive
 ID written for the provoking vertex.

 If no geometry program is enabled, the primit ive ID is automatically
 available, and specifies the number of primit ives (points, lines, or
 triangles) processed by since the last explic it or implicit Begin call.

 (8) What is the primitive ID for non-geometry c ommands that generate
 fragments, such as DrawPixels, Bitmap, and Copy Pixels.

 RESOLVED: Zero.

 (9) How does the FLAT interpolation modifier in teract with point sprite
 coordinate replacement?

 RESOLVED: The value of such attributes are u ndefined. Specifying these
 two operations together is self-contradictory -- FLAT asks for an
 interpolant that is constant over a primitive , and point sprite
 coordinate interpolation asks for an interpol ant that is non-constant
 over a point sprite.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 4 11/06/07 pbrown Documented interactio n between the FLAT
 interpolation modifie r and point sprite
 coordinate replacemen t.

 1-3 pbrown Internal spec develop ment.

NV_framebuffer_multisample_coverage OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 267

Name

 NV_framebuffer_multisample_coverage

Name Strings

 GL_NV_framebuffer_multisample_coverage

Contact

 Mike Strauss, NVIDIA Corporation (mstrauss 'at' nvidia.com)

Status

 Shipping in NVIDIA Release 95 drivers (November 2006)

 Functionaltiy supported by GeForce 8800

Version

 Last Modified Date: November 6, 2006
 Revision #5

Number

 336

Dependencies

 Requires GL_EXT_framebuffer_object.

 Requires GL_EXT_framebuffer_blit.

 Requires GL_EXT_framebuffer_multisample.

 Written based on the wording of the OpenGL 1.5 specification.

Overview

 This extension extends the EXT_framebuffer_mult isample
 specification by providing a new function,
 RenderBufferStorageMultisampleCoverageNV, that distinguishes
 between color samples and coverage samples.

 EXT_framebuffer_multisample introduced the func tion
 RenderbufferStorageMultisampleEXT as a method o f defining the
 storage parameters for a multisample render buf fer. This function
 takes a <samples> parameter. Using rules provi ded by the
 specification, the <samples> parameter is resol ved to an actual
 number of samples that is supported by the unde rlying hardware.
 EXT_framebuffer_multisample does not specify wh ether <samples>
 refers to coverage samples or color samples.

 This extension adds the function
 RenderbufferStorageMultisamplCoverageNV, which takes a
 <coverageSamples> parameter as well as a <color Samples> parameter.

OpenGL Extension Specifcations for GeForce 8 Series NV_framebuffer_multisample_coverage

NVIDIA Proprietary 268

 These two parameters give developers more fine grained control over
 the quality of multisampled images.

New Procedures and Functions

 void RenderbufferStorageMultisampleCoverageNV(
 enum target, sizei coverageSamples,
 sizei colorSamples, enum internalforma t,
 sizei width, sizei height);

New Tokens

 Accepted by the <pname> parameter of GetRenderb ufferParameterivEXT:

 RENDERBUFFER_COVERAGE_SAMPLES_NV 0x 8CAB
 RENDERBUFFER_COLOR_SAMPLES_NV 0x 8E10

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modification to 4.4.2.1 (Renderbuffer Objects)

 Add, just above the definition of RenderbufferS torageMultisampleEXT:

 "The command

 void RenderbufferStorageMultisampleCoverage NV(
 enum target, sizei coverageSamples,
 sizei colorSamples, enum internalformat ,
 sizei width, sizei height);

 establishes the data storage, format, dimension s, number of coverage
 samples, and number of color samples of a rende rbuffer object's
 image. <target> must be RENDERBUFFER_EXT. <in ternalformat> must be
 RGB, RGBA, DEPTH_COMPONENT, STENCIL_INDEX, or o ne of the internal
 formats from table 3.16 or table 2.nnn that has a base internal
 format of RGB, RGBA, DEPTH_COMPONENT, or STENCI L_INDEX. <width>
 and <height> are the dimensions in pixels of th e renderbuffer. If
 either <width> or <height> is greater than
 MAX_RENDERBUFFER_SIZE_EXT, the error INVALID_VA LUE is generated. If
 the GL is unable to create a data store of the requested size, the
 error OUT_OF_MEMORY is generated.

 Upon success, RenderbufferStorageMultisampleCov erageNV deletes any
 existing data store for the renderbuffer image and the contents of
 the data store after calling
 RenderbufferStorageMultisampleCoverageNV are un defined.
 RENDERBUFFER_WIDTH_EXT is set to <width>, RENDE RBUFFER_HEIGHT_EXT

NV_framebuffer_multisample_coverage OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 269

 is set to <height>, and RENDERBUFFER_INTERNAL_F ORMAT_EXT is set to
 <internalformat>.

 If <coverageSamples> is zero, then RENDERBUFFER _COVERAGE_SAMPLES_NV
 is set to zero. Otherwise <coverageSamples> re presents a request
 for a desired minimum number of coverage sample s. Since different
 implementations may support different coverage sample counts for
 multisampled rendering, the actual number of co verage samples
 allocated for the renderbuffer image is impleme ntation dependent.
 However, the resulting value for RENDERBUFFER_C OVERAGE_SAMPLES_NV is
 guaranteed to be greater than or equal to <cove rageSamples> and no
 more than the next larger coverage sample count supported by the
 implementation.

 If <colorSamples> is zero then RENDERBUFFER_COL OR_SAMPLES_NV is set
 to zero. Otherwise, <colorSamples> represents a request for a
 desired minimum number of colors samples. Sinc e different
 implementations may support different color sam ple counts for
 multisampled rendering, the actual number of co lor samples
 allocated for the renderbuffer image is impleme ntation dependent.
 Furthermore, a given implementation may support different color
 sample counts for each supported coverage sampl e count. The
 resulting value for RENDERBUFFER_COLOR_SAMPLES_ NV is determined
 after resolving the value for RENDERBUFFER_COVE RAGE_SAMPLES_NV.
 If the requested color sample count exceeds the maximum number of
 color samples supported by the implementation g iven the value of
 RENDERBUFFER_COVERAGE_SAMPLES_NV, the implement ation will set
 RENDERBUFFER_COLOR_SAMPLES_NV to the highest su pported value.
 Otherwise, the resulting value for RENDERBUFFER _COLOR_SAMPLES_NV is
 guaranteed to be greater than or equal to <colo rSamples> and no
 more than the next larger color sample count su pported by the
 implementation given the value of RENDERBUFFER_ COVERAGE_SAMPLES_NV.

 If <colorSamples> is greater than <coverageSamp les>, the error
 INVALID_VALUE is generated.

 If <coverageSamples> or <colorSamples> is great er than
 MAX_SAMPLES_EXT, the error INVALID_VALUE is gen erated.

 If <coverageSamples> is greater than zero, and <colorSamples> is
 zero, RENDERBUFFER_COLOR_SAMPLES_NV is set to a n implementation
 dependent value based on RENDERBUFFER_COVERAGE_ SAMPLES_NV.

 Modify the definition of RenderbufferStorageMul tisampleEXT as
 follows:

 "The command

 void RenderbufferStorageMultisampleEXT(
 enum target, sizei samples,
 enum internalformat,
 sizei width, sizei height);

 is equivalent to calling

 RenderbufferStorageMultisamplesCoverageNv(t arget, samples, 0,
 internalforamt, width, height).

OpenGL Extension Specifcations for GeForce 8 Series NV_framebuffer_multisample_coverage

NVIDIA Proprietary 270

 Modification to 4.4.4.2 (Framebuffer Completene ss)

 Modify the RENDERBUFFER_SAMPLES_EXT entry in th e bullet list:

 * The value of RENDERBUFFER_COVERAGE_SAMPLES_NV is the same for all
 attached images.
 { FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

 Add an entry to the bullet list:

 * The value of RENDERBUFFER_COLOR_SAMPLES_NV is the same for all
 attached images.
 { FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT }

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Errors

 The error INVALID_OPERATION is generated if
 RenderbufferStorageMultisampleCoverageNV is call ed and
 <colorSamples> is greater than <coverageSamples>

 The error INVALID_VALUE is generated if
 RenderbufferStorageMultisampleCoverageNV is call ed and
 <coverageSamples> is greater than MAX_SAMPLES_EX T.

 The error INVALID_VALUE is generated if
 RenderbufferStorageMultisampleCoverageNV is call ed and
 <colorSamples> is greater than MAX_SAMPLES_EXT.

New State

(add to table 8.nnn, "Renderbuffers (state per rend erbuffer object)")

 Initial
Get Value Type Get Command Value Description S ection Attribute
-------------------------------- ---- ----------- ------------------ ------- ------------------- - ----------- ---------
RENDERBUFFER_COVERAGE_SAMPLES_NV Z+ GetRenderbufferParameterivEXT 0 Number of coverage 4 .4.2.1 -
 samples used by the
 renderbuffer
RENDERBUFFER_COLOR_SAMPLES_NV Z+ GetRenderbu fferParameterivEXT 0 Number of color 4 .4.2.1 -
 samples used by the
 renderbuffer

NV_framebuffer_multisample_coverage OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 271

(modify RENDERBUFFER_SAMPLES_EXT entry in table 8.n nn)

 Initial
 Get Value Type Get Command Value Description Sectio n Attribute
 ------------------------ ---- --------------- -------------- ------ ------------------- ------ ------ ---------
 RENDERBUFFER_SAMPLES_EXT Z+ GetRenderbuffer ParameterivEXT 0 Alias for 4.4.2. 1 -
 RENDERBUFFER_-
 COVERAGE_SAMPLES_NV

New Implementation Dependent State

 None

Issues

 (1) How should RenderbufferStorageMultisampleE XT be layered on top
 of RenderbufferStorageMultisampleCoverageN V?

 RESOLVED. NVIDIA will expose this extensi on at the same time
 that EXT_framebuffer_multisample is expose d, so there will not
 be any issues with backward compatibility. However, some
 developers choose not to use vendor specif ic extensions. These
 developers should be able to make use of c urrent and future
 hardware that differentiates between color and coverage
 samples. Since color samples are a subset of coverage samples,
 the <samples> parameter to RenderbufferSto rageMultisampleEXT
 should be treated as a request for coverag e samples. The
 implementation is free to choose the numbe r of color samples
 used by the renderbuffer.

 (2) <coverageSamples> is rounded up to the nex t highest
 number of samples supported by the impleme ntation. How
 should <colorSamples> be rounded given tha t an implementation
 may not support all combinations of <cover ageSamples> and
 <colorSamples>?

 RESOLVED: It is a requirement that <cover ageSamples> be
 compatible with the <samples> parameter to
 RenderbufferStorageMultisampleEXT. While it is desirable for
 <colorSamples> to resolve the same way as <coverageSamples>,
 this may not always be possible. An imple mentation may support
 a different maximum number of color sample s for each coverage
 sample count. It would be confusing to se t an error when
 <colorSamples> exceeds the maximum support ed number of color
 samples for a given coverage sample count, because there
 is no mechanism to query or predict this b ehavior. Therefore,
 the implementation should round <colorSamp les> down when it
 exceeds the maximum number of color sample s supported with the
 given coverage sample count. Otherwise, < colorSamples> is
 rounded up to the next highest number of c olor samples
 supported by the implementation.

 (3) Should a new query function be added so th at an application can
 determine the maximum number of color samp les supported with a
 given value of <coverageSamples>?

 UNRESOLVED. Such a query would have to ev aluate
 <coverageSamples>, and resolve it to an im plementation

OpenGL Extension Specifcations for GeForce 8 Series NV_framebuffer_multisample_coverage

NVIDIA Proprietary 272

 supported value. The query would then ret urn the maximum
 number of color samples supported given th e resolved value of
 <coverageSamples>. There is no precedent for supporting a
 query of an implementation dependent value that requires
 complex evaluation of a parameter to the q uery. Adding such
 a query is unlikely.

 An alternative query mechanism might invol ve a pair of queries.
 One query returns the maximum number of un ique combinations of
 coverage samples and color samples support ed by the
 implementation. A second query is used to enumerate these
 combinations. In the event that no such q uery mechanism is
 added, an application can still determin t he set of unique and
 valid combinations of coverage samples and color samples.

 An application wishing to implement such a query can do so by
 creating a set of multisample renderbuffer s and querying their
 properties. A renderbuffer can be created for each
 (<coverageSamples>, <colorSamples>) pair w here
 <coverageSamples> is in [1, MAX_SAMPLES_EX T], and
 <colorSamples> is in [1, <coverageSamples>]. The application
 can query RENDERBUFFER_COVERAGE_SAMPLES_NV and
 RENDERBUFFER_COLOR_SAMPLES_NV for each ren derbuffer, using
 the results to identify the set of unique
 (<coverageSamples>, <colorSamples>) pairs supported by the
 implementation.

Revision History

 None

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 273

Name

 NV_geometry_program4

Name Strings

 (none)

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 11/06/2006
 NVIDIA Revision: 6

Number

 323

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 2. 0 specification.

 NV_gpu_program4 is required. This extension is supported if
 "GL_NV_gpu_program4" is found in the extension string.

 EXT_framebuffer_object interacts with this exte nsion.

 EXT_framebuffer_blit interacts with this extens ion.

 EXT_texture_array interacts with this extension .

 ARB_texture_rectangle trivially affects the def inition of this extension.

 EXT_texture_buffer_object trivially affects the definition of this
 extension.

 NV_primitive_restart trivially affects the defi nition of this extension.

Overview

 NV_geometry_program4 defines a new type of prog ram available to be run on
 the GPU, called a geometry program. Geometry p rograms are run on full
 primitives after vertices are transformed, but prior to flat shading and
 clipping.

 A geometry program begins with a single primiti ve - a point, line, or
 triangle. Quads and polygons are allowed, but are decomposed into
 individual triangles prior to geometry program execution. It can read the

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 274

 attributes of any of the vertex in the primitiv e and use them to generate
 new primitives. A geometry program has a fixed output primitive type,
 either a point, a line strip, or a triangle str ip. It emits vertices
 (using the EMIT opcode) to define the output pr imitive. The attributes of
 emitted vertices are specified by writing to th e same set of result
 bindings (e.g., "result.position") provided for vertex programs.
 Additionally, a geometry program can emit multi ple disconnected primitives
 by using the ENDPRIM opcode, which is roughly e quivalent to calling End
 and then Begin again. The primitives emitted b y the geometry program are
 then clipped and then processed like an equival ent OpenGL primitive
 specified by the application.

 This extension provides four additional primiti ve types: lines with
 adjacency, line strips with adjacency, separate triangles with adjacency,
 and triangle strips with adjacency. Some of th e vertices specified in
 these new primitive types are not part of the o rdinary primitives.
 Instead, they represent neighboring vertices th at are adjacent to the two
 line segment end points (lines/strips) or the t hree triangle edges
 (triangles/tstrips). These "adjacency" vertice s can be accessed by
 geometry programs and used to match up the outp uts of the geometry program
 with those of neighboring primitives.

 Additionally, geometry programs allow for layer ed rendering, where entire
 three-dimensional, cube map, or array textures (EXT_texture_array) can be
 bound to the current framebuffer. Geometry pro grams can use the
 "result.layer" binding to select a layer or cub e map face to render to.
 Each primitive emitted by such a geometry progr am is rendered to the layer
 taken from its provoking vertex.

 Since geometry programs expect a specific input primitive type, an error
 will occur if the application presents primtive s of a different type. For
 example, if an enabled geometry program expects points, an error will
 occur at Begin() time, if a primitive mode of T RIANGLES is specified.

New Procedures and Functions

 void ProgramVertexLimitNV(enum target, int limi t);

 void FramebufferTextureEXT(enum target, enum at tachment,
 uint texture, int le vel);
 void FramebufferTextureLayerEXT(enum target, en um attachment,
 uint texture, i nt level, int layer);
 void FramebufferTextureFaceEXT(enum target, enu m attachment,
 uint texture, in t level, enum face);

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev:

 GEOMETRY_PROGRAM_NV 0x8C26

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 275

 Accepted by the <pname> parameter of GetProgram ivARB:

 MAX_PROGRAM_OUTPUT_VERTICES_NV 0x8C27
 MAX_PROGRAM_TOTAL_OUTPUT_COMPONENTS_NV 0x8C28
 GEOMETRY_VERTICES_OUT_EXT 0x8DDA
 GEOMETRY_INPUT_TYPE_EXT 0x8DDB
 GEOMETRY_OUTPUT_TYPE_EXT 0x8DDC

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT 0x8C29

 Accepted by the <mode> parameter of Begin, Draw Arrays, MultiDrawArrays,
 DrawElements, MultiDrawElements, and DrawRangeE lements:

 LINES_ADJACENCY_EXT 0xA
 LINE_STRIP_ADJACENCY_EXT 0xB
 TRIANGLES_ADJACENCY_EXT 0xC
 TRIANGLE_STRIP_ADJACENCY_EXT 0xD

 Returned by CheckFramebufferStatusEXT:

 FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT 0x8DA8
 FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT 0x8DA9

 Accepted by the <pname> parameter of
 GetFramebufferAttachmentParameterivEXT:

 FRAMEBUFFER_ATTACHMENT_LAYERED_EXT 0x8DA7
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT 0x8CD4

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled, and by
 the <pname> parameter of GetIntegerv, GetFloatv , GetDoublev, and
 GetBooleanv:

 PROGRAM_POINT_SIZE_EXT 0x8642

 (Note: The "EXT" tokens above are shared with the EXT_geometry_shader4
 extension.)

 (Note: FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER is simply an alias for the
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT token provided in
 EXT_framebuffer_object. This extension general izes the notion of
 "<zoffset>" to include layers of an array textu re.)

 (Note: PROGRAM_POINT_SIZE_EXT is simply an ali as for the
 VERTEX_PROGRAM_POINT_SIZE token provided in Ope nGL 2.0, which is itself an
 alias for VERTEX_PROGRAM_POINT_SIZE_ARB provide d by ARB_vertex_program.
 Program-computed point sizes can be enabled if geometry programs are
 enabled, even if no vertex program is used.)

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 276

Additions to Chapter 2 of the OpenGL 1.5 Specificat ion (OpenGL Operation)

 Modify Section 2.6.1 (Begin and End Objects), p . 13

 (Add to end of section, p. 18)

 (add figure)

 1 - - - 2----->3 - - - 4 1 - - - 2--->3 --->4--->5 - - - 6

 5 - - - 6----->7 - - - 8

 (a) (b)

 Figure X.1 (a) Lines with adjacency, (b) Line strip with adja cency.
 The vertices connected with solid lines belon g to the main primitives;
 the vertices connected by dashed lines are th e adjacent vertices that
 may be used in a geometry program.

 Lines with Adjacency

 Lines with adjacency are independent line segme nts where each endpoint has
 a corresponding "adjacent" vertex that can be a ccessed by a geometry
 program (Section 2.15). If geometry programs a re disabled, the "adjacent"
 vertices are ignored.

 A line segment is drawn from the 4i + 2nd verte x to the 4i + 3rd vertex
 for each i = 0, 1, ... , n-1, where there are 4 n+k vertices between the
 Begin and End. k is either 0, 1, 2, or 3; if k is not zero, the final k
 vertices are ignored. For line segment i, the 4i + 1st and 4i + 4th
 vertices are considered adjacent to the 4i + 2n d and 4i + 3rd vertices,
 respectively. See Figure X.1.

 Lines with adjacency are generated by calling B egin with the argument
 value LINES_ADJACENCY_EXT.

 Line Strips with Adjacency

 Line strips with adjacency are similar to line strips, except that each
 line segment has a pair of adjacent vertices th at can be accessed by
 geometry programs (Section 2.15). If geometry programs are disabled, the
 "adjacent" vertices are ignored.

 A line segment is drawn from the i + 2nd vertex to the i + 3rd vertex for
 each i = 0, 1, ..., n-1, where there are n+3 ve rtices between the Begin
 and End. If there are fewer than four vertices between a Begin and End,
 all vertices are ignored. For line segment i, the i + 1st and i + 4th
 vertices are considered adjacent to the i + 2nd and i + 3rd vertices,
 respectively. See Figure X.1.

 Line strips with adjacency are generated by cal ling Begin with the
 argument value LINE_STRIP_ADJACENCY_EXT.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 277

 (add figure)
 2 - - - 3 - - - 4 8 - - - 9 - - - 10
 ^\ ^\
 \ | \ | \ | \ |
 | \ | \
 \ | \ | \ | \ |
 | \ | \
 \ | \ | \ | \ |
 | v | v
 1<------5 7< ------11

 \ | \ |

 \ | \ |

 \ | \ |

 6 12

 Figure X.2 Triangles with adjacency. The vertices connected with solid
 lines belong to the main primitive; the verti ces connected by dashed
 lines are the adjacent vertices that may be u sed in a geometry program.

 Triangles with Adjacency

 Triangles with adjacency are similar to separat e triangles, except that
 each triangle edge has an adjacent vertex that can be accessed by geometry
 programs (Section 2.15). If geometry programs are disabled, the
 "adjacent" vertices are ignored.

 The 6i + 1st, 6i + 3rd, and 6i + 5th vertices (in that order) determine a
 triangle for each i = 0, 1, ..., n-1, where the re are 6n+k vertices
 between the Begin and End. k is either 0, 1, 2 , 3, 4, or 5; if k is
 non-zero, the final k vertices are ignored. Fo r triangle i, the i + 2nd,
 i + 4th, and i + 6th vertices are considered ad jacent to edges from the i
 + 1st to the i + 3rd, from the i + 3rd to the i + 5th, and from the i +
 5th to the i + 1st vertices, respectively. See Figure X.2.

 Triangles with adjacency are generated by calli ng Begin with the argument
 value TRIANGLES_ADJACENCY_EXT.

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 278

 (add figure)
 6 6

 | \ | \

 | \ | \

 | \ | \

 2 - - - 3- - - >6 2 - - - 3------>7 2 - - - 3------>7- - - 10
 ^\ ^^ | ^^ ^^ |
 \ | \ | \ | \ | \ \ | \ | \
 | \ | \ | | \ | \ |
 \ | \ | \ | \ | \ \ | \ | \
 | \ | \ | | \ | \ |
 \ | \ | \ | \ | \ \ | \ | \
 | v | vv | vv v|
 1<------5 1<------5 - - - 8 1<------5<------9

 \ | \ | \ | \ |

 \ | \ | \ | \ |

 \ | \ | \ | \ |

 4 4 4 8

 6 10

 | \ | \

 | \ | \

 | \ | \
 2 - - - 3------>7------> 11
 ^^ ^^ |
 \ | \ | \ | \
 | \ | \ |
 \ | \ | \ | \
 | \ | \ |
 \ | \ | \ | \
 | vv v v
 1<------5<------ 9 - - - 12

 \ | \ |

 \ | \ |

 \ | \ |

 4 8

 Figure X.3 Triangle strips with adjacency. The vertices conn ected with
 solid lines belong to the main primitives; th e vertices connected by
 dashed lines are the adjacent vertices that m ay be used in a geometry
 program.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 279

 Triangle Strips with Adjacency

 Triangle strips with adjacency are similar to t riangle strips, except that
 each triangle edge has an adjacent vertex that can be accessed by geometry
 programs (Section 2.15). If geometry programs are disabled, the
 "adjacent" vertices are ignored.

 In triangle strips with adjacency, n triangles are drawn using 2 * (n+2) +
 k vertices between the Begin and End. k is eit her 0 or 1; if k is 1, the
 final vertex is ignored. If fewer than 6 verti ces are specified between
 the Begin and End, the entire primitive is igno red. Table X.1 describes
 the vertices and order used to draw each triang le, and which vertices are
 considered adjacent to each edge of the triangl e. See Figure X.3.

 (add table)
 primitive adjacent
 vertices vertices
 primitive 1st 2nd 3rd 1 /2 2/3 3/1
 --------------- ---- ---- ---- -- -- ---- ----
 only (i==0, n==1) 1 3 5 2 6 4
 first (i==0) 1 3 5 2 7 4
 middle (i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+7
 middle (i even) 2i+1 2i+3 2i+5 2i -1 2i+7 2i+4
 last (i==n-1, i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+6
 last (i==n-1, i even) 2i+1 2i+3 2i+5 2i -1 2i+6 2i+4

 Table X.1: Triangles generated by triangle strips with adjac ency.
 Each triangle is drawn using the vertices in the "1st", "2nd", and "3rd"
 columns under "primitive vertices", in that o rder. The vertices in the
 "1/2", "2/3", and "3/1" columns under "adjace nt vertices" are considered
 adjacent to the edges from the first to the s econd, from the second to
 the third, and from the third to the first ve rtex of the triangle,
 respectively. The six rows correspond to the six cases: the first and
 only triangle (i=0, n=1), the first triangle of several (i=0, n>0),
 "odd" middle triangles (i=1,3,5...), "even" m iddle triangles
 (i=2,4,6,...), and special cases for the last triangle inside the
 Begin/End, when i is either even or odd. For the purposes of this
 table, the first vertex specified after Begin is numbered "1" and the
 first triangle is numbered "0".

 Triangle strips with adjacency are generated by calling Begin with the
 argument value TRIANGLE_STRIP_ADJACENCY_EXT.

 Modify Section 2.14.1, Lighting (p. 59)

 (modify fourth paragraph, p. 63) Additionally, vertex and geometry shaders
 and programs can operate in two-sided color mod e, which is enabled and
 disabled by calling Enable or Disable with the symbolic value
 VERTEX_PROGRAM_TWO_SIDE. When a vertex or geom etry shader is active, the
 shaders can write front and back color values t o the gl_FrontColor,
 gl_BackColor, gl_FrontSecondaryColor and gl_Bac kSecondaryColor outputs.
 When a vertex or geometry program is active, pr ograms can write front and
 back colors using the available color result bi ndings. When a vertex or
 geometry shader or program is active and two-si ded color mode is enabled,
 the GL chooses between front and back colors, a s described below. If

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 280

 two-sided color mode is disabled, the front col or output is always
 selected.

 Insert New Section 2.14.6, Geometry Programs (b etween 2.14.5, Color Index
 Lighting and 2.14.6, Clamping and Masking, p. 6 9)

 Section 2.14.6, Geometry Programs

 Each primitive may be optionally transformed by a geometry program.
 Geometry programs are enabled by calling Enable with the value
 GEOMETRY_PROGRAM_NV. A geometry program takes a single input primitive
 and generates vertices to be arranged into one or more output primitives.
 The original input primitive is discarded, and the output primitives are
 processed in order by the remainder of the GL p ipeline.

 Section 2.14.6.1, Geometry Program Input Primit ives

 A geometry program can operate on one of five i nput primitive types, as
 specified by the mandatory "PRIMITIVE_IN" decla ration. Depending on the
 input primitive type, one to six vertices are a vailable when the program
 is executed. A geometry program will fail to l oad unless it contains
 exactly one such declaration.

 Each input primitive type supports only a subse t of the primitives
 provided by the GL. If geometry programs are e nabled, Begin, or any
 function that implicitly calls Begin, will prod uce an INVALID_OPERATION
 error if the <mode> parameter is incompatible w ith the input primitive
 type of the current geometry program.

 The supported input primitive types are:

 Points (POINTS)

 Geometry programs that operate on points are va lid only for the POINTS
 primitive type. There is a only a single verte x available for each
 program invocation: "vertex[0]" refers to the s ingle point.

 Lines (LINES)

 Geometry programs that operate on line segments are valid only for the
 LINES, LINE_STRIP, and LINE_LOOP primitive type s. There are two vertices
 available for each program invocation: "vertex [0]" and "vertex[1]" refer
 to the beginning and end of the line segment.

 Lines with Adjacency (LINES_ADJACENCY)

 Geometry programs that operate on line segments with adjacent vertices are
 valid only for the LINES_ADJACENCY_EXT and LINE _STRIP_ADJACENCY_EXT
 primitive types. There are four vertices avail able for each program
 invocation. "vertex[1]" and "vertex[2]" refer to the beginning and end of
 the line segment. "vertex[0]" and "vertex[3]" refer to the vertices
 adjacent to the beginning and end of the line s egment, respectively.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 281

 Triangles (TRIANGLES)

 Geometry programs that operate on triangles are valid for the TRIANGLES,
 TRIANGLE_STRIP, TRIANGLE_FAN, QUADS, QUAD_STRIP , and POLYGON primitive
 types.

 When used with a geometry program that operates on triangles, QUADS,
 QUAD_STRIP, and POLYGON primitives are decompos ed into triangles in an
 unspecified, implementation-dependent manner. For convex polygons
 (already required in the core GL specification) , this decomposition
 satisfies three properties:

 * the collection of triangles fully covers th e area of the original
 primitive,

 * no two triangles in the decomposition overl ap, and

 * the orientation of each triangle is consist ent with the orientation of
 the original primitive.

 For such primitives, the program is executed on ce for each triangle in the
 decomposition.

 There are three vertices available for each pro gram invocation.
 "vertex[0]", "vertex[1]", and "vertex[2]", refe r to the first, second, and
 third vertex of the triangle, respectively.

 Triangles with Adjacency (TRIANGLES_ADJACENCY)

 Geometry programs that operate on triangles wit h adjacent vertices are
 valid for the TRIANGLES_ADJACENCY_EXT and TRIAN GLE_STRIP_ADJACENCY_EXT
 primitive types. There are six vertices availa ble for each program
 invocation. "vertex[0]", "vertex[2]", and "ver tex[4]" refer to the first,
 second, and third vertex of the triangle respec tively. "vertex[1]",
 "vertex[3]", and "vertex[5]" refer to the verti ces adjacent to the edges
 from the first to the second vertex, from the s econd to the third vertex,
 and from the third to the first vertex, respect ively.

 Section 2.14.6.2, Geometry Program Output Primi tives

 A geometry program can generate primitives of o ne of three types, as
 specified by the mandatory "PRIMITIVE_OUT" decl aration. A geometry
 program will fail to load unless it contains ex actly one such declaration.

 The supported output primitive types are points (POINTS), line strips
 (LINE_STRIP), and triangle strips (TRIANGLE_STR IP). The vertices output
 by the geometry program are decomposed into poi nts, lines, or triangles
 based on the output primitive type in the manne r described in section
 2.6.1.

 Section 2.14.6.3, Geometry Program Execution En vironment

 Geometry programs execute using the instruction set documented in the
 GL_NV_gpu_program4 extension specification and in a manner similar to
 vertex programs. Each vertex attribute access must identify the vertex
 number being accessed. For example, "vertex[1] .position" identifies the
 transformed position of "vertex[1]" as specifie d in teh description of the

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 282

 input primitive type. Output vertices are spec ified by writing to vertex
 result variables in the same manner as done by vertex programs.

 The special instruction "EMIT" specifies that a vertex is completed. A
 vertex is added to the current output primitive using the current values
 of the vertex result variables. The values of any unwritten result
 variables (or components) are undefined.

 After an EMIT instruction is completed, the cur rent values of all vertex
 result variables become undefined. If a progra m wants to ensure that the
 same result is used for every vertex written by the program, it is
 necessary to write the corresponding value once per vertex.

 The special instruction "ENDPRIM" specifies tha t the current output
 primitive should be completed and a new output primitive should be
 started. A geometry program starts with an out put primitive containing no
 vertices. When a geometry program terminates, the current output
 primitive is automatically completed. ENDPRIM has no effect if the
 geometry program's output primitive type is POI NTS.

 When a primitive generated by a geometry progra m is completed, the
 vertices added by the EMIT instruction are deco mposed into points, lines,
 or triangles according to the output primitive type in the manner
 described in Section 2.8.1. The resulting prim itives are then clipped and
 rasterized. If the number of vertices emitted by the geometry program is
 not sufficient to produce a single primitive, n othing is drawn.

 Like vertex and fragment programs, geometry pro grams can access textures.
 The maximum number of texture image units that can be accessed by a
 geometry program is given by the value of
 MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT.

 Section 2.14.6.4, Geometry Program Output Limit s

 A geometry program may not emit an limited in t he number of vertices per
 invocation. Each geometry program must declare a vertex limit, which is
 the maximum number of vertices that the program can ever produce. The
 vertex limit is specified using the "VERTICES_O UT" declaration. A
 geometry program will fail to load unless it co ntains exactly one such
 declaration.

 There are two implementation-dependent limits t hat limit the total number
 of vertices that a program can emit. First, th e vertex limit may not
 exceed the value of MAX_PROGRAM_OUTPUT_VERTICES _NV. Second, product of
 the vertex limit and the number of result varia ble components written by
 the program (PROGRAM_RESULT_COMPONENTS_NV, as d escribed in section 2.X.3.5
 of NV_gpu_program4) may not exceed the value of
 MAX_PROGRAM_TOTAL_OUTPUT_COMPONENTS_NV. A geometry program will fail to
 load if its maximum vertex count or maximum tot al component count exceeds
 the implementation-dependent limit. The limits may be queried by calling
 GetProgramiv with a <target> of GEOMETRY_PROGRA M_NV. Note that the
 maximum number of vertices that a geometry prog ram can emit may be much
 lower than MAX_PROGRAM_OUTPUT_VERTICES_NV if th e program writes a large
 number of result variable components.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 283

 After a geometry program is compiled, the verte x limit may be changed
 using the command

 void ProgramVertexLimitNV(enum target, int li mit);

 <target> must be GEOMETRY_PROGRAM_NV. <limit> is the new vertex limit,
 which must satisfy the two rules described abov e. The error INVALID_VALUE
 is generated if <limit> is less than or equal t o zero, <limit> is greater
 than or equal to MAX_PROGRAM_OUTPUT_VERTICES_NV , or if the total number of
 components emitted would exceed MAX_PROGRAM_TOT AL_OUTPUT_COMPONENTS_NV.
 The error INVALID_OPERATION is generated if the current geometry program
 has not been successfully loaded.

 When a program executes, the number of vertices it emits should not exceed
 the vertex limit. Once a geometry program emit s a number of vertices
 equal to the vertex limit, subsequent EMIT inst ructions may or may not
 have any effect.

 Modify Section 2.X.2, Program Grammar

 (replace third paragraph)

 Geometry programs are required to begin with th e header string
 "!!NVgp4.0". This header string identifies the subsequent program body as
 being a geometry program and indicates that it should be parsed according
 to the base NV_gpu_program4 grammar plus the ad ditions below. Program
 string parsing begins with the character immedi ately following the header
 string.

 (add the following grammar rules to the NV_gpu_ program4 base grammar)

 <declSequence> ::= <declaration> <decl Sequence>

 <instruction> ::= <SpecialInstruction >

 <attribUseV> ::= <attribVarName> <ar rayMem> <arrayMem>
 <swizzleSuffix>

 <attribUseS> ::= <attribVarName> <ar rayMem> <arrayMem>
 <scalarSuffix>

 <attribUseVNS> ::= <attribVarName> <ar rayMem> <arrayMem>

 <resultUseW> ::= <resultVarName> <ar rayMem> <optWriteMask>
 | <resultColor> <optW riteMask>
 | <resultColor> "." < colorType> <optWriteMask>
 | <resultColor> "." < faceType> <optWriteMask>
 | <resultColor> "." < faceType> "." <colorType>
 "." <optWriteMask>

 <resultUseD> ::= <resultColor>
 | <resultColor> "." < colorType>
 | <resultMulti>

 <declaration> ::= "PRIMITIVE_IN" <dec lPrimInType>
 | "PRIMITIVE_OUT" <de clPrimOutType>
 | "VERTICES_OUT" <int >

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 284

 <declPrimInType> ::= "POINTS"
 | "LINES"
 | "LINES_ADJACENCY"
 | "TRIANGLES"
 | "TRIANGLES_ADJACENC Y"

 <declPrimOutType> ::= "POINTS"
 | "LINE_STRIP"
 | "TRIANGLE_STRIP"

 <SpecialInstruction> ::= "EMIT"
 | "ENDPRIM"

 <attribBasic> ::= <vtxPrefix> "positi on"
 | <vtxPrefix> "fogcoo rd"
 | <vtxPrefix> "points ize"
 | <attribTexCoord> <o ptArrayMemAbs>
 | <attribClip> <array MemAbs>
 | <attribGeneric> <ar rayMemAbs>
 | "primitive" "." "id "

 <attribColor> ::= <vtxPrefix> "color"

 <attribMulti> ::= <attribTexCoord> <a rrayRange>
 | <attribClip> <array Range>
 | <attribGeneric> <ar rayRange>

 <attribTexCoord> ::= <vtxPrefix> "texcoo rd"

 <attribClip> ::= <vtxPrefix> "clip"

 <attribGeneric> ::= <vtxPrefix> "attrib "

 <vtxPrefix> ::= "vertex" <optArrayM emAbs>

 <resultBasic> ::= <resPrefix> "positi on"
 | <resPrefix> "fogcoo rd"
 | <resPrefix> "points ize"
 | <resPrefix> "primid "
 | <resPrefix> "layer"
 | <resultTexCoord> <o ptArrayMemAbs>
 | <resultClip> <array MemAbs>
 | <resultGeneric> <ar rayMemAbs>

 <resultColor> ::= <resPrefix> "color"

 <resultMulti> ::= <resultTexCoord> <a rrayRange>
 | <resultClip> <array Range>
 | <resultGeneric> <ar rayRange>

 <resultTexCoord> ::= <resPrefix> "texcoo rd"

 <resultClip> ::= <resPrefix> "clip"

 <resultGeneric> ::= <resPrefix> "attrib "

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 285

 <resPrefix> ::= "result" "."

 (add the following subsection to section 2.X.3. 2, Program Attribute
 Variables)

 Geometry program attribute variables describe t he attributes of each
 transformed vertex accessible to the geometry p rogram. Most attributes
 correspond to the per-vertex results generated by vertex program execution
 or fixed-function vertex processing. The "prim itive.id" attribute is
 generated specially, as described below.

 If vertex programs are enabled, attributes will be obtained from the
 per-vertex outputs of the vertex program used t o generate the vertex in
 question. Geometry program attributes should b e read using the same
 component data type used to write the correspon ding vertex program
 results. The value of any attribute correspond ing to a vertex output not
 written by the vertex program is undefined.

 If vertex programs are disabled, attributes wil l be obtained from the
 values computed by fixed-function vertex proces sing. All attributes,
 except for the primitive ID should be read as f loating-point values in
 this case.

 Geometry Vertex Binding Components D escription
 ----------------------------- ---------- - ---------------------------
 vertex[m].position (x,y,z,w) c lip coordinates
 vertex[m].color (r,g,b,a) f ront primary color
 vertex[m].color.primary (r,g,b,a) f ront primary color
 vertex[m].color.secondary (r,g,b,a) f ront secondary color
 vertex[m].color.front (r,g,b,a) f ront primary color
 vertex[m].color.front.primary (r,g,b,a) f ront primary color
 vertex[m].color.front.secondary (r,g,b,a) f ront secondary color
 vertex[m].color.back (r,g,b,a) b ack primary color
 vertex[m].color.back.primary (r,g,b,a) b ack primary color
 vertex[m].color.back.secondary (r,g,b,a) b ack secondary color
 vertex[m].fogcoord (f,-,-,-) f og coordinate
 vertex[m].pointsize (s,-,-,-) p oint size
 vertex[m].texcoord (s,t,r,q) t exture coordinate, unit 0
 vertex[m].texcoord[n] (s,t,r,q) t exture coordinate, unit n
 vertex[m].attrib[n] (x,y,z,w) g eneric interpolant n
 vertex[m].clip[n] (d,-,-,-) c lip plane distance
 vertex[m].texcoord[n..o] (s,t,r,q) a rray of texture coordinates
 vertex[m].attrib[n..o] (x,y,z,w) a rray of generic interpolants
 vertex[m].clip[n..o] (d,-,-,-) a rray of clip distances
 vertex[m].id (id,-,-,-) v ertex id
 primitive.id (id,-,-,-) p rimitive number

 Table X.2, Geometry Program Attribute Bindings. <m> refers t o a vertex
 number, while <n>, and <o> refer to integer c onstants. Only the
 "vertex[m].texcoord" and "vertex.attrib" bind ings are available in
 arrays.

 For bindings that include "vertex[m]", <m> iden tifies the vertex number
 whose attributes are used for the binding. For bindings in explicit
 variable declarations, "[m]" is optional. If " [m]" is specified, <m> must
 be an integer constant and must be in the valid range of vertices
 supported for the input primitive type. If "[m]" is not specified, the

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 286

 declared variable is accessed as an array, with the first array index
 specifying the vertex number. If such a variab le is declared an array, it
 must have a second array index to identify the individual array element.
 For bindings used directly in instructions, "[m]" is required and must be
 an integer constant specifying a vertex number. The following examples
 illustrate various legal and illegal geometry p rogram bindings and their
 meanings.

 ATTRIB pos = vertex.position;
 ATTRIB pos2 = vertex[2].position;
 ATTRIB texcoords[] = { vertex.texcoord[0..3] };
 ATTRIB tcoords1[4] = { vertex[1].texcoord[1.. 4] };
 INT TEMP A0;
 ...
 MOV R0, pos[1]; # position of vertex 1
 MOV R0, vertex[1].position; # position of vertex 1
 MOV R0, pos2; # position of vertex 2
 MOV R0, texcoords[A0.x][1]; # texcoord 1 of vertex A0.x
 MOV R0, texcoords[A0.x][A0.y]; # texcoord A0.y of vertex A0.x
 MOV R0, tcoords1[2]; # texcoord 3 of vertex 1
 MOV R0, vertex[A0.x].texcoord[1]; # ILLEGAL a llowed -- vertex number
 # must b e constant here.

 If a geometry attribute binding matches "vertex [m].position", the "x",
 "y", "z" and "w" components of the geometry att ribute variable are filled
 with the "x", "y", "z", and "w" components, res pectively, of the
 transformed position of vertex <m>, in clip coo rdinates.

 If a geometry attribute binding matches any bin ding in Table X.2 beginning
 with "vertex[m].color", the "x", "y", "z", and "w" components of the
 geometry attribute variable are filled with the "r", "g", "b", and "a"
 components, respectively, of the corresponding color of vertex <m>.
 Bindings containing "front" and "back" refer to the front and back colors,
 respectively. Bindings containing "primary" an d "secondary" refer to
 primary and secondary colors, respectively. If face or color type is
 omitted in the binding, the binding is treated as though "front" and
 "primary", respectively, were specified.

 If a geometry attribute binding matches "vertex [m].fogcoord", the "x"
 component of the geometry attribute variable is filled with the fog
 coordinate of vertex <m>. The "y", "z", and "w " components are undefined.

 If a geometry attribute binding matches "vertex [m].pointsize", the "x"
 component of the geometry attribute variable is filled with the point size
 of vertex <m> computed by the vertex program. For fixed-function vertex
 processing, the point size attribute is undefin ed. The "y", "z", and "w"
 components are always undefined.

 If a geometry attribute binding matches "vertex [m].texcoord" or
 "vertex[m].texcoord[n]", the "x", "y", "z", and "w" coordinates of the
 geometry attribute variable are filled with the "s", "t", "r", and "q"
 coordinates of texture coordinate set <n> of ve rtex <m>. If <n> is
 omitted, texture coordinate set zero is used.

 If a geometry attribute binding matches "vertex [m].attrib[n]", the "x",
 "y", "z", and "w" components of the geometry at tribute variable are filled
 with the "x", "y", "z", and "w" coordinates of generic interpolant <n> of

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 287

 vertex <m>. All generic interpolants will be u ndefined when used with
 fixed-function vertex processing.

 If a geometry attribute binding matches "vertex [m].clip[n]", the "x"
 component of the geometry attribute variable is filled the clip distance
 of vertex <m> for clip plane <n>, as written by the vertex program. If
 fixed-function vertex processing or position-in variant vertex programs are
 used, the clip distance is obtained by computin g the per-clip plane dot
 product:

 (p_1' p_2' p_3' p_4') dot (x_e y_e z_e w_e),

 at the vertex location, as described in section 2.12. The clip distance
 for clip plane <n> is undefined if clip plane < n> is disabled. The "y",
 "z", and "w" components of the attribute are un defined.

 If a geometry attribute binding matches "vertex [m].texcoord[n..o]",
 "vertex[m].attrib[n..o]", or "vertex[m].clip[n. .o]", a sequence of
 1+<o>-<n> texture coordinate bindings is create d. For texture coordinate
 bindings, it is as though the sequence "vertex[m].texcoord[n],
 vertex[m].texcoord[n+1], ... vertex[m].texcoord [o]" were specfied. These
 bindings are available only in explicit declara tions of array variables.
 A program will fail to load if <n> is greater t han <o>.

 If a geometry attribute binding matches "vertex [m].id", the "x" component
 is filled with the vertex ID. If a vertex prog ram is currently active,
 the attribute variable is filled with the verte x ID result written by the
 vertex program. If fixed-function vertex proce ssing is used, the vertex
 ID is undefined. The "y", "z", and "w" compone nts of the attribute are
 undefined.

 If a geometry attribute binding matches "primit ive.id", the "x" component
 is filled with the number of primitives receive d by the GL since the last
 time Begin was called (directly or indirectly v ia vertex array functions).
 The first primitive generated after a Begin is numbered zero, and the
 primitive ID counter is incremented after every individual point, line, or
 polygon primitive is processed. For QUADS and QUAD_STRIP primitives that
 are decomposed into triangles, the primitive ID is incremented after each
 complete quad is processed. For POLYGON primit ives, the primitive ID
 counter is zero. Restarting a primitive topolo gy using the primitive
 restart index has no effect on the primitive ID counter. The "y", "z",
 and "w" components of the variable are always u ndefined.

 (add the following subsection to section 2.X.3. 5, Program Results.)

 Geometry programs emit vertices, and the set of result variables available
 to such programs correspond to the attributes o f each emitted vertex. The
 set of allowable result variable bindings for g eometry programs is given
 in Table X.3.

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 288

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.position (x,y,z,w) po sition in clip coordinates
 result.color (r,g,b,a) fr ont-facing primary color
 result.color.primary (r,g,b,a) fr ont-facing primary color
 result.color.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.front (r,g,b,a) fr ont-facing primary color
 result.color.front.primary (r,g,b,a) fr ont-facing primary color
 result.color.front.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.back (r,g,b,a) ba ck-facing primary color
 result.color.back.primary (r,g,b,a) ba ck-facing primary color
 result.color.back.secondary (r,g,b,a) ba ck-facing secondary color
 result.fogcoord (f,*,*,*) fo g coordinate
 result.pointsize (s,*,*,*) po int size
 result.texcoord (s,t,r,q) te xture coordinate, unit 0
 result.texcoord[n] (s,t,r,q) te xture coordinate, unit n
 result.attrib[n] (x,y,z,w) ge neric interpolant n
 result.clip[n] (d,*,*,*) cl ip plane distance
 result.texcoord[n..o] (s,t,r,q) te xture coordinates n thru o
 result.attrib[n..o] (x,y,z,w) ge neric interpolants n thru o
 result.clip[n..o] (d,*,*,*) cl ip distances n thru o
 result.primid (id,*,*,*) pr imitive id
 result.layer (l,*,*,*) la yer for cube/array/3D FBOs

 Table X.3: Geometry Program Result Variable Bindings.
 Components labeled "*" are unused.

 If a result variable binding matches "result.po sition", updates to the
 "x", "y", "z", and "w" components of the result variable modify the "x",
 "y", "z", and "w" components, respectively, of the transformed vertex's
 clip coordinates. Final window coordinates wil l be generated for the
 vertex as described in section 2.14.4.4.

 If a result variable binding match begins with "result.color", updates to
 the "x", "y", "z", and "w" components of the re sult variable modify the
 "r", "g", "b", and "a" components, respectively , of the corresponding
 vertex color attribute in Table X.3. Color bin dings that do not specify
 "front" or "back" are consided to refer to fron t-facing colors. Color
 bindings that do not specify "primary" or "seco ndary" are considered to
 refer to primary colors.

 If a result variable binding matches "result.fo gcoord", updates to the "x"
 component of the result variable set the transf ormed vertex's fog
 coordinate. Updates to the "y", "z", and "w" c omponents of the result
 variable have no effect.

 If a result variable binding matches "result.po intsize", updates to the
 "x" component of the result variable set the tr ansformed vertex's point
 size. Updates to the "y", "z", and "w" compone nts of the result variable
 have no effect.

 If a result variable binding matches "result.te xcoord" or
 "result.texcoord[n]", updates to the "x", "y", "z", and "w" components of
 the result variable set the "s", "t", "r" and " q" components,
 respectively, of the transformed vertex's textu re coordinates for texture
 unit <n>. If "[n]" is omitted, texture unit ze ro is selected.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 289

 If a result variable binding matches "result.at trib[n]", updates to the
 "x", "y", "z", and "w" components of the result variable set the "x", "y",
 "z", and "w" components of the generic interpol ant <n>.

 If a result variable binding matches "result.cl ip[n]", updates to the "x"
 component of the result variable set the clip d istance for clip plane <n>.

 If a result variable binding matches "result.te xcoord[n..o]",
 "result.attrib[n..o]", or "result.clip[n..o]", a sequence of 1+<o>-<n>
 bindings is created. For texture coordinates, it is as though the
 sequence "result.texcoord[n], result.texcoord[n +1],
 ... result.texcoord[o]" were specfied. These b indings are available only
 in explicit declarations of array variables. A program will fail to load
 if <n> is greater than <o>.

 If a result variable binding matches "result.pr imid", updates to the "x"
 component of the result variable provide a sing le integer that serves as a
 primitive identifier. The written primitive ID is available to fragment
 programs using the "primitive.id" attribute bin ding. If a fragment
 program using primitive IDs is active and a geo metry program is also
 active, the geometry program must write "result .primid" or the primitive
 ID number is undefined.

 If a result variable binding matches "result.la yer", updates to the "x"
 component of the result variable provide a sing le integer that serves as a
 layer selector for layered rendering (section 2 .14.6.5). The layer must
 be written as an integer value; writing a float ing-point layer number will
 produce undefined results.

 (modify Table X.13 in section 2.X.4, Program In structions, to include the
 following.)

 Modifiers
 Instruction F I C S H D Inputs Out Descri ption
 ----------- - - - - - - ---------- --- ------ --------------------------
 EMIT - - - - - - - - emit v ertex
 ENDPRIM - - - - - - - - end of primitive

 (add the following subsection to section 2.X.5, Program Options.)

 Section 2.X.5.Y, Geometry Program Options

 No options are supported at present for geometr y programs.

 (add the following subsection to section 2.X.6, Program Declarations.)

 Section 2.X.6.Y, Geometry Program Declarations

 Geometry programs support three types of declar ation statements, as
 described below. Each of the three must be inc luded exactly once in the
 geometry program.

 - Input Primitive Type (PRIMITIVE_IN)

 The PRIMITIVE_IN statement declares the type of primitives seen by a
 geometry program. The single argument must be one of "POINTS", "LINES",
 "LINES_ADJACENCY", "TRIANGLES", or "TRIANGLES_A DJACENCY".

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 290

 - Output Primitive Type (PRIMITIVE_OUT)

 The PRIMITIVE_OUT statement declares the type o f primitive emitted by a
 geometry program. The single argument must be one of "POINTS",
 "LINE_STRIP", or "TRIANGLE_STRIP".

 - Maximum Vertex Count (VERTICES_OUT)

 The VERTICES_OUT statement declares the maximum number of vertices that
 may be emitted by a geometry program. The sing le argument must be a
 positive integer. A vertex program that emits more than the specified
 number of vertices may terminate abnormally.

 (add the following subsections to section 2.X.7 , Program Instruction Set.)

 Section 2.X.7.Z, EMIT: Emit Vertex

 The EMIT instruction emits a new vertex to be a dded to the current output
 primitive of a geometry program. The attribute s of the emitted vertex are
 given by the current values of the vertex resul t variables. After the
 EMIT instruction completes, a new vertex is sta rted and all result
 variables become undefined.

 Section 2.X.7.Z, ENDPRIM: End of Primitive

 A geometry program can emit multiple primitives in a single invocation.
 The ENDPRIM instruction is used in a geometry p rogram to signify the end
 of the current primitive and the beginning of a new primitive of the same
 type. The effect of ENDPRIM is roughly equival ent to calling End followed
 by a new Begin, where the primitive mode is spe cified in the text of the
 geometry program.

 Like End, the ENDPRIM instruction does not emit a vertex. Any result
 registers written prior to an ENDPRIM instructi on are unchanged, and will
 be used in the vertex specified by the next EMI T instruction if they are
 not overwritten first.

 When geometry program execution completes, the current primitive is
 automatically terminated. It is not necessary to include an ENDPRIM
 instruction if the geometry program writes only a single primitive.

Additions to Chapter 3 of the OpenGL 1.5 Specificat ion (Rasterization)

 Modify Section 3.3, Points (p. 95)

 (replace all Section 3.3 text on p. 95) A point is drawn by generating a
 set of fragments in the shape of a square or ci rcle centered around the
 vertex of the point. Each vertex has an associ ated point size that
 controls the size of that square or circle.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 291

 If no vertex or geometry program is active, the size of the point is
 controlled by

 void PointSize(float size);

 <size> specifies the requested size of a point. The default value is
 1.0. A value less than or equal to zero results in the error
 INVALID_VALUE.

 The requested point size is multiplied with a d istance attenuation factor,
 clamped to a specified point size range, and fu rther clamped to the
 implementation-dependent point size range to pr oduce the derived point
 size:

 derived size = clamp(size * sqrt(1/(a+b*d+c* d^2)))

 where d is the eye-coordinate distance from the eye, (0,0,0,1) in eye
 coordinates, to the vertex, and a, b, and c are distance attenuation
 function coefficients.

 If a vertex or geometry program is active, the derived size depends on the
 per-vertex point size mode enable. Per-vertex point size mode is enabled
 or disabled by calling Enable or Disable with t he symbolic value
 PROGRAM_POINT_SIZE_EXT. If per-vertex point si ze is enabled and a geometry
 program is active, the point size is taken from the point size emitted by
 the geometry program. If per-vertex point size is enabled an no geometry
 program is active, the point size is taken from the point size result of
 the vertex program. Otherwise, the point size is taken from the <size>
 value provided to PointSize, with no distance a ttenuation applied. In all
 cases, the point size is clamped to the impleme ntation-dependent point
 size range.

 If multisampling is not enabled, the derived si ze is passed on to
 rasterization as the point width. ...

Additions to Chapter 4 of the OpenGL 1.5 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.5 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.5 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.5 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 292

GLX Protocol

 None.

Errors

 The error INVALID_OPERATION is generated if Beg in, or any command that
 implicitly calls Begin, is called when geometry program mode is enabled
 and the currently bound geometry program object does not contain a valid
 geometry program.

 The error INVALID_OPERATION is generated if Beg in, or any command that
 implicitly calls Begin, is called when geometry program mode is enabled
 and:

 * the input primitive type of the current geo metry program is POINTS and
 <mode> is not POINTS,

 * the input primitive type of the current geo metry program is LINES and
 <mode> is not LINES, LINE_STRIP, or LINE_LO OP,

 * the input primitive type of the current geo metry program is TRIANGLES
 and <mode> is not TRIANGLES, TRIANGLE_STRIP , TRIANGLE_FAN, QUADS,
 QUAD_STRIP, or POLYGON,

 * the input primitive type of the current geo metry program is
 LINES_ADJACENCY and <mode> is not LINES_ADJ ACENCY_EXT or
 LINE_STRIP_ADJACENCY_EXT, or

 * the input primitive type of the current geo metry program is
 TRIANGLES_ADJACENCY and <mode> is not TRIAN GLES_ADJACENCY_EXT or
 TRIANGLE_STRIP_ADJACENCY_EXT.

 The error INVALID_ENUM is generated if GetProgr amivARB is called with a
 <pname> of MAX_PROGRAM_OUTPUT_VERTICES_NV or
 MAX_PROGRAM_TOTAL_OUTPUT_COMPONENTS_NV and the target isn't
 GEOMETRY_PROGRAM_NV.

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object (or similar functiona lity) is not supported, the
 "result.layer" binding should be removed. "Fra mebufferTextureEXT" and
 "FramebufferTextureLayerEXT" should be removed from "New Procedures and
 Functions", and FRAMEBUFFER_ATTACHMENT_LAYERED_ EXT,
 FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT, and
 FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT should b e removed from "New
 Tokens".

 Otherwise, this extension modifies EXT_framebuf fer_object to add the
 notion of layered framebuffer attachments and f ramebuffers that can be
 used in conjunction with geometry programs to a llow programs to direct
 primitives to a face of a cube map or layer of a three-dimensional texture
 or one- or two-dimensional array texture. The layer used for rendering
 can be selected by the geometry program at run time.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 293

 (insert before the end of Section 4.4.2, Attach ing Images to Framebuffer
 Objects)

 There are several types of framebuffer-attachab le images:

 * the image of a renderbuffer object, which i s always two-dimensional,

 * a single level of a one-dimensional texture , which is treated as a
 two-dimensional image with a height of one,

 * a single level of a two-dimensional or rect angle texture,

 * a single face of a cube map texture level, which is treated as a
 two-dimensional image, or

 * a single layer of a one- or two-dimensional array texture or
 three-dimensional texture, which is treated as a two-dimensional
 image.

 Additionally, an entire level of a three-dimens ional texture, cube map
 texture, or one- or two-dimensional array textu re can be attached to an
 attachment point. Such attachments are treated as an array of
 two-dimensional images, arranged in layers, and the corresponding
 attachment point is considered to be layered.

 (replace section 4.4.2.3, "Attaching Texture Im ages to a Framebuffer")

 GL supports copying the rendered contents of th e framebuffer into the
 images of a texture object through the use of t he routines
 CopyTexImage{1D|2D}, and CopyTexSubImage{1D|2D| 3D}. Additionally, GL
 supports rendering directly into the images of a texture object.

 To render directly into a texture image, a spec ified level of a texture
 object can be attached as one of the logical bu ffers of the currently
 bound framebuffer object by calling:

 void FramebufferTextureEXT(enum target, enum attachment,
 uint texture, int level);

 <target> must be FRAMEBUFFER_EXT. <attachment> must be one of the
 attachment points of the framebuffer listed in table 1.nnn.

 If <texture> is zero, any image or array of ima ges attached to the
 attachment point named by <attachment> is detac hed, and the state of the
 attachment point is reset to its initial values . <level> is ignored if
 <texture> is zero.

 If <texture> is non-zero, FramebufferTextureEXT attaches level <level> of
 the texture object named <texture> to the frame buffer attachment point
 named by <attachment>. The error INVALID_VALUE is generated if <texture>
 is not the name of a texture object, or if <lev el> is not a supported
 texture level number for textures of the type c orresponding to <target>.
 The error INVALID_OPERATION is generated if <te xture> is the name of a
 buffer texture.

 If <texture> is the name of a three-dimensional texture, cube map texture,
 or one- or two-dimensional array texture, the t exture level attached to

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 294

 the framebuffer attachment point is an array of images, and the
 framebuffer attachment is considered layered.

 The command

 void FramebufferTextureLayerEXT(enum target, enum attachment,
 uint texture, int level, int layer);

 operates like FramebufferTextureEXT, except tha t only a single layer of
 the texture level, numbered <layer>, is attache d to the attachment point.
 If <texture> is non-zero, the error INVALID_VAL UE is generated if <layer>
 is negative, or if <texture> is not the name of a texture object. The
 error INVALID_OPERATION is generated unless <te xture> is zero or the name
 of a three-dimensional or one- or two-dimension al array texture.

 The command

 void FramebufferTextureFaceEXT(enum target, e num attachment,
 uint texture, int level, enum face);

 operates like FramebufferTextureEXT, except tha t only a single face of a
 cube map texture, given by <face>, is attached to the attachment point.
 <face> is one of TEXTURE_CUBE_MAP_POSITIVE_X, T EXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_Z. If <texture> is
 non-zero, the error INVALID_VALUE is generated if <texture> is not the
 name of a texture object. The error INVALID_OP ERATION is generated unless
 <texture> is zero or the name of a cube map tex ture.

 The command

 void FramebufferTexture1DEXT(enum target, enu m attachment,
 enum textarget, uint texture, int level);

 operates identically to FramebufferTextureEXT, except for two additional
 restrictions. If <texture> is non-zero, the er ror INVALID_ENUM is
 generated if <textarget> is not TEXTURE_1D and the error INVALID_OPERATION
 is generated unless <texture> is the name of a one-dimensional texture.

 The command

 void FramebufferTexture2DEXT(enum target, enu m attachment,
 enum textarget, uint texture, int level);

 operates similarly to FramebufferTextureEXT. I f <textarget> is TEXTURE_2D
 or TEXTURE_RECTANGLE_ARB, <texture> must be zer o or the name of a
 two-dimensional or rectangle texture. If <text arget> is
 TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MA P_NEGATIVE_Z, <texture>
 must be zero or the name of a cube map texture. For cube map textures,
 only the single face of the cube map texture le vel given by <textarget> is
 attached. The error INVALID_ENUM is generated if <texture> is not zero
 and <textarget> is not one of the values enumer ated above. The error
 INVALID_OPERATION is generated if <texture> is the name of a texture whose
 type does not match the texture type required b y <textarget>.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 295

 The command

 void FramebufferTexture3DEXT(enum target, enu m attachment,
 enum textarget, uint texture,
 int level, int z offset);

 behaves identically to FramebufferTextureLayerE XT, with the <layer>
 parameter set to the value of <zoffset>. The e rror INVALID_ENUM is
 generated if <textarget> is not TEXTURE_3D. Th e error INVALID_OPERATION
 is generated unless <texture> is zero or the na me of a three-dimensional
 texture.

 For all FramebufferTexture commands, if <textur e> is non-zero and the
 command does not result in an error, the frameb uffer attachment state
 corresponding to <attachment> is updated based on the new attachment.
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is set t o TEXTURE,
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT is set t o <texture>, and
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to <level>.
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_FACE is set to <textarget> if
 FramebufferTexture2DEXT is called and <texture> is the name of a cubemap
 texture; otherwise, it is set to TEXTURE_CUBE_M AP_POSITIVE_X.
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is set to <layer> or <zoffset> if
 FramebufferTextureLayerEXT or FramebufferTextur e3DEXT is called;
 otherwise, it is set to zero. FRAMEBUFFER_ATTA CHMENT_LAYERED_EXT is set
 to TRUE if FramebufferTextureEXT is called and <texture> is the name of a
 three-dimensional texture, cube map texture, or one- or two-dimensional
 array texture; otherwise it is set to FALSE.

 (modify Section 4.4.4.1, Framebuffer Attachment Completeness -- add to the
 conditions necessary for attachment completenes s)

 The framebuffer attachment point <attachment> i s said to be "framebuffer
 attachment complete" if ...:

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a three-dimensional
 texture, FRAMEBUFFER_ATTACHMENT_TEXTURE_LAY ER_EXT must be smaller than
 the depth of the texture.

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a one- or two-dimensional
 array texture, FRAMEBUFFER_ATTACHMENT_TEXTU RE_LAYER_EXT must be
 smaller than the number of layers in the te xture.

 (modify section 4.4.4.2, Framebuffer Completene ss -- add to the list of
 conditions necessary for completeness)

 * If any framebuffer attachment is layered, a ll populated attachments
 must be layered. Additionally, all populat ed color attachments must
 be from textures of the same target (i.e., three-dimensional, cube
 map, or one- or two-dimensional array textu res).
 { FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT }

 * If any framebuffer attachment is layered, a ll attachments must have
 the same layer count. For three-dimensiona l textures, the layer count
 is the depth of the attached volume. For c ube map textures, the layer
 count is always six. For one- and two-dime nsional array textures, the

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 296

 layer count is simply the number of layers in the array texture.
 { FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT }

 The enum in { brackets } after each clause of t he framebuffer completeness
 rules specifies the return value of CheckFrameb ufferStatusEXT (see below)
 that is generated when that clause is violated. ...

 (add section 4.4.7, Layered Framebuffers)

 A framebuffer is considered to be layered if it is complete and all of its
 populated attachments are layered. When render ing to a layered
 framebuffer, each fragment generated by the GL is assigned a layer number.
 The layer number for a fragment is zero if

 * the fragment is generated by DrawPixels, Co pyPixels, or Bitmap,

 * geometry programs are disabled, or

 * the current geometry program does not conta in an instruction that
 writes to the layer result binding.

 Otherwise, the layer for each point, line, or t riangle emitted by the
 geometry program is taken from the layer output of the provoking vertex.
 For line strips, the provoking vertex is the se cond vertex of each line
 segment. For triangle strips, the provoking ve rtex is the third vertex of
 each individual triangles. The per-fragment la yer can be different for
 fragments generated by each individual point, l ine, or triangle emitted by
 a single geometry program invocation. A layer number written by a
 geometry program has no effect if the framebuff er is not layered.

 When fragments are written to a layered framebu ffer, the fragment's layer
 number selects an image from the array of image s at each attachment point
 from which to obtain the destination R, G, B, A values for blending
 (Section 4.1.8) and to which to write the final color values for that
 attachment. If the fragment's layer number is negative or greater than
 the number of layers attached, the effects of t he fragment on the
 framebuffer contents are undefined.

 When the Clear command is used to clear a layer ed framebuffer attachment,
 all layers of the attachment are cleared.

 When commands such as ReadPixels or CopyPixels read from a layered
 framebuffer, the image at layer zero of the sel ected attachment is always
 used to obtain pixel values.

 When cube map texture levels are attached to a layered framebuffer, there
 are six layers attached, numbered zero through five. Each layer number is
 mapped to a cube map face, as indicated in Tabl e X.4.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 297

 layer number cube map face
 ------------ ---------------------------
 0 TEXTURE_CUBE_MAP_POSITIVE_X
 1 TEXTURE_CUBE_MAP_NEGATIVE_X
 2 TEXTURE_CUBE_MAP_POSITIVE_Y
 3 TEXTURE_CUBE_MAP_NEGATIVE_Y
 4 TEXTURE_CUBE_MAP_POSITIVE_Z
 5 TEXTURE_CUBE_MAP_NEGATIVE_Z

 Table X.4, Layer numbers for cube map texture faces. The lay ers are
 numbered in the same sequence as the cube map face token values.

 (modify Section 6.1.3, Enumerated Queries -- Mo dify/add to list of <pname>
 values for GetFramebufferAttachmentParameterivE XT if
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is TEXTURE)

 If <pname> is FRAMEBUFFER_ATTACHMENT_TEXTURE_ LAYER_EXT and the attached
 image is a layer of a three-dimensional textu re or one- or
 two-dimensional array texture, then <params> will contain the specified
 layer number. Otherwise, <params> will conta in the value zero.

 If <pname> is FRAMEBUFFER_ATTACHMENT_LAYERED_ EXT, then <params> will
 contain TRUE if an entire level of a three-di mesional texture, cube map
 texture, or one- or two-dimensional array tex ture is attached to the
 <attachment>. Otherwise, <params> will conta in FALSE.

 (Modify the Additions to Chapter 5, section 5.4)

 Add the commands FramebufferTextureEXT, Framebu fferTextureLayerEXT, and
 FramebufferTextureFaceEXT to the list of comman ds that are not compiled
 into a display list, but executed immediately.

Dependencies on EXT_framebuffer_blit

 If EXT_framebuffer_blit is supported, the EXT_f ramebuffer_object language
 should be further amended so that <target> valu es passed to
 FramebufferTextureEXT and FramebufferTextureLay erEXT can be
 DRAW_FRAMEBUFFER_EXT or READ_FRAMEBUFFER_EXT, and that those functions
 set/query state for the draw framebuffer if <ta rget> is FRAMEBUFFER_EXT.

Dependencies on EXT_texture_array

 If EXT_texture_array is not supported, the disc ussion array textures the
 layered rendering edits to EXT_framebuffer_obje ct should be removed.
 Layered rendering to cube map and 3D textures w ould still be supported.

 If EXT_texture_array is supported, the edits to EXT_framebuffer_object
 supersede those made in EXT_texture_array, exce pt for language pertaining
 to mipmap generation of array textures.

 There are no functional incompatibilities betwe en the FBO support in these
 two specifications. The only differences are t hat this extension supports
 layered rendering and also rewrites certain sec tions of the core FBO
 specification more aggressively.

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 298

Dependencies on ARB_texture_rectangle

 If ARB_texture_rectangle is not supported, all references to rectangle
 textures in the EXT_framebuffer_object spec lan guage should be removed.

Dependencies on EXT_texture_buffer_object

 If EXT_buffer_object is not supported, the refe rence to an
 INVALID_OPERATION error if a buffer texture is passed to
 FramebufferTextureEXT should be removed.

Dependencies on NV_primitive_restart

 The spec describes the behavior that primitive restart does not affect the
 primitive ID counter, including for POLYGON pri mitives (where one could
 argue that the restart index starts a new primi tive without a new Begin to
 reset the count). If NV_primitive_restart is n ot supported, references to
 that extension in the discussion of the "primit ive.id" attribute should be
 removed.

New State

 Initial
 Get Value Type Get Command Value Description Sec. Attribut e
 ------------------------- ---- ----------- ------- ---------------------- ------ -------- --------
 GEOMETRY_PROGRAM_NV B IsEnabled FALSE Geometry shader enable 2.14.6 enable/t ransform

 FRAMEBUFFER_ATTACHMENT_ nxB GetFramebuff er- FALSE Framebuffer attachment 4.4.2.3 -
 LAYERED_EXT Attachment- is layered
 ParameterivE XT
 GEOMETRY_VERTICES_OUT_EXT Z+ GetProgramiv ARB 0 vertex limit of the 2.14.6.4 -
 current geometry
 program
 GEOMETRY_INPUT_TYPE_EXT Z+ GetProgramiv ARB 0 input primitive type 2.14.6.4 -
 of the current geometry
 program
 GEOMETRY_OUTPUT_TYPE_EXT Z+ GetProgramiv ARB 0 output primitive type 2.14.6.4 -
 of the current geometry
 program

New Implementation Dependent State

 Minimum
 Get Value Type Get Co mmand Value Description Sec Attrib
 ------------------------------- ---- ------ --------- ---------- -------------------- ---- -------- ------
 MAX_GEOMETRY_TEXTURE_ Z+ GetInt egerv 16 maximum number of 2.14 .6.3 -
 IMAGE_UNITS_EXT texture image units
 accessible in a
 geometry program
 MAX_PROGRAM_OUTPUT_VERTICES_NV Z+ GetPro gramivARB 256 maximum number of 2.14 .6.4 -
 vertices that any
 geometry program
 could emit
 MAX_PROGRAM_TOTAL_OUTPUT_ Z+ GetPro gramivARB 1024 maximum number of 2.14 .6.4 -
 COMPONENTS_NV result components (all
 vertices) that a
 geometry program
 can emit

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 299

NVIDIA Implementation Details

 Because of a hardware limitation, some GeForce 8 series chips use the
 odd vertex of an incomplete TRIANGLE_STRIP_ADJA CENCY_EXT primitive
 as a replacement adjacency vertex rather than i gnoring it.

Issues

 (1) How do geometry programs fit into the exist ing GL pipeline?

 RESOLVED: The following diagram illustrates how geometry programs fit
 into the "vertex processing" portion of the G L (Chapter 2 of the OpenGL
 2.0 Specification).

 First, vertex attributes are specified via im mediate-mode commands or
 through vertex arrays. They can be conventio nal attributes (e.g.,
 glVertex, glColor, glTexCoord) or generic (nu mbered) attributes.

 Vertices are then transformed, either using a vertex program or
 fixed-function vertex processing. Fixed-func tion vertex processing
 includes position transformation (modelview a nd projection matrices),
 lighting, texture coordinate generation, and other calculations. The
 results of either method are a "transformed v ertex", which has a
 position (in clip coordinates), front and bac k colors, texture
 coordinates, generic attributes (vertex progr am only), and so on. Note
 that on many current GL implementations, vert ex processing is performed
 by executing a "fixed function vertex program " generated by the driver.

 After vertex transformation, vertices are ass embled into primitives,
 according to the topology (e.g., TRIANGLES, Q UAD_STRIP) provided by the
 call to glBegin(). Primitives are points, li nes, triangles, quads, or
 polygons. Many GL implementations do not dir ectly support quads or
 polygons, but instead decompose them into tri angles as permitted by the
 spec.

 After initial primitive assembly, a geometry program is executed on each
 individual point, line, or triangle primitive , if enabled. It can read
 the attributes of each transformed vertex, pe rform arbitrary
 computations, and emit new transformed vertic es. These emitted vertices
 are themselves assembled into primitives acco rding to the output
 primitive type of the geometry program.

 Then, the colors of the vertices of each prim itive are clamped to [0,1]
 (if color clamping is enabled), and flat shad ing may be performed by
 taking the color from the provoking vertex of the primitive.

 Each primitive is clipped to the view volume, and to any enabled
 user-defined clip planes. Color, texture coo rdinate, and other
 attribute values are computed for each new ve rtex introduced by
 clipping.

 After clipping, the position of each vertex (in clip coordinates) is
 converted to normalized device coordinates in the perspective division
 (divide by w) step, and to window coordinates in the viewport
 transformation step.

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 300

 At the same time, color values may be convert ed to normalized
 fixed-point values according to the "Final Co lor Processing" portion of
 the specification.

 After the vertices of the primitive are trans formed to window
 coordinate, the GL determines if the primitiv e is front- or back-facing.
 That information is used for two-sided color selection, where a single
 set of colors is selected from either the fro nt or back colors
 associated with each transformed vertex.

 When all this is done, the final transformed position, colors (primary
 and secondary), and other attributes are used for rasterization (Chapter
 3 in the OpenGL 2.0 Specification).

 When the raster position is specified (via gl RasterPos), it goes through
 the entire vertex processing pipeline as thou gh it were a point.
 However, geometry programs are never run on t he raster position.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 301

 |generic |conv entional
 |vertex |vert ex
 |attributes |attr ibutes
 | |
 | +-------------------+
 | | |
 V V V
 vertex fixed-funct ion
 program vertex
 | processing
 | |
 | |
 +<-------------------+
 | Output
 |position, color, Primitive
 |other vertex data Type
 | |
 V |
 Begin/ primitive geometry primitive |
 End ------> assembly -----> program ---- > assembly <-+
 State | |
 V |
 +<------------------------ ------+
 |
 |
 | color flat
 +----------> clamping ---- > shading
 | |
 V |
 +<------------------------ ------+
 |
 |
 clipping
 |
 | perspective viewport
 +------> divide ----> transform
 | |
 | +---+-----+
 | V |
 | final f acing |
 +------> color dete rmination |
 | processing | | |
 | | | |
 | | | |
 | +-----+ +--- -+ |
 | | | |
 | V V |
 | two-sided |
 | coloring |
 | | |
 | | |
 +------------------+ | +-- -----------+
 | | |
 V V V
 rasterizati on
 |
 |

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 302

 V

 (2) Why is this called GL_NV_geometry_program4? There aren't any previous
 versions of this extension, let alone three?

 RESOLVED: The instruction set for GPU progra ms of all types (vertex,
 fragment, and now geometry) have been unified in the GL_NV_gpu_program4
 extension, and the "4" suffix in this extensi on name indicates the
 instruction set type. There are three previo us NV_vertex_program
 variants (four if you count NV_vertex_program 1_1), so "4" is the next
 available numeric suffix.

 (3) Should the GL produce errors at Begin time if an application specifies
 a primitive mode that is "incompatible" with th e geometry program? For
 example, if the geometry program operates on tr iangles and the application
 sends a POINTS primitive?

 RESOLVED: Yes. Mismatches of app-specified primitive types and
 geometry program input primitive types seem l ike clear errors and would
 produce weird and wonderful effects.

 (4) Can the input primitive type of a geometry program be changed at run
 time?

 RESOLVED: Not in this extension. Each geome try program has a single
 input primitive type, and vertices are presen ted to the program in a
 specific order based on that type.

 (5) Can the output primitive type of a geometry program be determined at
 run time?

 RESOLVED: Not in this extension.

 (6) Must the output primitive type of a geometr y program match the input
 primitive type in any way?

 RESOLVED: No, you can have a geometry progra m generate points out of
 triangles or triangles out of points. Some c ombinations are analogous
 to existing OpenGL operations: reading trian gles and writing points or
 line strips can be used to emulate a subset o f PolygonMode
 functionality. Reading points and writing tr iangle strips can be used
 to emulate point sprites.

 (7) Are primitives emitted by a geometry progra m processed like any other
 OpenGL primitive?

 RESOLVED: Yes. Antialiasing, stippling, pol ygon offset, polygon mode,
 culling, two-sided lighting and color selecti on, point sprite
 operations, and fragment processing all work as expected.

 One limitation is that the only output primit ive types supported are
 points, line strips, and triangle strips, non e of which meaningfully
 support edge flags that are sometimes used in conjunction with the POINT
 and LINE polygon modes (edge flags are always ignored for line-mode
 triangle strips).

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 303

 (8) Should geometry programs support additional input primitive types?

 RESOLVED: Possibly in a future extension. I t should be straightforward
 to build a future extension to support geomet ry programs that operate on
 quads. Other primitive types might be more d emanding on hardware.
 Quads with adjacency would require 12 vertice s per program execution.
 General polygons may require even more, since there is no fixed bound on
 the number of vertices in a polygon.

 (9) Should geometry programs support additional output primitive types?

 RESOLVED: Possibly in a future extension. A dditional output types
 (e.g., independent lines, line loops, triangl e fans, polygons) may be
 useful in the future; triangle fans/polygons seem particularly useful.

 (10) Should we provide additional adjacency pri mitive types that can be
 used inside a Begin/End?

 RESOLVED: Not in this extension. It may be desirable to add new
 primitive types (e.g., TRIANGLE_FAN_ADJACENCY) in a future extension.

 (11) How do geometry programs interact with Ras terPos?

 RESOLVED: Geometry programs are ignored when specifying the raster
 position. While the raster position could be treated as a point,
 turning it into a triangle strip would be qui te bizarre.

 (12) How do geometry programs interact with pix el primitives (DrawPixels,
 Bitmap)?

 RESOLVED: They do not. Fragments generated be DrawPixels and Bitmap
 are injected into the pipeline after the poin t where geometry program
 execution occurs.

 (13) Is there a limit on the number of vertices that can be emitted by a
 geometry program?

 RESOLVED: Unfortunately, yes. Besides pract ical hardware limits, there
 may also be practical performance advantages when applications guarantee
 a tight upper bound on the number of vertices a geometry shader will
 emit. GPUs frequently excecute programs in p arallel, and there are
 substantial implementation challenges to para llel execution of geometry
 threads that can write an unbounded number of results, particular given
 that the all the primitives generated by the first geometry program
 invocation must be consumed before any of the primitives generated by
 the second program invocation. Limiting the amount of data a geometry
 program can write substantially eases the imp lementation burden.

 A geometry program must declare a maximum num ber of vertices that can be
 emitted, called the vertex limit. There is a n implementation-dependent
 limit on the total number of vertices a progr am can emit (256 minimum)
 and the product of the vertex limit and the n umber of active result
 components (1024 minimum). A program will fa il to load if doesn't
 declare a limit or exceeds either of the two implementatoin-dependent
 limits.

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 304

 It would be ideal if the limit could be infer red from the instructions
 in the program itself, and that would be poss ible for many programs,
 particularly ones with straight-line flow con trol. For programs with
 more complicated flow control (subroutines, d ata-dependent looping, and
 so on), it would be impossible to make such a n inference and a "safe"
 limit would have to be used with adverse and possibly unexpected
 performance consequences.

 The limit on the number of EMIT instructions that can be issued can not
 always be enforced at compile time, or even a t Begin time. We specify
 that if a program tries to emit more vertices than the vertex limit
 allows, emits that exceed the limit may or ma y not have any effect.

 (14) Should it be possible to change the limit on the number of vertices
 emitted by a geometry program after the program is specified?

 RESOLVED: Yes, using the function ProgramVer texLimitNV(). Applications
 may want to tweak a piece of data that affect s the number of vertices
 emitted, but doesn't necessarily require reco mpiling the entire program.
 Examples might be a "circular point sprite" p rogram, that reads a single
 point, and draws a circle centered at that po int with <N> vertices. An
 application could change the value <N> at run time, but it could require
 a change in the vertex limit. Another exampl e might be a geometry
 program that does some fancy subdivision, whe re the relevant parameter
 might be a limit on how far the primitive is subdivided.

 Ideally, this program object state should be set by a "program
 parameter" command, much like texture state i s set by a "texture
 parameter" (TexParameter) command. Unfortuna tely, there are already
 several different "program parameter" functio ns:

 ProgramEnvParameter4fARB() -- sets global environment constants
 ProgramLocalParameter4fARB() -- sets per-pr ogram constants
 ProgramParameter4fNV() -- also sets g lobal environment constants

 Additionally, GLSL and OpenGL 2.0 introduced "program objects" which are
 linked collections of vertex, fragment, and n ow geometry shaders. A
 GLSL vertex "shader" is equivalent to an ARB_ vertex_program vertex
 "program", which is nothing like a GLSL progr am. As of OpenGL 2.0, GLSL
 programs do not have settable parameters, by subsequent extensions may
 want to add them (for example, EXT_geometry_s hader4, which has this same
 functionality for GLSL). If that happens, th ey would want their own
 ProgramParameter API, but with a different pr ototype than this extension
 would want.

 Naming this function "ProgramVertexLimitNV" s idesteps this issue for
 now.

 (15) How do edge flags interact with adjacency primitives?

 RESOLVED: If geometry programs are disabled, adjacency primitives are
 still supported. For TRIANGLES_ADJACENCY_EXT , edge flags will apply as
 they do for TRIANGLES. Such primitives are r endered as independent
 triangles as though the adjacency vertices we re not provided. Edge
 flags for the "real" vertices are supported. For all other adjacency
 primitive types, edge flags are irrelevant.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 305

 (16) How do geometry programs interact with col or clamping?

 RESOLVED: Geometry program execution occurs prior to color clamping in
 the pipeline. This means the colors written by vertex programs or
 fixed-function vertex processing are not clam ped to [0,1] before they
 are read by geometry programs. If color clam ping is enabled, any vertex
 colors written by the geometry program will h ave their components
 clamped to [0,1].

 (17) How are QUADS, QUAD_STRIP, and POLYGON pri mitives decomposed into
 triangles in the initial implementation of GL_N V_geometry_program4?

 RESOLVED: The specification leaves the decom position undefined, subject
 to a small number of rules. Assume that four vertices are specified in
 the order V0, V1, V2, V3.

 For QUADS primitives, the quad V0->V1->V2->V3 is decomposed into the
 triangles V0->V1->V2, and V0->V2->V3. The pr ovoking vertex of the quad
 (V3) is only found in the second triangle. I f it's necessary to flat
 shade over an entire quad, take the attribute s from V0, which will be
 the first vertex for both triangles in the de composition.

 For QUAD_STRIP primitives, the quad V0->V1->V 3->V2 is decomposed into
 the triangles V0->V1->V3 and V2->V0->V3. Thi s has the property of
 leaving the provoking vertex for the polygon (V3) as the third vertex
 for each triangle of the decomposition.

 For POLYGON primitives, the polygon V0->V1->V 2->V3 is decomposed into
 the triangles V1->V2->V0 and V2->V3->V0. Thi s has the property of
 leaving the provoking vertex for the polygon (V0) as the third vertex
 for each triangle of the decomposition.

 (18) Should geometry programs be able to select a layer of a 3D texture,
 cube map texture, or array texture at run time? If so, how?

 RESOLVED: This extension provides a per-vert ex result binding called
 "result.layer", which is an integer specifyin g the layer to render to.
 When an each individual point, line, or trian gle is emitted by a
 geometry program, the layer number is taken f rom the provoking (last)
 vertex of the primitive and is used for all f ragments generated by that
 primitive.

 The EXT_framebuffer_object (FBO) extension is used for rendering to
 textures, but for cube maps and 3D textures, it only provides the
 ability to attach a single face or layer of s uch textures.

 This extension generalizes FBO by creates new entry points to bind an
 entire texture level (FramebufferTextureEXT) or a single layer of a
 texture level (FramebufferTextureLayerEXT) to an attachment point. The
 existing FBO binding functions, FramebufferTe xture[123]DEXT are
 retained, and are defined in terms of the mor e general new functions.

 The new functions do not have a dimension in the function name or a
 <textarget> parameter, which can be inferred from the provided texture.
 They can do anything that the old functions c an do, except attach a
 single face of a cube map texture. We consid ered adding a separate
 function FramebufferTextureFaceEXT to provide this functionality, but

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 306

 decided that the existing FramebufferTexture2 DEXT API was adequate. We
 also considered using FramebufferTextureLayer EXT for this purpose, but
 it was not clear whether a layer number (0-5) or face enum (e.g,
 TEXTURE_CUBE_MAP_POSITIVE_X) should be provid ed.

 When an entire texel level of a cube map, 3D, or array texture is
 attached, that attachment is considered layer ed. The framebuffer is
 considered layered if any attachment is layer ed. When the framebuffer
 is layered, there are three additional comple teness requirements:

 * all attachments must be layered
 * all color attachments must be from textur es of identical type
 * all attachments must have the same number of layers

 We expect subsequent versions of the FBO spec to relax the requirement
 that all attachments must have the same width and height, and plan to
 relax the similar requirement for layer count at that time.

 When rendering to a layered framebuffer, laye r zero is used unless a
 geometry program that writes the layer result is enabled. When
 rendering to a non-layered framebuffer, any l ayer result emitted from
 geometry programs is ignored and the set of s ingle-image attachments are
 used. When reading from a layered framebuffe r (e.g., ReadPixels), layer
 zero is always used. When clearing a layered framebuffer, all layers
 are cleared to the corresponding clear values .

 Several other approaches were considered, inc luding leveraging existing
 FBO attachment functions and requiring the us e of FramebufferTexture3D
 with a <zoffset> of zero to make a framebuffe r attachment "layerable"
 (attaching layer zero means that the attachme nt could be used for either
 layered- or non-layered rendering). Whether rendering was layered or
 not could either be inferred from the active geometry program, or set as
 a new property of the framebuffer object. Th ere is presently
 FramebufferParameter API to set a property of a framebuffer, so it would
 have been necessary to create new set/query A PIs if this approach were
 chosen.

 (19) How can single-pass cube map rendering be done efficiently in a
 geometry program?

 UNRESOLVED: To do single-pass cubemap render ing, attach entire cube map
 textures to framebuffer attachment points usi ng the new functions
 provided by this extension. The vertex progr am used should only
 transform the vertex position to eye coordina tes (position relative to
 the center of the cube map). A geometry prog ram should be used that
 effectively projects each input triangle onto each of the six faces of
 the cube map, emitting a triangle for each. Each of the projected
 vertices should be emitted with a "result.lay er" value matching the face
 number (0-5). When the projected triangle is drawn, it is automatically
 drawn on the face corresponding to the emitte d layer number.

 It should be simple to skip projecting primit ives onto faces they won't
 touch. For example, if all of the X eye coor dinates are positive, there
 is no reason to project to the "negative X" c ube map face.

 An example should be provided for this issue.

NV_geometry_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 307

 (20) How should per-vertex point size work with geometry programs?

 RESOLVED: We will generalize the existing VE RTEX_PROGRAM_POINT_SIZE
 enable to control the point size behavior if either vertex or geometry
 programs are enabled.

 If geometry programs are enabled, the point s ize is taken from the point
 size result of the emitted vertex if VERTEX_P ROGRAM_POINT_SIZE is
 enabled, or from the PointSize state otherwis e.

 If no geometry program is enabled, it works l ike OpenGL 2.0. If a
 vertex program is active, it's taken from the point size result or
 PointSize state, depending on the VERTEX_PROG RAM_POINT_SIZE enable. If
 no program is enabled, normal fixed-function point size handling
 (including distance attenuation) is supported .

 This extension creates a new alias for the VE RTEX_PROGRAM_POINT_SIZE
 enum, called PROGRAM_POINT_SIZE_EXT, to refle ct that the point size
 enable now covers multiple program types. Bo th enums have the same
 value.

 (21) How do vertex IDs work with geometry progr ams?

 RESOLVED: Vertex IDs are automatically provi ded to vertex programs
 when applicable, via the "vertex.id" binding. However, they are not
 automatically copied the transformed vertex r esults that are read by
 geometry programs.

 Geometry programs can read the ID of vertex < n> via the
 "vertex[<n>].id" binding, but the vertex ID m ust have been copied by
 the vertex program using an instruction such as:

 MOV result.id.x, vertex.id.x;

 If a vertex program doesn't write vertex ID, or fixed-function vertex
 processing is used, the vertex ID visible to geometry programs is
 undefined.

 (22) How do primitive IDs work with geometry pr ograms?

 RESOLVED: Primitive IDs are automatically av ailable to geometry
 programs via the "primitive.id" binding and i ndicate the number of
 input primitives previously processed since t he last explicit or
 implicit Begin call.

 If a geometry program wants to make the primi tive ID available to a
 fragment program, it should copy the appropri ate value to the
 "result.primid" binding.

 (23) How do primitive IDs work with primitives not supported directly by
 geometry program input topologies (e.g., QUADS, POLYGON)?

 RESOLVED: QUADS are decomposed into two tria ngles. Both triangles
 will have the same primitive ID, which is the number of full quads
 previously processed. POLYGON primitives are decomposed into a series
 of triangles, and all of them will have the p rimitive ID -- zero.

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_program4

NVIDIA Proprietary 308

 (24) This is an NV extension (NV_geometry_progr am4). Why do some of the
 new tokens have an "EXT" extension?

 RESOLVED: Some of the tokens are shared betw een this extension and the
 comparable high-level GLSL programmability ex tension
 (EXT_geometry_shader4). Rather than provide a duplicate set of tokens,
 we simply use the EXT versions here. The tok ens specific to assembly
 shader uses retain an NV suffix.

Revision History

 None

NV_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 309

Name

 NV_geometry_shader4

Name String

 GL_NV_geometry_shader4

Contact

 Pat Brown, NVIDIA (pbrown 'at' nvidia.com)
 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 01/10/2007
 Author revision: 16

Number

 338

Dependencies

 OpenGL 1.1 is required.

 EXT_geometry_shader4 is required.

 This extension is written against the EXT_geome try_shader4 and OpenGL 2.0
 specifications.

Overview

 This extension builds upon the EXT_geometry_sha der4 specification to
 provide two additional capabilities:

 * Support for QUADS, QUAD_STRIP, and POLYGO N primitive types when
 geometry shaders are enabled. Such primi tives will be tessellated
 into individual triangles.

 * Setting the value of GEOMETRY_VERTICES_OU T_EXT will take effect
 immediately. It is not necessary to link the program object in
 order for this change to take effect, as is the case in the EXT
 version of this extension.

New Procedures and Functions

 None

New Tokens

 None

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_shader4

NVIDIA Proprietary 310

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify Section 2.16.1, Geometry shader Input Pr imitives, of the
 EXT_geometry_shader4 specification as follows:

 Triangles (TRIANGLES)

 Geometry shaders that operate on triangles are valid for the TRIANGLES,
 TRIANGLE_STRIP, TRIANGLE_FAN, QUADS, QUAD_STRIP , and POLYGON primitive
 types.

 When used with a geometry shader that operates on triangles, QUADS,
 QUAD_STRIP, and POLYGON primitives are decompos ed into triangles in an
 unspecified, implementation-dependent manner. T his decomposition satisfies
 three properties:

 1. the collection of triangles fully covers the area of the original
 primitive,
 2. no two triangles in the decomposition ove rlap, and
 3. the orientation of each triangle is consi stent with the orientation
 of the original primitive.

 For such primitives, the shader is executed onc e for each triangle in the
 decomposition.

 There are three vertices available for each pro gram invocation. The first,
 second and third vertices refer to attributes o f the first, second and
 third vertex of the triangle, respectively. ...

 Modify Section 2.16.4, Geometry Shader Executio n Environment, of the
 EXT_geometry_shader4 specification as follows:

 Geometry shader inputs

 (modify the spec language for primitive ID, des cribing its interaction
 with QUADS, QUAD_STRIP, and POLYGON topologies) The built-in special
 variable gl_PrimitiveIDIn is not an array and h as no vertex shader
 equivalent. It is filled with the number of pri mitives processed since the
 last time Begin was called (directly or indirec tly via vertex array
 functions). The first primitive generated afte r a Begin is numbered zero,
 and the primitive ID counter is incremented aft er every individual point,
 line, or polygon primitive is processed. For p olygons drawn in point or
 line mode, the primitive ID counter is incremen ted only once, even though
 multiple points or lines may be drawn. For QUA DS and QUAD_STRIP
 primitives that are decomposed into triangles, the primitive ID is
 incremented after each complete quad is process ed. For POLYGON
 primitives, the primitive ID counter is undefin ed. Restarting a primitive
 topology using the primitive restart index has no effect on the primitive
 ID counter.

 Geometry Shader outputs

 (modify the vertex output limit language to all ow changes to take effect
 immediately) A geometry shader is limited in th e number of vertices it may
 emit per invocation. The maximum number of vert ices a geometry shader can
 possibly emit needs to be set as a parameter of the program object that
 contains the geometry shader. To do so, call P rogramParameteriEXT with

NV_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 311

 <pname> set to GEOMETRY_VERTICES_OUT_EXT and <v alue> set to the maximum
 number of vertices the geometry shader will emi t in one invocation.
 Setting this limit will take effect immediately . If a geometry shader, in
 one invocation, emits more vertices than the va lue
 GEOMETRY_VERTICES_OUT_EXT, these emits may have no effect.

 (modify the error checking language for values that are too large) There
 are two implementation-dependent limits on the value of
 GEOMETRY_VERTICES_OUT_EXT. First, the error IN VALID_VALUE will be
 generated by ProgramParameteriEXT if the number of vertices specified
 exceeds the value of MAX_GEOMETRY_OUTPUT_VERTIC ES_EXT. Second, the
 product of the total number of vertices and the sum of all components of
 all active varying variables may not exceed the value of
 MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT. If <program> has already been
 successfully linked, the error INVALID_VALUE wi ll be generated by
 ProgramParameteriEXT if the specified value cau ses this limit to be
 exceeded. Additionally, LinkProgram will fail if it determines that the
 total component limit would be violated.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 None

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None

Additions to the AGL/GLX/WGL Specifications

 None

Interactions with NV_transform_feedback

 If GL_NV_transform_feedback is not supported, t he function
 GetActiveVaryingNV() needs to be added to this extension. This function
 can be used to count the number of varying comp onents output by a geometry
 shader, and from that data the maximum value fo r GEOMETRY_VERTICES_OUT_EXT
 computed by the application.

GLX protocol

 None required

OpenGL Extension Specifcations for GeForce 8 Series NV_geometry_shader4

NVIDIA Proprietary 312

Errors

 The error INVALID_OPERATION is generated if Beg in, or any command that
 implicitly calls Begin, is called when a geomet ry shader is active and:

 * the input primitive type of the current g eometry shader is POINTS
 and <mode> is not POINTS,

 * the input primitive type of the current g eometry shader is LINES and
 <mode> is not LINES, LINE_STRIP, or LINE_LO OP,

 * the input primitive type of the current g eometry shader is TRIANGLES
 and <mode> is not TRIANGLES, TRIANGLE_STRIP , TRIANGLE_FAN, QUADS,
 QUAD_STRIP, or POLYGON,

 * the input primitive type of the current g eometry shader is
 LINES_ADJACENCY_EXT and <mode> is not LINES _ADJACENCY_EXT or
 LINE_STRIP_ADJACENCY_EXT, or

 * the input primitive type of the current g eometry shader is
 TRIANGLES_ADJACENCY_EXT and <mode> is not T RIANGLES_ADJACENCY_EXT or
 TRIANGLE_STRIP_ADJACENCY_EXT.

 * GEOMETRY_VERTICES_OUT_EXT is zero for the currently active program
 object.

New State

 None

Issues

 1. Why is there a GL_NV_geometry_shader4 and a G L_EXT_geometry_shader4
 extension?

 RESOLVED: NVIDIA initially wrote the geometr y shader extension, and
 worked with other vendors on a common extensi on. Most of the
 functionality of the original specification w as retained, but a few
 functional changes were made, resulting in th e GL_EXT_geometry_shader4
 specification.

 Some of the functionality removed in this pro cess may be useful to
 developers, so we chose to provide an NVIDIA extension to expose this
 extra functionality.

 2. Should it be possible to change the limit on the number of vertices
 emitted by a geometry shader after the progra m object, containing the
 shader, is linked?

 RESOLVED: Yes. Applications may want to twe ak a piece of data that
 affects the number of vertices emitted, but w ouldn't otherwise require
 re-linking the entire program object. One si mple example might be a
 "circular point sprite" shader, that reads a single point, and draws a
 circle centered at that point with <N> vertic es, where <N> is provided
 as a uniform. An application could change th e value <N> at run time,
 which would require a change in the vertex li mit. Another example might
 be a geometry shader that does some fancy sub division, where the

NV_geometry_shader4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 313

 relevant parameter might be a limit on how fa r the primitive is
 subdivided. This limit can be changed using the function
 ProgramParameteriEXT with <pname> set to GEOM ETRY_VERTICES_OUT_EXT.

 3. How are QUADS, QUAD_STRIP, and POLYGON primit ives decomposed into
 triangles in the initial implementation?

 RESOLVED: The specification leaves the decomp osition undefined, subject
 to a small number of rules. Assume that four vertices are specified in
 the order V0, V1, V2, V3.

 For QUADS primitives, the quad V0->V1->V2->V3 is decomposed into the
 triangles V0->V1->V2, and V0->V2->V3. The pr ovoking vertex of the quad
 (V3) is only found in the second triangle. I f it's necessary to flat
 shade over an entire quad, take the attribute s from V0, which will be
 the first vertex for both triangles in the de composition.

 For QUAD_STRIP primitives, the quad V0->V1->V 3->V2 is decomposed into
 the triangles V0->V1->V3 and V2->V0->V3. Thi s has the property of
 leaving the provoking vertex for the polygon (V3) as the third vertex
 for each triangle of the decomposition.

 For POLYGON primitives, the polygon V0->V1->V 2->V3 is decomposed into
 the triangles V1->V2->V0 and V2->V3->V0. Thi s has the property of
 leaving the provoking vertex for the polygon (V0) as the third vertex
 for each triangle of the decomposition.

 The triangulation described here is not guara nteed to be used on all
 implementations of this extension, and subseq uent implementations may
 use a more natural decomposition for QUAD_STR IP and POLYGON primitives.
 (For example, the triangulation of 4-vertex p olygons might match that
 used for QUADS.)

Revision History

 None

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 314

Name

 NV_gpu_program4

Name Strings

 GL_NV_gpu_program4

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 02/04/2008
 NVIDIA Revision: 4

Number

 322

Dependencies

 This extension is written against to OpenGL 2.0 specification.

 OpenGL 2.0 is not required, but we expect all i mplementations of this
 extension will also support OpenGL 2.0.

 This extension is also written against the ARB_ vertex_program
 specification, which provides the basic mechani sms for the assembly
 programming model used by this extension.

 This extension serves as the basis for the NV_f ragment_program4,
 NV_geometry_program4, and NV_vertex_program4, w hich all build on this
 extension to support fragment, geometry, and ve rtex programs,
 respectively. If "GL_NV_gpu_program4" is found in the extension string,
 all of these extensions are supported.

 NV_parameter_buffer_object affects the definiti on of this extension.

 ARB_texture_rectangle trivially affects the def inition of this extension.

 EXT_gpu_program_parameters trivially affects th e definition of this
 extension.

 EXT_texture_integer trivially affects the defin ition of this extension.

 EXT_texture_array trivially affects the definit ion of this extension.

 EXT_texture_buffer_object trivially affects the definition of this
 extension.

 NV_primitive_restart trivially affects the defi nition of this extension.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 315

Overview

 This specification documents the common instruc tion set and basic
 functionality provided by NVIDIA's 4th generati on of assembly instruction
 sets supporting programmable graphics pipeline stages.

 The instruction set builds upon the basic frame work provided by the
 ARB_vertex_program and ARB_fragment_program ext ensions to expose
 considerably more capable hardware. In additio n to new capabilities for
 vertex and fragment programs, this extension pr ovides a new program type
 (geometry programs) further described in the NV _geometry_program4
 specification.

 NV_gpu_program4 provides a unified instruction set -- all instruction set
 features are available for all program types, e xcept for a small number of
 features that make sense only for a specific pr ogram type. It provides
 fully capable signed and unsigned integer data types, along with a set of
 arithmetic, logical, and data type conversion i nstructions capable of
 operating on integers. It also provides a unif orm set of structured
 branching constructs (if tests, loops, and subr outines) that fully support
 run-time condition testing.

 This extension provides several new texture map ping capabilities. Shadow
 cube maps are supported, where cube map faces c an encode depth values.
 Texture lookup instructions can include an imme diate texel offset, which
 can assist in advanced filtering. New instruct ions are provided to fetch
 a single texel by address in a texture map (TXF) and query the size of a
 specified texture level (TXQ).

 By and large, vertex and fragment programs writ ten to ARB_vertex_program
 and ARB_fragment_program can be ported directly by simply changing the
 program header from "!!ARBvp1.0" or "!!ARBfp1.0 " to "!!NVvp4.0" or
 "!!NVfp4.0", and then modifying the code to tak e advantage of the expanded
 feature set. There are a small number of areas where this extension is
 not a functional superset of previous vertex pr ogram extensions, which are
 documented in this specification.

New Procedures and Functions

 void ProgramLocalParameterI4iNV(enum target, ui nt index,
 int x, int y, i nt z, int w);
 void ProgramLocalParameterI4ivNV(enum target, u int index,
 const int *par ams);
 void ProgramLocalParametersI4ivNV(enum target, uint index,
 sizei count, const int *params);
 void ProgramLocalParameterI4uiNV(enum target, u int index,
 uint x, uint y , uint z, uint w);
 void ProgramLocalParameterI4uivNV(enum target, uint index,
 const uint *p arams);
 void ProgramLocalParametersI4uivNV(enum target, uint index,
 sizei count, const uint *params);

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 316

 void ProgramEnvParameterI4iNV(enum target, uint index,
 int x, int y, int z, int w);
 void ProgramEnvParameterI4ivNV(enum target, uin t index,
 const int *param s);
 void ProgramEnvParametersI4ivNV(enum target, ui nt index,
 sizei count, co nst int *params);
 void ProgramEnvParameterI4uiNV(enum target, uin t index,
 uint x, uint y, uint z, uint w);
 void ProgramEnvParameterI4uivNV(enum target, ui nt index,
 const uint *par ams);
 void ProgramEnvParametersI4uivNV(enum target, u int index,
 sizei count, c onst uint *params);

 void GetProgramLocalParameterIivNV(enum target, uint index,
 int *params) ;
 void GetProgramLocalParameterIuivNV(enum target , uint index,
 uint *param s);
 void GetProgramEnvParameterIivNV(enum target, u int index,
 int *params);
 void GetProgramEnvParameterIuivNV(enum target, uint index,
 uint *params) ;

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MIN_PROGRAM_TEXEL_OFFSET_EXT 0x8904
 MAX_PROGRAM_TEXEL_OFFSET_EXT 0x8905

 (note: these tokens are shared with the EXT_gp u_shader4 extension.)

 Accepted by the <pname> parameter of GetProgram ivARB:

 PROGRAM_ATTRIB_COMPONENTS_NV 0x8906
 PROGRAM_RESULT_COMPONENTS_NV 0x8907
 MAX_PROGRAM_ATTRIB_COMPONENTS_NV 0x8908
 MAX_PROGRAM_RESULT_COMPONENTS_NV 0x8909
 MAX_PROGRAM_GENERIC_ATTRIBS_NV 0x8DA5
 MAX_PROGRAM_GENERIC_RESULTS_NV 0x8DA6

Additions to Chapter 2 of the OpenGL 1.5 Specificat ion (OpenGL Operation)

 (Modify "Section 2.14.1" of the ARB_vertex_prog ram specification,
 describing program parameters.)

 Each program object has an associated array of program local parameters.
 Program local parameters are four-component vec tors whose components can
 hold floating-point, signed integer, or unsigne d integer values. The data
 type of each local parameter is established whe n the parameter's values
 are assigned. If a program attempts to read a local parameter using a
 data type other than the one used when the para meter is set, the values
 returned are undefined. ... The commands

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 317

 void ProgramLocalParameter4fARB(enum target, uint index,
 float x, floa t y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, uint index,
 const float *params);
 void ProgramLocalParameter4dARB(enum target, uint index,
 double x, dou ble y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, uint index,
 const double *params);

 void ProgramLocalParameterI4iNV(enum target, uint index,
 int x, int y, int z, int w);
 void ProgramLocalParameterI4ivNV(enum target, uint index,
 const int *p arams);
 void ProgramLocalParameterI4uiNV(enum target, uint index,
 uint x, uint y, uint z, uint w);
 void ProgramLocalParameterI4uivNV(enum target , uint index,
 const uint *params);

 update the values of the program local paramete r numbered <index>
 belonging to the program object currently bound to <target>. For the
 non-vector versions of these commands, the four components of the
 parameter are updated with the values of <x>, < y>, <z>, and <w>,
 respectively. For the vector versions, the com ponents of the parameter
 are updated with the array of four values point ed to by <params>. The
 error INVALID_VALUE is generated if <index> is greater than or equal to
 the number of program local parameters supporte d by <target>.

 The commands

 void ProgramLocalParameters4fvNV(enum target, uint index,
 sizei count, const float *params);
 void ProgramLocalParametersI4ivNV(enum target , uint index,
 sizei count , const int *params);
 void ProgramLocalParametersI4uivNV(enum targe t, uint index,
 sizei coun t, const uint *params);

 update the values of the program local paramete rs numbered <index> through
 <index> + <count> - 1 with the array of 4 * <co unt> values pointed to by
 <params>. The error INVALID_VALUE is generated if the sum of <index> and
 <count> is greater than the number of program l ocal parameters supported
 by <target>.

 When a program local parameter is updated, the data type of its components
 is assigned according to the data type of the p rovided values. If values
 provided are of type "float" or "double", the c omponents of the parameter
 are floating-point. If the values provided are of type "int", the
 components of the parameter are signed integers . If the values provided
 are of type "uint", the components of the param eter are unsigned integers.

 Additionally, each program target has an associ ated array of program
 environment parameters. Unlike program local p arameters, program
 environment parameters are shared by all progra m objects of a given
 target. Program environment parameters are fou r-component vectors whose
 components can hold floating-point, signed inte ger, or unsigned integer
 values. The data type of each environment para meter is established when
 the parameter's values are assigned. If a prog ram attempts to read an
 environment parameter using a data type other t han the one used when the

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 318

 parameter is set, the values returned are undef ined. ... The commands

 void ProgramEnvParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramEnvParameter4fvARB(enum target, u int index,
 const float *p arams);
 void ProgramEnvParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramEnvParameter4dvARB(enum target, u int index,
 const double * params);
 void ProgramEnvParameterI4iNV(enum target, ui nt index,
 int x, int y, i nt z, int w);
 void ProgramEnvParameterI4ivNV(enum target, u int index,
 const int *par ams);
 void ProgramEnvParameterI4uiNV(enum target, u int index,
 uint x, uint y , uint z, uint w);
 void ProgramEnvParameterI4uivNV(enum target, uint index,
 const uint *p arams);

 update the values of the program environment pa rameter numbered <index>
 for the given program target <target>. For the non-vector versions of
 these commands, the four components of the para meter are updated with the
 values of <x>, <y>, <z>, and <w>, respectively. For the vector versions,
 the four components of the parameter are update d with the array of four
 values pointed to by <params>. The error INVAL ID_VALUE is generated if
 <index> is greater than or equal to the number of program environment
 parameters supported by <target>.

 The commands

 void ProgramEnvParameters4fvNV(enum target, u int index,
 sizei count, c onst float *params);
 void ProgramEnvParametersI4ivNV(enum target, uint index,
 sizei count, const int *params);
 void ProgramEnvParametersI4uivNV(enum target, uint index,
 sizei count, const uint *params);

 update the values of the program environment pa rameters numbered <index>
 through <index> + <count> - 1 with the array of 4 * <count> values pointed
 to by <params>. The error INVALID_VALUE is gen erated if the sum of
 <index> and <count> is greater than the number of program local parameters
 supported by <target>.

 When a program environment parameter is updated , the data type of its
 components is assigned according to the data ty pe of the provided values.
 If values provided are of type "float" or "doub le", the components of the
 parameter are floating-point. If the values pr ovided are of type "int",
 the components of the parameter are signed inte gers. If the values
 provided are of type "uint", the components of the parameter are unsigned
 integers.

 Insert New Section 2.X between Sections 2.Y and 2.Z:

 Section 2.X, GPU Programs

 The GL provides a number of different program t argets that allow an
 application to either replace certain fixed-fun ction pipeline stages with

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 319

 a fully programmable model or use a program to control aspects of the GL
 pipeline that previously had only hard-wired be havior.

 A common base instruction set is available for all program types,
 providing both integer and floating-point opera tions. Structured
 branching operations and subroutine calls are a vailable. Texture
 mapping (loading data from external images) is supported for all
 program types. The main differences between th e different program
 types are the set of available inputs and outpu ts, which are program type-
 specific, and a few instructions that are meani ngful for only a subset
 of program types.

 Section 2.X.2, Program Grammar

 GPU program strings are specified as an array o f ASCII characters
 containing the program text. When a GPU progra m is loaded by a call to
 ProgramStringARB, the program string is parsed into a set of tokens
 possibly separated by whitespace. Spaces, tabs , newlines, carriage
 returns, and comments are considered whitespace . Comments begin with the
 character "#" and are terminated by a newline, a carriage return, or the
 end of the program array.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically valid
 sequences for GPU programs. The set of valid t okens can be inferred
 from the grammar. A line containing "/* empty */" represents an empty
 string and is used to indicate optional rules. A program is invalid if it
 contains any tokens or characters not defined i n this specification.

 Note that this extension is not a standalone ex tension and a small number
 of grammar rules are left to be defined in the extensions defining the
 specific vertex, fragment, and geometry program types.

 <program> ::= <optionSequence> <d eclSequence>
 <statementSequence> "END"

 <optionSequence> ::= <option> <optionSeq uence>
 | /* empty */

 <option> ::= "OPTION" <identifie r> ";"

 <declSequence> ::= /* empty */

 <statementSequence> ::= <statement> <statem entSequence>
 | /* empty */

 <statement> ::= <instruction> ";"
 | <namingStatement> " ;"
 | <instLabel> ":"

 <instruction> ::= <ALUInstruction>
 | <TexInstruction>
 | <FlowInstruction>

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 320

 <ALUInstruction> ::= <VECTORop_instructi on>
 | <SCALARop_instructi on>
 | <BINSCop_instructio n>
 | <BINop_instruction>
 | <VECSCAop_instructi on>
 | <TRIop_instruction>
 | <SWZop_instruction>

 <TexInstruction> ::= <TEXop_instruction>
 | <TXDop_instruction>

 <FlowInstruction> ::= <BRAop_instruction>
 | <FLOWCCop_instructi on>
 | <IFop_instruction>
 | <REPop_instruction>
 | <ENDFLOWop_instruct ion>

 <VECTORop_instruction> ::= <VECTORop> <opModif iers> <instResult> ","
 <instOperandV>

 <VECTORop> ::= "ABS"
 | "CEIL"
 | "FLR"
 | "FRC"
 | "I2F"
 | "LIT"
 | "MOV"
 | "NOT"
 | "NRM"
 | "PK2H"
 | "PK2US"
 | "PK4B"
 | "PK4UB"
 | "ROUND"
 | "SSG"
 | "TRUNC"

 <SCALARop_instruction> ::= <SCALARop> <opModif iers> <instResult> ","
 <instOperandS>

 <SCALARop> ::= "COS"
 | "EX2"
 | "LG2"
 | "RCC"
 | "RCP"
 | "RSQ"
 | "SCS"
 | "SIN"
 | "UP2H"
 | "UP2US"
 | "UP4B"
 | "UP4UB"

 <BINSCop_instruction> ::= <BINSCop> <opModifi ers> <instResult> ","
 <instOperandS> "," <instOperandS>

 <BINSCop> ::= "POW"

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 321

 <VECSCAop_instruction> ::= <VECSCAop> <opModif iers> <instResult> ","
 <instOperandV> "," <instOperandS>

 <VECSCAop> ::= "DIV"
 | "SHL"
 | "SHR"
 | "MOD"

 <BINop_instruction> ::= <BINop> <opModifier s> <instResult> ","
 <instOperandV> "," <instOperandV>

 <BINop> ::= "ADD"
 | "AND"
 | "DP3"
 | "DP4"
 | "DPH"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "OR"
 | "RFL"
 | "SEQ"
 | "SFL"
 | "SGE"
 | "SGT"
 | "SLE"
 | "SLT"
 | "SNE"
 | "STR"
 | "SUB"
 | "XPD"
 | "DP2"
 | "XOR"

 <TRIop_instruction> ::= <TRIop> <opModifier s> <instResult> ","
 <instOperandV> "," <instOperandV> ","
 <instOperandV>

 <TRIop> ::= "CMP"
 | "DP2A"
 | "LRP"
 | "MAD"
 | "SAD"
 | "X2D"

 <SWZop_instruction> ::= <SWZop> <opModifier s> <instResult> ","
 <instOperandVNS> ", " <extendedSwizzle>

 <SWZop> ::= "SWZ"

 <TEXop_instruction> ::= <TEXop> <opModifier s> <instResult> ","
 <instOperandV> "," <texAccess>

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 322

 <TEXop> ::= "TEX"
 | "TXB"
 | "TXF"
 | "TXL"
 | "TXP"
 | "TXQ"

 <TXDop_instruction> ::= <TXDop> <opModifier s> <instResult> ","
 <instOperandV> "," <instOperandV> ","
 <instOperandV> "," <texAccess>

 <TXDop> ::= "TXD"

 <BRAop_instruction> ::= <BRAop> <opModifier s> <instTarget>
 <optBranchCond>

 <BRAop> ::= "CAL"

 <FLOWCCop_instruction> ::= <FLOWCCop> <opModif iers> <optBranchCond>

 <FLOWCCop> ::= "RET"
 | "BRK"
 | "CONT"

 <IFop_instruction> ::= <IFop> <opModifiers > <ccTest>

 <IFop> ::= "IF"

 <REPop_instruction> ::= <REPop> <opModifier s> <instOperandV>
 | <REPop> <opModifier s>

 <REPop> ::= "REP"

 <ENDFLOWop_instruction> ::= <ENDFLOWop> <opModi fiers>

 <ENDFLOWop> ::= "ELSE"
 | "ENDIF"
 | "ENDREP"

 <opModifiers> ::= <opModifierItem> <o pModifiers>
 | /* empty */

 <opModifierItem> ::= "." <opModifier>

 <opModifier> ::= "F"
 | "U"
 | "S"
 | "CC"
 | "CC0"
 | "CC1"
 | "SAT"
 | "SSAT"
 | "NTC"
 | "S24"
 | "U24"
 | "HI"

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 323

 <texAccess> ::= <texImageUnit> "," <texTarget>
 | <texImageUnit> "," <texTarget> "," <texOffset>

 <texImageUnit> ::= "texture" <optArray MemAbs>

 <texTarget> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"
 | "SHADOW1D"
 | "SHADOW2D"
 | "SHADOWRECT"
 | "ARRAY1D"
 | "ARRAY2D"
 | "SHADOWCUBE"
 | "SHADOWARRAY1D"
 | "SHADOWARRAY2D"

 <texOffset> ::= "(" <texOffsetComp> ")"
 | "(" <texOffsetComp> "," <texOffsetComp> ")"
 | "(" <texOffsetComp> "," <texOffsetComp> ","
 <texOffsetComp> ")"

 <texOffsetComp> ::= <optSign> <int>

 <optBranchCond> ::= /* empty */
 | <ccMask>

 <instOperandV> ::= <instOperandAbsV>
 | <instOperandBaseV>

 <instOperandAbsV> ::= <operandAbsNeg> "|" <instOperandBaseV> "|"

 <instOperandBaseV> ::= <operandNeg> <attri bUseV>
 | <operandNeg> <tempU seV>
 | <operandNeg> <param UseV>
 | <operandNeg> <buffe rUseV>

 <instOperandS> ::= <instOperandAbsS>
 | <instOperandBaseS>

 <instOperandAbsS> ::= <operandAbsNeg> "|" <instOperandBaseS> "|"

 <instOperandBaseS> ::= <operandNeg> <attri bUseS>
 | <operandNeg> <tempU seS>
 | <operandNeg> <param UseS>
 | <operandNeg> <buffe rUseS>

 <instOperandVNS> ::= <attribUseVNS>
 | <tempUseVNS>
 | <paramUseVNS>
 | <bufferUseVNS>

 <operandAbsNeg> ::= <optSign>

 <operandNeg> ::= <optSign>

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 324

 <instResult> ::= <instResultCC>
 | <instResultBase>

 <instResultCC> ::= <instResultBase> <c cMask>

 <instResultBase> ::= <tempUseW>
 | <resultUseW>

 <namingStatement> ::= <varMods> <ATTRIB_s tatement>
 | <varMods> <PARAM_st atement>
 | <varMods> <TEMP_sta tement>
 | <varMods> <OUTPUT_s tatement>
 | <varMods> <BUFFER_s tatement>
 | <ALIAS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establish Name> "=" <attribUseD>

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt >

 <PARAM_singleStmt> ::= "PARAM" <establishN ame> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishN ame> <optArraySize>
 <paramMultipleInit>

 <paramSingleInit> ::= "=" <paramUseDB>

 <paramMultipleInit> ::= "=" "{" <paramMultI nitList> "}"

 <paramMultInitList> ::= <paramUseDM>
 | <paramUseDM> "," <p aramMultInitList>

 <TEMP_statement> ::= "TEMP" <varNameList >

 <OUTPUT_statement> ::= "OUTPUT" <establish Name> "=" <resultUseD>

 <varMods> ::= <varModifier> <varM ods>
 | /* empty */

 <varModifier> ::= "SHORT"
 | "LONG"
 | "INT"
 | "UINT"
 | "FLOAT"

 <ALIAS_statement> ::= "ALIAS" <establishN ame> "=" <establishedName>

 <BUFFER_statement> ::= <bufferDeclType> <e stablishName> "="
 <bufferSingleInit>
 | <bufferDeclType> <e stablishName>
 <optArraySize> "=" <bufferMultInit>

 <bufferDeclType> ::= "BUFFER"
 | "BUFFER4"

 <bufferSingleInit> ::= "=" <bufferUseDB>

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 325

 <bufferMultInit> ::= "=" "{" <bufferMult InitList> "}"

 <bufferMultInitList> ::= <bufferUseDM>
 | <bufferUseDM> "," < bufferMultInitList>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

 <attribUseV> ::= <attribBasic> <swiz zleSuffix>
 | <attribVarName> <sw izzleSuffix>
 | <attribVarName> <ar rayMem> <swizzleSuffix>
 | <attribColor> <swiz zleSuffix>
 | <attribColor> "." < colorType> <swizzleSuffix>

 <attribUseS> ::= <attribBasic> <scal arSuffix>
 | <attribVarName> <sc alarSuffix>
 | <attribVarName> <ar rayMem> <scalarSuffix>
 | <attribColor> <scal arSuffix>
 | <attribColor> "." < colorType> <scalarSuffix>

 <attribUseVNS> ::= <attribBasic>
 | <attribVarName>
 | <attribVarName> <ar rayMem>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribUseD> ::= <attribBasic>
 | <attribColor>
 | <attribColor> "." < colorType>
 | <attribMulti>

 <paramUseV> ::= <paramVarName> <opt ArrayMem> <swizzleSuffix>
 | <stateSingleItem> < swizzleSuffix>
 | <programSingleItem> <swizzleSuffix>
 | <constantVector> <s wizzleSuffix>
 | <constantScalar>

 <paramUseS> ::= <paramVarName> <opt ArrayMem> <scalarSuffix>
 | <stateSingleItem> < scalarSuffix>
 | <programSingleItem> <scalarSuffix>
 | <constantVector> <s calarSuffix>
 | <constantScalar>

 <paramUseVNS> ::= <paramVarName> <opt ArrayMem>
 | <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <constantScalar>

 <paramUseDB> ::= <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <signedConstantScal ar>

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 326

 <paramUseDM> ::= <stateMultipleItem>
 | <programMultipleIte m>
 | <constantVector>
 | <signedConstantScal ar>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateM atrixRows>

 <stateSingleItem> ::= "state" "." <stateM aterialItem>
 | "state" "." <stateL ightItem>
 | "state" "." <stateL ightModelItem>
 | "state" "." <stateL ightProdItem>
 | "state" "." <stateF ogItem>
 | "state" "." <stateM atrixRow>
 | "state" "." <stateT exGenItem>
 | "state" "." <stateC lipPlaneItem>
 | "state" "." <stateP ointItem>
 | "state" "." <stateT exEnvItem>
 | "state" "." <stateD epthItem>

 <stateMaterialItem> ::= "material" "." <sta teMatProperty>
 | "material" "." <fac eType> "."
 <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

 <stateLightItem> ::= "light" <arrayMemAb s> "." <stateLightProperty>

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSp otProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

 <stateLightModelItem> ::= "lightmodel" "." <s tateLModProperty>

 <stateLModProperty> ::= "ambient"
 | "scenecolor"
 | <faceType> "." "sce necolor"

 <stateLightProdItem> ::= "lightprod" <arrayM emAbs> "."
 <stateLProdProperty >
 | "lightprod" <arrayM emAbs> "." <faceType> "."
 <stateLProdProperty >

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 327

 <stateFogItem> ::= "fog" "." <stateFog Property>

 <stateFogProperty> ::= "color"
 | "params"

 <stateMatrixRows> ::= <stateMatrixItem>
 | <stateMatrixItem> " ." <stateMatModifier>
 | <stateMatrixItem> " ." "row" <arrayRange>
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" <arrayRange>

 <stateMatrixRow> ::= <stateMatrixItem> " ." "row" <arrayMemAbs>
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" <arrayMemAbs>

 <stateMatrixItem> ::= "matrix" "." <state MatrixName>

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

 <stateMatrixName> ::= "modelview" <optArr ayMemAbs>
 | "projection"
 | "mvp"
 | "texture" <optArray MemAbs>
 | "program" <arrayMem Abs>

 <stateTexGenItem> ::= "texgen" <optArrayM emAbs> "."
 <stateTexGenType> " ." <stateTexGenCoord>

 <stateTexGenType> ::= "eye"
 | "object"

 <stateTexGenCoord> ::= "s"
 | "t"
 | "r"
 | "q"

 <stateClipPlaneItem> ::= "clip" <arrayMemAbs > "." "plane"

 <statePointItem> ::= "point" "." <stateP ointProperty>

 <statePointProperty> ::= "size"
 | "attenuation"

 <stateTexEnvItem> ::= "texenv" <optArrayM emAbs> "."
 <stateTexEnvPropert y>

 <stateTexEnvProperty> ::= "color"

 <stateDepthItem> ::= "depth" "." <stateD epthProperty>

 <stateDepthProperty> ::= "range"

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 328

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env" <arrayMemAbs>
 | "program" "." "env" <arrayRange>

 <progEnvParam> ::= "program" "." "env" <arrayMemAbs>

 <progLocalParams> ::= "program" "." "loca l" <arrayMemAbs>
 | "program" "." "loca l" <arrayRange>

 <progLocalParam> ::= "program" "." "loca l" <arrayMemAbs>

 <constantVector> ::= "{" <constantVector List> "}"

 <constantVectorList> ::= <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>

 <signedConstantScalar> ::= <optSign> <constant Scalar>

 <constantScalar> ::= <floatConstant>
 | <intConstant>

 <floatConstant> ::= <float>

 <intConstant> ::= <int>

 <tempUseV> ::= <tempVarName> <swiz zleSuffix>

 <tempUseS> ::= <tempVarName> <scal arSuffix>

 <tempUseVNS> ::= <tempVarName>

 <tempUseW> ::= <tempVarName> <optW riteMask>

 <resultUseW> ::= <resultBasic> <optW riteMask>
 | <resultVarName> <op tWriteMask>

 <resultUseD> ::= <resultBasic>

 <bufferUseV> ::= <bufferVarName> <op tArrayMem> <swizzleSuffix>

 <bufferUseS> ::= <bufferVarName> <op tArrayMem> <scalarSuffix>

 <bufferUseVNS> ::= <bufferVarName> <op tArrayMem>

 <bufferUseDB> ::= <bufferBinding> <ar rayMemAbs>

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 329

 <bufferUseDM> ::= <bufferBinding> <ar rayMemAbs>
 | <bufferBinding> <ar rayRange>
 | <bufferBinding>

 <bufferBinding> ::= "program" "." "buff er" <arrayMemAbs>

 <optArraySize> ::= "[" "]"
 | "[" <int> "]"

 <optArrayMem> ::= /* empty */
 | <arrayMem>

 <arrayMem> ::= <arrayMemAbs>
 | <arrayMemRel>

 <optArrayMemAbs> ::= /* empty */
 | <arrayMemAbs>

 <arrayMemAbs> ::= "[" <int> "]"

 <arrayMemRel> ::= "[" <arrayMemReg> < arrayMemOffset> "]"

 <arrayMemReg> ::= <addrUseS>

 <arrayMemOffset> ::= /* empty */
 | "+" <int>
 | "-" <int>

 <arrayRange> ::= "[" <int> ".." <int > "]"

 <addrUseS> ::= <addrVarName> <scal arSuffix>

 <ccMask> ::= "(" <ccTest> ")"

 <ccTest> ::= <ccMaskRule> <swizz leSuffix>

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 330

 <ccMaskRule> ::= "EQ"
 | "GE"
 | "GT"
 | "LE"
 | "LT"
 | "NE"
 | "TR"
 | "FL"
 | "EQ0"
 | "GE0"
 | "GT0"
 | "LE0"
 | "LT0"
 | "NE0"
 | "TR0"
 | "FL0"
 | "EQ1"
 | "GE1"
 | "GT1"
 | "LE1"
 | "LT1"
 | "NE1"
 | "TR1"
 | "FL1"
 | "NAN"
 | "NAN0"
 | "NAN1"
 | "LEG"
 | "LEG0"
 | "LEG1"
 | "CF"
 | "CF0"
 | "CF1"
 | "NCF"
 | "NCF0"
 | "NCF1"
 | "OF"
 | "OF0"
 | "OF1"
 | "NOF"
 | "NOF0"
 | "NOF1"
 | "AB"
 | "AB0"
 | "AB1"
 | "BLE"
 | "BLE0"
 | "BLE1"
 | "SF"
 | "SF0"
 | "SF1"
 | "NSF"
 | "NSF0"
 | "NSF1"

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 331

 <optWriteMask> ::= /* empty */
 | <xyzwMask>
 | <rgbaMask>

 <xyzwMask> ::= "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"
 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <rgbaMask> ::= "." "r"
 | "." "g"
 | "." "rg"
 | "." "b"
 | "." "rb"
 | "." "gb"
 | "." "rgb"
 | "." "a"
 | "." "ra"
 | "." "ga"
 | "." "rga"
 | "." "ba"
 | "." "rba"
 | "." "gba"
 | "." "rgba"

 <swizzleSuffix> ::= /* empty */
 | "." <component>
 | "." <xyzwSwizzle>
 | "." <rgbaSwizzle>

 <extendedSwizzle> ::= <extSwizComp> "," < extSwizComp> ","
 <extSwizComp> "," < extSwizComp>

 <extSwizComp> ::= <optSign> <xyzwExtS wizSel>
 | <optSign> <rgbaExtS wizSel>

 <xyzwExtSwizSel> ::= "0"
 | "1"
 | <xyzwComponent>

 <rgbaExtSwizSel> ::= <rgbaComponent>

 <scalarSuffix> ::= "." <component>

 <component> ::= <xyzwComponent>
 | <rgbaComponent>

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 332

 <xyzwComponent> ::= "x"
 | "y"
 | "z"
 | "w"

 <rgbaComponent> ::= "r"
 | "g"
 | "b"
 | "a"

 <optSign> ::= /* empty */
 | "-"
 | "+"

 <faceType> ::= "front"
 | "back"

 <colorType> ::= "primary"
 | "secondary"

 <instLabel> ::= <identifier>

 <instTarget> ::= <identifier>

 <establishedName> ::= <identifier>

 <establishName> ::= <identifier>

 The <int> rule matches an integer constant. Th e integer consists of a
 sequence of one or more digits ("0" through "9"), or a sequence in
 hexadecimal form beginning with "0x" followed b y a sequence of one or more
 hexadecimal digits ("0" through "9", "a" throug h "f", "A" through "F").

 The <float> rule matches a floating-point const ant consisting of an
 integer part, a decimal point, a fraction part, an "e" or "E", and an
 optionally signed integer exponent. The intege r and fraction parts both
 consist of a sequence of one or more digits ("0 " through "9"). Either the
 integer part or the fraction parts (not both) m ay be missing; either the
 decimal point or the "e" (or "E") and the expon ent (not both) may be
 missing. Most grammar rules that allow floatin g-point values also allow
 integers matching the <int> rule.

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z"), digits ("0" thro ugh "9), underscores ("_"),
 or dollar signs ("$"); the first character must not be a number. Upper
 and lower case letters are considered different (names are
 case-sensitive). The following strings are res erved keywords and may not
 be used as identifiers: "fragment" (for fragme nt programs only), "vertex"
 (for vertex and geometry programs), "primitive" (for fragment and geometry
 programs), "program", "result", "state", and "t exture".

 The <tempVarName>, <paramVarName>, <attribVarNa me>, <resultVarName>, and
 <bufferName> rules match identifiers that have been previously established
 as names of temporary, program parameter, attri bute, result, and program
 parameter buffer variables, respectively.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 333

 The <xyzwSwizzle> and <rgbaSwizzle> rules match any 4-character strings
 consisting only of the characters "x", "y", "z" , and "w" (<xyzwSwizzle>)
 or "r", "g", "b", "a" (<rgbaSwizzle>).

 The error INVALID_OPERATION is generated if a p rogram fails to load
 because it is not syntactically correct or for one of the semantic
 restrictions described in the following section s.

 A successfully loaded program is parsed into a sequence of instructions.
 Each instruction is identified by its tokenized name. The operation of
 these instructions when executed is defined in section 2.X.4. A
 successfully loaded program string replaces the program string previously
 loaded into the specified program object. If t he OUT_OF_MEMORY error is
 generated by ProgramStringARB, no change is mad e to the previous contents
 of the current program object.

 Section 2.X.3, Program Variables

 Programs may operate on a number of different v ariables during their
 execution. The following sections define the d ifferent classes of
 variables that can be declared and used by a pr ogram.

 Some variable classes require variable bindings . Variable classes with
 bindings refer to state that is either generate d or consumed outside the
 program. Examples of variable bindings include a vertex's normal, the
 position of a vertex computed by a vertex progr am, an interpolated texture
 coordinate, and the diffuse color of light 1. Variables that are used
 only during program execution do not have bindi ngs.

 Variables may be declared explicitly according to the <namingStatement>
 grammar rule. Explicit variable declarations a llow a program to establish
 a variable name that can be used to refer to a specified resource in
 subsequent instructions. Variables may be decl ared anywhere in the
 program string, but must be declared prior to u se. A program will fail to
 load if it declares the same variable name more than once, or if it refers
 to a variable name that has not been previously declared in the program
 string.

 Variables may also be declared implicitly, simp ly by using a variable
 binding as an operand in a program instruction. Such uses are considered
 to automatically create a nameless variable usi ng the specified binding.
 Only variable from classes with bindings can be declared implicitly.

 Section 2.X.3.1, Program Variable Types

 Explicit variable declarations may include one or more modifiers that
 specify additional information about the variab le, such as the size and
 data type of the components of the variable. V ariable modifiers are
 specified according to the <varModifier> gramma r rule.

 By default, variables are considered typeless. They can be used in
 instructions that read or write the variable as floating-point values,
 signed integers, or unsigned integers. If a va riable is written using one
 data type but then read using a different one, the results of the
 operation are undefined. Variables with bindin gs are considered to be
 read or written when their values are produced or consumed; the data type
 used by the GL is specified in the description of each binding.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 334

 Explicitly declared variables may optionally ha ve one data type modifier,
 which can be used to detect data type mismatch errors. Type modifers of
 "INT", "UINT", and "FLOAT" indicate that the co mponents of the variable
 are stored as signed integers, unsigned integer s, or floating-point
 values, respectively. A program will fail to l oad if it attempts to read
 or write a variable using a data type other tha n the one indicated by the
 data type modifier. Variables without a data t ype modifier can be read or
 written using any data type.

 Explicitly declared variables may optionally ha ve one storage size
 modifier. Variables decared as "SHORT" will be represented using at least
 16 bits per component. "SHORT" floating-point values will have at least 5
 bits of exponent and 10 bits of mantissa. Vari ables declared as "LONG"
 will be represented with at least 32 bits per c omponent. "LONG"
 floating-point values will have at least 8 bits of exponent and 23 bits of
 mantissa. If no size modifier is provided, the GL will automatically
 select component sizes. Implementations are no t required to support more
 than one component size, so "SHORT", "LONG", an d the default could all
 refer to the same component size.

 Each variable declaration can include at most o ne data type and one
 storage size modifier. A program will fail to load if it specifies
 multiple data type or multiple storage size mod ifiers in a single variable
 declaration.

 (NOTE: Fragment programs also support the modi fiers "FLAT", "CENTROID",
 and "NOPERSPECTIVE", which control how per-frag ment attribute values are
 produced. These modifiers are described in det ail in the
 NV_fragment_program4 specification.)

 Explicitly declared variables of all types may be declared as arrays. An
 array variable has one or more members, numbere d 0 through <n>-1, where
 <n> is the number of entries in the array. The total number of entries in
 the array can be declared using the <optArraySi ze> grammar rule. For
 variable classes without bindings, an array siz e must be specified in the
 program, and must be a positive integer. For v ariable classes with
 bindings, a declared size is optional, and is t aken from the number of
 bindings assigned in the declaration if omitted . A program will fail to
 load if the declared size of an array variable does not match the number
 of assigned bindings.

 When a variable is declared as an array, instru ctions that use the
 variable must specify an array member to access according to the
 <arrayMem> grammar rule. A program will fail t o load if it contains an
 instruction that accesses an array variable wit hout specifying an array
 member or an instruction that specifies an arra y member for a non-array
 variable.

 Section 2.X.3.2, Program Attribute Variables

 Program attribute variables represent per-verte x or per-fragment inputs to
 the program. All attribute variables have asso ciated bindings, and are
 read-only during program execution. Attribute variables may be declared
 explicitly via the <ATTRIB_statement> grammar r ule, or implicitly by using
 an attribute binding in an instruction.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 335

 The set of available attribute bindings depends on the program type, and
 is enumerated in the specifications for each pr ogram type.

 The set of bindings allowed for attribute array variables is limited to
 attribute state grouped in arrays (e.g., textur e coordinates, generic
 vertex attributes). Additionally, all bindings assigned to the array must
 be of the same binding type and must increase c onsecutively. Examples of
 valid and invalid binding lists include:

 vertex.attrib[1], vertex.attrib[2] # val id, 2-entry array
 vertex.texcoord[0..3] # val id, 4-entry array
 vertex.attrib[1], vertex.attrib[3] # inv alid, skipped attrib 2
 vertex.attrib[2], vertex.attrib[1] # inv alid, wrong order
 vertex.attrib[1], vertex.texcoord[2] # inv alid, different types

 Additionally, attribute bindings may be used in no more than one array
 variable accessed with relative addressing.

 Implementations may have a limit on the total n umber of attribute binding
 components used by each program target (MAX_PRO GRAM_ATTRIB_COMPONENTS).
 Programs that use more attribute binding compon ents than this limit will
 fail to load. The method of counting used attr ibute binding components is
 implementation-dependent, but must satisfy the following properties:

 * If an attribute binding is not referenced i n a program, or is
 referenced only in declarations of attribut e variables that are not
 used, none of its components are counted.

 * An attribute binding component may be count ed as used only if there
 exists an instruction operand where

 - the component is enabled for read by th e swizzle pattern (Section
 2.X.4.2), and

 - the attribute binding is

 - referenced directly by the operand,

 - bound to a declared variable refere nced by the operand, or

 - bound to a declared array variable where another binding in
 the array satisfies one of the two previous conditions.

 Implementations are not required to optimiz e out unused elements of an
 attribute array or components that are used in only some elements of
 an array. The last of these rules is inten ded to cover the case where
 the same attribute binding is used in multi ple variables.

 For example, an operand whose swizzle patte rn selects only the x
 component may result in the x component of an attribute binding being
 counted, but may never result in the counti ng of the y, z, or w
 components of any attribute binding.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 336

 * Implementations are not required to determi ne that components read by
 an instruction are actually unused due to:

 - instruction write masks (for example, a component-wise ADD
 operation that only writes the "x" comp onent doesn't have to read
 the "y", "z", and "w" components of its operands) or

 - any other properties of the instruction (for example, the DP3
 instruction computes a 3-component dot product doesn't have to
 read the "w" component of its operands) .

 Section 2.X.3.3, Program Parameters

 Program parameter variables are used as constan ts during program
 execution. All program parameter variables hav e associated bindings and
 are read-only during program execution. Progra m parameters retain their
 values across program invocations, although the ir values may change
 between invocations due to GL state changes. P rogram parameter variables
 may be declared explicitly via the <PARAM_state ment> grammar rule, or
 implicitly by using a parameter binding in an i nstruction. Except where
 otherwise specified, program parameter bindings always specify
 floating-point values.

 When declaring program parameter array variable s, all bindings are
 supported and can be assigned to array members in any order. The only
 restriction is that no parameter binding may be used more than once in
 array variables accessed using relative address ing. A program will fail
 to load if any program parameter binding is use d more than once in a
 single array accessed using relative addressing or used at least once in
 two or more arrays accessed using relative addr essing.

 Constant Bindings

 If a program parameter binding matches the <con stantScalar> or
 <signedConstantScalar> grammar rules, the corre sponding program parameter
 variable is bound to the vector (X,X,X,X), wher e X is the value of the
 specified constant.

 If a program parameter binding matches <constan tVector>, the corresponding
 program parameter variable is bound to the vect or (X,Y,Z,W), where X, Y,
 Z, and W are the values corresponding to the fi rst, second, third, and
 fourth match of <signedConstantScalar>. If few er than four constants are
 specified, Y, Z, and W assume the values 0, 0, and 1, if their respective
 constants are not specified.

 Constant bindings can be interpreted as having signed integer, unsigned
 integer, or floating-point values, depending on how they are used in the
 program text. For constants in variable declar ations, the components of
 the constant are interpreted according to the v ariable's component data
 type modifier. If no data type modifier is spe cified in a declaration,
 constants are interpreted as floating-point val ues. For constant bindings
 used directly in an instruction, the components of the constant are
 interpreted according to the required data type of the operand. A program
 will fail to load if it specifies a floating-po int constant value
 (matching the <floatConstant> grammar rule) tha t should be interpreted as
 a signed or unsigned integer, or a negative int eger constant value that
 should be interpreted as an unsigned integer.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 337

 If the value used to specify a floating-point c onstant can not be exactly
 represented, the nearest floating-point value w ill be used. If the value
 used to specify an integer constant is too larg e to be represented, the
 program will fail to load.

 Program Environment/Local Parameter Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ -------------------------
 program.env[a] (x,y,z,w) progra m environment parameter a
 program.local[a] (x,y,z,w) progra m local parameter a
 program.env[a..b] (x,y,z,w) progra m environment parameters
 a thro ugh b
 program.local[a..b] (x,y,z,w) progra m local parameters
 a thro ugh b

 Table X.1: Program Environment/Local Parameter Bindings. <a > and
 indicate parameter numbers, where <a> must be less than or equal to .

 If a program parameter binding matches "program .env[a]" or
 "program.local[a]", the four components of the program parameter variable
 are filled with the four components of program environment parameter <a>
 or program local parameter <a> respectively.

 Additionally, for program parameter array bindi ngs, "program.env[a..b]"
 and "program.local[a..b]" are equivalent to spe cifying program environment
 or local parameters <a> through in order, r espectively. A program
 using any of these bindings will fail to load i f <a> is greater than .

 Program environment and local parameters are ty peless, and may be
 specified as signed integer, unsigned integer, or floating-point
 variables. If a program environment parameter is read using a data type
 other than the one used to specify it, an undef ined value is returned.

 Material Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.material.ambient (r,g,b,a) fr ont ambient material color
 state.material.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.specular (r,g,b,a) fr ont specular material color
 state.material.emission (r,g,b,a) fr ont emissive material color
 state.material.shininess (s,0,0,1) fr ont material shininess
 state.material.front.ambient (r,g,b,a) fr ont ambient material color
 state.material.front.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.front.specular (r,g,b,a) fr ont specular material color
 state.material.front.emission (r,g,b,a) fr ont emissive material color
 state.material.front.shininess (s,0,0,1) fr ont material shininess
 state.material.back.ambient (r,g,b,a) ba ck ambient material color
 state.material.back.diffuse (r,g,b,a) ba ck diffuse material color
 state.material.back.specular (r,g,b,a) ba ck specular material color
 state.material.back.emission (r,g,b,a) ba ck emissive material color
 state.material.back.shininess (s,0,0,1) ba ck material shininess

 Table X.3: Material Property Bindings. If a material face i s not
 specified in the binding, the front property is used.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 338

 If a program parameter binding matches any of t he material properties
 listed in Table X.3, the program parameter vari able is filled according to
 the table. For ambient, diffuse, specular, or emissive colors, the "x",
 "y", "z", and "w" components are filled with th e "r", "g", "b", and "a"
 components, respectively, of the corresponding material color. For
 material shininess, the "x" component is filled with the material's
 specular exponent, and the "y", "z", and "w" co mponents are filled with
 the floating-point constants 0, 0, and 1, respe ctively. Bindings
 containing ".back" refer to the back material; all other bindings refer to
 the front material.

 Material properties can be changed inside a Beg in/End pair, either
 directly by calling Material, or indirectly thr ough color material.
 However, such property changes are not guarante ed to update program
 parameter bindings until the following End comm and. Program parameter
 variables bound to material properties changed inside a Begin/End pair are
 undefined until the following End command.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 339

 Light Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.light[n].ambient (r,g,b,a) li ght n ambient color
 state.light[n].diffuse (r,g,b,a) li ght n diffuse color
 state.light[n].specular (r,g,b,a) li ght n specular color
 state.light[n].position (x,y,z,w) li ght n position
 state.light[n].attenuation (a,b,c,e) li ght n attenuation constants
 an d spot light exponent
 state.light[n].spot.direction (x,y,z,c) li ght n spot direction and
 cu toff angle cosine
 state.light[n].half (x,y,z,1) li ght n infinite half-angle
 state.lightmodel.ambient (r,g,b,a) li ght model ambient color
 state.lightmodel.scenecolor (r,g,b,a) li ght model front scene color
 state.lightmodel. (r,g,b,a) li ght model front scene color
 front.scenecolor
 state.lightmodel. (r,g,b,a) li ght model back scene color
 back.scenecolor
 state.lightprod[n].ambient (r,g,b,a) li ght n / front material
 am bient color product
 state.lightprod[n].diffuse (r,g,b,a) li ght n / front material
 di ffuse color product
 state.lightprod[n].specular (r,g,b,a) li ght n / front material
 sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.specular sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.specular sp ecular color product

 Table X.4: Light Property Bindings. <n> indicates a light nu mber.

 If a program parameter binding matches "state.l ight[n].ambient",
 "state.light[n].diffuse", or "state.light[n].sp ecular", the "x", "y", "z",
 and "w" components of the program parameter var iable are filled with the
 "r", "g", "b", and "a" components, respectively , of the corresponding
 light color.

 If a program parameter binding matches "state.l ight[n].position", the "x",
 "y", "z", and "w" components of the program par ameter variable are filled
 with the "x", "y", "z", and "w" components, res pectively, of the light
 position.

 If a program parameter binding matches "state.l ight[n].attenuation", the
 "x", "y", and "z" components of the program par ameter variable are filled
 with the constant, linear, and quadratic attenu ation parameters of the
 specified light, respectively (section 2.13.1). The "w" component of the
 program parameter variable is filled with the s pot light exponent of the
 specified light.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 340

 If a program parameter binding matches "state.l ight[n].spot.direction",
 the "x", "y", and "z" components of the program parameter variable are
 filled with the "x", "y", and "z" components of the spot light direction
 of the specified light, respectively (section 2 .13.1). The "w" component
 of the program parameter variable is filled wit h the cosine of the spot
 light cutoff angle of the specified light.

 If a program parameter binding matches "state.l ight[n].half", the "x",
 "y", and "z" components of the program paramete r variable are filled with
 the x, y, and z components, respectively, of th e normalized infinite
 half-angle vector

 h_inf = || P + (0, 0, 1) ||.

 The "w" component is filled with 1.0. In the c omputation of h_inf, P
 consists of the x, y, and z coordinates of the normalized vector from the
 eye position P_e to the eye-space light positio n P_pli (section 2.13.1).
 h_inf is defined to correspond to the normalize d half-angle vector when
 using an infinite light (w coordinate of the po sition is zero) and an
 infinite viewer (v_bs is FALSE). For local lig hts or a local viewer,
 h_inf is well-defined but does not match the no rmalized half-angle vector,
 which will vary depending on the vertex positio n.

 If a program parameter binding matches "state.l ightmodel.ambient", the
 "x", "y", "z", and "w" components of the progra m parameter variable are
 filled with the "r", "g", "b", and "a" componen ts of the light model
 ambient color, respectively.

 If a program parameter binding matches "state.l ightmodel.scenecolor" or
 "state.lightmodel.front.scenecolor", the "x", " y", and "z" components of
 the program parameter variable are filled with the "r", "g", and "b"
 components respectively of the "front scene col or"

 c_scene = a_cs * a_cm + e_cm,

 where a_cs is the light model ambient color, a_ cm is the front ambient
 material color, and e_cm is the front emissive material color. The "w"
 component of the program parameter variable is filled with the alpha
 component of the front diffuse material color. If a program parameter
 binding matches "state.lightmodel.back.scenecol or", a similar back scene
 color, computed using back-facing material prop erties, is used. The front
 and back scene colors match the values that wou ld be assigned to vertices
 using conventional lighting if all lights were disabled.

 If a program parameter binding matches anything beginning with
 "state.lightprod[n]", the "x", "y", and "z" com ponents of the program
 parameter variable are filled with the "r", "g" , and "b" components,
 respectively, of the corresponding light produc t. The three light product
 components are the products of the correspondin g color components of the
 specified material property and the light color of the specified light
 (see Table X.4). The "w" component of the prog ram parameter variable is
 filled with the alpha component of the specifie d material property.

 Light products depend on material properties, w hich can be changed inside
 a Begin/End pair. Such property changes are no t guaranteed to take effect
 until the following End command. Program param eter variables bound to

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 341

 light products whose corresponding material pro perty changes inside a
 Begin/End pair are undefined until the followin g End command.

 Texture Coordinate Generation Property Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ ----------------------
 state.texgen[n].eye.s (a,b,c,d) TexGen eye linear plane
 coeffi cients, s coord, unit n
 state.texgen[n].eye.t (a,b,c,d) TexGen eye linear plane
 coeffi cients, t coord, unit n
 state.texgen[n].eye.r (a,b,c,d) TexGen eye linear plane
 coeffi cients, r coord, unit n
 state.texgen[n].eye.q (a,b,c,d) TexGen eye linear plane
 coeffi cients, q coord, unit n
 state.texgen[n].object.s (a,b,c,d) TexGen object linear plane
 coeffi cients, s coord, unit n
 state.texgen[n].object.t (a,b,c,d) TexGen object linear plane
 coeffi cients, t coord, unit n
 state.texgen[n].object.r (a,b,c,d) TexGen object linear plane
 coeffi cients, r coord, unit n
 state.texgen[n].object.q (a,b,c,d) TexGen object linear plane
 coeffi cients, q coord, unit n

 Table X.5: Texture Coordinate Generation Property Bindings. "[n]" is
 optional -- texture unit <n> is used if speci fied; texture unit 0 is
 used otherwise.

 If a program parameter binding matches a set of TexGen plane coefficients,
 the "x", "y", "z", and "w" components of the pr ogram parameter variable
 are filled with the coefficients p1, p2, p3, an d p4, respectively, for
 object linear coefficients, and the coefficents p1', p2', p3', and p4',
 respectively, for eye linear coefficients (sect ion 2.10.4).

 Fog Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.fog.color (r,g,b,a) RG B fog color (section 3.10)
 state.fog.params (d,s,e,r) fo g density, linear start
 an d end, and 1/(end-start)
 (s ection 3.10)

 Table X.6: Fog Property Bindings

 If a program parameter binding matches "state.f og.color", the "x", "y",
 "z", and "w" components of the program paramete r variable are filled with
 the "r", "g", "b", and "a" components, respecti vely, of the fog color
 (section 3.10).

 If a program parameter binding matches "state.f og.params", the "x", "y",
 and "z" components of the program parameter var iable are filled with the
 fog density, linear fog start, and linear fog e nd parameters (section
 3.10), respectively. The "w" component is fill ed with 1/(end-start),
 where end and start are the linear fog end and start parameters,
 respectively.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 342

 Clip Plane Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.clip[n].plane (a,b,c,d) cl ip plane n coefficients

 Table X.7: Clip Plane Property Bindings. <n> specifies the clip plane
 number, and is required.

 If a program parameter binding matches "state.c lip[n].plane", the "x",
 "y", "z", and "w" components of the program par ameter variable are filled
 with the coefficients p1', p2', p3', and p4', r espectively, of clip plane
 <n> (section 2.11).

 Point Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.point.size (s,n,x,f) po int size, min and max size
 cl amps, and fade threshold
 (s ection 3.3)
 state.point.attenuation (a,b,c,1) po int size attenuation consts

 Table X.8: Point Property Bindings

 If a program parameter binding matches "state.p oint.size", the "x", "y",
 "z", and "w" components of the program paramete r variable are filled with
 the point size, minimum point size, maximum poi nt size, and fade
 threshold, respectively (section 3.3).

 If a program parameter binding matches "state.p oint.attenuation", the "x",
 "y", and "z" components of the program paramete r variable are filled with
 the constant, linear, and quadratic point size attenuation parameters (a,
 b, and c), respectively (section 3.3). The "w" component is filled with
 1.0.

 Texture Environment Property Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ ----------------------
 state.texenv[n].color (r,g,b,a) textur e environment n color

 Table X.9: Texture Environment Property Bindings. "[n]" is optional --
 texture unit <n> is used if specified; textur e unit 0 is used otherwise.

 If a program parameter binding matches "state.t exenv[n].color", the "x",
 "y", "z", and "w" components of the program par ameter variable are filled
 with the "r", "g", "b", and "a" components, res pectively, of the
 corresponding texture environment color. Note that only "legacy" texture
 units, as queried by MAX_TEXTURE_UNITS, include texture environment state.
 Texture image units and texture coordinate sets do not have associated
 texture environment state.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 343

 Depth Property Bindings

 Binding Components Unde rlying State
 --------------------------- ---------- ---- ------------------------
 state.depth.range (n,f,d,1) Dept h range near, far, and
 (far -near) (section 2.10.1)

 Table X.10: Depth Property Bindings

 If a program parameter binding matches "state.d epth.range", the "x" and
 "y" components of the program parameter variabl e are filled with the
 mappings of near and far clipping planes to win dow coordinates,
 respectively. The "z" component is filled with the difference of the
 mappings of near and far clipping planes, far m inus near. The "w"
 component is filled with 1.0.

 Matrix Property Bindings

 Binding Underly ing State
 ------------------------------------ ------- --------------------
 * state.matrix.modelview[n] modelvi ew matrix n
 state.matrix.projection project ion matrix
 state.matrix.mvp modelvi ew-projection matrix
 * state.matrix.texture[n] texture matrix n
 state.matrix.program[n] program matrix n

 Table X.11: Base Matrix Property Bindings. The "[n]" syntax indicates
 a specific matrix number. For modelview and texture matrices, a matrix
 number is optional, and matrix zero will be u sed if the matrix number is
 omitted. These base bindings may further be modified by a
 inverse/transpose selector and a row selector .

 If the beginning of a program parameter binding matches any of the matrix
 binding names listed in Table X.11, the binding corresponds to a 4x4
 matrix. If the parameter binding is followed b y ".inverse", ".transpose",
 or ".invtrans" (<stateMatModifier> grammar rule), the inverse, transpose,
 or transpose of the inverse, respectively, of t he matrix specified in
 Table X.11 is selected. Otherwise, the matrix specified in Table X.11 is
 selected. If the specified matrix is poorly-co nditioned (singular or
 nearly so), its inverse matrix is undefined. T he binding name
 "state.matrix.mvp" refers to the product of mod elview matrix zero and the
 projection matrix, defined as

 MVP = P * M0,

 where P is the projection matrix and M0 is mode lview matrix zero.

 If the selected matrix is followed by ".row[<a>]" (matching the
 <stateMatrixRow> grammar rule), the "x", "y", " z", and "w" components of
 the program parameter variable are filled with the four entries of row <a>
 of the selected matrix. In the example,

 PARAM m0 = state.matrix.modelview[1].row[0];
 PARAM m1 = state.matrix.projection.transpose. row[3];

 the variable "m0" is set to the first row (row 0) of modelview matrix 1
 and "m1" is set to the last row (row 3) of the transpose of the projection

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 344

 matrix.

 For program parameter array bindings, multiple rows of the selected matrix
 can be bound via the <stateMatrixRows> grammar rule. If the selected
 matrix binding is followed by ".row[<a>..]", the result is equivalent
 to specifying matrix rows <a> through , in o rder. A program will fail
 to load if <a> is greater than . If no row selection is specified
 (<optMatrixRows> matches ""), matrix rows 0 thr ough 3 are bound in order.
 In the example,

 PARAM m2[] = { state.matrix.program[0].row[1. .2] };
 PARAM m3[] = { state.matrix.program[0].transp ose };

 the array "m2" has two entries, containing rows 1 and 2 of program matrix
 zero, and "m3" has four entries, containing all four rows of the transpose
 of program matrix zero.

 Section 2.X.3.4, Program Temporaries

 Program temporary variables are used to hold te mporary results during
 program execution. Temporaries do not persist between program
 invocations, and are undefined at the beginning of each program
 invocation.

 Temporary variables are declared explicitly usi ng the <TEMP_statement>
 grammar rule. Each such statement can declare one or more temporaries.
 Temporaries can not be declared implicitly. Te mporaries can be declared
 using any component size ("SHORT" or "LONG") an d type ("FLOAT" or "INT")
 modifier.

 Temporary variables may be declared as arrays. Temporary variables
 declared as arrays may be stored in slower memo ry than those not declared
 as arrays, and it is recommended to use non-arr ay variables unless array
 functionality is required.

 Section 2.X.3.5, Program Results

 Program result variables represent the per-vert ex or per-fragment results
 of the program. All result variables have asso ciated bindings, are
 write-only during program execution, and are un defined at the beginning of
 each program invocation. Any vertex or fragmen t attributes corresponding
 to unwritten result variables will be undefined in subsequent stages of
 the pipeline. Result variables may be declared explicitly via the
 <OUTPUT_statement> grammar rule, or implicitly by using a result binding
 in an instruction.

 The set of available result bindings depends on the program type, and is
 enumerated in the specifications for each progr am type.

 Result variables may generally be declared as a rrays, but the set of
 bindings allowed for arrays is limited to state grouped in arrays (e.g.,
 texture coordinates, clip distances, colors). Additionally, all bindings
 assigned to the array must be of the same bindi ng type and must increase
 consecutively. Examples of valid and invalid b inding lists for vertex
 programs include:

 result.clip[1], result.clip[2] # val id, 2-entry array

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 345

 result.texcoord[0..3] # val id, 4-entry array
 result.texcoord[1], result.texcoord[3] # inv alid, skipped texcoord 2
 result.texcoord[2], result.texcoord[1] # inv alid, wrong order
 result.texcoord[1], result.clip[2] # inv alid, different types

 Additionally, result bindings may be used in no more than one array
 addressed with relative addressing.

 Implementations may have a limit on the total n umber of result binding
 components used by each program target (MAX_PRO GRAM_RESULT_COMPONENTS_NV).
 Programs that require more result binding compo nents than this limit will
 fail to load. The method of counting used resu lt binding components is
 implementation-dependent, but must satisfy the following properties:

 * If a result binding is not referenced in a program, or is referenced
 only in declarations of result variables th at are not used, none of
 its components are counted.

 * A result binding component may be counted a s used only if there exists
 an instruction operand where

 - the component is enabled in the write m ask (Section 2.X.4.3), and

 - the result binding is either

 - referenced directly by the operand,

 - bound to a declared variable refere nced by the operand, or

 - bound to a declared array variable where another binding in
 the array satisfies one of the two previous conditions.

 Implementations are not required to optimiz e out unused elements of an
 result array or components that are used in only some elements of an
 array. The last of these rules is intended to cover the case where
 the same result binding is used in multiple variables.

 For example, an instruction whose write mas k selects only the x
 component may result in the x component of a result binding being
 counted, but may never result in the counti ng of the y, z, or w
 components of any result binding.

 Section 2.X.3.6, Program Parameter Buffers

 Program parameter buffers are arrays consisting of single-component
 typeless values or four-component typeless vect ors stored in a buffer
 object. The GL provides an implementation-depe ndent number of buffer
 object binding points for each program target, to which buffer objects can
 be attached. Program parameter buffer variable s can be changed either by
 updating the contents of bound buffer objects, or simply by changing the
 buffer object attached to a binding point.

 Program parameter buffer variables are used as constants during program
 execution. All program parameter buffer variab les have an associated
 binding and are read-only during program execut ion. Program parameter
 buffers retain their values across program invo cations, although their
 values may change as buffer object bindings or contents change. Program

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 346

 parameter buffer variables must be declared exp licitly via the
 <BUFFER_statement> grammar rule. Program param eter buffer bindings can
 not be used directly in executable instructions .

 Program parameter buffer variables are treated as an array of
 single-component values if the <bufferDeclType> grammar rule matches
 "BUFFER" or as an array of four-component vecto rs if it matches "BUFFER4".
 A program will fail to load if a variable decla red as "BUFFER" and another
 variable declared as "BUFFER4" use the same buf fer binding point.

 Program parameter buffer variables may be decla red as arrays, but all
 bindings assigned to the array must use the sam e binding point and must
 increase consecutively.

 Binding Components Un derlying State
 ----------------------------- ---------- -- ---------------------------
 program.buffer[a][b] (x,x,x,x) pr ogram parameter buffer a,
 element b
 program.buffer[a][b..c] (x,x,x,x) pr ogram parameter buffer a,
 elements b through c
 program.buffer[a] (x,x,x,x) pr ogram parameter buffer a,
 all elements

 Table X.12: Program Parameter Buffer Bindings. <a> indicates a buffer
 number, and <c> indicate individual eleme nts.

 If a program parameter buffer binding matches " program.buffer[a][b]", the
 program parameter variable are filled with elem ent of the buffer
 object bound to binding point <a>. Each elemen t of the bound buffer
 object is treated a one or four words of data t hat can hold integer or
 floating-point values. When a single-component binding is evaluated, the
 selected word is broadcast to all four componen ts of the variable. When a
 four-component binding is evaluated, the four c omponents of the buffer
 element are loaded into the variable. If no bu ffer object is bound to
 binding point <a>, or the bound buffer object i s not large enough to hold
 an element , the values used are undefined. The binding point <a> must
 be a nonnegative integer constant.

 For program parameter buffer array declarations , "program.buffer[a][b..c]"
 is equivalent to specifying elements throug h <c> of the buffer object
 bound to binding point <a> in order.

 For program parameter buffer array declarations , "program.buffer[a]" is
 equivalent to specifying the entire buffer -- e lements 0 through <n>-1,
 where <n> is either the size of the array (if d eclared) or the
 implementation-dependent maximum parameter buff er object size limit (if no
 size is declared).

 Section 2.X.3.7, Program Condition Code Registe rs

 The program condition code registers are four-c omponent vectors. Each
 component of this register is a collection of s ingle-bit flags, including
 a sign flag (SF), a zero flag (ZF), an overflow flag (OF), and a carry
 flag (CF). There are two condition code regist ers (CC0 and CC1), whose
 values are undefined at the beginning of progra m execution.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 347

 Most program instructions can optionally update one of the condition code
 registers, by designating the condition code to update in the instruction.
 When a condition code component is updated, the four flags of each
 component of the condition code are set accordi ng to the corresponding
 component of the instruction result. Full deta ils on the condition code
 updates and tests can be found in Section 2.X.4 .3.

 The value of these four flags can be combined i n various condition code
 tests, which can be used to mask writes to dest ination variables and to
 perform conditional branches or other condition operations.

 Section 2.X.3.8, Program Aliases

 Programs can create aliases by matching the <AL IAS_statement> grammar
 rule. Aliases allow programs to use multiple v ariable names to refer to a
 single underlying variable. For example, the s tatement

 ALIAS var1 = var0

 establishes a variable name of "var1". Subsequ ent references to "var1" in
 the program text are treated as references to " var0". The left hand side
 of an ALIAS statement must be a new variable na me, and the right hand side
 must be an established variable name.

 Aliases are not considered variable declaration s, so do not count against
 the limits on the number of variable declaratio ns allowed in the program
 text.

 Section 2.X.3.9, Program Resource Limits

 (see ARB_vertex_program specification, incorpor ates all the different
 limits on instruction counts, temporaries, attr ibute bindings, program
 parameters, and so on)

 Section 2.X.4, Program Execution Environment

 The set of instructions supported for GPU progr ams is given in Table X.13
 below and is described in detail in Section 2.X .8. An instruction can use
 up to three operands when it executes, and most instructions can write a
 single result vector. Instructions may also sp ecify one or more
 modifiers, according to the <opModifiers> gramm ar rule. Instruction
 modifiers affect how the specified operation is performed.

 GPU programs may operate on signed integer, uns igned integer, or
 floating-point values; some instructions are ca pable of operating on any
 of the three types. However, the data type of the operands and the result
 are always determined based solely on the instr uction and its modifiers.
 If any of the variables used in the instruction are typeless, they will be
 interpreted according to the data type derived from the instruction. If
 any variables with a conflicting data type are used in the instruction,
 the program will fail to load unless the "NTC" (no type checking)
 instruction modifier is specified.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 348

 Modifiers
 Instruction F I C S H D Out Inputs Descri ption
 ----------- - - - - - - --- -------- ------ --------------------------
 ABS X X X X X F v v absolu te value
 ADD X X X X X F v v,v add
 AND - X X - - S v v,v bitwis e and
 BRK - - - - - - - c break out of loop instruction
 CAL - - - - - - - c subrou tine call
 CEIL X X X X X F v vf ceilin g
 CMP X X X X X F v v,v,v compar e
 CONT - - - - - - - c contin ue with next loop interation
 COS X - X X X F s s cosine with reduction to [-PI,PI]
 DIV X X X X X F v v,s divide vector components by scalar
 DP2 X - X X X F s v,v 2-comp onent dot product
 DP2A X - X X X F s v,v,v 2-comp . dot product w/scalar add
 DP3 X - X X X F s v,v 3-comp onent dot product
 DP4 X - X X X F s v,v 4-comp onent dot product
 DPH X - X X X F s v,v homoge neous dot product
 DST X - X X X F v v,v distan ce vector
 ELSE - - - - - - - - start if test else block
 ENDIF - - - - - - - - end if test block
 ENDREP - - - - - - - - end of repeat block
 EX2 X - X X X F s s expone ntial base 2
 FLR X X X X X F v vf floor
 FRC X - X X X F v v fracti on
 I2F - X X - - S vf v intege r to float
 IF - - - - - - - c start of if test block
 KIL X X - - X F - vc kill f ragment
 LG2 X - X X X F s s logari thm base 2
 LIT X - X X X F v v comput e lighting coefficients
 LRP X - X X X F v v,v,v linear interpolation
 MAD X X X X X F v v,v,v multip ly and add
 MAX X X X X X F v v,v maximu m
 MIN X X X X X F v v,v minimu m
 MOD - X X - - S v v,s modulu s vector components by scalar
 MOV X X X X X F v v move
 MUL X X X X X F v v,v multip ly
 NOT - X X - - S v v bitwis e not
 NRM X - X X X F v v normal ize 3-component vector
 OR - X X - - S v v,v bitwis e or
 PK2H X X - - - F s vf pack t wo 16-bit floats
 PK2US X X - - - F s vf pack t wo floats as unsigned 16-bit
 PK4B X X - - - F s vf pack f our floats as signed 8-bit
 PK4UB X X - - - F s vf pack f our floats as unsigned 8-bit
 POW X - X X X F s s,s expone ntiate
 RCC X - X X X F s s recipr ocal (clamped)
 RCP X - X X X F s s recipr ocal
 REP X X - - X F - v start of repeat block
 RET - - - - - - - c subrou tine return
 RFL X - X X X F v v,v reflec tion vector
 ROUND X X X X X F v vf round to nearest integer
 RSQ X - X X X F s s recipr ocal square root
 SAD - X X - - S vu v,v,vu sum of absolute differences
 SCS X - X X X F v s sine/c osine without reduction
 SEQ X X X X X F v v,v set on equal
 SFL X X X X X F v v,v set on false
 SGE X X X X X F v v,v set on greater than or equal

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 349

 Modifiers
 Instruction F I C S H D Out Inputs Descri ption
 ----------- - - - - - - --- -------- ------ --------------------------
 SGT X X X X X F v v,v set on greater than
 SHL - X X - - S v v,s shift left
 SHR - X X - - S v v,s shift right
 SIN X - X X X F s s sine w ith reduction to [-PI,PI]
 SLE X X X X X F v v,v set on less than or equal
 SLT X X X X X F v v,v set on less than
 SNE X X X X X F v v,v set on not equal
 SSG X - X X X F v v set si gn
 STR X X X X X F v v,v set on true
 SUB X X X X X F v v,v subtra ct
 SWZ X - X X X F v v extend ed swizzle
 TEX X X X X - F v vf textur e sample
 TRUNC X X X X X F v vf trunca te (round toward zero)
 TXB X X X X - F v vf textur e sample with bias
 TXD X X X X - F v vf,vf,vf textur e sample w/partials
 TXF X X X X - F v vs texel fetch
 TXL X X X X - F v vf textur e sample w/LOD
 TXP X X X X - F v vf textur e sample w/projection
 TXQ - - - - - S vs vs textur e info query
 UP2H X X X X - F vf s unpack two 16-bit floats
 UP2US X X X X - F vf s unpack two unsigned 16-bit ints
 UP4B X X X X - F vf s unpack four signed 8-bit ints
 UP4UB X X X X - F vf s unpack four unsigned 8-bit ints
 X2D X - X X X F v v,v,v 2D coo rdinate transformation
 XOR - X X - - S v v,v exclus ive or
 XPD X - X X X F v v,v cross product

 Table X.13: Summary of NV_gpu_program4 instructions. The "Mo difiers"
 columns specify the set of modifiers allowed for the instruction:

 F = floating-point data type modifiers
 I = signed and unsigned integer data type m odifiers
 C = condition code update modifiers
 S = clamping (saturation) modifiers
 H = half-precision float data type suffix
 D = default data type modifier (F, U, or S)

 The input and output columns describe the for mats of the operands and
 results of the instruction.

 v: 4-component vector (data type is inheri ted from operation)
 vf: 4-component vector (data type is always floating-point)
 vs: 4-component vector (data type is always signed integer)
 vu: 4-component vector (data type is always unsigned integer)
 s: scalar (replicated if written to a vect or destination;
 data type is inherited from ope ration)
 c: condition code test result (e.g., "EQ", "GT1.x")
 vc: 4-component vector or condition code te st

 Section 2.X.4.1, Program Instruction Modifiers

 There are several types of instruction modifier s available. A data type
 modifier specifies that an instruction should o perate on signed integer,
 unsigned integer, or floating-point data, when multiple data types are

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 350

 supported. A clamping modifier applies to inst ructions with
 floating-point results, and specifies the range to which the results
 should be clamped. A condition code update mod ifier specifies that the
 instruction should update one of the condition code variables. Several
 other special modifiers are also provided.

 Instruction modifiers may be specified as stand -alone modifiers or as
 suffixes concatenated with the opcode name. A program will fail to load
 if it contains an instruction that

 * specifies more than one modifier of any giv en type,

 * specifies a clamping modifier on an instruc tion, unless it produces
 floating-point results, or

 * specifies a modifier that is not supported by the instruction (see
 Table X.13 and the instruction description) .

 Stand-alone instruction modifiers are specified according to the
 <opModifiers> grammar rule using a ".<modifier> " syntax. Multiple
 modifers, separated by periods, may be specifie d. The set of supported
 modifiers is described in Table X.14.

 Modifier Description
 -------- ----------------------------------- ------------
 F Floating-point operation
 U Fixed-point operation, unsigned ope rands
 S Fixed-point operation, signed opera nds
 CC Update condition code register zero
 CC0 Update condition code register zero
 CC1 Update condition code register one
 SAT Floating-point results clamped to [0,1]
 SSAT Floating-point results clamped to [-1,1]
 NTC Disable type-checking on operands/r esults
 S24 Signed multiply (24-bit operands)
 U24 Unsigned multiply (24-bit operands)
 HI Multiplies two 32-bit integer opera nds, returns
 the 32 MSBs of the product

 Table X.14, Instruction Modifers.

 "F", "U", and "S" modifiers are data type modif iers and specify that the
 instruction should operate on floating-point, u nsigned integer, or
 signed integer values, respectively. For examp le, "ADD.F", "ADD.U", and
 "ADD.S" specify component-wise addition of floa ting-point, unsigned
 integer, or signed integer vectors, respectivel y. These modifiers specify
 a data type, but do not specify a precision at which the operation is
 performed. Floating-point operations will be c arried out with an internal
 precision no less than that used to represent t he largest operand.
 Fixed-point operations will be carried out usin g at least as many bits as
 used to represent the largest operand. Operand s represented with fewer
 bits than used to perform the instruction will be promoted to a larger
 data type. Signed integer operands will be sig n-extended, where the most
 significant bits are filled with ones if the op erand is negative and zero
 otherwise. Unsigned integer operands will be z ero-extended, where the
 most significant bits are always filled with ze roes. For some
 instructions, the data type of some operands or the result are fixed; in

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 351

 these cases, the data type modifier specifies t he data type of the
 remaining values.

 "CC", "CC0", and "CC1" are condition code updat e modifiers that specify
 that one of the condition code registers should be updated based on the
 result of the instruction, as described in sect ion 2.X.4.3. "CC" and
 "CC0" specify that the condition code register CC0 be updated; "CC1"
 specifies an update to CC1. If no condition co de update modifier is
 provided, the condition code registers will not be affected.

 "SAT" and "SSAT" are clamping modifiers that sp ecify that the
 floating-point components of the instruction re sult should be clamped to
 [0,1] or [-1,1], respectively, before updating the condition code and the
 destination variable. If no clamping suffix is specified, unclamped
 results will be used for condition code updates (if any) and destination
 variable writes. Clamping modifiers are not su pported on instructions
 that do not produce floating-point results.

 "NTC" (no type checking) disables data type che cking on the instruction,
 and allows instructions to use operands or resu lt variables whose data
 types are inconsistent with the expected data t ypes of the instruction.

 "S24", "U24", and "HI" are special modifiers th at are allowed only for the
 MUL instruction, and are described in detail wh ere MUL is documented. No
 more than one such modifier may be provided for any instruction.

 If an instruction supports data type modifiers, but none is provided, a
 default data type will be chosen based on the i nstruction, as specified in
 Table X.13 and the instruction set description (Section 2.X.8). If
 condition code update or clamping modifiers are not specified, the
 corresponding operation will not be performed.

 Additionally, each instruction name may have on e or more suffixes,
 concatenated onto the base instruction name, th at operate as instruction
 modifiers. For conciseness, these suffixes are not spelled out in the
 grammar -- the base opcode name is used as a pl aceholder for the opcode
 and all of its possible suffixes. Instruction suffixes are provided
 mainly for compatibility with prior GPU program instruction sets (e.g.,
 NV_vertex_program3, NV_fragment_program2, and p redecessors). The set of
 allowable suffixes, and their equivalent stand- alone modifiers, are listed
 in Table X.15.

 Suffix Modifier Description
 ------ ---------- ------------------------ ---------------------------
 R F Floating-point operation , 32-bit precision
 H F(*) Floating-point operation , at least 16-bit precision
 C CC0 Update condition code re gister zero
 C0 CC0 Update condition code re gister zero
 C1 CC1 Update condition code re gister one
 _SAT SAT Floating-point results c lamped to [0,1]
 _SSAT SSAT Floating-point results c lamped to [-1,1]

 Table X.15, Instruction Suffixes.

 The "R" and "H" suffixes specify floating-point operations and are
 equivalent to the "F" data type modifier. They additionally specify a
 minimum precision for the operations. Instruct ions with an "R" precision

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 352

 modifier will be carried out at no less than IE EE single-precision
 floating-point (8 bits of exponent, 23 bits of mantissa). Instructions
 with an "H" precision modifier will be carried out at no less than 16-bit
 floating-point precision (5 bits of exponent, 1 0 bits of mantissa).

 An instruction may have multiple suffixes, but they must appear in order,
 with data type suffixes first, followed by cond ition code update suffixes,
 followed by clamping suffixes. For example, "A DDR" carries out an add at
 32-bit precision. "ADDH_SAT" carries out an ad d at 16-bit precision (or
 better) and clamps the results to [0,1]. "ADDR C1_SSAT" carries out an add
 at 32-bit floating-point precision, clamps the results to [-1,1], and
 updates condition code one based on the clamped result.

 Section 2.X.4.2, Program Operands

 Most program instructions operate on one or mor e scalar or vector
 operands. Each operand specifies an operand va riable, which is either the
 name of a previously declared variable or an im plicit variable declaration
 created by using a variable binding in the inst ruction. Attribute,
 parameter, or parameter buffer variables can be declared implicitly by
 using a valid binding name in an operand. Inst ruction operands are
 specified by the <instOperandV>, <instOperandS> , or <instOperandVNS>
 grammar rules.

 If the operand variable is not an array, its co ntents are loaded directly.
 If the operand variable is an array, a single e lement of the array is
 loaded according to the <arrayMem> grammar rule . The elements of an array
 are numbered from 0 to <n>-1, where <n> is the number of entries in the
 array. Array members can be accessed using eit her absolute or relative
 addressing.

 Absolute array addressing is used when the <arr ayMemAbs> grammar rule is
 matched; the array member to load is specified by the matching integer.
 Out-of-bounds array absolute accesses are not a llowed. If the specified
 member number is greater than or equal to the s ize of the array, the
 program will fail to load.

 Relative array addressing is used when the <arr ayMemRel> grammar rule is
 matched. This grammar rule allows the program to specify a scalar integer
 operand and an optional constant offset, accord ing to the <arrayMemReg>
 and <arrayMemOffset> grammar rules. When perfo rming relative addressing,
 the GL evaluates the specified integer scalar o perand (according to the
 rules specified in this section) and adds the c onstant offset. The array
 member loaded is given by this sum. The consta nt offset is considered
 zero if an offset is omitted. If the sum is ne gative or exceeds the size
 of the array, the results of the access are und efined, but may not lead to
 program or GL termination. The set of constant offsets supported for
 relative addressing is limited to values in the range [0,<n>-1], where <n>
 is the size of the array. A program will fail to load if it specifies an
 offset outside that range. If offsets outside that range are required,
 they can be applied by using an integer ADD ins truction writing to a
 temporary variable.

 After the operand is loaded, its components can be rearranged according to
 the <swizzleSuffix> grammar rule, or it can be converted to a scalar
 operand according to the <scalarSuffix> grammar rule.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 353

 The <swizzleSuffix> grammar rule rearranges the components of a loaded
 vector to produce another vector. If the <swiz zleSuffix> rule matches the
 <xyzwSwizzle> or <rgbaSwizzle> grammar rule, a pattern of the form ".????"
 is used, where each question mark is replaced w ith one of "x", "y", "z",
 "w", "r", "g", "b", or a". For such patterns, the x, y, z, and w
 components of the operand are taken from the ve ctor components named by
 the first, second, third, and fourth character of the pattern,
 respectively. Swizzle components of "r", "g", "b", and "a" are equivalent
 to "x", "y", "z", and "w", respectively. For e xample, if the swizzle
 suffix is ".yzzx" or ".gbbr" and the specified source contains {2,8,9,0},
 the result is the vector {8,9,9,2}. If the <sw izzleSuffix> matches the
 <component> grammar rule, a pattern of the form ".?" is used. For this
 pattern, all four components of the operand are taken from the single
 component identified by the pattern. If the sw izzle suffix is omitted,
 components are not rearranged and swizzling has no effect, as though
 ".xyzw" were specified.

 The swizzle suffix rules do not allow mixing "x ", "y", "z", or "w"
 selectors with "r", "g", "b", or "a" selectors. A program will fail to
 load if it contains a swizzle suffix with selec tors from both of these
 sets.

 The <scalarSuffix> grammar rule converts a vect or to a scalar by selecting
 a single component. The <scalarSuffix> rule is similar to the swizzle
 selector, except that only a single component i s selected. If the scalar
 suffix is ".y" and the specified source contain s {2,8,9,0}, the value is
 the scalar value 8.

 Next, a component-wise negate operation is perf ormed on the operand if the
 <operandNeg> grammar rule matches "-". Negatio n is not performed if the
 operand has no sign prefix, or is prefixed with "+". For unsigned integer
 operands, the negate operand performs a two's c omplement operation.

 Next, a component-wise absolute value operation is performed on the
 operand if the <instOperandAbsV> or <instOperan dAbsS> grammar rule is
 matched, by surrounding the operand with two "| " characters. The result
 is optionally negated if the <operandAbsNeg> gr ammar rule matches "-".
 For unsigned integer operands, the absolute val ue operation has no effect.

 Section 2.X.4.3, Program Destination Variable U pdate

 Most program instructions perform computations that produce a result,
 which will be written to a variable. Each inst ruction that computes a
 result specifies a destination variable, which is either the name of a
 previously declared variable or an implicit var iable declaration created
 by using a variable binding in the instruction. Result variables can be
 declared implicitly by using a valid program re sult binding name in the
 result portion of the instruction. Instruction results are specified
 according to the <instResult> grammar rule.

 The destination variable may be a single member of an array. In this
 case, a single array member is specified using the <arrayMem> grammar
 rule, and the array member to update is compute d in the exact same manner
 as done for operand loads. If the array member is computed at run time,
 and is negative or greater than or equal to the size of the array, the
 results of the destination variable update are undefined and could result
 in overwriting other program variables.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 354

 The results of the operation may be obtained at a different precision than
 that used to store the destination variable. I f so, the results are
 converted to match the size of the destination variable. For
 floating-point values, the results are rounded to the nearest
 floating-point value that can be represented in the destination variable.
 If a result component is larger in magnitude th an the largest
 representable floating-point value in the data type of the destination
 variable, an infinity encoding (+/-INF) is used . Signed or unsigned
 integer values are sign-extended or zero-extend ed, respectively, if the
 destination variable has more bits than the res ult, and have their most
 significant bits discarded if the destination v ariable has fewer bits.

 Writes to individual components of a vector des tination variable can be
 controlled at compile time by individual compon ent write masks specified
 in the instruction. The component write mask i s specified by the
 <optWriteMask> grammar rule, and is a string of up to four characters,
 naming the components to enable for writing. I f no write mask is
 specified, all components are enabled for writi ng. The characters "x",
 "y", "z", and "w" match the x, y, z, and w comp onents respectively. For
 example, a write mask mask of ".xzw" indicates that the x, z, and w
 components should be enabled for writing but th e y component should not be
 written. The grammar requires that the destina tion register mask
 components must be listed in "xyzw" order. Add itionally, write mask
 components of "r", "g", "b", and "a" are equiva lent to "x", "y", "z", and
 "w", respectively. The grammar does not allow mixing "x", "y", "z", or
 "w" components with "r", "g", "b", and "a" ones .

 Writes to individual components of a vector des tination variable, or to a
 scalar destination variable, can also be contro lled at run time using
 condition code write masks. The condition code write mask is specified by
 the <ccMask> grammar rule. If a mask is specif ied, a condition code
 variable is loaded according to the <ccMaskRule > grammar rule and tested
 as described in Table X.16 to produce a four-co mponent vector of
 TRUE/FALSE values.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 355

 mask rule test name condition
 --------------- ---------------------- -----------------
 EQ, EQ0, EQ1 equal !SF && ZF
 GE, GE0, GE1 greater than or equal !(SF ^ OF)
 GT, GT0, GT1 greater than (!SF ^ OF) && !ZF
 LE, LE0, LE1 less than or equal SF ^ (ZF || OF)
 LT, LT0, LT1 less than (SF && !ZF) ^ OF
 NE, NE0, NE1 not equal SF || !ZF
 FL, FL0, FL1 false always false
 TR, TR0, TR1 true always true

 NAN, NAN0, NAN1 not a number SF && ZF
 LEG, LEG0, LEG1 less, equal, or greater !SF || !ZF
 (anything but a NaN)

 CF, CF0, CF1 carry flag CF
 NCF, NCF0, NCF1 no carry flag !CF
 OF, OF0, OF1 overflow flag OF
 NOF, NOF0, NOF1 no overflow flag !OF
 SF, SF0, SF1 sign flag SF
 NSF, NSF0, NSF1 no sign flag !SF
 AB, AB0, AB1 above CF && !ZF
 BLE, BLE0, BLE1 below or equal !CF || ZF

 Table X.16, Condition Code Tests. The allowed rules are speci fied in
 the "mask rule" column. If "0" or "1" is app ended to the rule name
 (e.g., "EQ1"), the corresponding condition co de register (CC1 in this
 example) is loaded, otherwise CC0 is loaded. After loading, each
 component is tested, using the expression lis ted in the "condition"
 column.

 After the condition code tests are performed, t he four-component result
 can be swizzled according to the <swizzleSuffix > grammar rule. Individual
 components of the destination variable are writ ten only if the
 corresponding component of the swizzled conditi on code test result is
 TRUE. If both a (compile-time) component write mask and a condition code
 write mask are specified, destination variable components are written only
 if the corresponding component is enabled in bo th masks.

 A program instruction can also optionally updat e one of the two condition
 code registers if the "CC", "CC0", or "CC1" ins truction modifier are
 specified. These instruction modifiers update condition code register
 CC0, CC0, or CC1, respectively. The instructio ns "ADD.CC" or "ADD.CC0"
 will perform an add and update condition code z ero, "ADD.CC1" will add and
 update condition code one, and "ADD" will simpl y perform the add without a
 condition code update. The components of the s elected condition code
 register are updated if and only if the corresp onding component of the
 destination variable are enabled by both write masks. For the purposes of
 condition code update, a scalar destination var iable is treated as a
 vector where the scalar result is written to "x " (if enabled in the write
 mask), and writes to the "y", "z", and "w" comp onents are disabled.

 When condition code components are written, the condition code flags are
 updated based on the corresponding component of the result. If a
 component of the destination register is not en abled for writes, the
 corresponding condition code component is also unchanged.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 356

 For floating-point results, the sign flag (SF) is set if the result is
 less than zero or is a NaN (not a number) value . The zero flag (ZF) is
 set if the result is equal to zero or is a NaN.

 For signed and unsigned integer results, the si gn flag (SF) is set if the
 most significant bit of the value written to th e result variable is set
 and the zero flag (ZF) is set if the result wri tten is zero. For
 instructions other than those performing an int eger add or subtract (ADD,
 MAD, SAD, SUB), the overflow and carry flags (O F and CF) are cleared.

 For integer add or subtract operations, the ove rflow and carry flags by
 doing both signed and unsigned adds/subtracts a s follows:

 The overflow flag (OF) is set by interpreting the two operands as signed
 integers and performing a signed add or subtr act. If the result is
 representable as a signed integer (i.e., does n't overflow), the overflow
 flag is cleared; otherwise, it is set.

 The carry flag (CF) is set by interpreting th e two operands as unsigned
 integers and performing an unsigned add or su btract. If the result of
 an add is representable as an unsigned intege r (i.e., doesn't overflow),
 the carry flag is cleared; otherwise, it is s et. If the result of a
 subtract is greater than or equal to zero, th e carry flag is set;
 otherwise, it is cleared.

 For the purposes of condition code setting, neg ation modifiers turn add
 operations into subtracts and vice versa. If t he operation is equivalent
 to an add with both operands negated (-A-B), th e carry and overflow flags
 are both undefined.

 Section 2.X.4.4, Program Texture Access

 Certain program instructions may access texture images, as described in
 section 3.8. The coordinates, level-of-detail, and partial derivatives
 used for performing the texture lookup are deri ved from values provided in
 the program as described in the various sub-sec tions of Section 2.X.8.
 These descriptions use the function

 result_t_vec
 TextureSample(float_vec coord, float lod, f loat_vec ddx,
 float_vec ddy, int_vec offset);

 which obtains a filtered texel value <tau> as d escribed in Section 3.8.8
 and returns a 4-component vector (R,G,B,A) acco rding to the format
 conversions specified in Table 3.21. The resul t vector is interpreted as
 floating-point, signed integer, or unsigned int eger, according to the data
 type modifier of the instruction. If the inter nal format of the texture
 does not match the instruction's data type modi fer, the results of the
 texture lookup are undefined.

 (Note: For unextended OpenGL 2.0, all supporte d texture internal formats
 store integer values but return floating-point results in the range [0,1]
 on a texture lookup. The ARB_texture_float ext ension introduces
 floating-point internal format where components are both stored and
 returned as floating-point values. The EXT_tex ture_integer extension
 introduces formats that both store and return e ither signed or unsigned
 integer values.)

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 357

 <coord> is a four-component floating-point vect or from which the (s,t,r)
 texture coordinates used for the texture access , the layer used for array
 textures, and the reference value used for dept h comparisons (section
 3.8.14) are extracted according to Table X.17. If the texture is a cube
 map, (s,t,r) is projected to one of the six cub e faces to produce a new
 (s,t) vector according to Section 3.8.6. For a rray textures, the layer
 used is derived by rounding the extracted float ing-point component to the
 nearest integer and clamping the result to the range [0,<n>-1], where <n>
 is the number of layers in the texture.

 <lod> specifies the level of detail parameter a nd replaces the value
 computed in equation 3.18. <ddx> and <ddy> spe cify partial derivatives
 (ds/dx, dt/dx, dr/dx, ds/dy, dt/dy, and dr/dy) for the texture
 coordinates, and may be used to derive footprin t shapes for anisotropic
 texture filtering.

 <offset> is a constant 3-component signed integ er vector specified
 according to the <texOffset> grammar rule, whic h is added to the computed
 <u>, <v>, and <w> texel locations prior to samp ling. One, two, or three
 components may be specified in the instruction; if fewer than three are
 specified, the remaining offset components are zero. A limited range of
 offset values are supported; the minimum and ma ximum <texOffset> values
 are implementation-dependent and given by MIN_P ROGRAM_TEXEL_OFFSET_EXT and
 MAX_PROGRAM_TEXEL_OFFSET_EXT, respectively. A program will fail to load:

 * if the texture target specified in the inst ruction is 1D, ARRAY1D,
 SHADOW1D, or SHADOWARRAY1D, and the second or third component of the
 offset vector is non-zero,

 * if the texture target specified in the inst ruction is 2D, RECT,
 ARRAY2D, SHADOW2D, SHADOWRECT, or SHADOWARR AY2D, and the third
 component of the offset vector is non-zero,

 * if the texture target is CUBE or SHADOWCUBE , and any component of the
 offset vector is non-zero -- texel offsets are not supported for cube
 map or buffer textures, or

 * if any component of the offset vector is le ss than
 MIN_PROGRAM_TEXEL_OFFSET_EXT or greater tha n
 MAX_PROGRAM_TEXEL_OFFSET_EXT.

 (NOTE: Texel offsets are a new feature provide d by this extension and are
 described in more detail in edits to Section 3. 8 below.)

 The texture used by TextureSample() is one of t he textures bound to the
 texture image unit whose number is specified in the instruction according
 to the <texImageUnit> grammar rule. The textur e target accessed is
 specified according to the <texTarget> grammar rule and Table X.17.
 Fixed-function texture enables are always ignor ed when determining the
 texture to access in a program.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 358

 coordinates used
 texTarget Texture Type s t r layer shadow
 ---------------- --------------------- ----- ----- ------
 1D TEXTURE_1D x - - - -
 2D TEXTURE_2D x y - - -
 3D TEXTURE_3D x y z - -
 CUBE TEXTURE_CUBE_MAP x y z - -
 RECT TEXTURE_RECTANGLE_ARB x y - - -
 ARRAY1D TEXTURE_1D_ARRAY_EXT x - - y -
 ARRAY2D TEXTURE_2D_ARRAY_EXT x y - z -
 SHADOW1D TEXTURE_1D x - - - z
 SHADOW2D TEXTURE_2D x y - - z
 SHADOWRECT TEXTURE_RECTANGLE_ARB x y - - z
 SHADOWCUBE TEXTURE_CUBE_MAP x y z - w
 SHADOWARRAY1D TEXTURE_1D_ARRAY_EXT x - - y z
 SHADOWARRAY2D TEXTURE_2D_ARRAY_EXT x y - z w
 BUFFER TEXTURE_BUFFER_EXT <not supported>

 Table X.17: Texture types accessed for each of the <texTarget >, and
 coordinate mappings. The "SHADOW" and "ARRAY " targets are special
 pseudo-targets described below. The "coordin ates used" column indicate
 the input values used for each coordinate of the texture lookup, the
 layer selector for array textures, and the re ference value for texture
 comparisons. Buffer textures are not support ed by normal texture lookup
 functions, but are supported by TXF and TXQ, described below.

 Texture targets with "SHADOW" are used to acces s textures with a
 DEPTH_COMPONENT base internal format using dept h comparisons (Section
 3.8.14). Results of a texture access are undef ined:

 * if a "SHADOW" target is used, and the corre sponding texture has a base
 internal format other than DEPTH_COMPONENT or a TEXTURE_COMPARE_MODE
 of NONE, or

 * if a non-"SHADOW" target is used, and the c orresponding texture has a
 base internal format of DEPTH_COMPONENT and a TEXTURE_COMPARE_MODE
 other than NONE.

 If the texture being accessed is not complete (or cube complete for
 cubemap textures), no texture access is perform ed and the result is
 undefined.

 A program will fail to load if it attempts to s ample from multiple texture
 targets (including the SHADOW pseudo-targets) o n the same texture image
 unit. For example, a program containing any tw o the following
 instructions will fail to load:

 TEX out, coord, texture[0], 1D;
 TEX out, coord, texture[0], 2D;
 TEX out, coord, texture[0], ARRAY2D;
 TEX out, coord, texture[0], SHADOW2D;
 TEX out, coord, texture[0], 3D;

 Additionally, multiple texture targets for a si ngle texture image unit may
 not be used at the same time by the GL. The er ror INVALID_OPERATION is
 generated by Begin, RasterPos, or any command t hat performs an implicit
 Begin if an enabled program accesses one textur e target for a texture unit

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 359

 while another enabled program or fixed-function fragment processing
 accesses a different texture target for the sam e texture image unit.

 Some texture instructions use standard methods to compute partial
 derivatives and/or the level-of-detail used to perform texture accesses.
 For fragment programs, the functions

 float_vec ComputePartialsX(float_vec coord);
 float_vec ComputePartialsY(float_vec coord);

 compute approximate component-wise partial deri vatives of the
 floating-point vector <coord> relative to the X and Y coordinates,
 respectively. For vertex and geometry programs , these functions always
 return (0,0,0,0). The function

 float ComputeLOD(float_vec ddx, float_vec ddy);

 maps partial derivative vectors <ddx> and <ddy> to ds/dx, dt/dx, dr/dx,
 ds/dy, dt/dy, and dr/dy and computes lambda_bas e(x,y) according to
 equation 3.18.

 The TXF instruction provides the ability to ext ract a single texel from a
 specified texture image using the function

 result_t_vec TexelFetch(uint_vec coord, int_v ec offset);

 The extracted texel is converted to an (R,G,B,A) vector according to Table
 3.21. The result vector is interpreted as floa ting-point, signed integer,
 or unsigned integer, according to the data type modifier of the
 instruction. If the internal format of the tex ture is not compatible with
 the instruction's data type modifer, the extrac ted texel value is
 undefined.

 <coord> is a four-component signed integer vect or used to identify the
 single texel accessed. The (i,j,k) coordinates of the texel and the layer
 used for array textures are extracted according to Table X.18. The level
 of detail accessed is obtained by adding the w component of <coord> to the
 base level (level_base). <offset> is a constan t 3-component signed
 integer vector added to the texel coordinates p rior to the texel fetch as
 described above. In addition to the restrictio ns described above,
 non-zero offset components are also not support ed for BUFFER targets.

 The texture used by TexelFetch() is specified b y the image unit and target
 parameters provided in the instruction, as for TextureSample() above.
 Single texel fetches can not perform depth comp arisons or access cubemaps.
 If a program contains a TXF instruction specify ing one of the "SHADOW" or
 "CUBE" targets, it will fail to load.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 360

 coordinates u sed
 texTarget supported i j k laye r lod
 ---------------- --------- ----- ---- - ---
 1D yes x - - - w
 2D yes x y - - w
 3D yes x y z - w
 CUBE no - - - - -
 RECT yes x y - - w
 ARRAY1D yes x - - y w
 ARRAY2D yes x y - z w
 SHADOW1D no - - - - -
 SHADOW2D no - - - - -
 SHADOWRECT no - - - - -
 SHADOWCUBE no - - - - -
 SHADOWARRAY1D no - - - - -
 SHADOWARRAY2D no - - - - -
 BUFFER yes x - - - -

 Table X.18, Mappings of texel fetch coordinates to texel locat ion.

 Single-texel fetches do not support LOD clampin g or any texture wrap mode,
 and require a mipmapped minification filter to access any level of detail
 other than the base level. The results of the texel fetch are undefined:

 * if the computed LOD is less than the textur e's base level (level_base)
 or greater than the maximum level (level_ma x),

 * if the computed LOD is not the texture's ba se level and the texture's
 minification filter is NEAREST or LINEAR,

 * if the layer specified for array textures i s negative or greater than
 the number of layers in the array texture,

 * if the texel at (i,j,k) coordinates refer t o a border texel outside
 the defined extents of the specified LOD, w here

 i < -b_s, j < -b_s, k < -b_s,
 i >= w_s - b_s, j >= h_s - b_s, or k >= d_ s - b_s,

 where the size parameters (w_s, h_s, d_s, a nd b_s) refer to the width,
 height, depth, and border size of the image , as in equations 3.15,
 3.16, and 3.17, or

 * if the texture being accessed is not comple te (or cube complete for
 cubemaps).

 Section 2.X.5, Program Flow Control

 In addition to basic arithmetic, logical, and t exture instructions, a
 number of flow control instructions are provide d, which are described in
 detail in Section 2.X.8. Programs can contain several types of
 instruction blocks: IF/ELSE/ENDIF blocks, REP/ ENDREP blocks, and
 subroutine blocks. IF/ELSE/ENDIF blocks are a set of instructions
 beginning with an "IF" instruction, ending with an "ENDIF" instruction,
 and possibly containing an optional "ELSE" inst ruction. REP/ENDREP blocks
 are a set of instructions beginning with a "REP " instruction and ending
 with an "ENDREP" instruction. Subroutine block s begin with an instruction

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 361

 label identifying the name of the subroutine an d ending just before the
 next instruction label or the end of the progra m. Examples include the
 following:

 MOVC CC, R0;
 IF GT.x;
 MOV R0, R1; # executes if R0.x > 0
 ELSE;
 MOV R0, R2; # executes if R0.x <= 0
 ENDIF;

 REP repCount;
 ADD R0, R0, R1;
 ENDREP;

 square: # subroutine to compute R 0^2
 MUL R0, R0, R0;
 RET;
 main:
 MOV R0, 9.0;
 CAL square; # compute 9.0^2 in R0

 IF/ELSE/ENDIF and REP/ENDREP blocks may be nest ed inside each other, and
 inside subroutines. In all cases, each instruc tion block must be
 terminated with the appropriate instruction (EN DIF for IF, ENDREP for
 REP). Nested instruction blocks must be wholly contained within a block
 -- if a REP instruction is found between an IF and ELSE instruction, the
 corresponding ENDREP must also be present betwe en the IF and ELSE.
 Subroutines may not be nested inside IF/ELSE/EN DIF or REP/ENDREP blocks,
 or inside other subroutines. A program will fa il to load if any
 instruction block is terminated by an incorrect instruction, is not
 terminated before the block containing it, or c ontains an instruction
 label.

 IF/ELSE/ENDIF blocks evaluate a condition to de termine which instructions
 to execute. If the condition is true, all inst ructions between the IF and
 ELSE are executed. If the condition is false, all instructions between
 the ELSE and ENDIF are executed. The ELSE inst ruction is optional. If
 the ELSE is omitted, all instructions between t he IF and ENDIF are
 executed if the condition is true, or skipped i f the condition is false.
 A limited amount of nesting is supported -- a p rogram will fail to load if
 an IF instruction is nested inside MAX_PROGRAM_ IF_DEPTH_NV or more
 IF/ELSE/ENDIF blocks.

 REP/ENDREP blocks are used to execute a sequenc e of instructions multiple
 times. The REP instruction includes an optiona l scalar operand to specify
 a loop count indicating the number of times the block of instructions
 should be repeated. If the loop count is omitt ed, the contents of a
 REP/ENDREP block will be repeated indefinitely until the loop is
 explicitly terminated. A limited amount of nes ting is supported -- a
 program will fail to load if a REP instruction is nested inside
 MAX_PROGRAM_LOOP_DEPTH_NV or more REP/ENDREP bl ocks.

 Within a REP/ENDREP block, the CONT instruction can be used to terminate
 the current iteration of the loop by effectivel y jumping to the ENDREP
 instruction. The BRK instruction can be used t o terminate the entire loop
 by effectively jumping to the instruction immed iately following the ENDREP

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 362

 instruction. If CONT and BRK instructions are found inside multiply
 nested REP/ENDREP blocks, they apply to the inn ermost block. A program
 will fail to load if it includes a CONT or BRK instruction that is not
 contained inside a REP/ENDREP block.

 A REP/ENDREP block without a specified loop cou nt can result in an
 infinite loop. To prevent obvious infinite loo ps, a program will fail to
 load if it contains a REP/ENDREP block that con tains neither a BRK
 instruction at the current nesting level or a R ET instruction at any
 nesting level.

 Subroutines are supported via the CAL and RET i nstructions. A subroutine
 block is identified by an instruction, which ca n be any valid identifier
 according to the <instLabel> grammar rule. The CAL instruction identifies
 a subroutine name to call according to the <ins tTarget> grammar rule.
 Instruction labels used in CAL instructions do not need to be defined in
 the program text that precedes the instruction, but a program will fail to
 load if it includes a CAL instruction that refe rences an instruction label
 that is not defined anywhere in the program. W hen a CAL instruction is
 executed, it transfers control to the instructi on immediately following
 the specified instruction label. Subsequent in structions in that
 subroutine are executed until a RET instruction is executed, or until
 program execution reaches another instruction l abel or the end of the
 program text. After the subroutine finishes, e xecution continues with the
 instruction immediately following the CAL instr uction. When a RET
 instruction is issued, it will break out of any IF/ELSE/ENDIF or
 REP/ENDREP blocks that contain it.

 Subroutines may call other subroutines before c ompleting, up to an
 implementation-dependent maximum depth of MAX_P ROGRAM_CALL_DEPTH_NV calls.
 Subroutines may call any subroutine in the prog ram, including themselves,
 as long as the call depth limit is obeyed. The results of issuing a CAL
 instruction while MAX_PROGRAM_CALL_DEPTH subrou tines have not completed
 has undefined results, including possible progr am termination.

 Several flow control instructions include condi tion code tests. The IF
 instruction requires a condition test to determ ine what instructions are
 executed. The CONT, BRK, CAL, and RET instruct ions have an optional
 condition code test; if the test fails, the ins tructions are not executed.
 Condition code tests are specified by the <ccTe st> grammar rule. The test
 is evaluated like the condition code write mask (section 2.X.4.3), and
 passes if and only if any of the four component s passes.

 If an instruction label named "main" is specifi ed, GPU program execution
 begins with the instruction immediately followi ng that label. Otherwise,
 it begins with the first instruction of the pro gram. Instructions are
 executed in sequence until either a RET instruc tion is issued in the main
 subroutine or the end of the program text is re ached.

 Section 2.X.6, Program Options

 Programs may specify a number of options to ind icate that one or more
 extended language features are used by the prog ram. All program options
 used by the program must be declared at the beg inning of the program
 string. Each program option specified in a pro gram string will modify the
 syntactic or semantic rules used to interpet th e program and the execution
 environment used to execute the program. Featu res in program options

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 363

 not declared by the program are ignored, even i f the option is otherwise
 supported by the GL. Each option declaration c onsists of two tokens: the
 keyword "OPTION" and an identifier.

 The set of available options depends on the pro gram type, and is
 enumerated in the specifications for each progr am type. Some program
 types may not provide any options.

 Section 2.X.7, Program Declarations

 Programs may include a number of declaration st atements to specify
 characteristics of the program. Each declarati on statement is followed by
 one or more arguments, separated by commas.

 The set of available declarations depends on th e program type, and is
 enumerated in the specifications for each progr am type. Some program
 types may not provide declarations.

 Section 2.X.8, Program Instruction Set

 The following sections enumerate the set of ins tructions supported for GPU
 programs.

 Some instructions allow the use of one of the t hree basic data type
 modifiers (floating point, signed integer, and unsigned integer). Unless
 otherwise mentioned:

 * the result and all of the operands will be interpreted according to
 the specified data type, and

 * if no data type modifier is specified, the instruction will operate as
 though a floating-point modifier ("F") were specified.

 Some instructions will override one or both of these rules.

 Section 2.X.8.Z, ABS: Absolute Value

 The ABS instruction performs a component-wise a bsolute value operation on
 the single operand to yield a result vector.

 tmp = VectorLoad(op0);
 result.x = abs(tmp.x);
 result.y = abs(tmp.y);
 result.z = abs(tmp.z);
 result.w = abs(tmp.w);

 ABS supports all three data type modifiers. Ta king the absolute value of
 an unsigned integer is not a useful operation, but is not illegal.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 364

 Section 2.X.8.Z, ADD: Add

 The ADD instruction performs a component-wise a dd of the two operands to
 yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 ADD supports all three data type modifiers.

 Section 2.X.8.Z, AND: Bitwise AND

 The AND instruction performs a bitwise AND oper ation on the components of
 the two source vectors to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x & tmp1.x;
 result.y = tmp0.y & tmp1.y;
 result.z = tmp0.z & tmp1.z;
 result.w = tmp0.w & tmp1.w;

 AND supports only signed and unsigned integer d ata type modifiers. If no
 type modifier is specified, both operands and t he result are treated as
 signed integers.

 Section 2.X.8.Z, BRK: Break out of Loop Instru ction

 The BRK instruction conditionally transfers con trol to the instruction
 immediately following the next ENDREP instructi on. A BRK instruction has
 no effect if the condition code test evaluates to FALSE.

 The following pseudocode describes the operatio n of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at instruction following the next ENDREP;
 }

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 365

 Section 2.X.8.Z, CAL: Subroutine Call

 The CAL instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. It also pushes a
 reference to the instruction immediately follow ing the CAL instruction
 onto the call stack, where execution will conti nue after executing the
 matching RET instruction. The following pseudo code describes the
 operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth >= MAX_PROGRAM_CALL_DEPT H_NV) {
 // undefined results
 } else {
 callStack[callStackDepth] = nextInstructi on;
 callStackDepth++;
 }
 // continue execution at instruction follow ing <instTarget>
 } else {
 // do nothing
 }

 In the pseudocode, <instTarget> is the label sp ecified in the instruction
 matching the <branchLabel> grammar rule, <callS tackDepth> is the current
 depth of the call stack, <callStack> is an arra y holding the call stack,
 and <nextInstruction> is a reference to the ins truction immediately
 following the CAL instruction in the program st ring.

 If the call stack overflows, the results of the CAL instruction are
 undefined, and can result in immediate program termination.

 An instruction label signifies the beginning of a new subroutine.
 Subroutines may not nest or overlap. If a CAL instruction is executed and
 subsequent program execution reaches an instruc tion label before a
 corresponding RET instruction is executed, the subroutine call returns
 immediately, as though an unconditional RET ins truction were inserted
 immediately before the instruction label.

 (Note: On previous vertex program extensions - - NV_vertex_program2 and
 NV_vertex_program3 -- instruction labels were a lso used as targets for
 branch (BRA) instructions. This unstructured b ranching functionality has
 been replaced with the structured branching con structs found in this
 instruction set.)

 Section 2.X.8.Z, CEIL: Ceiling

 The CEIL instruction loads a single vector oper and and performs a
 component-wise ceiling operation to generate a result vector.

 tmp = VectorLoad(op0);
 iresult.x = ceil(tmp.x);
 iresult.y = ceil(tmp.y);
 iresult.z = ceil(tmp.z);
 iresult.w = ceil(tmp.w);

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 366

 The ceiling operation returns the nearest integ er greater than or equal to
 the operand. For example ceil(-1.7) = -1.0, ce il(+1.0) = +1.0, and
 ceil(+3.7) = +4.0.

 CEIL supports all three data type modifiers. T he single operand is always
 treated as a floating-point vector, but the res ult is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. If a valu e is not exactly
 representable using the data type of the result (e.g., an overflow or
 writing a negative value to an unsigned integer), the result is undefined.

 Section 2.X.8.Z, CMP: Compare

 The CMP instructions performs a component-wise comparison of the first
 operand against zero, and copies the values of the second or third
 operands based on the results of the compare.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = (tmp0.x < 0) ? tmp1.x : tmp2.x;
 result.y = (tmp0.y < 0) ? tmp1.y : tmp2.y;
 result.z = (tmp0.z < 0) ? tmp1.z : tmp2.z;
 result.w = (tmp0.w < 0) ? tmp1.w : tmp2.w;

 CMP supports all three data type modifiers. CM P with an unsigned data
 type modifier is not a useful operation, but is not illegal.

 Section 2.X.8.Z, CONT: Continue with Next Loop Iteration

 The CONT instruction conditionally transfers co ntrol to the next ENDREP
 instruction. A CONT instruction has no effect if the condition code test
 evaluates to FALSE.

 The following pseudocode describes the operatio n of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at the next ENDREP;
 }

 Section 2.X.8.Z, COS: Cosine with Reduction to [-PI,PI]

 The COS instruction approximates the trigonomet ric cosine of the angle
 specified by the scalar operand and replicates it to all four components
 of the result vector. The angle is specified i n radians and does not have
 to be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 COS supports only floating-point data type modi fiers.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 367

 Section 2.X.8.Z, DDX: Partial Derivative Relat ive to X

 The DDX instruction computes approximate partia l derivatives of a vector
 operand with respect to the X window coordinate , and is only available to
 fragment programs. See the NV_fragment_program 4 specification for more
 details.

 Section 2.X.8.Z, DDY: Partial Derivative Relat ive to Y

 The DDY instruction computes approximate partia l derivatives of a vector
 operand with respect to the Y window coordinate , and is only available to
 fragment programs. See the NV_fragment_program 4 specification for more
 details.

 Section 2.X.8.Z, DIV: Divide Vector Components by Scalar

 The DIV instruction performs a component-wise d ivide of the first vector
 operand by the second scalar operand to produce a 4-component result
 vector.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x / tmp1;
 result.y = tmp0.y / tmp1;
 result.z = tmp0.z / tmp1;
 result.w = tmp0.w / tmp1;

 DIV supports all three data type modifiers. Fo r floating-point division,
 this instruction is not guaranteed to produce r esults identical to a
 RCP/MUL instruction sequence.

 The results of an signed or unsigned integer di vision by zero are
 undefined.

 Section 2.X.8.Z, DP2: 2-Component Dot Product

 The DP2 instruction computes a two-component do t product of the two
 operands (using the first two components) and r eplicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DP2 supports only floating-point data type modi fiers.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 368

 Section 2.X.8.Z, DP2A: 2-Component Dot Product with Scalar Add

 The DP2 instruction computes a two-component do t product of the two
 operands (using the first two components), adds the x component of the
 third operand, and replicates the result to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + tmp2.x;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DP2A supports only floating-point data type mod ifiers.

 Section 2.X.8.Z, DP3: 3-Component Dot Product

 The DP3 instruction computes a three-component dot product of the two
 operands (using the x, y, and z components) and replicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DP3 supports only floating-point data type modi fiers.

 Section 2.X.8.Z, DP4: 4-Component Dot Product

 The DP4 instruction computes a four-component d ot product of the two
 operands and replicates the dot product to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1.w);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DP4 supports only floating-point data type modi fiers.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 369

 Section 2.X.8.Z, DPH: Homogeneous Dot Product

 The DPH instruction computes a three-component dot product of the two
 operands (using the x, y, and z components), ad ds the w component of the
 second operand, and replicates the sum to all f our components of the
 result vector. This is equivalent to a four-co mponent dot product where
 the w component of the first operand is forced to 1.0.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DPH supports only floating-point data type modi fiers.

 Section 2.X.8.Z, DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA, d^2,
 d^2, NA] and the second operand should be of th e form [NA, 1/d, NA, 1/d],
 where NA values are not relevant to the calcula tion and d is a vector
 length. If both vectors satisfy these conditio ns, the result vector will
 be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DP3 instruction
 (using the same vector for both operands) and 1 /d can be obtained from d^2
 using the RSQ instruction.

 This distance vector is useful for per-vertex l ight attenuation
 calculations: a DP3 operation using the distan ce vector and an
 attenuation constants vector as operands will y ield the attenuation
 factor.

 DST supports only floating-point data type modi fiers.

 Section 2.X.8.Z, ELSE: Start of If Test Else B lock

 The ELSE instruction signifies the end of the " execute if true" portion of
 an IF/ELSE/ENDIF block and the beginning of the "execute if false"
 portion.

 If the condition evaluated at the IF statement was TRUE, when a program
 reaches the ELSE statement, it has completed th e entire "execute if true"

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 370

 portion of the IF/ELSE/ENDIF block. Execution will continue at the
 corresponding ENDIF instruction.

 If the condition evaluated at the IF statement was FALSE, program
 execution would skip over the entire "execute i f true" portion of the
 IF/ELSE/ENDIF block, including the ELSE instruc tion.

 Section 2.X.8.Z, EMIT: Emit Vertex

 The EMIT instruction emits a new vertex to be a dded to the current output
 primitive generated by a geometry program, and is only available to
 geometry programs. See the NV_geometry_program 4 specification for more
 details.

 Section 2.X.8.Z, ENDIF: End of If Test Block

 The ENDIF instruction signifies the end of an I F/ELSE/ENDIF block. It has
 no other effect on program execution.

 Section 2.X.8,Z, ENDPRIM: End of Primitive

 A geometry program can emit multiple primitives in a single invocation.
 The ENDPRIM instruction is used in a geometry p rogram to signify the end
 of the current primitive and the beginning of a new primitive of the same
 type. It is only available to geometry program s. See the
 NV_geometry_program4 specification for more det ails.

 Section 2.X.8.Z, ENDREP: End of Repeat Block

 The ENDREP instruction specifies the end of a R EP block.

 When used with in conjunction with a REP instru ction with a loop count,
 ENDREP decrements the loop counter. If the dec remented loop counter is
 greater than zero, ENDREP transfers control to the instruction immediately
 after the corresponding REP instruction. If th e loop counter is less than
 or equal to zero, execution continues at the in struction following the
 ENDREP instruction. When used in conjunction w ith a REP instruction
 without loop count, ENDREP always transfers con trol to the instruction
 immediately after the REP instruction.

 if (REP instruction includes a loop count) {
 LoopCount--;
 if (LoopCount > 0) {
 continue execution at instruction followi ng corresponding REP
 instruction;
 }
 } else {
 continue execution at instruction following corresponding REP
 instruction;
 }

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 371

 Section 2.X.8.Z, EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates the approximation to all four components of the
 result vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

 EX2 supports only floating-point data type modi fiers.

 Section 2.X.8.Z, FLR: Floor

 The FLR instruction loads a single vector opera nd and performs a
 component-wise floor operation to generate a re sult vector.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

 The floor operation returns the nearest integer less than or equal to
 the operand. For example floor(-1.7) = -2.0, f loor(+1.0) = +1.0, and
 floor(+3.7) = +3.0.

 FLR supports all three data type modifiers. Th e single operand is always
 treated as a floating-point value, but the resu lt is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. If a valu e is not exactly
 representable using the data type of the result (e.g., an overflow or
 writing a negative value to an unsigned integer), the result is undefined.

 Section 2.X.8.Z, FRC: Fraction

 The FRC instruction extracts the fractional por tion of each component of
 the operand to generate a result vector. The f ractional portion of a
 component is defined as the result after subtra cting off the floor of the
 component (see FLR), and is always in the range [0.0, 1.0).

 For negative values, the fractional portion is NOT the number written to
 the right of the decimal point -- the fractiona l portion of -1.7 is not
 0.7 -- it is 0.3. 0.3 is produced by subtracti ng the floor of -1.7 (-2.0)
 from -1.7.

 tmp = VectorLoad(op0);
 result.x = fraction(tmp.x);
 result.y = fraction(tmp.y);
 result.z = fraction(tmp.z);
 result.w = fraction(tmp.w);

 FRC supports only floating-point data type modi fiers.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 372

 Section 2.X.8.Z, I2F: Integer to Float

 The I2F instruction converts the components of an integer vector operand
 to floating-point to produce a floating-point r esult vector.

 tmp = VectorLoad(op0);
 result.x = (float) tmp.x;
 result.y = (float) tmp.y;
 result.z = (float) tmp.z;
 result.w = (float) tmp.w;

 I2F supports only signed and unsigned integer d ata type modifiers. The
 single operand is interpreted according to the data type modifier. If no
 data type modifier is specified, the operand is treated as a signed
 integer vector. The result is always written a s a float.

 Section 2.X.8.Z, IF: Start of If Test Block

 The IF instruction performs a condition code te st to determine what
 instructions inside an IF/ELSE/ENDIF block are executed. If the test
 passes, execution continues at the instruction immediately following the
 IF instruction. If the test fails, IF transfer s control to the
 instruction immediately following the correspon ding ELSE instruction (if
 present) or the ENDIF instruction (if no ELSE i s present).

 Implementations may have a limited ability to n est IF blocks in any
 subroutine. If the number of IF/ENDIF blocks n ested inside each other is
 MAX_PROGRAM_IF_DEPTH_NV or higher, a program wi ll fail to compile.

 // Evaluate the condition. If the condition is true, continue at the
 // next instruction. Otherwise, continue at the
 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at the next instruction;
 } else if (IF block contains an ELSE statemen t) {
 continue execution at instruction following corresponding ELSE;
 } else {
 continue execution at instruction following corresponding ENDIF;
 }

 (Note: Unlike the NV_fragment_program2 extensi on, there is no run-time
 limit on the maximum overall depth of IF/ENDIF nesting. As long as each
 individual subroutine of the program obeys the static nesting limits,
 there will be no run-time errors in the program . With the
 NV_fragment_program2 extension, a program could terminate abnormally if it
 called a subroutine inside a very deeply nested set of IF/ENDIF blocks and
 the called subroutine also contained deeply nes ted IF/ENDIF blocks. SUch
 an error could occur even if neither subroutine exceeded static limits.)

 Section 2.X.8.Z, KIL: Kill Fragment

 The KIL instruction conditionally kills a fragm ent, and is only available
 to fragment programs. See the NV_fragment_prog ram4 specification for more
 details.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 373

 Section 2.X.8.Z, LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 If the scalar operand is zero or negative, the result is undefined.

 LG2 supports only floating-point data type modi fiers.

 Section 2.X.8.Z, LIT: Compute Lighting Coeffic ients

 The LIT instruction accelerates lighting comput ations by computing
 lighting coefficients for ambient, diffuse, and specular light
 contributions. The "x" component of the single operand is assumed to hold
 a diffuse dot product (n dot VP_pli, as in the vertex lighting equations
 in Section 2.13.1). The "y" component of the o perand is assumed to hold a
 specular dot product (n dot h_i). The "w" comp onent of the operand is
 assumed to hold the specular exponent of the ma terial (s_rm), and is
 clamped to the range (-128, +128) exclusive.

 The "x" component of the result vector receives the value that should be
 multiplied by the ambient light/material produc t (always 1.0). The "y"
 component of the result vector receives the val ue that should be
 multiplied by the diffuse light/material produc t (n dot VP_pli). The "z"
 component of the result vector receives the val ue that should be
 multiplied by the specular light/material produ ct (f_i * (n dot h_i) ^
 s_rm). The "w" component of the result is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is done
 in the standard per-vertex lighting operations. In addition, if the
 diffuse dot product is zero or negative, the sp ecular coefficient is
 forced to zero.

 tmp = VectorLoad(op0);
 if (tmp.x < 0) tmp.x = 0;
 if (tmp.y < 0) tmp.y = 0;
 if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0 -epsilon);
 else if (tmp.w > 128-epsilon) tmp.w = 128-eps ilon;
 result.x = 1.0;
 result.y = tmp.x;
 result.z = (tmp.x > 0) ? RoughApproxPower(tmp .y, tmp.w) : 0.0;
 result.w = 1.0;

 Since 0^0 is defined to be 1, RoughApproxPower(0.0, 0.0) will produce 1.0.

 LIT supports only floating-point data type modi fiers.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 374

 Section 2.X.8.Z, LRP: Linear Interpolation

 The LRP instruction performs a component-wise l inear interpolation between
 the second and third operands using the first o perand as the blend factor.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + (1 - tmp0.x) * t mp2.x;
 result.y = tmp0.y * tmp1.y + (1 - tmp0.y) * t mp2.y;
 result.z = tmp0.z * tmp1.z + (1 - tmp0.z) * t mp2.z;
 result.w = tmp0.w * tmp1.w + (1 - tmp0.w) * t mp2.w;

 LRP supports only floating-point data type modi fiers.

 Section 2.X.8.Z, MAD: Multiply and Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the third
 operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 The multiplication and addition operations in t his instruction are subject
 to the same rules as described for the MUL and ADD instructions.

 MAD supports all three data type modifiers.

 Section 2.X.8.Z, MAX: Maximum

 The MAX instruction computes component-wise max imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp0.x : tmp1. x;
 result.y = (tmp0.y > tmp1.y) ? tmp0.y : tmp1. y;
 result.z = (tmp0.z > tmp1.z) ? tmp0.z : tmp1. z;
 result.w = (tmp0.w > tmp1.w) ? tmp0.w : tmp1. w;

 MAX supports all three data type modifiers.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 375

 Section 2.X.8.Z, MIN: Minimum

 The MIN instruction computes component-wise min imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp1.x : tmp0. x;
 result.y = (tmp0.y > tmp1.y) ? tmp1.y : tmp0. y;
 result.z = (tmp0.z > tmp1.z) ? tmp1.z : tmp0. z;
 result.w = (tmp0.w > tmp1.w) ? tmp1.w : tmp0. w;

 MIN supports all three data type modifiers.

 Section 2.X.8.Z, MOD: Modulus

 The MOD instruction performs a component-wise m odulus operation on the first
 vector operand by the second scalar operand to produce a 4-component result
 vector.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x % tmp1;
 result.y = tmp0.y % tmp1;
 result.z = tmp0.z % tmp1;
 result.w = tmp0.w % tmp1;

 MOD supports both signed and unsigned integer d ata type modifiers. If no
 data type modifier is specified, both operands and the result are treated
 as signed integers.

 Section 2.X.8.Z, MOV: Move

 The MOV instruction copies the value of the ope rand to yield a result
 vector.

 result = VectorLoad(op0);

 MOV supports all three data type modifiers.

 Section 2.X.8.Z, MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two operands
 to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 MUL supports all three data type modifiers. Th e MUL instruction
 additionally supports three special modifiers.

 The "S24" and "U24" modifiers specify "fast" si gned or unsigned integer
 multiplies of 24-bit quantities, respectively. The results of such

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 376

 multiplies are undefined if either operand is o utside the range
 [-2^23,+2^23-1] for S24 or [0,2^24-1] for U24. If "S24" or "U24" is
 specified, the data type is implied and normal data type modifiers may not
 be provided.

 The "HI" modifier specifies a 32-bit integer mu ltiply that returns the 32
 most significant bits of the 64-bit product. I nteger multiplies without
 the "HI" modifier normally return the least sig nificant bits of the
 product. If "HI" is specified, either of the " S" or "U" integer data type
 modifiers must also be specified.

 Note that if condition code updates are perform ed on integer multiplies,
 the overflow or carry flags are always cleared, even if the product
 overflowed. If it is necessary to determine if the results of an integer
 multiply overflowed, the MUL.HI instruction may be used.

 Section 2.X.8.Z, NOT: Bitwise Not

 The NOT instruction performs a component-wise b itwise NOT operation on the
 source vector to produce a result vector.

 tmp = VectorLoad(op0);
 tmp.x = ~tmp.x;
 tmp.y = ~tmp.y;
 tmp.z = ~tmp.z;
 tmp.w = ~tmp.w;

 NOT supports only integer data type modifiers. If no type modifier is
 specified, the operand and the result are treat ed as signed integers.

 Section 2.X.8.Z, NRM: Normalize 3-Component Ve ctor

 The NRM instruction normalizes the vector given by the x, y, and z
 components of the vector operand to produce the x, y, and z components of
 the result vector. The w component of the resu lt is undefined.

 tmp = VectorLoad(op0);
 scale = ApproxRSQ(tmp.x * tmp.x + tmp.y * tmp .y + tmp.z * tmp.z);
 result.x = tmp.x * scale;
 result.y = tmp.y * scale;
 result.z = tmp.z * scale;
 result.w = undefined;

 NRM supports only floating-point data type modi fiers.

 Section 2.X.8.Z, OR: Bitwise Or

 The OR instruction performs a bitwise OR operat ion on the components of
 the two source vectors to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x | tmp1.x;
 result.y = tmp0.y | tmp1.y;
 result.z = tmp0.z | tmp1.z;
 result.w = tmp0.w | tmp1.w;

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 377

 OR supports only integer data type modifiers. If no type modifier is
 specified, both operands and the result are tre ated as signed integers.

 Section 2.X.8.Z, PK2H: Pack Two 16-bit Floats

 The PK2H instruction converts the "x" and "y" c omponents of the single
 floating-point vector operand into 16-bit float ing-point format, packs the
 bit representation of these two floats into a 3 2-bit unsigned integer, and
 replicates that value to all four components of the result vector. The
 PK2H instruction can be reversed by the UP2H in struction below.

 tmp0 = VectorLoad(op0);
 /* result obtained by combining raw bits of t mp0.x, tmp0.y */
 result.x = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.y = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.z = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.w = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);

 PK2H supports all three data type modifiers. T he single operand is always
 treated as a floating-point value, but the resu lt is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. For integ er results, the bits can be
 interpreted as described above. For floating-p oint result variables, the
 packed results do not constitute a meaningful f loating-point variable and
 should only be used to feed future unpack instr uctions.

 A program will fail to load if it contains a PK 2H instruction that writes
 its results to a variable declared as "SHORT".

 Section 2.X.8.Z, PK2US: Pack Two Floats as Uns igned 16-bit

 The PK2US instruction converts the "x" and "y" components of the single
 floating-point vector operand into a packed pai r of 16-bit unsigned
 scalars. The scalars are represented in a bit pattern where all '0' bits
 corresponds to 0.0 and all '1' bits corresponds to 1.0. The bit
 representations of the two converted components are packed into a 32-bit
 unsigned integer, and that value is replicated to all four components of
 the result vector. The PK2US instruction can b e reversed by the UP2US
 instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 us.x = round(65535.0 * tmp0.x); /* us is a u short vector */
 us.y = round(65535.0 * tmp0.y);
 /* result obtained by combining raw bits of u s. */
 result.x = ((us.x) | (us.y << 16));
 result.y = ((us.x) | (us.y << 16));
 result.z = ((us.x) | (us.y << 16));
 result.w = ((us.x) | (us.y << 16));

 PK2US supports all three data type modifiers. The single operand is
 always treated as a floating-point value, but t he result is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. For integ er result variables, the

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 378

 bits can be interpreted as described above. Fo r floating-point result
 variables, the packed results do not constitute a meaningful
 floating-point variable and should only be used to feed future unpack
 instructions.

 A program will fail to load if it contains a PK 2S instruction that writes
 its results to a variable declared as "SHORT".

 Section 2.X.8.Z, PK4B: Pack Four Floats as Sig ned 8-bit

 The PK4B instruction converts the four componen ts of the single
 floating-point vector operand into 8-bit signed quantities. The signed
 quantities are represented in a bit pattern whe re all '0' bits corresponds
 to -128/127 and all '1' bits corresponds to +12 7/127. The bit
 representations of the four converted component s are packed into a 32-bit
 unsigned integer, and that value is replicated to all four components of
 the result vector. The PK4B instruction can be reversed by the UP4B
 instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < -128/127) tmp0.x = -128/127;
 if (tmp0.y < -128/127) tmp0.y = -128/127;
 if (tmp0.z < -128/127) tmp0.z = -128/127;
 if (tmp0.w < -128/127) tmp0.w = -128/127;
 if (tmp0.x > +127/127) tmp0.x = +127/127;
 if (tmp0.y > +127/127) tmp0.y = +127/127;
 if (tmp0.z > +127/127) tmp0.z = +127/127;
 if (tmp0.w > +127/127) tmp0.w = +127/127;
 ub.x = round(127.0 * tmp0.x + 128.0); /* ub is a ubyte vector */
 ub.y = round(127.0 * tmp0.y + 128.0);
 ub.z = round(127.0 * tmp0.z + 128.0);
 ub.w = round(127.0 * tmp0.w + 128.0);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 PK4B supports all three data type modifiers. T he single operand is always
 treated as a floating-point value, but the resu lt is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. For integ er result variables, the
 bits can be interpreted as described above. Fo r floating-point result
 variables, the packed results do not constitute a meaningful
 floating-point variable and should only be used to feed future unpack
 instructions. A program will fail to load if i t contains a PK4B
 instruction that writes its results to a variab le declared as "SHORT".

 Section 2.X.8.Z, PK4UB: Pack Four Floats as Un signed 8-bit

 The PK4UB instruction converts the four compone nts of the single
 floating-point vector operand into a packed gro uping of 8-bit unsigned
 scalars. The scalars are represented in a bit pattern where all '0' bits
 corresponds to 0.0 and all '1' bits corresponds to 1.0. The bit
 representations of the four converted component s are packed into a 32-bit
 unsigned integer, and that value is replicated to all four components of
 the result vector. The PK4UB instruction can b e reversed by the UP4UB

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 379

 instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 if (tmp0.z < 0.0) tmp0.z = 0.0;
 if (tmp0.z > 1.0) tmp0.z = 1.0;
 if (tmp0.w < 0.0) tmp0.w = 0.0;
 if (tmp0.w > 1.0) tmp0.w = 1.0;
 ub.x = round(255.0 * tmp0.x); /* ub is a uby te vector */
 ub.y = round(255.0 * tmp0.y);
 ub.z = round(255.0 * tmp0.z);
 ub.w = round(255.0 * tmp0.w);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 PK4UB supports all three data type modifiers. The single operand is
 always treated as a floating-point value, but t he result is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. For integ er result variables, the
 bits can be interpreted as described above. Fo r floating-point result
 variables, the packed results do not constitute a meaningful
 floating-point variable and should only be used to feed future unpack
 instructions.

 A program will fail to load if it contains a PK 4UB instruction that writes
 its results to a variable declared as "SHORT".

 Section 2.X.8.Z, POW: Exponentiate

 The POW instruction approximates the value of t he first scalar operand
 raised to the power of the second scalar operan d and replicates it to all
 four components of the result vector.

 tmp0 = ScalarLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = ApproxPower(tmp0, tmp1);
 result.y = ApproxPower(tmp0, tmp1);
 result.z = ApproxPower(tmp0, tmp1);
 result.w = ApproxPower(tmp0, tmp1);

 The exponentiation approximation function may b e implemented using the
 base 2 exponentiation and logarithm approximati on operations in the EX2
 and LG2 instructions. In particular,

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 Note that a logarithm may be involved even for cases where the exponent is
 an integer. This means that it may not be poss ible to exponentiate
 correctly with a negative base. In constrast, it is possible in a
 "normal" mathematical formulation to raise nega tive numbers to integral
 powers (e.g., (-3)^2== 9, and (-0.5)^-2==4).

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 380

 POW supports only floating-point data type modi fiers.

 Section 2.X.8.Z, RCC: Reciprocal (Clamped)

 The RCC instruction approximates the reciprocal of the scalar operand,
 clamps the result to one of two ranges, and rep licates the clamped result
 to all four components of the result vector.

 If the approximated reciprocal is greater than 0.0, the result is clamped
 to the range [2^-64, 2^+64]. If the approximat e reciprocal is not greater
 than zero, the result is clamped to the range [-2^+64, -2^-64].

 tmp = ScalarLoad(op0);
 result.x = ClampApproxReciprocal(tmp);
 result.y = ClampApproxReciprocal(tmp);
 result.z = ClampApproxReciprocal(tmp);
 result.w = ClampApproxReciprocal(tmp);

 RCC supports only floating-point data type modi fiers.

 Section 2.X.8.Z, RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar operand and
 replicates it to all four components of the res ult vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 RCP supports only floating-point data type modi fiers.

 Section 2.X.8.Z, REP: Start of Repeat Block

 The REP instruction begins a REP/ENDREP block. The REP instruction
 supports an optional operand whose x component specifies the initial value
 for the loop count. The loop count indicates t he number of times the
 instructions between the REP and corresponding ENDREP instruction will be
 executed. If the initial value of the loop cou nt is not positive, the
 entire block is skipped and execution continues at the instruction
 following the corresponding ENDREP instruction. If the loop count is
 specified as a floating-point value, it is conv erted to the largest
 integer less than or equal to the specified val ue (i.e., taking its
 floor).

 If no operand is provided to REP, the loop coun t is ignored and the
 corresponding ENDREP instruction unconditionall y transfers control to the
 instruction immediately following the REP instr uction. The only way to
 exit such a loop is with the BRK instruction. To prevent obvious infinite
 loops, a program that includes a REP/ENDREP blo ck with no loop count will
 fail to compile unless it contains either a BRK instruction at the current
 nesting level or a RET instruction at any nesti ng level.

 Implementations may have a limited ability to n est REP/ENDREP blocks. If
 the number of REP/ENDREP blocks nested inside e ach other is

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 381

 MAX_PROGRAM_LOOP_DEPTH_NV or higher, a program will fail to compile.

 // Set up loop information for the new nestin g level.
 tmp = VectorLoad(op0);
 LoopCount = floor(tmp.x);
 if (LoopCount <= 0) {
 continue execution at the corresponding END REP;
 }

 REP supports all three data type modifiers. Th e single operand is
 interpreted according to the data type modifier .

 (Note: Unlike the NV_fragment_program2 extensi on, REP blocks in this
 extension support fully general looping; the sp ecified loop count can be
 computed in the program itself. Additionally, there is no run-time limit
 on the maximum overall depth of REP/ENDREP nest ing. As long as each
 individual subroutine of the program obeys the static nesting limits,
 there will be no run-time errors in the program . With the
 NV_fragment_program2 extension, a program could terminate abnormally if it
 called a subroutine inside a deeply nested set of REP/ENDREP blocks and
 the called subroutine also contained deeply nes ted REP/ENDREP blocks.
 Such an error could occur even if neither subro utine exceeded static
 limits.)

 Section 2.X.8.Z, RET: Subroutine Return

 The RET instruction conditionally returns from a subroutine initiated by a
 CAL instruction by popping an instruction refer ence off the top of the
 call stack and transferring control to the refe renced instruction. The
 following pseudocode describes the operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth <= 0) {
 // terminate program
 } else {
 callStackDepth--;
 instruction = callStack[callStackDepth];
 }

 // continue execution at <instruction>
 } else {
 // do nothing
 }

 In the pseudocode, <callStackDepth> is the dept h of the call stack,
 <callStack> is an array holding the call stack, and <instruction> is a
 reference to an instruction previously pushed o nto the call stack.

 If the call stack is empty when RET executes, t he program terminates
 normally.

 Section 2.X.8.Z, RFL: Reflection Vector

 The RFL instruction computes the reflection of the second vector operand
 (the "direction" vector) about the vector speci fied by the first vector
 operand (the "axis" vector). Both operands are treated as 3D vectors (the

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 382

 w components are ignored). The result vector i s another 3D vector (the
 "reflected direction" vector). The length of t he result vector, ignoring
 rounding errors, should equal that of the secon d operand.

 axis = VectorLoad(op0);
 direction = VectorLoad(op1);
 tmp.w = (axis.x * axis.x + axis.y * axis.y + axis.z * axis.z);
 tmp.x = (axis.x * direction.x + axis.y * dire ction.y +
 axis.z * direction.z);
 tmp.x = 2.0 * tmp.x;
 tmp.x = tmp.x / tmp.w;
 result.x = tmp.x * axis.x - direction.x;
 result.y = tmp.x * axis.y - direction.y;
 result.z = tmp.x * axis.z - direction.z;

 RFL supports only floating-point data type modi fiers.

 Section 2.X.8.Z, ROUND: Round to Nearest Integ er

 The ROUND instruction loads a single vector ope rand and performs a
 component-wise round operation to generate a re sult vector.

 tmp = VectorLoad(op0);
 result.x = round(tmp.x);
 result.y = round(tmp.y);
 result.z = round(tmp.z);
 result.w = round(tmp.w);

 The round operation returns the nearest integer to the operand. If the
 fractional portion of the operand is 0.5, round () selects the nearest even
 integer. For example round(-1.7) = -2.0, round (+1.0) = +1.0, and
 round(+3.7) = +4.0.

 ROUND supports all three data type modifiers. The single operand is
 always treated as a floating-point value, but t he result is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. If a valu e is not exactly
 representable using the data type of the result (e.g., an overflow or
 writing a negative value to an unsigned integer), the result is undefined.

 Section 2.X.8.Z, RSQ: Reciprocal Square Root

 The RSQ instruction approximates the reciprocal of the square root of the
 scalar operand and replicates it to all four co mponents of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

 If the operand is less than or equal to zero, t he results of the
 instruction are undefined.

 RSQ supports only floating-point data type modi fiers.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 383

 Note that this instruction differs from the RSQ instruction in
 ARB_vertex_program in that it does not implicit ly take the absolute value
 of its operand. The |abs| operator can be used to achieve equivalent
 semantics.

 Section 2.X.8.Z, SAD: Sum of Absolute Differen ces

 The SAD instruction performs a component-wise d ifference of the first two
 integer operands (subtracting the second from t he first), and then does a
 component-wise add of the absolute value of the difference to the third
 unsigned integer operand to yield an unsigned i nteger result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = abs(tmp0.x - tmp1.x) + tmp2.x;
 result.y = abs(tmp0.y - tmp1.y) + tmp2.y;
 result.z = abs(tmp0.z - tmp1.z) + tmp2.z;
 result.w = abs(tmp0.w - tmp1.w) + tmp2.w;

 SAD supports signed and unsigned integer data t ype modifiers. The first
 two operands are interpreted according to the d ata type modifier. The
 third operand and the result are always unsigne d integers.

 Section 2.X.8.Z, SCS: Sine/Cosine without Redu ction

 The SCS instruction approximates the trigonomet ric sine and cosine of the
 angle specified by the scalar operand and place s the cosine in the x
 component and the sine in the y component of th e result vector. The z and
 w components of the result vector are undefined . The angle is specified
 in radians and must be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxSine(tmp);

 If the scalar operand is not in the range [-PI, PI], the result vector is
 undefined.

 SCS supports only floating-point data type modi fiers.

 Section 2.X.8.Z, SEQ: Set on Equal

 The SEQ instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 equal to that of the second, and a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y == tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z == tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w == tmp1.w) ? TRUE : FALSE;

 SEQ supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 384

 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to a FALSE
 value (described below).

 result.x = FALSE;
 result.y = FALSE;
 result.z = FALSE;
 result.w = FALSE;

 SFL supports all data type modifiers. For floa ting-point data types, the
 FALSE value is 0.0. For signed and unsigned in teger data types, the FALSE
 value is zero.

 Section 2.X.8.Z, SGE: Set on Greater Than or E qual

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 greater than or equal to that of the second, an d a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y >= tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z >= tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w >= tmp1.w) ? TRUE : FALSE;

 SGE supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 greater than that of the second, and a FALSE va lue otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y > tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z > tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w > tmp1.w) ? TRUE : FALSE;

 SGT supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 385

 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SHL: Shift Left

 The SHL instruction performs a component-wise l eft shift of the bits of
 the first operand by the value of the second sc alar operand to produce a
 result vector. The bits vacated during the shi ft operation are filled
 with zeroes.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x << tmp1;
 result.y = tmp0.y << tmp1;
 result.z = tmp0.z << tmp1;
 result.w = tmp0.w << tmp1;

 The results of a shift operation ("<<") are und efined if the value of the
 second operand is negative, or greater than or equal to the number of bits
 in the first operand.

 SHL supports both signed and unsigned integer d ata type modifiers. If no
 modifier is provided, the operands and the resu lt are treated as signed
 integers.

 Section 2.X.8.Z, SHR: Shift Right

 The SHR instruction performs a component-wise r ight shift of the bits of
 the first operand by the value of the second sc alar operand to produce a
 result vector. The bits vacated during shift o peration are filled with
 zeros if the operand is non-negative and ones o therwise.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x >> tmp1;
 result.y = tmp0.y >> tmp1;
 result.z = tmp0.z >> tmp1;
 result.w = tmp0.w >> tmp1;

 The results of a shift operation (">>") are und efined if the value of the
 second operand is negative, or greater than or equal to the number of bits
 in the first operand.

 SHR supports both signed and unsigned integer d ata type modifiers. If no
 modifiers are provided, the operands and the re sult are treated as signed
 integers.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 386

 Section 2.X.8.Z, SIN: Sine with Reduction to [-PI,PI]

 The SIN instruction approximates the trigonomet ric sine of the angle
 specified by the scalar operand and replicates it to all four components
 of the result vector. The angle is specified i n radians and does not have
 to be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 SIN supports only floating-point data type modi fiers.

 Section 2.X.8.Z, SLE: Set on Less Than or Equa l

 The SLE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 less than or equal to that of the second, and a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y <= tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z <= tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w <= tmp1.w) ? TRUE : FALSE;

 SLE supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SLT: Set on Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 less than that of the second, and a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y < tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z < tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w < tmp1.w) ? TRUE : FALSE;

 SLT supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 387

 Section 2.X.8.Z, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 less than that of the second, and a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y != tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z != tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w != tmp1.w) ? TRUE : FALSE;

 SNE supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SSG: Set Sign

 The SSG instruction generates a result vector c ontaining the signs of
 each component of the single vector operand. E ach component of the
 result vector is 1.0 if the corresponding compo nent of the operand
 is greater than zero, 0.0 if the corresponding component of the
 operand is equal to zero, and -1.0 if the corre sponding component
 of the operand is less than zero.

 tmp = VectorLoad(op0);
 result.x = SetSign(tmp.x);
 result.y = SetSign(tmp.y);
 result.z = SetSign(tmp.z);
 result.w = SetSign(tmp.w);

 SSG supports only floating-point data type modi fiers.

 Section 2.X.8.Z, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to a TRUE value
 (described below).

 result.x = TRUE;
 result.y = TRUE;
 result.z = TRUE;
 result.w = TRUE;

 STR supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0. For signed integer data typ es, the TRUE value is -1.
 For unsigned integer data types, the TRUE value is the maximum integer
 value (all bits are ones).

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 388

 Section 2.X.8.Z, SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the second
 operand from the first to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

 SUB supports all three data type modifiers.

 Section 2.X.8.Z, SWZ: Extended Swizzle

 The SWZ instruction loads the single vector ope rand, and performs a
 swizzle operation more powerful than that provi ded for loading normal
 vector operands to yield an instruction vector.

 After the operand is loaded, the "x", "y", "z", and "w" components of the
 result vector are selected by the first, second , third, and fourth matches
 of the <extSwizComp> pattern in the <extendedSw izzle> rule.

 A result component can be selected from any of the four components of the
 operand or the constants 0.0 and 1.0. The resu lt component can also be
 optionally negated. The following pseudocode d escribes the component
 selection method. "operand" refers to the vect or operand, "select" is an
 enumerant where the values ZERO, ONE, X, Y, Z, and W correspond to the
 <extSwizSel> rule matching "0", "1", "x", "y", "z", and "w", respectively.
 "negate" is TRUE if and only if the <optionalSi gn> rule in <extSwizComp>
 matches "-".

 float ExtSwizComponent(floatVec operand, enum select, boolean negate)
 {
 float result;
 switch (select) {
 case ZERO: result = 0.0; break;
 case ONE: result = 1.0; break;
 case X: result = operand.x; break;
 case Y: result = operand.y; break;
 case Z: result = operand.z; break;
 case W: result = operand.w; break;
 }
 if (negate) {
 result = -result;
 }
 return result;
 }

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 389

 The entire extended swizzle operation is then d efined using the following
 pseudocode:

 tmp = VectorLoad(op0);
 result.x = ExtSwizComponent(tmp, xSelect, xNe gate);
 result.y = ExtSwizComponent(tmp, ySelect, yNe gate);
 result.z = ExtSwizComponent(tmp, zSelect, zNe gate);
 result.w = ExtSwizComponent(tmp, wSelect, wNe gate);

 "xSelect", "xNegate", "ySelect", "yNegate", "zS elect", "zNegate",
 "wSelect", and "wNegate" correspond to the "sel ect" and "negate" values
 above for the four <extSwizComp> matches.

 Since this instruction allows for component sel ection and negation for
 each individual component, the grammar does not allow the use of the
 normal swizzle and negation operations allowed for vector operands in
 other instructions.

 SWZ supports only floating-point data type modi fiers.

 Section 2.X.8.Z, TEX: Texture Sample

 The TEX instruction takes the four components o f a single floating-point
 source vector and performs a filtered texture a ccess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. Partial derivati ves and the level of detail
 are computed automatically.

 tmp = VectorLoad(op0);
 ddx = ComputePartialsX(tmp);
 ddy = ComputePartialsY(tmp);
 lambda = ComputeLOD(ddx, ddy);
 result = TextureSample(tmp, lambda, ddx, ddy, texelOffset);

 TEX supports all three data type modifiers. Th e single operand is always
 treated as a floating-point vector; the results are interpreted according
 to the data type modifier.

 Section 2.X.8.Z, TRUNC: Truncate (Round Toward Zero)

 The TRUNC instruction loads a single vector ope rand and performs a
 component-wise truncate operation to generate a result vector.

 tmp = VectorLoad(op0);
 result.x = trunc(tmp.x);
 result.y = trunc(tmp.y);
 result.z = trunc(tmp.z);
 result.w = trunc(tmp.w);

 The truncate operation returns the nearest inte ger to zero smaller in
 magnitude than the operand. For example trunc(-1.7) = -1.0, trunc(+1.0) =
 +1.0, and trunc(+3.7) = +3.0.

 TRUNC supports all three data type modifiers. The single operand is
 always treated as a floating-point value, but t he result is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. If a valu e is not exactly

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 390

 representable using the data type of the result (e.g., an overflow or
 writing a negative value to an unsigned integer), the result is undefined.

 Section 2.X.8.Z, TXB: Texture Sample with Bias

 The TXB instruction takes the four components o f a single floating-point
 source vector and performs a filtered texture a ccess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. Partial derivati ves and the level of detail
 are computed automatically, but the fourth comp onent of the source vector
 is added to the computed LOD prior to sampling.

 tmp = VectorLoad(op0);
 ddx = ComputePartialsX(tmp);
 ddy = ComputePartialsY(tmp);
 lambda = ComputeLOD(ddx, ddy);
 result = TextureSample(tmp, lambda + tmp.w, d dx, ddy, texelOffset);

 The single source vector in the TXB instruction does not have enough
 coordinates to specify a lookup into a two-dime nsional array texture or
 cube map texture with both an LOD bias and an e xplicit reference value for
 depth comparison. A program will fail to load if it contains a TXB
 instruction with a target of SHADOWCUBE or SHAD OWARRAY2D.

 TXB supports all three data type modifiers. Th e single operand is always
 treated as a floating-point vector; the results are interpreted according
 to the data type modifier.

 Section 2.X.8.Z, TXD: Texture Sample with Part ials

 The TXD instruction takes the four components o f the first floating-point
 source vector and performs a filtered texture a ccess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. The partial deri vatives of the texture
 coordinates with respect to X and Y are specifi ed by the second and third
 floating-point source vectors. The level of de tail is computed
 automatically using the provided partial deriva tives.

 Note that for cube map texture targets, the pro vided partial derivatives
 are in the coordinate system used before textur e coordinates are projected
 onto the appropriate cube face. The partial de rivatives of the
 post-projection texture coordinates, which are used for level-of-detail
 and anisotropic filtering calculations, are der ived from the original
 coordinates and partial derivatives in an imple mentation-dependent manner.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 lambda = ComputeLOD(tmp1, tmp2);
 result = TextureSample(tmp0, lambda, tmp1, tm p2, texelOffset);

 TXD supports all three data type modifiers. Al l three operands are always
 treated as floating-point vectors; the results are interpreted according
 to the data type modifier.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 391

 Section 2.X.8.Z, TXF: Texel Fetch

 The TXF instruction takes the four components o f a single signed integer
 source vector and performs a single texel fetch as described in Section
 2.X.4.4. The first three components provide th e <i>, <j>, and <k> values
 for the texel fetch, and the fourth component i s used to determine the LOD
 to access. The returned (R,G,B,A) value is wri tten to the floating-point
 result vector. Partial derivatives are irrelev ant for single texel
 fetches.

 tmp = VectorLoad(op0);
 result = TexelFetch(tmp, texelOffset);

 TXF supports all three data type modifiers. Th e single vector operand is
 treated as a signed integer vector; the results are interpreted according
 to the data type modifier.

 Section 2.X.8.Z, TXL: Texture Sample with LOD

 The TXL instruction takes the four components o f a single floating-point
 source vector and performs a filtered texture a ccess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. The level of det ail is taken from the
 fourth component of the source vector.

 Partial derivatives are not computed by the TXL instruction and
 anisotropic filtering is not performed.

 tmp = VectorLoad(op0);
 ddx = (0,0,0);
 ddy = (0,0,0);
 result = TextureSample(tmp, tmp.w, ddx, ddy, texelOffset);

 The single source vector in the TXL instruction does not have enough
 coordinates to specify a lookup into a 2D array or cube map texture with
 both an explicit LOD and a reference value for depth comparison. A
 program will fail to load if it contains a TXL instruction with a target
 of SHADOWCUBE or SHADOWARRAY2D.

 TXL supports all three data type modifiers. Th e single vector operand is
 treated as a floating-point vector; the results are interpreted according
 to the data type modifier.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 392

 Section 2.X.8.Z, TXP: Texture Sample with Proj ection

 The TXP instruction divides the first three com ponents of its single
 floating-point source vector by its fourth comp onent, maps the results to
 s, t, and r, and performs a filtered texture ac cess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. Partial derivati ves and the level of detail
 are computed automatically.

 tmp0 = VectorLoad(op0);
 tmp0.x = tmp0.x / tmp0.w;
 tmp0.y = tmp0.y / tmp0.w;
 tmp0.z = tmp0.z / tmp0.w;
 ddx = ComputePartialsX(tmp);
 ddy = ComputePartialsY(tmp);
 lambda = ComputeLOD(ddx, ddy);
 result = TextureSample(tmp, lambda, ddx, ddy, texelOffset);

 The single source vector in the TXP instruction does not have enough
 coordinates to specify a lookup into a 2D array or cube map texture with
 both a Q coordinate and an explicit reference v alue for depth comparison.
 A program will fail to load if it contains a TX P instruction with a target
 of SHADOWCUBE or SHADOWARRAY2D.

 TXP supports all three data type modifiers. Th e single vector operand is
 treated as a floating-point vector; the results are interpreted according
 to the data type modifier.

 Section 2.X.8.Z, TXQ: Texture Size Query

 The TXQ instruction takes the first component o f the single integer vector
 operand, adds the number of the base level of t he specified texture to
 determine a texture image level, and returns an integer result vector
 containing the size of the image at that level of the texture.

 For one-dimensional and one-dimensional array t extures, the "x" component
 of the result vector is filled with the width o f the image(s). For
 two-dimensional, rectangle, cube map, and two-d imensional array textures,
 the "x" and "y" components are filled with the width and height of the
 image(s). For three-dimensional textures, the "x", "y", and "z"
 components are filled with the width, height, a nd depth of the image.
 Additionally, the number of layers in an array texture is returned in the
 "y" component of the result for one-dimensional array textures or the "z"
 component for two-dimensional array textures. All other components of the
 result vector is undefined. For the purposes o f this instruction, the
 width, height, and depth of a texture do NOT in clude any border.

 tmp0 = VectorLoad(op0);
 tmp0.x = tmp0.x + texture[op1].target[op2].ba se_level;
 result.x = texture[op1].target[op2].level[tmp 0.x].width;
 result.y = texture[op1].target[op2].level[tmp 0.x].height;
 result.z = texture[op1].target[op2].level[tmp 0.x].depth;

 If the level computed by adding the operand to the base level of the
 texture is less than the base level number or g reater than the maximum
 level number, the results are undefined.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 393

 TXQ supports no data type modifiers; the scalar operand and the result
 vector are both interpreted as signed integers.

 Section 2.X.8.Z, UP2H: Unpack Two 16-bit Float s

 The UP2H instruction unpacks two 16-bit floats stored together in a 32-bit
 scalar operand. The first 16-bit float (stored in the 16 least
 significant bits) is written into the "x" and " z" components of the result
 vector; the second is written into the "y" and "w" components of the
 result vector.

 This operation undoes the type conversion and p acking performed by
 the PK2H instruction.

 tmp = ScalarLoad(op0);
 result.x = (fp16) (RawBits(tmp) & 0xFFFF);
 result.y = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);
 result.z = (fp16) (RawBits(tmp) & 0xFFFF);
 result.w = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);

 UP2H supports all three data type modifiers. T he single operand is read
 as a floating-point value, a signed integer, or an unsigned integer, as
 specified by the data type modifier; the 32 lea st significant bits of the
 encoding are used for unpacking. For floating- point operand variables, it
 is expected (but not required) that the operand was produced by a previous
 pack instruction. The result is always written as a floating-point
 vector.

 A program will fail to load if it contains a UP 2H instruction whose
 operand is a variable declared as "SHORT".

 Section 2.X.8.Z, UP2US: Unpack Two Unsigned 16 -bit Integers

 The UP2US instruction unpacks two 16-bit unsign ed values packed
 together in a 32-bit scalar operand. The unsig ned quantities are
 encoded where a bit pattern of all '0' bits cor responds to 0.0 and
 a pattern of all '1' bits corresponds to 1.0. The "x" and "z"
 components of the result vector are obtained fr om the 16 least
 significant bits of the operand; the "y" and "w " components are
 obtained from the 16 most significant bits.

 This operation undoes the type conversion and p acking performed by
 the PK2US instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.y = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;
 result.z = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.w = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;

 UP2US supports all three data type modifiers. The single operand is read
 as a floating-point value, a signed integer, or an unsigned integer, as
 specified by the data type modifier; the 32 lea st significant bits of the
 encoding are used for unpacking. For floating- point operand variables, it
 is expected (but not required) that the operand was produced by a previous
 pack instruction. The result is always written as a floating-point
 vector.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 394

 A GPU program will fail to load if it contains a UP2S instruction
 whose operand is a variable declared as "SHORT" .

 Section 2.X.8.Z, UP4B: Unpack Four Signed 8-bi t Integers

 The UP4B instruction unpacks four 8-bit signed values packed together
 in a 32-bit scalar operand. The signed quantit ies are encoded where
 a bit pattern of all '0' bits corresponds to -1 28/127 and a pattern
 of all '1' bits corresponds to +127/127. The " x" component of the
 result vector is the converted value correspond ing to the 8 least
 significant bits of the operand; the "w" compon ent corresponds to
 the 8 most significant bits.

 This operation undoes the type conversion and p acking performed by
 the PK4B instruction.

 tmp = ScalarLoad(op0);
 result.x = (((RawBits(tmp) >> 0) & 0xFF) - 12 8) / 127.0;
 result.y = (((RawBits(tmp) >> 8) & 0xFF) - 12 8) / 127.0;
 result.z = (((RawBits(tmp) >> 16) & 0xFF) - 1 28) / 127.0;
 result.w = (((RawBits(tmp) >> 24) & 0xFF) - 1 28) / 127.0;

 UP2B supports all three data type modifiers. T he single operand is read
 as a floating-point value, a signed integer, or an unsigned integer, as
 specified by the data type modifier; the 32 lea st significant bits of the
 encoding are used for unpacking. For floating- point operand variables, it
 is expected (but not required) that the operand was produced by a previous
 pack instruction. The result is always written as a floating-point
 vector.

 A program will fail to load if it contains a UP 4B instruction whose
 operand is a variable declared as "SHORT".

 Section 2.X.8.Z, UP4UB: Unpack Four Unsigned 8 -bit Integers

 The UP4UB instruction unpacks four 8-bit unsign ed values packed
 together in a 32-bit scalar operand. The unsig ned quantities are
 encoded where a bit pattern of all '0' bits cor responds to 0.0 and a
 pattern of all '1' bits corresponds to 1.0. Th e "x" component of the
 result vector is obtained from the 8 least sign ificant bits of the
 operand; the "w" component is obtained from the 8 most significant
 bits.

 This operation undoes the type conversion and p acking performed by
 the PK4UB instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFF) / 25 5.0;
 result.y = ((RawBits(tmp) >> 8) & 0xFF) / 25 5.0;
 result.z = ((RawBits(tmp) >> 16) & 0xFF) / 25 5.0;
 result.w = ((RawBits(tmp) >> 24) & 0xFF) / 25 5.0;

 UP4UB supports all three data type modifiers. The single operand is read
 as a floating-point value, a signed integer, or an unsigned integer, as
 specified by the data type modifier; the 32 lea st significant bits of the
 encoding are used for unpacking. For floating- point operand variables, it

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 395

 is expected (but not required) that the operand was produced by a previous
 pack instruction. The result is always written as a floating-point
 vector.

 A program will fail to load if it contains a UP 4UB instruction whose
 operand is a variable declared as "SHORT".

 Section 2.X.8.Z, X2D: 2D Coordinate Transforma tion

 The X2D instruction multiplies the 2D offset ve ctor specified by the
 "x" and "y" components of the second vector ope rand by the 2x2 matrix
 specified by the four components of the third v ector operand, and adds
 the transformed offset vector to the 2D vector specified by the "x"
 and "y" components of the first vector operand. The first component
 of the sum is written to the "x" and "z" compon ents of the result;
 the second component is written to the "y" and "w" components of
 the result.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.y = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;
 result.z = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.w = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;

 X2D supports only floating-point data type modi fiers.

 Section 2.X.8.Z, XOR: Exclusive Or

 The XOR instruction performs a bitwise XOR oper ation on the components of
 the two source vectors to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x ^ tmp1.x;
 result.y = tmp0.y ^ tmp1.y;
 result.z = tmp0.z ^ tmp1.z;
 result.w = tmp0.w ^ tmp1.w;

 XOR supports only integer data type modifiers. If no type modifier is
 specified, both operands and the result are tre ated as signed integers.

 Section 2.X.8.Z, XPD: Cross Product

 The XPD instruction computes the cross product using the first three
 components of its two vector operands to genera te the x, y, and z
 components of the result vector. The w compone nt of the result vector is
 undefined.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.y * tmp1.z - tmp0.z * tmp1.y;
 result.y = tmp0.z * tmp1.x - tmp0.x * tmp1.z;
 result.z = tmp0.x * tmp1.y - tmp0.y * tmp1.x;

 XPD supports only floating-point data type modi fiers.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 396

Additions to Chapter 3 of the OpenGL 1.5 Specificat ion (Rasterization)

 Modify Section 3.8.1, Texture Image Specificati on, p. 150

 (modify 4th paragraph, p. 151 -- add cubemaps t o the list of texture
 targets that can be used with DEPTH_COMPONENT t extures) Textures with a
 base internal format of DEPTH_COMPONENT are sup ported by texture image
 specification commands only if <target> is TEXT URE_1D, TEXTURE_2D,
 TEXTURE_CUBE_MAP, TEXTURE_RECTANGLE_ARB, TEXTURE_1D_ARRAY_EXT,
 TEXTURE_2D_ARRAY_EXT, PROXY_TEXTURE_1D PROXY_TEXTURE_2D,
 PROXY_TEXTURE_CUBE_MAP, PROXY_TEXTURE_RECTANGLE_ARB,
 PROXY_TEXTURE_1D_ARRAY_EXT, or PROXY_TEXTURE_2D _ARRAY_EXT. Using this
 format in conjunction with any other target wil l result in an
 INVALID_OPERATION error.

 Delete Section 3.8.7, Texture Wrap Modes. (The language in this section
 is folded into updates to the following section , and is no longer needed
 here.)

 Modify Section 3.8.8, Texture Minification:

 (replace the last paragraph, p. 171): Let s(x, y) be the function that
 associates an s texture coordinate with each se t of window coordinates
 (x,y) that lie within a primitive; define t(x,y) and r(x,y) analogously.
 Let

 u(x,y) = w_t * s(x,y) + offsetu_shader,
 v(x,y) = h_t * t(x,y) + offsetv_shader,
 w(x,y) = d_t * r(x,y) + offsetw_shader, and

 where w_t, h_t, and d_t are as defined by equat ions 3.15, 3.16, and 3.17
 with w_s, h_s, and d_s equal to the width, heig ht, and depth of the image
 array whose level is level_base. (offsetu_shad er, offsetv_shader,
 offsetw_shader) is the texel offset specified i n the vertex, geometry, or
 fragment program instruction used to perform th e access. For
 fixed-function texture accesses, all three shad er offsets are taken to be
 zero. For a one-dimensional texture, define v(x,y) == 0 and w(x,y) === 0;
 for two-dimensional textures, define w(x,y) == 0.

 (start a new paragraph with "For a polygon, rho is given at a fragment
 with window coordinates...", and then continue with the original spec
 text.)

 (replace text starting with the last paragraph on p. 172, continuing to
 the end of p. 174)

 The (u,v,w) coordinates are then modified accor ding the texture wrap
 modes, as specified in Table X.19, to generate a new set of coordinates
 (u',v',w').

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 397

 TEXTURE_WRAP_S Coordinate Transf ormation
 -------------------------- ----------------- -------------------------
 CLAMP u' = clamp(u, 0, w_t-0.5),
 if NEAREST filtering,
 clamp(u, 0, w_t),
 otherwise
 CLAMP_TO_EDGE u' = clamp(u, 0.5 , w_t-0.5)
 CLAMP_TO_BORDER u' = clamp(u, -0. 5, w_t+0.5)
 REPEAT u' = clamp(fmod(u , w_t), 0.5, w_t-0.5)
 MIRROR_CLAMP_EXT u' = clamp(fabs(u), 0.5, w_t-0.5),
 if NEAREST filtering, or
 = clamp(fabs(u), 0.5, w_t),
 otherwise
 MIRROR_CLAMP_TO_EDGE_EXT u' = clamp(fabs(u), 0.5, w_t-0.5)
 MIRROR_CLAMP_TO_BORDER_EXT u' = clamp(fabs(u), 0.5, w_t+0.5)
 MIRRORED_REPEAT u' = w_t - clamp(fabs(w_t - fmod(u, 2*w_t)),
 0.5, w_t-0.5),

 Table X.19: Texel coordinate wrap mode application. clamp(a, b,c)
 returns b if a<b, c if a>c, and a otherwise. fmod(a,b) returns
 a-b*floor(a/b), and fabs(a) returns the absol ute value of a. For the v
 and w coordinates, TEXTURE_WRAP_T and h_t, an d TEXTURE_WRAP_R and d_t,
 respectively, are used.

 When lambda indicates minification, the value a ssigned to
 TEXTURE_MIN_FILTER is used to determine how the texture value for a
 fragment is selected.

 When TEXTURE_MIN_FILTER is NEAREST, the texel i n the image array of level
 level_base that is nearest (in Manhattan distan ce) to that specified by
 (s,t,r) is obtained. For a three-dimensional t exture, the texel at
 location (i,j,k) becomes the texture value. Fo r a two-dimensional
 texture, k is irrelevant, and the texel at loca tion (i,j) becomes the
 texture value. For a one-dimensional texture, j and k are irrelevant, and
 the texel at location i becomes the texture val ue.

 If the selected (i,j,k), (i,j), or i location r efers to a border texel
 that satisfies any of the following conditions:

 i < -b_s,
 j < -b_s,
 k < -b_s,
 i >= w_l + b_s,
 j >= h_l + b_s, or
 j >= d_l + b_s,

 then the border values defined by TEXTURE_BORDE R_COLOR are used in place
 of the non-existent texel. If the texture conta ins color components, the
 values of TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match
 the texture’s internal format in a manner consi stent with table 3.15. If
 the texture contains depth components, the firs t component of
 TEXTURE_BORDER_COLOR is interpreted as a depth value.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 398

 When TEXTURE_MIN_FILTER is LINEAR, a 2x2x2 cube of texels in the image
 array of level level_base is selected. Let:

 i_0 = floor(u' - 0.5),
 j_0 = floor(v' - 0.5),
 k_0 = floor(w' - 0.5),
 i_1 = i_0 + 1,
 j_1 = j_0 + 1,
 k_1 = k_0 + 1,
 alpha = frac(u' - 0.5),
 beta = frac(v' - 0.5),
 gamma = frac(w' - 0.5),

 For a three-dimensional texture, the texture va lue tau is found as...

 (replace last paragraph, p.174) For any texel i n the equation above that
 refers to a border texel outside the defined ra nge of the image, the texel
 value is taken from the texture border color as with NEAREST filtering.

 Modify Section 3.8.14, Texture Comparison Modes (p. 185)

 (modify 2nd paragraph, p. 188, indicating that the Q texture coordinate is
 used for depth comparisons on cubemap textures)

 Let D_t be the depth texture value, in the rang e [0, 1]. For
 fixed-function texture lookups, let R be the in terpolated <r> texture
 coordinate, clamped to the range [0, 1]. For t exture lookups generated by
 a program instruction, let R be the reference v alue for depth comparisons
 provided in the instruction, also clamped to [0 , 1]. Then the effective
 texture value L_t, I_t, or A_t is computed as f ollows:

Additions to Chapter 4 of the OpenGL 1.5 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.5 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.5 Specificat ion (State and
State Requests)

 Modify Section 6.1.12 of the ARB_vertex_program specification.

 (Add new integer program parameter queries, plu s language that program
 environment or local parameter query results ar e undefined if the query
 specifies a data type incompatible with the dat a type of the parameter
 being queried.)

 The commands

 void GetProgramEnvParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramEnvParameterfvARB(enum target, uint index,
 float *param s);
 void GetProgramEnvParameterIivNV(enum target, uint index,

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 399

 int *params) ;
 void GetProgramEnvParameterIuivNV(enum target , uint index,
 uint *param s);

 obtain the current value for the program enviro nment parameter numbered
 <index> for the given program target <target>, and places the information
 in the array <params>. The values returned are undefined if the data type
 of the components of the parameter is not compa tible with the data type of
 <params>. Floating-point components are compat ible with "double" or
 "float"; signed and unsigned integer components are compatible with "int"
 and "uint", respectively. The error INVALID_EN UM is generated if <target>
 specifies a nonexistent program target or a pro gram target that does not
 support program environment parameters. The er ror INVALID_VALUE is
 generated if <index> is greater than or equal t o the
 implementation-dependent number of supported pr ogram environment
 parameters for the program target.

 ...

 The commands

 void GetProgramLocalParameterdvARB(enum targe t, uint index,
 double *pa rams);
 void GetProgramLocalParameterfvARB(enum targe t, uint index,
 float *par ams);
 void GetProgramLocalParameterIivNV(enum targe t, uint index,
 int *param s);
 void GetProgramLocalParameterIuivNV(enum targ et, uint index,
 uint *par ams);

 obtain the current value for the program local parameter numbered <index>
 belonging to the program object currently bound to <target>, and places
 the information in the array <params>. The val ues returned are undefined
 if the data type of the components of the param eter is not compatible with
 the data type of <params>. Floating-point comp onents are compatible with
 "double' or "float"; signed and unsigned intege r components are compatible
 with "int" and "uint", respectively. The error INVALID_ENUM is generated
 if <target> specifies a nonexistent program tar get or a program target
 that does not support program local parameters. The error INVALID_VALUE
 is generated if <index> is greater than or equa l to the
 implementation-dependent number of supported pr ogram local parameters for
 the program target.

 ...

 The command

 void GetProgramivARB(enum target, enum pname, int *params);

 obtains program state for the program target <t arget>, writing ...

 (add new paragraphs describing the new supporte d queries)

 If <pname> is PROGRAM_ATTRIB_COMPONENTS_NV or
 PROGRAM_RESULT_COMPONENTS_NV, GetProgramivARB r eturns a single integer
 holding the number of active attribute or resul t variable components,
 respectively, used by the program object curren tly bound to <target>.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 400

 If <pname> is MAX_PROGRAM_ATTRIB_COMPONENTS or
 MAX_PROGRAM_RESULT_COMPONENTS_NV, GetProgramivARB returns a single integer
 holding the maximum number of active attribute or result variable
 components, respectively, supported for program s of type <target>.

Additions to Appendix A of the OpenGL 1.5 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Errors

 The error INVALID_VALUE is generated by Program LocalParameter4fARB,
 ProgramLocalParameter4fvARB, ProgramLocalParame ter4dARB,
 ProgramLocalParameter4dvARB, ProgramLocalParame terI4iNV,
 ProgramLocalParameterI4ivNV, ProgramLocalParame terI4uiNV,
 ProgramLocalParameterI4uivNV, GetProgramLocalPa rameter4fvARB,
 GetProgramLocalParameter4dvARB, GetProgramLocal ParameterI4ivNV, and
 GetProgramLocalParameterI4uivNV if <index> is g reater than or equal to the
 number of program local parameters supported by <target>.

 The error INVALID_VALUE is generated by Program EnvParameter4fARB,
 ProgramEnvParameter4fvARB, ProgramEnvParameter4 dARB,
 ProgramEnvParameter4dvARB, ProgramEnvParameterI 4iNV,
 ProgramEnvParameterI4ivNV, ProgramEnvParameterI 4uiNV,
 ProgramEnvParameterI4uivNV, GetProgramEnvParame ter4fvARB,
 GetProgramEnvParameter4dvARB, GetProgramEnvPara meterI4ivNV, and
 GetProgramEnvParameterI4uivNV if <index> is gre ater than or equal to the
 number of program environment parameters suppor ted by <target>.

 The error INVALID_VALUE is generated by Program LocalParameters4fvNV,
 ProgramLocalParametersI4ivNV, and ProgramLocalP arametersI4uivNV if the sum
 of <index> and <count> is greater than the numb er of program local
 parameters supported by <target>.

 The error INVALID_VALUE is generated by Program EnvParameters4fvNV,
 ProgramEnvParametersI4ivNV, and ProgramEnvParam etersI4uivNV if the sum of
 <index> and <count> is greater than the number of program environment
 parameters supported by <target>.

Dependencies on NV_parameter_buffer_object

 If NV_parameter_buffer_object is not supported, references to program
 parameter buffer variables and bindings should be removed.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 401

Dependencies on ARB_texture_rectangle

 If ARB_texture_rectangle is not supported, refe rences to rectangle
 textures and the RECT and SHADOWRECT texture ta rget identifiers should be
 removed.

Dependencies on EXT_gpu_program_parameters

 If EXT_gpu_program_parameters is not supported, references to the
 Program{Local,Env}Parameters4fvNV commands, whi ch set multiple program
 local or environment parameters in a single cal l, should be removed.
 These prototypes were included in this spec for completeness only.

Dependencies on EXT_texture_integer

 If EXT_texture_integer is not supported, refere nces to texture lookups
 returning integer values in Section 2.X.4.4 (Te xture Access) should be
 removed, and all texture formats are considered to produce floating-point
 values.

Dependencies on EXT_texture_array

 If EXT_texture_array is not supported, referenc es to array textures in
 Section 2.X.4.4 (Texture Access) and elsewhere should be removed, as
 should all references to the "ARRAY1D", "ARRAY2 D", "SHADOWARRAY1D", and
 "SHADOWARRAY2D" tokens.

Dependencies on EXT_texture_buffer_object

 If EXT_texture_buffer_object is not supported, references to buffer
 textures in Section 2.X.4.4 (Texture Access) an d elsewhere should be
 removed, as should all references to the "BUFFE R" tokens.

Dependencies on NV_primitive_restart

 If NV_primitive_restart is supported, index val ues causing a primitive
 restart are not considered as specifying an End command, followed by
 another Begin. Primitive restart is therefore not guaranteed to
 immediately update bindings for material proper ties changed inside a
 Begin/End. The spec language says they "are no t guaranteed to update
 program parameter bindings until the following End command."

New State

 Initial
 Get Value Type Get Command Value Description Sec Attri b
 ---------------------------- ---- ----------- ---- ------- ---------------------- ------ ----- -
 PROGRAM_ATTRIB_COMPONENTS_NV Z+ GetProgrami vARB - number of components 6.1.12 -
 used for attributes
 PROGRAM_RESULT_COMPONENTS_NV Z+ GetProgrami vARB - number of components 6.1.12 -
 used for results

 Table X.20. New Program Object State. Program object queries return
 attributes of the program object currently boun d to the program target
 <target>.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 402

New Implementation Dependent State

 Minimum
 Get Value Type Get Com mand Value Description Sec. Att rib
 -------------------------------- ---- ------- -------- ------- --------------------- ------ --- ---
 MIN_PROGRAM_TEXEL_OFFSET_EXT Z GetInte gerv -8 minimum texel offset 2.x.4.4 -
 allowed in lookup
 MAX_PROGRAM_TEXEL_OFFSET_EXT Z GetInte gerv +7 maximum texel offset 2.x.4.4 -
 allowed in lookup
 MAX_PROGRAM_ATTRIB_COMPONENTS_NV Z+ GetProg ramivARB (*) maximum number of 6.1.12 -
 components allowed
 for attributes
 MAX_PROGRAM_RESULT_COMPONENTS_NV Z+ GetProg ramivARB (*) maximum number of 6.1.12 -
 components allowed
 for results
 MAX_PROGRAM_GENERIC_ATTRIBS_NV Z+ GetProg ramivARB (*) number of generic 6.1.12 -
 attribute vectors
 supported
 MAX_PROGRAM_GENERIC_RESULTS_NV Z+ GetProg ramivARB (*) number of generic 6.1.12 -
 result vectors
 supported
 MAX_PROGRAM_CALL_DEPTH_NV Z+ GetProg ramivARB 4 maximum program 2.X.5 -
 call stack depth
 MAX_PROGRAM_IF_DEPTH_NV Z+ GetProg ramivARB 48 maximum program 2.X.5 -
 if nesting
 MAX_PROGRAM_LOOP_DEPTH_NV Z+ GetProg ramivARB 4 maximum program 2.X.5 -
 loop nesting

 Table X.21: New Implementation-Dependent Values Introduced by
 NV_gpu_program4. (*) means that the required m inimum is program
 type-specific. There are separate limits for e ach program type.

Issues

 (1) How does this extension differ from previou s NV_vertex_program and
 NV_fragment_program extensions?

 RESOLVED:

 - This extension provides a uniform set of instructions and bindings.
 Unlike previous extensions, the set of in structions and bindings
 available is generally the same. The onl y exceptions are a small
 number of instructions and bindings that make sense for one specific
 program type.

 - This extension supports integer data type s and provides a
 full-fledged integer instruction set.

 - This extension supports array variables o f all types, including
 temporaries. Array variables can be acce ssed directly or indirectly
 (using integer temporaries as indices).

 - This extension provides a uniform set of structured branching
 constructs (if tests, loops, subroutines) that fully support
 run-time condition testing. Previous ver sions of NV_vertex_program
 provided unstructured branching. Previou s versions of
 NV_fragment_program provided structure br anching constructs, but the
 support was more limited -- for example, looping constructs couldn't
 specify loop counts with values computed at run time.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 403

 - This extension supports geometry programs , which are described in
 more detail in the NV_geometry_program4 e xtension.

 - This extension provides the ability to sp ecify and use cubemap
 textures with a DEPTH_COMPONENT internal format. Shadow mapping is
 supported; the Q texture coordinate is us ed as the reference value
 for comparisons.

 (2) Is this extension backward-compatible with previous NV_vertex_program
 and NV_fragment_program extensions? If not, wh at support has been
 removed?

 RESOLVED: This extension is largely, but not completely,
 backward-compatible. Functionality removed i ncludes:

 - Unstructured branching: NV_vertex_progra m2 included a general
 branch instruction "BRA" that could be us ed to jump to an arbitrary
 instruction. The "CAL" instruction could "call" to an arbitrary
 instruction into code that was not necess arily structured as simple
 subroutine blocks. Arbitrary unstructure d branching can be
 difficult to implement efficiently on hig hly parallel GPU
 architectures, while basic structured bra nching is not nearly as
 difficult.

 This extension retains the "CAL" instruct ion but treats each block
 of code between instruction labels as a s eparate subroutine. The
 "BRA" instruction and arbitrary branching has been removed. The
 structured branching constructs in this e xtension are sufficient to
 implement almost all of the looping/branc hing support in high-level
 languages ("goto" being the most obvious exception).

 - Address registers: NV_vertex_program add ed the notion of address
 registers, which were effectively under-p owered integer temporaries.
 The set of instructions used to manipulat e address registers was
 severely limited. NV_vertex_program[23] extended the original
 scalars to vectors and added a few more i nstructions to manipulate
 address registers. Fragment programs had no address registers until
 NV_fragment_program2 added the loop count er, which was very similar
 in functionality to vertex program addres s registers, but even more
 limited. This extension adds true intege r temporaries, which can
 accomplish everything old address registe rs could do, and much more.
 Address register support was removed to s implify the API.

 - NV_fragment_program2 LOOP construct: NV_ fragment_program2 added a
 LOOP instruction, which let you repeat a block of code <N> times,
 with a parallel loop counter that started at <A> and stepped by
 on each iteration. This construct was si gnficantly limited in
 several ways -- the loop count had to be constant, and you could
 only access the innermost loop counter in a nested loop. This
 extension discards the support and retain s the simpler "REP"
 construct to implement loops. If desired , a loop counter can be
 implemented by manipulating an integer te mporary. The "BRK"
 instruction (conditional break) is retain ed, and a "CONT"
 instruction (conditional continue) is add ed. Additionally, the loop
 count need not be a constant.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 404

 - NV_vertex_program and ARB_vertex_program EXP and LOG instructions:
 NV_vertex_program provided EXP and LOG in structions that computed a
 rough approximation of 2^x or log_2(x) an d provided some additional
 values that could help refine the approxi mation. Those opcodes were
 carried forward into ARB_vertex_program. Both ARB_vertex_program
 and NV_vertex_program2 provided EX2 and L G2 instructions that
 computed a better approximation. All fra gment program extensions
 also provided EX2 and LG2, but did not bo ther to include EXP and
 LOG. On the hardware targeted by this ex tension, there is no
 advantage to using EXP and LOG, so these opcodes have been removed
 for simplicity.

 - NV_vertex_program3 and NV_fragment_progra m2 provide the ability to
 do indirect addressing of inputs/outputs when using bindings in
 instructions -- for example:

 MOV R0, vertex.attrib[A0.x+2]; # v ertex
 MOV result.texcoord[A0.y], R1; # v ertex
 MOV R2, fragment.texcoord[A0.x]; # f ragment

 This extension provides indexing capabili ty, but using named array
 variables instead.

 ATTRIB attribs[] = { vertex.attrib[2..5] };
 MOV R0, attribs[A0.x];
 OUTPUT outcoords[] = { result.texcoord[0..3] };
 MOV outcoords[A0.y], R1;
 ATTRIB texcoords[] = { fragment.texcoor d[0..2] };
 MOV R2, texcoords[A0.x];

 This approach makes the set of attribute and result bindings more
 regular. Additionally, it helps the asse mbler determine which
 vertex/fragment attributes are actually n eeded -- when the assembler
 sees constructs like "fragment.texcoord[A 0.x]", it must treat *all*
 texture coordinates as live unless it can determine the range of
 values used for indexing. The named arra y variable approach
 explicitly identifies which attributes ar e needed when indexing is
 used.

 Functionality altered includes:

 - The RSQ instruction in the original NV_ve rtex_program and
 ARB_vertex_program extensions implicitly took the absolute value of
 their operand. Since the ARB extensions don't have numerics
 guarantees, computing the reciprocal squa re root of a negative value
 was not meaningful. To allow for the pos sibility of taking the
 reciprocal square root of a negative valu e (which should yield NaN
 -- "not a number"), the RSQ instruction i n this instruction no
 longer implicitly takes the absolute valu e of its operand.
 Equivalent functionality can be achieved using the explicit |abs|
 absolute value operator on the operand to RSQ.

 - The results of texture lookups accessing inconsistent textures are
 now undefined, instead of producing a fix ed constant vector.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 405

 (3) What should this set of extensions be calle d?

 RESOLVED: NV_gpu_program4, NV_vertex_program 4, NV_fragment_program4,
 and NV_geometry_program4. Only NV_gpu_progra m4 will appear in the
 extension string; the other three specificati ons exist simply to define
 vertex, fragment, and geometry program-specif ic features.

 The "gpu_program" name was chosen due to the common instruction set
 intended to run on GPUs. On previous chip ge nerations, the vertex and
 fragment instruction sets were similar, but t here were enough
 differences to package them separately.

 The choice of "4" indicates that this is the fourth generation of
 programmable hardware from NVIDIA. The GeFor ce3 and GeForce4 series
 supported NV_vertex_program. The GeForce FX series supported
 NV_vertex_program2 and added fragment program mability with
 NV_fragment_program. Around this time, the O penGL Architecture Review
 Board (ARB) approved ARB_vertex_program and A RB_fragment_program
 extensions, and NVIDIA added NV_vertex_progra m2_option and
 NV_fragment_program_option extensions exposin g GeForce FX features using
 the ARB extensions' instruction set. The GeF orce6 and GeForce7 series
 brought the NV_vertex_program3 and NV_fragmen t_program2 extensions,
 which extend the ARB extensions further. Thi s extension adds geometry
 programs, and brings the "version number" for each of these extensions
 up to "4".

 (4) This instruction adds integer data type sup port in programmable
 shaders that were previously float-centric. Sh ould applications be able
 to pass integer values directly to the shaders, and if so, how does it
 work?

 RESOLVED: The diagram at the bottom of this issue depicts data flows in
 the GL, as extended by this and related exten sions.

 This extension generalizes some state to be " typeless", instead of being
 strongly typed (and almost invariably floatin g-point) as in the core
 specification. We introduce a new set of fun ctions to specify GL state
 as signed or unsigned integer values, instead of floating point values.
 These functions include:

 * VertexAttribI*{i,ui}() -- Specify generic vertex attributes as
 integers. This extension does not create "integer" versions for
 fixed-function attribute functions (e.g., glColor, glTexCoord),
 which remain fully floating-point.

 * Program{Env,Local}ParameterI*{i,ui}() -- Specify environment and
 local parameters as integers.

 * TexImage*() with EXT_texture_integer inte rnal formats -- Specify
 texture images as containing integer data whose values are not
 converted to floating-point values.

 * EXT_parameter_buffer_object functions -- Bind (typeless) buffer
 object data stores for use as program par ameters. These buffer
 objects can be loaded with either integer or floating-point data.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 406

 * EXT_texture_buffer_object functions -- Bi nd (typeless) buffer object
 data stores for use as textures. These b uffer objects can be loaded
 with either integer or floating-point dat a.

 Each type of program (using NV_gpu_program4 a nd related extension) can
 read attributes using any data type (float, s igned integer, unsigned
 integer) and write result values used by subs equent stages using any
 data type.

 Finally, there are several new places where i nteger data can be
 consumed by the GL:

 * NV_transform_feedback -- Stream transform ed vertex attribute
 components to a (typeless) buffer object. The transformed
 attributes can be written as signed or un signed integers in vertex
 and geometry programs.

 * EXT_texture_integer internal formats and framebuffer objects --
 Provide support for rendering to integer texture formats, where
 final fragment values are treated as sign ed or unsigned integers,
 rather than floating-point values.

 The diagram below represents a substantial po rtion of the GL pipeline.
 Each line connecting blocks represents an int erface where data is
 "produced" from the GL state or by fixed-func tion or programmable
 pipeline stages and "consumed" by another pip eline stage. Each producer
 and consumer is labeled with a data type. Fo r producers, the
 "(typeless)" designation generally means that the state and/or output
 can be written as floating-point values or as signed or unsigned
 integers. "(float)" means that the outputs a re always written as
 floating-point. The same distinction applies to consumers --
 "(typeless)" means that the consumer is capab le of reading inputs using
 any data type, and "(float)" means that consu mer always reads inputs as
 floating-point values.

 To get sane results, applications must ensure that each value passed
 between pipeline stages is produced and consu med using the same data
 type. If a value is written in one stage as a floating-point value; it
 must be read as a floating-point value as wel l. If such a value is read
 as a signed or unsigned integer, its value is considered undefined. In
 practice, the raw bits used to represent the floating-point (IEEE
 single-precision floating-point encoding in t he initial implementation
 of this spec) will be treated as an integer.

 Type matching between stages is not enforced by the GL, because the
 overhead of doing so would be substantial. S uch overhead would include:

 * matching the inputs and outputs of each p ipeline stage
 (fixed-function or programmable) every ti me the program
 configuration or fixed-function state cha nges,

 * tracking the data type of each generic ve rtex attribute and checking
 it against the vertex program's inputs,

 * tracking the data type of each program pa rameter and checking it
 against the manner the parameters were us ed in programs,

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 407

 * matching color buffers against fragment p rogram outputs.

 Such error checking is certainly valuable, bu t the additional CPU
 overhead cost is substantial. Given that cur rent CPUs often have a hard
 time keeping up with high-end GPUs, adding mo re overhead is a step in
 the wrong direction. We expect developer too ls, such as instrumented
 drivers, to be able to provide type checking on most interfaces.

 The diagram below depicts assembly programmab ility. Using vertex,
 geometry, and fragment shaders provided by th e OpenGL Shading Language
 (GLSL) isn't substantially different from the assembly interface, except
 that the interfaces between programmable pipe line stages are more
 tightly coupled in GLSL (vertex, geometry, an d fragment shaders are
 linked together into a single program object) , and that shader variables
 are more strongly typed in GLSL than in the a ssembly interface.

 In the figure below, the first programmable s tage is vertex program
 execution. For all inputs read by the vertex program, they must be
 specified in the GL vertex APIs (immediate mo de or vertex arrays) using
 a data type matching the data type read by th e shader. Additionally,
 vertex programs (and all other program types) can read program
 parameters, parameter buffers, and textures. In all cases the
 parameter, buffer, or texture data must be ac cessed in the shader using
 the same data type used to specify the data. If vertex programs are
 disabled, fixed-function vertex processing is used. Fixed-function
 vertex processing is fully floating-point, an d all the conventional
 vertex attributes and state used by fixed-fun ction are floating-point
 values.

 After vertex processing, an optional geometry program can be executed,
 which reads attributes written by vertex prog rams (or fixed-functon) and
 writes out new vertex attributes. The vertex attributes it reads must
 have been written by the vertex program (or f ixed-function) using a
 matching data type.

 After geometry program execution, vertex attr ibutes can optionally be
 written out to buffer objects using the NV_tr ansform_feedback extension.
 The vertex attributes are written by the GL t o the buffer objects using
 the same data type used to write the attribut e in the geometry program
 (or vertex program if geometry programs are d isabled).

 Then, rasterization generates fragments based on transformed vertices.
 Most attributes written by vertex or geometry programs can be read by
 fragment programs, after the rasterization ha rdware "interpolates" them.
 This extension allows fragment programs to co ntrol how each attribute is
 interpolated. If an attribute is flat-shaded , it will be taken from the
 output attribute of the provoking vertex of t he primitive using the same
 data type. If an attribute is smooth-shaded, the per-vertex attributes
 will be interpreted as a floating-point value , and a floating-point
 result. One necessary consequence of this is that any integer
 per-fragment attributes must be flat-shaded. To prevent some
 interpolation type errors, assembly and GLSL fragment shaders will not
 compile if they declare an integer fragment a ttribute that is not flat
 shaded. [NOTE: While point primitives gener ally have constant
 attributes, any integer attributes must still be flat-shaded; point
 rasterization may perform (degenerate) floati ng-point interpolation.]

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 408

 Fragment programs must read attributes using data types matching the
 outputs of the interpolation or flat-shading operations. They may write
 one or more color outputs using any data type , but the data type used
 must match the corresponding framebuffer atta chments. Outputs directed
 at signed or unsigned integer textures (EXT_t exture_integer) must be
 written using the appropriate integer data ty pe; all other outputs must
 be written as floating-point values. Note th at some of the
 fixed-function per-fragment operations (e.g., blending, alpha test) are
 specified as floating-point operations and ar e skipped when directed at
 signed or unsigned integer color buffers.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 409

 generic conventional
 vertex vertex
 attributes attributes
 | (typeless) | (float)
 | |
 | |
 | +----------------------+
 program | | |
 parameters ----+ | | |
 (typeless) | | | (typeless) | (float)
 | V V V
 constant +-+----------> vertex fixed-function
 buffers ----+ |(typeless) program vertex
 (typeless) | | | |
 | | | (typeless) | (float)
 textures ----+ | V |
 (typeless) | |<----------------------+
 | | |
 | | +---------------+
 | | | |
 | | | (typeless) |
 | | V |
 | +---------> geometry |
 | |(typeless) program | |
 | | | |
 | | | (typeless) |
 | | V |
 | | |<--------------+
 | | |
 | | |
 | | +-----------------+
 | | | |(typeless)
 | | | v
 | | | transform
 | | | feedback
 | | | buffers
 | | |
 | | |
 | | +-----------------------+
 | | | |
 | | | (float) | (typeless)
 | | V V
 | | interpolated flat
 | | attributes attributes
 | | | |
 | | | (float) | (typeless)
 | | V |
 | | |<----------------------+
 | | |
 | | +-----------------------+
 | | | |
 | | | (typeless) | (float)
 | |(typeless) V V
 | +---------> fragment +------> fixed-function
 | program |(float) fragment
 | | | |
 +--------------------------/|/--------+ |
 | |
 | (typeless) | (float)
 V |
 |<----------------------+
 |
 +-----------------------+------
 | |
 | (typeless) | (typeless)
 V V
 color color
 attachment attachment
 0 1

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 410

 (5) Instructions can operate on signed integer, unsigned integer, and
 floating-point values. Some operations make se nse on all three data
 types? How is this supported, and what type ch ecking support is provided
 by the assembler?

 RESOLVED: One important property of the inst ruction set is that the
 data type for all operands and the result is fully specified by the
 instructions themselves. For instructions (s uch as ADD) that make sense
 for both integer and floating-point values, a n optional data type
 modifier is provided to indicate which type o f operation should be
 performed. For example, "ADD.S", "ADD.U", an d "ADD.F", add signed
 integers, unsigned integers, or floating-poin t values, respectively. If
 no data type modifier is provided, ".F" is as sumed if the instruction
 can apply to floating-point values and ".S" i s assumed otherwise.

 To help identify errors where the wrong data type is used -- for
 example, adding integer values in an ADD inst ruction that omits a data
 type modifier and thus defaults to "ADD.F" -- variables may be declared
 with optional data type modifiers. In the fo llowing code:

 INT TEMP a;
 UINT TEMP b;
 FLOAT TEMP c;
 TEMP d;

 "a", "b", "c", and "d" are declared as tempor ary variables holding
 signed integer, unsigned integer, floating-po int, and typeless values.
 Since each instruction fully specifies the da ta type of each operand and
 its result, these data types can be checked a gainst the data type
 assigned to the variables operated on. If th e types don't match, and
 the variable is not typeless, an error is rep orted. The opcode modifier
 ".NTC" can be used to ignore such errors on a per-opcode basis, if
 required.

 Note that when bindings are used directly in instructions, they are
 always considered typeless for simplicity. S ome fixed-function bindings
 have an obvious data type, but other bindings (e.g., program parameters)
 can hold either integer or floating-point val ues, depending on how they
 were specified.

 Variable data types are optional. Typeless v ariables are provided
 because some programs may want to reuse the s ame variable in several
 places with different data types.

 (6) Should both signed (INT) and unsigned integ er (UINT) data types be
 provided?

 RESOLVED: Yes. Signed and unsigned integer operations are supported.
 Providing both "INT" and "UINT" variable modi fiers distinguish between
 signed and unsigned values for type checking purposes, to ensure that
 unsigned values aren't read as signed values and vice versa.

 This specification says if a value is read a signed integer, but was
 written as an unsigned integer, the value ret urned is undefined.
 However, signed and unsigned integers are int erchangeable in practice,
 except for very large unsigned integers (whic h can't be represented as
 signed values of the equivalent size) or nega tive signed integers.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 411

 If programs know that they won't generate neg ative or very large values,
 signed and unsigned integers can be used inte rchangeably. To avoid type
 errors in the assembler in this case, typeles s variables can be used.
 Or the ".NTC" modifier can be used when appro priate.

 (7) Integer and floating-point constants are su pported in the instruction
 set. Integer constants might be interpreted to mean either "real integer"
 values or floating-point values. How are they supported?

 RESOLVED: When an obvious floating point con stant is specified (e.g.,
 "3.0"), the developers' intent is clear. If you try to use a
 floating-point value in an instruction that w ants an integer operand, or
 a declaration of an integer parameter variabl e, the program will fail to
 load. An integer constant used in an instruc tion isn't quite as clear.
 But its meaning can be easily inferred becaus e the operand types of
 instructions are well-known at compile time. An integer multiply
 involving the constant "2" will interpret the "2" as an integer. A
 floating-point multiply involving the same co nstant "2" will interpret
 it as a floating-point value.

 The only real problem is for a parameter decl aration that is typeless.
 For typed variables, the intent is clear:

 INT PARAM two = 2; # use inte ger 2
 FLOAT PARAM twoPt0 = 2; # use floa ting-point 2.0

 For typeless variables, there's no context to go on:

 PARAM two = 2; # 2? 2.0?

 This extension is intended to be largely upwa rd-compatible with
 ARB_vertex_program, ARB_fragment_program, and the other extensions built
 on top of them. In all of these, the previou s declaration is legal and
 means "2.0". For compatibility, we choose to interpret integer
 constants in this case as floating-point valu es. The assembler in the
 NVIDIA implementation will issue a warning if this case ever occurs.

 This extension does not provide decoration of integer constant values --
 we considered adding suffixed integers such a s "2U" to mean "2, and
 don't even think about converting me to a flo at!". We expect that it
 will be sufficient to use the "INT" or "FLOAT " modifiers to disambiguate
 effectively.

 (8) Should hexadecimal constants (e.g., 0x87A3 or 0xFFFFFFFF) be
 supported?

 RESOLVED: Yes.

 (9) Should we provide data type modifiers with explicit component sizes?
 For example, "INT8", "FLOAT16", or "INT32". If so, should we provide a
 mechanism to query the size (in bits) of a vari able, or of different
 variable types/qualifiers?

 RESOLVED: No.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 412

 (10) Should this extension provide better suppo rt for array variables?

 RESOLVED: Yes; array variables of all types are allowed.

 In ARB_vertex_program, program parameter (con stant) variables could be
 addressed as arrays. Temporary variables, ve rtex attributes, and vertex
 results could not be declared as arrays.

 In NV_vertex_program3 and NV_fragment_program 2, relative addressing was
 supported in program bindings:

 MOV R0, vertex.attrib[A0.x]; # v ertex
 MOV result.texcoord[A0.x], R0; # v ertex
 MOV R0, fragment.texcoord[A0.x]; # f ragment -- inside LOOP

 Explicitly declared attribute or result array s were not supported, and
 temporaries could also not be arrays.

 This extension allows users to declare attrib ute, result, and temporary
 arrays such as:

 ATTRIB attribs[] = { vertex.attrib[7..11] } ;
 TEMP scratch[10];
 RESULT texcoords[] = { result.texcoord[0..3] };

 Additionally, the relative addressing mechani sms provided by
 NV_vertex_program3 and NV_fragment_program2 a re NOT supported in this
 extension -- instead, declared array variable s are the only way to get
 relative addressing. Using declared arrays a llows the assembler to
 identify which attributes will actually be us ed. An expression like
 "vertex.texcoord[A0.x]" doesn't identify whic h texture coordinates are
 referenced, and the assembler must be conserv ative in this case and
 assume that they all are.

 (11) Is relative addressing of temporaries allo wed?

 RESOLVED: Yes. However, arrays of temporari es may end up being stored
 in off-chip memory, and may be slower to acce ss than non-array
 temporaries.

 (12) Should this extension add bindings to pass generic attributes between
 vertex, geometry, and fragment programs, or are texture coordinates
 sufficient?

 RESOLVED: While texture coordinates have bee n used in the past, generic
 attributes should be provided.

 The assembler provides a large set of binding s and automatically
 eliminates generic attributes or components t hat are unused. At each
 interface between programs, there is an imple mentation-dependent limit
 on the number of attribute components that ca n be passed.

 There are several reasons that this approach was chosen. First, if the
 number of attributes that can be passed betwe en program stages exceeds
 the number of existing texture coordinate set s supported when specifying
 vertex, a second implementation-dependent num ber of texture coordinates
 would need to be exposed to cover the number supported between stages.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 413

 Second, the mechanisms described above reduce or eliminate the need to
 pack attributes into four component vectors. Third, "texture
 coordinates" that have been historically used for texture lookups don't
 need to be used to pass values that aren't us ed this way.

 (13) The structured branching support in NV_fra gment_program2 provides a
 REP instruction that says to repeat a block of code <N> times, as well as
 a LOOP instruction that does the same, but also provides a special loop
 counter variable. What sort of looping mechani sm should we provide here?

 RESOLVED: Provide only the REP instruction. The functionality provided
 by the LOOP instruction can be easily achieve d by using an integer
 temporary as the loop index. This avoids two annoyances of the old LOOP
 models: (a) the loop index (A0.x) is a speci al variable name, while all
 other variables are declared normally and (b) instructions can only
 access the loop index of the innermost loop - - loop indices at higher
 nesting levels are not accessible.

 One other option was a considered -- a "LOOPV " instruction (LOOP with a
 variable where the program specified a variab le name and component to
 hold the loop index, instead of using the imp licit variable name "A0.x".
 In the end, it was decided that using an inte ger temporary as a loop
 counter was sufficient.

 (14) The structured branching support in NV_fra gment_program2 provides a
 REP instruction that requires a loop count. So me looping constructs may
 not have a definite loop count, such as a "whil e" statement in C. Should
 this construct be supported, and if so, how?

 RESOLVED: The REP instruction is extended to make the loop count
 optional. If no loop count is provided, the REP instruction specified a
 loop that can only be exited using the BRK (b reak) or RET instructions.
 To avoid obvious infinite loops, an error wil l be reported if a
 REP/ENDREP block contains no BRK instruction at the current nesting
 level and no RET instruction at any nesting l evel.

 To implement a loop like "while (value < 7.0) ...", code such as the
 following can be used:

 TEMP cc; # dummy var iable
 REP;
 SLT.CC cc.x, value.x, 7.0; # compare v alue.x to 7.0, set CC0
 BRK NE.x; # break out if not true
 ...
 ... # presumabl y update value!
 ...
 ENDREP;

 (15) The structured branching support in NV_fra gment_program2 provides a
 BRK instruction that operates like C's "break" statement. Should we
 provide something similar to C's "continue" sta tement, which skips to the
 next iteration of the loop?

 RESOLVED: Yes, a new CONT opcode is provided for this purpose.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 414

 (16) Can the BRK or CONT instructions break out of multiple levels of
 nested loops at once?

 RESOLVED: No. BRK and CONT only exit the cu rrent nesting level. To
 break out of multiple levels of nested loops, multiple BRK/CONT
 instructions are required.

 (17) For REP instructions, is the loop counter reloaded on each iteration
 of the loop?

 RESOLVED: No. The loop counter is loaded on ce at the top of the loop,
 compared to zero at the top of the loop, and decremented when each loop
 iteration completes. A program may overwrite the variable used to
 specify the initial value of the loop counter inside the loop without
 affecting the number of times the loop body i s executed.

 (18) How are floating-point values represented in this extension? What
 about floating-point arithmetic operations?

 RESOLVED: In the initial hardware implementa tion of this extension,
 floating-point values are represented using t he standard 32-bit IEEE
 single-precision encoding, consisting of a si gn bit, 8 exponent bits,
 and 23 mantissa bits. Special encodings for NaN (not a number), +/-INF
 (infinity), and positive and negative zero ar e supported. Denorms
 (values less than 2^-126, which have an expon ent encoding of "0" and no
 implied leading one) are supported, but may b e flushed to zero,
 preserving the sign bit of the original value . Arithmetic operations
 are carried out at single-precision using nor mal IEEE floating-point
 rules, including special rules for generating infinities, NaNs, and
 zeros of each sign.

 Floating-point temporaries declared as "SHORT " may be, but are not
 necessarily, stored as 16-bit "fp16" values (sign bit, five exponent
 bits, ten mantissa bits), as specified in the NV_float_buffer and
 ARB_half_float_pixel extensions.

 (19) Should we provide a method to declare how fragment attributes are
 interpolated? It is possible to have flat-shad ed attributes,
 perspective-corrected attributes, and centroid- sampled attributes.

 RESOLVED: Yes. Fragment program attribute v ariable declarations may
 specify the "FLAT", "NOPERSPECTIVE", and "CEN TROID" modifiers.

 These modifiers are documented in detail in t he NV_fragment_program4
 specification.

 (20) Should vertex and primitive identifiers be supported? If so, how?

 RESOLVED: A vertex identifier is available a s "vertex.id" in a vertex
 program. The vertex ID is equal to value eff ectively passed to
 ArrayElement when the vertex is specified, an d is defined only if vertex
 arrays are used with buffer objects (VBOs).

 A primitive identifier is available as "primi tive.id" in a geometry or
 fragment program. The primitive ID is equal to the number of primitives
 processed since the last implicit or explicit call to glBegin().

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 415

 See the NV_vertex_program4 spec for more info rmation on vertex IDs, and
 the NV_geometry_program4 or NV_fragment_progr am4 specs for more
 information on primitive IDs.

 (21) For integer opcodes, should a bitwise inve rsion operator "~" be
 provided, analogous to existing negation operat or?

 RESOLVED: No. If this operator were provide d, it might allow a program
 to evaluate the expression "a&(~b)" using a s ingle instruction:

 AND.U a, a, ~b;

 Instead, it is necessary to instead do someth ing like:

 UINT TEMP t;
 NOT.U t, b;
 AND.U a, a, t;

 If necessary, this functionality could be add ed in a subsequent
 extension.

 (22) What happens if you negate or take the abs olute value of the
 biggest-magnitude negative integer?

 RESOLVED: Signed integers are represented us ing two's complement
 representation. For 32-bit integers, the lar gest possible value is
 2^31-1; the smallest possible value is -2^31. There is no way to
 represent 2^31, which is what these operators "should" return. The
 value returned in this case is the original v alue of -2^31.

 (23) How do condition codes work? How are they different from those
 provided in previous NVIDIA extensions?

 RESOLVED: There are two condition codes -- C C0 and CC1 -- each of which
 is a four-component vector. The condition co des are set based on the
 result of an instruction that specifies a con dition code update
 modifier. Examples include:

 ADD.S.CC R0, R1, R2; # add signed in tegers R1 and R2, update
 # CC0 based o n the result, write the
 # final value to R0
 ADD.F.CC1 R3, R4, R5; # add floats R4 and R5, update CC1 based
 # on the resu lt, write the final value
 # to R3
 ADD.U.CC0 R6.xy, R7, R8; # add unsigned integers R7 and R8, update
 # CC0 (x and y components) based on the
 # result, wri te the final value to R6
 # (x and y co mponents)

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 416

 Condition codes can be used for conditional w rites, conditional
 branches, or other operations. The condition codes aren't used
 directly, but are instead used with a conditi on code test such as "LT"
 (less than) or "EQ" (equal to). Examples inc lude:

 MOV R0 (GT.x), R1; # move R1 to R0 only if the x component of
 # CC0 indicat es a result of ">0"
 MOV R2 (NE1), R3; # component-wis e move of R3 to R2 if the
 # correspondi ng component of CC1
 # indicates a result of "!=0"
 IF LE0.xyxy; # execute the b lock of code if the x or
 ... # y component s of CC0 indicate a result
 ENDIF; # of "<=0"
 REP;
 ...
 BRK EQ1.xyzx; # break out of loop if the x, y, or z
 ENDREP; # components of CC1 indicate a result of
 # "==0".

 Previous NVIDIA extensions provide eight test s, which are still
 supported here. The tests "EQ" (equal), "GE" (greater/equal), "GT"
 (greater than), "LE" (less/equal), "LT" (less than), and "NE" (not
 equal) can be used to determine the relation of the result used to set
 the condition code with zero. The tests "TR" (true) and "FL" (false),
 are special tests that always evaluate to tru e or false respectively.

 For floating-point results, a NaN (not a numb er) encoding causes the
 "NE" condition to evaluate to TRUE and all ot her conditions to evaluate
 to FALSE. IEEE encodings for "negative" and "positive" zero are both
 treated as equal to zero.

 Condition codes are implemented as a set of f lags, which are set
 depending on the type of operation, as descri bed in the spec.

 For instructions that return floating-point o r signed integer values,
 the normal condition code tests reliably indi cate the relationship of
 the result to zero. For instructions that re turn unsigned values, the
 condition codes are a bit more complicated. For example, the sign flag
 is set if the most significant bit of the res ult written is set. As a
 result, very large unsigned integer values (e .g., 0x80000000 -
 0xFFFFFFFF) are effectively treated as negati ve values. Condition code
 tests should be used with care with unsigned results -- to test if an
 unsigned integer is ">0", use a sequence like :

 MOV.U.CC R0, R1; # move R1 to R0 , set condition code
 IF NE; # test if the r esult is "!=0", a very
 ... # large value might fail "GT"!
 ENDIF;

 This extension provides a number of additiona l condition code tests
 useful for different floating-point or intege r operations:

 * NAN (not a number) is true if a floating- point result is a NaN. LEG
 (less, equal to, or greater) is the oppos ite of NAN.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 417

 * CF (carry flag) is true if an unsigned ad d overflows, or if an
 unsigned subtract produces a non-negative value. NCF (no carry
 flag) is the opposite of CF.

 * OF (overflow flag) is true if a signed ad d or subtract overflows.
 NOF (no overflow flag) is the opposite of OF.

 * SF (sign flag) is true if the sign flag i s set. NSF (no sign flag)
 is the opposite of SF.

 * AB (above) is true if an unsigned subtrac t produces a positive
 result. BLE (below or equal) is the oppo site of AB, and is true if
 an unsigned subtract produces a negative result or zero. Note that
 CF can be used to test if the result is g reater than or equal to
 zero, and NCF can be used to test if the result is less than zero.

 (24) How do the "set on" instructions (SEQ, SGE , SGT, SLE, SLT, SNE) work
 with integer values and/or condition codes?

 RESOLVED: "Set on" instructions comparing si gned and unsigned values
 return zero if the condition is false, and an integer with all bits set
 if the condition is true. If the result is s igned, it is interpreted as
 -1. If the result is unsigned, it is interpr eted the largest unsigned
 value (0xFFFFFFFF for 32-bit integers). This is different from the
 floating-point "set on", which is defined to return 1.0.

 This specific result encoding was chosen so t hat bitwise operators (NOT,
 AND, OR, XOR) can be used to evaluate boolean expressions.

 When performing condition code tests on the r esults of an integer "set
 on" instruction, keep in mind that a TRUE res ult has the most
 significant bit set and will be interpreted a s a negative value. To
 test if a condition is true, use "NE" (!=0). A condition code test of
 "GT" will always fail if the condition code w as written by an integer
 "set on" instruction.

 (25) What new texture functionality is provided ?

 RESOLVED: Several new features are provided.

 First, the TXF (texel fetch) instruction allo ws programs to access a
 texture map like a normal array. Integer coo rdinates identifying an
 individual texel and LOD are provided, and th e corresponding texture
 data is returned without filtering of any typ e.

 Second, the TXQ (texture size query) instruct ion allows programs to
 query the size of a specified level of detail of a texture. This
 feature allows programs to perform computatio ns dependent on the size of
 the texture without having to pass the size a s a program parameter or
 via some other mechanism.

 Third, applications may specify a constant te xel offset in a texture
 instruction that moves the texture sample poi nt by the specified number
 of texels. This offset can be used to perfor m custom texture filtering,
 and is also independent of the size of the te xture LOD -- the same
 offsets are applied, regardless of the mipmap level.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 418

 Fourth, shadow mapping is supported for cube map textures. The first
 three coordinates are the normal (s,t,r) coor dinates for a cube map
 texture lookup, and the fourth component is a depth reference value that
 can be compared to the depth value stored in the texture.

 (26) What "consistency" requirements are in eff ect for textures accessed
 via the TXF (texel fetch) instruction?

 UNRESOLVED: The texture must be usable for r egular texture mapping
 operations -- if texture sizes or formats are inconsistent and a
 mipmapped min filter is used, the results are undefined.

 (27) How does the TXF instruction work with bor dered textures?

 RESOLVED: The entire image can be accessed, including the border
 texels. For a 64x64 2D texture plus border (66x66 overall), the lower
 left border texel is accessed using the coord inates (-1,-1); the upper
 right border texel is accessed using the coor dinates (64,64).

 (28) What should TXQ (texture size query) retur n for "irrelevant" texture
 sizes (e.g., height of a 1D texture)? Should i t return any other
 information at the same time?

 RESOLVED: This specification leaves all "ext ra" components undefined.

 (29) How do texture offsets interact with cubem ap textures?

 RESOLVED: They are not supported in this ext ension.

 (30) How do texture offsets interact with mipma pped textures?

 RESOLVED: The texture offsets are added afte r the (s,t,r) coordinates
 have been divided by q (if applicable) and co nverted to (u,v,w)
 coordinates by multiplying by the size of the selected texture level.
 The offsets are added to the (u,v,w) coordina tes, and always move the
 sample point by an integral number of texel c oordinates. If multiple
 mipmaps are accessed, the sample point in eac h mipmap level is moved by
 an identical offset. The applied offsets are independent of the
 selected mipmap level.

 (31) How do shadow cube maps work?

 UNRESOLVED: An application can define a cube map texture with a
 DEPTH_COMPONENT internal format, and then ren der a scene using the cube
 map faces as the depth buffer(s). When rende ring the projection should
 be set up using the "center" of the cubemap a s the eye, and using a
 normal projection matrix. When applying the shadow map, the fragment
 program read the (x,y,z) eye coordinates, com pute the length of the
 major axis (MAX(|x|,|y|,|z|) and then transfo rm this coordinate to [0,1]
 space using the same parameters used to deriv e Z in the projection
 matrix. A 4-component vector consisting of x , y, z, and this computed
 depth value should be passed to the texture l ookup, and normal shadow
 mapping operations will be performed.

 This issue should include the math needed to do this computation and
 sample code.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 419

 (32) Integer multiplies can overflow by a lot. Should there be some way
 to return the high part of both unsigned and si gned integer multiplies?

 RESOLVED: Yes. The ".HI" multipler is provi ded to do a return the 32
 MSBs of a 32x32 integer multiply. The instru ction sequence:

 INT TEMP R0, R1, R2, R3;
 MUL.S R0, R2, R3;
 MUL.S.HI R1, R2, R3;

 will do a 32x32 signed integer multiply of R2 and R3, with the 32 LSBs of
 the 64-bit result in R0 and the 32 MSBs in R1.

 (33) Should there be any other special multipli cation modifiers?

 RESOLVED: Yes. The ".S24" and ".U24" modifi ers allow for signed and
 unsigned integer multiplies where both operan ds are guaranteed to fit in
 the least significant 24 bits. On some archi tectures supporting this
 extension, ".S24" and ".U24" integer multipli es may be faster than
 general-purpose ".S" and ".U" multiplies. If either value doesn't fit
 in 24 bits, the results of the operation are undefined --
 implementations may, but are not required to, ignore the MSBs of the
 operands if ".S24" or ".U24" is specified.

 (34) This extension provides subroutines, but d oesn't provide a stack to
 push and pop parameters. How do we deal with t his? NV_vertex_program3
 supported PUSHA/POPA instructions to push and p op address registers.

 RESOLVED: No explicit stack is required. A program can implement a
 stack by allocating a temporary array plus a single integer temporary to
 use as the stack "pointer". For example:

 TEMP stack[256]; # 256 4-com ponent vectors
 INT TEMP sp; # sp.x == s tack pointer
 INT TEMP cc; # condition code results

 function:
 SGE.S.CC cc.x, sp.x, 256; # compute s tackPointer >= 256
 RET NE.x; # return if TRUE
 MOV stack[sp], R0; # push R0 o nto the stack
 ADD.S sp.x, sp.x, 1;
 ...
 SUB.S sp.x, sp.x, 1; # pop R0 of f the stack
 MOV R0, stack[sp];
 RET

 (35) Should we provide new vector semantics for previously-defined opcodes
 (e.g., LG2 computes a component-wise logarithm) ?

 RESOLVED: Not in this extension. The instru ctions we define here are
 compatible with the vector or scalar nature o f previously defined
 opcodes. This simplifies the implementation of an assembler that needs
 to support both old and new instruction sets.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 420

 (36) Should it really be undefined to read from a register storing data of
 one type with an instruction of the other type (e.g., to read the bits of
 a floating-point number as an unsigned integer) ?

 RESOLVED: The spec describes undefined resul ts for simplicity. In
 practice, mixing data types can be done, wher e signed integers are
 represented as two's complement integers and floating-point numbers are
 represented using IEEE single-precision repre sentation. For example:

 TEMP R0, R1; # typeless
 MOV.U R0, 0x3F800000; # R0 = 1.0
 MOV.U R1, 0xBF800000; # R1 = -1.0
 MUL.F R0, R0, R1; # R0 = -1 * 1 = -1 (0xBF800000)
 XOR.U R0, R0, R1; # R0 = 0xBF 800000 ^ 0xBF800000 = 0
 NOT.U R0, R0; # R0 = 0xFF FFFFFF
 I2F.S R0, R0; # R0 = -1.0 (0xFFFFFFFF = -1 signed)
 SEQ.F R0, R0, R1; # R0 = 1.0 (-1.0 == -1.0)

 (37) Buffer objects can be sourced as program p arameters using the
 NV_parameter_buffer_object extension. How are they accessed in a program?

 RESOLVED: The instruction set and existing p rogram environment and
 local parameter bindings operate largely on f our-component vectors.
 However, NV_parameter_buffer_object exposes t he ability to reach into
 buffers consisting of user-generated data or data written to the buffer
 object by the GPU. Such data sets may not co nsist entirely
 four-component floating-point vectors, so a f our-component vector API
 may be unnatural. An application might need to reformat its data set to
 deal with this issue. Or it might generate o dd code to compensate for
 mis-alignment -- for example, reading an arra y of 3-component vectors by
 doing two four-component vector accesses and then rotating based on
 alignment. Neither approach is particularly satisfying.

 Instead, this extension takes the approach of treating parameter buffers
 as array of scalar words. When an individual buffer element is read,
 the single word is replicated to produce a fo ur-component vector. To
 access an array of 3-component vectors, code like the following can be
 used:

 PARAM buffer[] = { program.buffer[0] };
 INT TEMP index;
 TEMP R0;
 ...
 MUL.S index, index, 3; # to read " vec3" #X, compute 3*X
 MOV R0.x, buffer[index+0];
 MOV R0.y, buffer[index+1];
 MOV R0.z, buffer[index+2];

 (38) Should recursion be allowed? If so, how i s the total amount of
 recursion limited?

 RESOLVED: Recursion is allowed, and a call s tack is provided by the
 implementation. The size of the call stack i s limited to the
 implementation-dependent constant MAX_PROGRAM _CALL_DEPTH, and when a the
 call stack is full, the results of further CA L instructions is
 undefined. In the initial implementation of this extension, such
 instructions will have no effect.

NV_gpu_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 421

 Note that no stack is provided to hold local registers; a program may
 implement its own via a temporary array and i nteger stack "pointer".

 (39) Variables are all four-component vectors i n previous extensions.
 Should scalar or small-vector variables be prov ided?

 RESOLVED: It would be a useful feature, but it was left out for
 simplicity. In practice, a variable where on ly the X component is used
 will be equivalent to a scalar.

 (40) The PK* (pack) and UP* (unpack) instructio ns allow packing multiple
 components of data into a single component. Th e bit packing is
 well-defined. Should we require specific data types (e.g., unsigned
 integer) to hold packed values?

 RESOLVED: No. Previous instruction sets onl y allowed programs to write
 packed values to a floating-point variable (t he only data type
 provided). We will allow packed results to b e written to a variable of
 any data type. Integer instructions can be u sed to manipulate bits of
 packed data in place.

 (41) What happens when converting integers to f loats or vice versa if
 there is insufficient precision or range to rep resent the result?

 RESOLVED: For integer-to-float conversions, the nearest representable
 floating-point value is used, and the least s ignificant bits of the
 original integer value are lost. For float-t o-integer conversions,
 out-of-range values are clamped to the neares t representable integer.

 (42) Why are some of the grammar rules so bizar re (e.g., attribUseD,
 attribUseV, attribUseS, attribUseVNS)?

 RESOLVED: This grammar is based upon the ori ginal ARB_vertex_program
 grammar, which has a number of "interesting" characteristics. For
 example, some of the bindings provided by ARB _vertex_program naturally
 require some amount of lookahead. For exampl e, a vertex program can
 write an output color using any of the follow ing:

 MOV result.color, 0; # primary c olor
 MOV result.color.primary, 0; # primary c olor again
 MOV result.color.secondary, 0; # secondary color this time

 The pieces of the color binding are separated by "." tokens. However,
 writemasks are also supported, which also use "." before the write
 mask. So, we could also have something like:

 MOV result.color.xyz, 0; # primary c olor with W masked off

 In this form, a parser needs to look at both the "." and the "xyz" to
 determine that the binding being used is "res ult.color" (and not
 "result.color.secondary").

 Additionally, some checks that should probabl y be semantic errors (e.g.,
 allowing different swizzle or scalar operand selectors per instruction,
 or disallowing both in the case of SWZ) we sp ecified in the original
 grammar.

OpenGL Extension Specifcations for GeForce 8 Series NV_gpu_program4

NVIDIA Proprietary 422

 ARB_fragment_program and subsequent NVIDIA in structions built upon this,
 and the grammar for this extension was rewrit ten in the current form so
 it could be validated more easily.

 (43) This is an NV extension (NV_gpu_program4). Why does the
 MAX_PROGRAM_TEXEL_OFFSET_EXT token has an "EXT " suffix?

 RESOLVED: This token is shared between this extension and the
 comparable high-level GLSL programmability ex tension (EXT_gpu_shader4).
 Rather than provide a duplicate set of token names, we simply use the
 EXT version here.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 4 02/04/08 pbrown Fix errors in texture wrap mode handling.
 Added a missing clamp to avoid sampling border
 in REPEAT mode. Fixe d incorrectly specified
 weights for LINEAR fi ltering.

NV_parameter_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 423

Name

 NV_parameter_buffer_object

Name Strings

 None (impled by NV_GPU_program4)

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)
 Eric Werness, NVIDIA Corporation (ewerness 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 04/18/2007
 NVIDIA Revision: 7

Number

 339

Dependencies

 OpenGL 2.0 is required.

 NV_gpu_program4 is required.

 This extension is written against the OpenGL 2. 0 specification.

 NV_transform_feedback affects this extension.

Overview

 This extension, in conjunction with NV_gpu_prog ram4, provides a new type
 of program parameter than can be used as a cons tant during vertex,
 fragment, or geometry program execution. Each program target has a set of
 parameter buffer binding points to which buffer objects can be attached.

 A vertex, fragment, or geometry program can rea d data from the attached
 buffer objects using a binding of the form "pro gram.buffer[a][b]". This
 binding reads data from the buffer object attac hed to binding point <a>.
 The buffer object attached is treated either as an array of 32-bit words
 or an array of four-component vectors, and the binding above reads the
 array element numbered .

 The use of buffer objects allows applications t o change large blocks of
 program parameters at once, simply by binding a new buffer object. It
 also provides a number of new ways to load para meter values, including
 readback from the frame buffer (EXT_pixel_buffe r_object), transform
 feedback (NV_transform_feedback), buffer object loading functions such as
 MapBuffer and BufferData, as well as dedicated parameter buffer update
 functions provided by this extension.

OpenGL Extension Specifcations for GeForce 8 Series NV_parameter_buffer_object

NVIDIA Proprietary 424

New Procedures and Functions

 void BindBufferRangeNV(enum target, uint index, uint buffer,
 intptr offset, sizeiptr size);
 void BindBufferOffsetNV(enum target, uint index , uint buffer,
 intptr offset);
 void BindBufferBaseNV(enum target, uint index, uint buffer);
 void ProgramBufferParametersfvNV(enum target, u int buffer, uint index,
 sizei count, c onst float *params);
 void ProgramBufferParametersIivNV(enum target, uint buffer, uint index,
 sizei count, const int *params);
 void ProgramBufferParametersIuivNV(enum target, uint buffer, uint index,
 sizei count, const uint *params);
 void GetIntegerIndexedvEXT(enum value, uint ind ex, boolean *data);

New Tokens

 Accepted by the <pname> parameter of GetProgram ivARB:

 MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS_NV 0x8DA0
 MAX_PROGRAM_PARAMETER_BUFFER_SIZE_NV 0x8DA1

 Accepted by the <target> parameter of ProgramBu fferParametersfvNV,
 ProgramBufferParametersIivNV, and ProgramBuffer ParametersIuivNV,
 BindBufferRangeNV, BindBufferOffsetNV, BindBuff erBaseNV, and BindBuffer
 and the <value> parameter of GetIntegerIndexedv EXT:

 VERTEX_PROGRAM_PARAMETER_BUFFER_NV 0x8DA2
 GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV 0x8DA3
 FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV 0x8DA4

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify "Section 2.14.1" of the ARB_vertex_progr am specification.

 (Add after the discussion of environment parame ters.)

 Additionally, each program target has an array of parameter buffer binding
 points, to which a buffer object (Section 2.9) can be bound. The number
 of available binding points is given by the imp lementation-dependent
 constant MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS_ NV. These binding points
 are shared by all programs of a given type. Al l bindings are initialized
 to the name zero, which indicates that no valid binding is present.

 A program parameter binding is associated with a buffer object using
 BindBufferOffset with a <target> of VERTEX_PROG RAM_PARAMETER_BUFFER_NV,
 GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV, or
 FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV and <index> corresponding to the
 number of the desired binding point. The error INVALID_VALUE is generated
 if the value of <index> is greater than or equa l to
 MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS.

NV_parameter_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 425

 Buffer objects are made to be sources of progra m parameter buffers by
 calling one of

 void BindBufferRangeNV(enum target, uint inde x, uint buffer,
 intptr offset, sizeipt r size)
 void BindBufferOffsetNV(enum target, uint ind ex, uint buffer,
 intptr offset)
 void BindBufferBaseNV(enum target, uint index , uint buffer)

 where <target> is set to VERTEX_PROGRAM_PARAMET ER_BUFFER_NV,
 GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV, or
 FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV. Any of t he three BindBuffer*
 commands perform the equivalent of BindBuffer(t arget, buffer). <buffer>
 specifies which buffer object to bind to the ta rget at index number
 <index>. <index> must be less than the value o f
 MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS_NV. <off set> specifies a starting
 offset into the buffer object <buffer>. <size> specifies the number of
 elements in the bound portion of the buffer. B oth <offset> and <size> are
 in basic machine units. The error INVALID_VALUE is generated if the value
 of <size> is less than or equal to zero. The e rror INVALID_VALUE is
 generated if <offset> or <size> are not word-al igned. For program
 parameter buffers, the error INVALID_VALUE is g enerated if <offset> is
 non-zero.

 BindBufferBaseNV is equivalent to calling BindB ufferOffsetNV with an
 <offset> of 0. BindBufferOffsetNV is the equiva lent of calling
 BindBufferRangeNV with <size> = sizeof(buffer) - <offset> and rounding
 <size> down so that it is word-aligned.

 All program parameter buffer parameters are eit her single-component 32-bit
 words or four-component vectors made up of 32-b it words. The program
 parameter buffers may hold signed integer, unsi gned integer, or
 floating-point data. There is a limit on the m aximum number of words of a
 buffer object that can be accessed using any si ngle parameter buffer
 binding point, given by the implementation-depe ndent constant
 MAX_PROGRAM_PARAMETER_BUFFER_SIZE_NV. Buffer o bjects larger than this
 size may be used, but the results of accessing portions of the buffer
 object beyond the limit are undefined.

 The commands

 void ProgramBufferParametersfvNV(enum target, uint buffer, uint index,
 sizei count, const float *params);
 void ProgramBufferParametersIivNV(enum target , uint buffer, uint index,
 sizei count , const int *params);
 void ProgramBufferParametersIuivNV(enum targe t, uint buffer, uint index,
 sizei count , const uint *params);

 update words <index> through <index>+<count>-1 in the buffer object bound
 to the binding point numbered <buffer> for the program target <target>.
 The new data is referenced by <params>. The er ror INVALID_OPERATION is
 generated if no buffer object is bound to the b inding point numbered
 <buffer>. The error INVALID_VALUE is generated if <index>+<count> is
 greater than either the number of words in the buffer object or the
 maximum parameter buffer size MAX_PROGRAM_PARAM ETER_BUFFER_SIZE_NV. These
 functions perform an operation functionally equ ivalent to calling
 BufferSubData, but possibly with higher perform ance.

OpenGL Extension Specifcations for GeForce 8 Series NV_parameter_buffer_object

NVIDIA Proprietary 426

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify the second paragraph of section 6.1.1 (S imple Queries) p. 244 to
 read as follows:

 ...<data> is a pointer to a scalar or array of the indicated type in which
 to place the returned data.

 void GetIntegerIndexedvEXT(enum target, uin t index,
 boolean *data);

 are used to query indexed state. <target> is t he name of the indexed
 state and <index> is the index of the particula r element being queried.
 <data> is a pointer to a scalar or array of the indicated type in which to
 place the returned data.

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 TBD

Dependencies on NV_transform_feedback

 Both NV_transform_feedback and this extension d efine the behavior of
 BindBuffer{Range, Offset, Base}NV. Both definit ions should be functionally
 identical.

Errors

 The error INVALID_VALUE is generated by BindBuf ferRangeNV,
 BindBufferOffsetNV, or BindBufferBaseNV if <tar get> is
 VERTEX_PROGRAM_PARAMETER_BUFFER_NV, GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV,
 or FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV, and <i ndex> is greater than or
 equal to MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS.

 The error INVALID_VALUE is generated by BindBuf ferRangeNV or
 BindBufferOffsetNV if <offset> or <size> is not word-aligned.

NV_parameter_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 427

 The error INVALID_VALUE is generated by BindBuf ferRangeNV if <size> is
 less than zero.

 The error INVALID_VALUE is generated by BindBuf ferRangeNV or
 BindBufferOffsetNV if <target> is VERTEX_PROGRA M_PARAMETER_BUFFER_NV,
 GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV, or
 FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV, and <offs et> is non-zero.

 The error INVALID_OPERATION is generated by Pro gramBufferParametersfvNV,
 ProgramBufferParametersIivNV, or ProgramBufferP arametersIuivNV if no
 buffer object is bound to the binding point num bered <buffer> for program
 target <target>.

 The error INVALID_VALUE is generated by Program BufferParametersfvNV,
 ProgramBufferParametersIivNV, or ProgramBufferP arametersIuivNV if the sum
 of <index> and <count> is greater than either t he number of words in the
 buffer object boudn to <buffer> or the maximum parameter buffer size
 MAX_PROGRAM_PARAMETER_BUFFER_SIZE_NV.

New State

 (Modify ARB_vertex_program, Table X.6 -- Progra m State)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------- ------- ----------- ------- ------------------------ ------ ---------
 VERTEX_PROGRAM_PARAMETER_ Z+ GetIntegerv 0 Active vertex program 2.14.1 -
 BUFFER_NV buffer object binding
 VERTEX_PROGRAM_PARAMETER_ nxZ+ GetInteger- 0 Buffer objects bound for 2.14.1 -
 BUFFER_NV IndexedvEXT vertex program use
 GEOMETRY_PROGRAM_PARAMETER_ Z+ GetIntegerv 0 Active geometry program 2.14.1 -
 BUFFER_NV buffer object binding
 GEOMETRY_PROGRAM_PARAMETER_ nxZ+ GetInteger- 0 Buffer objects bound for 2.14.1 -
 BUFFER_NV IndexedvEXT geometry program use
 FRAGMENT_PROGRAM_PARAMETER_ Z+ GetIntegerv 0 Active fragment program 2.14.1 -
 BUFFER_NV buffer object binding
 FRAGMENT_PROGRAM_PARAMETER_ nxZ+ GetInteger- 0 Buffer objects bound for 2.14.1 -
 BUFFER_NV IndexedvEXT fragment program use

New Implementation Dependent State

 Minimum
 Get Value Type Get Comman d Value Description Sec. Attribute
 --------- ------- ---------- - ------- ---------------- ------ ---------
 MAX_PROGRAM_PARAMETER_ Z GetProgram - 8 size of program 2.14.1 -
 BUFFER_BINDINGS_NV ivARB parameter binding
 tables
 MAX_PROGRAM_PARAMETER_ Z GetProgram - 4096 maximum usable 2.14.1 -
 BUFFER_SIZE_NV ivARB size of program
 parameter buffers

OpenGL Extension Specifcations for GeForce 8 Series NV_parameter_buffer_object

NVIDIA Proprietary 428

Examples

 !!NVfp4.0
 # Legal
 BUFFER bones[] = { program.buffer[0] };
 ALIAS funBone = bones[69];
 MOV t, bones[1];
 # Illegal
 ALIAS numLights = program.buffer[5][6];
 MOV t, program.buffer[3][x];
 END

Issues

 (1) PBO is already taken as an acronym? What d o we call this?

 RESOLVED: PaBO.

 (2) How should the ability to simultaneously ac cess multiple parameter
 buffers be exposed?

 RESOLVED: In the program text (see NV_gpu_pro gram4), the buffers are
 referred to using a buffer binding statement which is dereferenced in
 the instructions. In the rest of the APIs, a n array of internal binding
 points is provided, which are dereferenced us ing the index parameter of
 BindBufferBase and associated functions.

 (3) Should program parameter buffer bindings be provided per-target (i.e.,
 environment parameters), per-program (i.e., local parameters), or some
 combination of the two?

 RESOLVED: Per-target. That fits most naturall y with the ARB program
 model, similar to textures. Having both per-p rogram and per-target add
 complexity with no benefit.

 (4) Should references to the parameter buffer b e scalar or vector?

 RESOLVED: Scalar. Having vector is more consi stent with the legacy APIs,
 but is more difficult to build the arbitrary data structures that are
 interesting to store in a parameter buffer. A future extension can
 define an alternate keyword in the program te xt to specify accesses of a
 different size.

 (5) Should parameter buffers be editable using the ProgramEnvParameter
 API?

 RESOLVED: No. There is a new parallel API for the bindable buffers,
 including the ability to update multiple para meters at a time. These are
 more convenient than having to rebind for Buf ferData and potentially
 faster.

 (6) Should parameter buffers be editable outsid e the ProgramBufferParameters
 API?

 RESOLVED: Yes. The use of buffer objects al lows the buffers to be
 naturally manipulated using normal buffer obj ect mechanisms. That

NV_parameter_buffer_object OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 429

 includes CPU mapping, loading via BufferData or BufferSubData, and even
 reading data back using the ARB_pixel_buffer_ object extension.

 (7) Will buffer object updates from different s ources cause potential
 synchronization problems? If so, how will they be resolved.

 RESOLVED: If reads and write occur in the cou rse of the same call
 (e.g. reading from a buffer using parameter b uffer binding while writing
 to it using transform feedback. All other cas es are allowed and occur in
 command order. Any synchronization is handled by the GL.

 (8) Is there an implementation-dependent limit to the size of program
 parameter buffers?

 RESOLVED: Yes, limited-size buffers are provi ded to reduce the
 complexity of the GPU design that supports pr ogram parameter buffer
 access and updates. However, the minimum lim it is 16K scalar
 parameters, or 64KB. A larger buffer object can be provided, but only
 the first 64KB is accessible. The limit is qu eryable with
 GetProgramivARB with <pname> MAX_PROGRAM_PARA METER_BUFFER_SIZE_NV.

 (9) With scalar buffers, which parameter settin g routines do we need?

 UNRESOLVED: A function to set N scalars is ve ry important. It might be
 nice to have convenience functions that take 1 or 4 parameters directly.

 (10) Do we need GetProgramBufferParameter funct ions?

 UNRESOLVED: Probably not - they aren't perf c ritical and offer no
 functionality beyond getting the buffer objec t data any of the standard
 ways.

 (11) What happens if a value written using Prog ramBufferParametersfNV is
 read as an integer or the other way around ?

 RESOLVED: Undefined - likely just a raw bit c ast between whatever
 internal representations are used by the GL.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 7 04/18/07 pbrown Fixed state table to include the buffer
 object binding array for each program type.

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 430

Name

 NV_transform_feedback

Name Strings

 GL_NV_transform_feedback

Contributors

 Cliff Woolley
 Nick Carter

Contact

 Barthold Lichtenbelt (blichtenbelt 'at' nvidia. com)
 Pat Brown (pbrown 'at' nvidia.com)
 Eric Werness (ewerness 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 02/04/2008
 NVIDIA Revision: 14

Number

 341

Dependencies

 OpenGL 1.5 is required.

 This extension interacts with EXT_timer_query.

 NV_vertex_program4, NV_geometry_program4 and NV _gpu_program4 affect this
 extension.

 EXT_geometry_shader4 trivially interacts with t his extension.

 This extension has an OpenGL Shading Language c omponent. As such it
 interacts with ARB_shader_objects and OpenGL 2. 0.

 This extension is written against the OpenGL 2. 0 specification.

Overview

 This extension provides a new mode to the GL, c alled transform feedback,
 which records vertex attributes of the primitiv es processed by the GL.
 The selected attributes are written into buffer objects, and can be
 written with each attribute in a separate buffe r object or with all
 attributes interleaved into a single buffer obj ect. If a geometry program
 or shader is active, the primitives recorded ar e those emitted by the
 geometry program. Otherwise, transform feedbac k captures primitives whose

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 431

 vertex are transformed by a vertex program or s hader, or by fixed-function
 vertex processing. In either case, the primiti ves captured are those
 generated prior to clipping. Transform feedbac k mode is capable of
 capturing transformed vertex data generated by fixed-function vertex
 processing, outputs from assembly vertex or geo metry programs, or varying
 variables emitted from GLSL vertex or geometry shaders.

 The vertex data recorded in transform feedback mode is stored into buffer
 objects as an array of vertex attributes. The regular representation and
 the use of buffer objects allows the recorded d ata to be processed
 directly by the GL without requiring CPU interv ention to copy data. In
 particular, transform feedback data can be used for vertex arrays (via
 vertex buffer objects), as the source for pixel data (via pixel buffer
 objects), as program constant data (via the NV_ parameter_buffer_object or
 EXT_bindable_uniform extension), or via any oth er extension that makes use
 of buffer objects.

 This extension introduces new query object supp ort to allow transform
 feedback mode to operate asynchronously. Query objects allow applications
 to determine when transform feedback results ar e complete, as well as the
 number of primitives processed and written back to buffer objects while in
 transform feedback mode. This extension also p rovides a new rasterizer
 discard enable, which allows applications to us e transform feedback to
 capture vertex attributes without rendering any thing.

New Procedures and Functions

 void BindBufferRangeNV(enum target, uint index, uint buffer,
 intptr offset, sizeiptr size)
 void BindBufferOffsetNV(enum target, uint index , uint buffer,
 intptr offset)
 void BindBufferBaseNV(enum target, uint index, uint buffer)
 void TransformFeedbackAttribsNV(sizei count, co nst int *attribs,
 enum bufferMode)
 void TransformFeedbackVaryingsNV(uint program, sizei count,
 const int *loc ations,
 enum bufferMod e)
 void BeginTransformFeedbackNV(enum primitiveMod e)
 void EndTransformFeedbackNV()

 int GetVaryingLocationNV(uint program, const ch ar *name)
 void GetActiveVaryingNV(uint program, uint inde x,
 sizei bufSize, sizei *l ength, sizei *size,
 enum *type, char *name)
 void ActiveVaryingNV(uint program, const char * name)
 void GetTransformFeedbackVaryingNV(uint program , uint index,
 int *locatio n)

 void GetIntegerIndexedvEXT(enum param, uint ind ex, int *values);
 void GetBooleanIndexedvEXT(enum param, uint ind ex, boolean *values);

 (Note: These indexed query functions are provid ed in the EXT_draw_buffers2
 extension. The boolean query is not useful for any queryable value in
 this extension, but is supported for completene ss and consistency with
 base GL typed "Get" functions.)

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 432

New Tokens

 Accepted by the <target> parameters of BindBuff er, BufferData,
 BufferSubData, MapBuffer, UnmapBuffer, GetBuffe rSubData,
 GetBufferPointerv, BindBufferRangeNV, BindBuffe rOffsetNV and
 BindBufferBaseNV:

 TRANSFORM_FEEDBACK_BUFFER_NV 0x8C8E

 Accepted by the <param> parameter of GetInteger IndexedvEXT and
 GetBooleanIndexedvEXT:

 TRANSFORM_FEEDBACK_BUFFER_START_NV 0x8C84
 TRANSFORM_FEEDBACK_BUFFER_SIZE_NV 0x8C85
 TRANSFORM_FEEDBACK_RECORD_NV 0x8C86

 Accepted by the <param> parameter of GetInteger IndexedvEXT and
 GetBooleanIndexedvEXT, and by the <pname> param eter of GetBooleanv,
 GetDoublev, GetIntegerv, and GetFloatv:

 TRANSFORM_FEEDBACK_BUFFER_BINDING_NV 0x8C8F

 Accepted by the <bufferMode> parameter of Trans formFeedbackAttribsNV and
 TransformFeedbackVaryingsNV:

 INTERLEAVED_ATTRIBS_NV 0x8C8C
 SEPARATE_ATTRIBS_NV 0x8C8D

 Accepted by the <target> parameter of BeginQuer y, EndQuery, and
 GetQueryiv:

 PRIMITIVES_GENERATED_NV 0x8C87
 TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV 0x8C88

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev:

 RASTERIZER_DISCARD_NV 0x8C89

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev, GetIntegerv,
 and GetFloatv:

 MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV 0x8C8A
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV 0x8C8B
 MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_NV 0x8C80
 TRANSFORM_FEEDBACK_ATTRIBS_NV 0x8C7E

 Accepted by the <pname> parameter of GetProgram iv:

 ACTIVE_VARYINGS_NV 0x8C81
 ACTIVE_VARYING_MAX_LENGTH_NV 0x8C82
 TRANSFORM_FEEDBACK_VARYINGS_NV 0x8C83

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 433

 Accepted by the <pname> parameter of GetBooleanv , GetDoublev, GetIntegerv,
 GetFloatv, and GetProgramiv:

 TRANSFORM_FEEDBACK_BUFFER_MODE_NV 0x8C7F

 Accepted by the <attribs> parameter of Transform FeedbackAttribsNV:

 BACK_PRIMARY_COLOR_NV 0x8C77
 BACK_SECONDARY_COLOR_NV 0x8C78
 TEXTURE_COORD_NV 0x8C79
 CLIP_DISTANCE_NV 0x8C7A
 VERTEX_ID_NV 0x8C7B
 PRIMITIVE_ID_NV 0x8C7C
 GENERIC_ATTRIB_NV 0x8C7D
 POINT_SIZE 0x0B11
 FOG_COORDINATE 0x8451
 SECONDARY_COLOR_NV 0x852D
 PRIMARY_COLOR 0x8577
 POSITION 0x1203
 LAYER_NV 0x8DAA

 (note: POINT_SIZE, FOG_COORDINATE, PRIMARY_C OLOR, and POSITION are
 defined in the core OpenGL specification; SE CONDARY_COLOR_NV is defined
 in NV_register_combiners.)

 Returned by the <type> parameter of GetActiveVa ryingNV:

 UNSIGNED_INT_VEC2_EXT 0x8DC6
 UNSIGNED_INT_VEC3_EXT 0x8DC7
 UNSIGNED_INT_VEC4_EXT 0x8DC8

 (note: All three of these are defined in the EXT_gpu_shader4
 extension.)

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL
Operation)

 Insert three new sections between Sections 2.11 , Coordinate Transforms and
 2.12, Clipping:

 (Move the "Asynchronous Queries" language out o f Section 4.1.7)

 Section 2.X, Asynchronous Queries

 Asynchronous queries provide a mechanism to ret urn information about the
 processing of a sequence of GL commands. There are two query types
 supported by the GL. Transform feedback querie s (section 2.Y) returns
 information on the number of vertices and primi tives processed by the GL
 and written to one or more buffer objects. Occ lusion queries (section
 4.1.7.1) count the number of fragments or sampl es that pass the depth
 test.

 The results of asynchronous queries are not ret urned by the GL immediately
 after the completion of the last command in the set; subsequent commands
 can be processed while the query results are no t complete. When
 available, the query results are stored in an a ssociated query object.
 The commands described in section 6.1.12 provid e mechanisms to determine

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 434

 when query results are available and return the actual results of the
 query. The name space for query objects is the unsigned integers, with
 zero reserved by the GL.

 Each type of query supported by the GL has an a ctive query object name. If
 the active query object name for a query type i s non-zero, the GL is
 currently tracking the information correspondin g to that query type and
 the query results will be written into the corr esponding query object. If
 the active query object for a query type name i s zero, no such information
 is being tracked.

 A query object is created by calling

 void BeginQuery(enum target, uint id);

 with an unused name <id>. <target> indicates t he type of query to be
 performed; valid values of <target> are defined in subsequent
 sections. When a query object is created, the n ame <id> is marked as used
 and associated with a new query object.

 BeginQuery sets the active query object name fo r the query type given by
 <target> to <id>. If BeginQuery is called with an <id> of zero, if the
 active query object name for <target> is non-ze ro, or if <id> is the
 active query object name for any query type, th e error INVALID OPERATION
 is generated.

 The command

 void EndQuery(enum target);

 marks the end of the sequence of commands to be tracked for the query type
 given by <target>. The active query object for <target> is updated to
 indicate that query results are not available, and the active query object
 name for <target> is reset to zero. When the c ommands issued prior to
 EndQuery have completed and a final query resul t is available, the query
 object, active when EndQuery is, called is upda ted by the GL. The query
 object is updated to indicate that the query re sults are available and to
 contain the query result. If the active query object name for <target> is
 zero when EndQuery is called, the error INVALID _OPERATION is generated.

 The command

 void GenQueries(sizei n, uint *ids);

 returns <n> previously unused query object name s in <ids>. These names are
 marked as used, but no object is associated wit h them until the first time
 they are used by BeginQuery.

 Query objects are deleted by calling

 void DeleteQueries(sizei n, const uint *ids);

 <ids> contains <n> names of query objects to be deleted. After a query
 object is deleted, its name is again unused. U nused names in <ids> are
 silently ignored.

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 435

 Calling either GenQueries or DeleteQueries whil e any query of any target
 is active causes an INVALID_OPERATION error to be generated.

 Query objects contain two pieces of state: a s ingle bit indicating
 whether a query result is available, and an int eger containing the query
 result value. The number of bits used to repre sent the query result is
 implementation-dependent. In the initial state of a query object, the
 result is available and its value is zero.

 The necessary state for each query type is an u nsigned integer holding the
 active query object name (zero if no query obje ct is active), and any
 state necessary to keep the current results of an asynchronous query in
 progress.

 Section 2.Y, Transform Feedback

 In 'transform feedback' mode the vertices of tr ansformed primitives are
 written out to one or more buffer objects. The vertices are fed back after
 the geometry shader stage, if it exists, or oth erwise after vertex
 processing right before clipping (section 2.12) but after color
 clamping. Optionally the transformed vertices c an be discarded after being
 stored into one or more buffer objects, or they can be passed on down to
 the clipping stage for further processing.

 Transform feedback is started and finished by c alling

 void BeginTransformFeedbackNV(enum primitiveM ode)

 and

 void EndTransformFeedbackNV(),

 respectively. Transform feedback is said to be active after a call to
 BeginTransformFeedbackNV and inactive after a c all to
 EndTransformFeedbackNV. Transform feedback is i nitially inactive.
 Transform feedback is performed after color cla mping, but immediately
 before clipping in the OpenGL pipeline. <primit iveMode> is one of
 TRIANGLES, LINES, or POINTS, and specifies the output type of primitives
 that will be recorded into the buffer objects b ound for transform feedback
 (see below). <primitiveMode> places a restricti on on the primitive types
 that may be rendered during an instance of tran sform feedback. See table
 X.1.

 Transform Feedback
 primitiveMode allowed render pr imitive modes
 ---------------------- ----------------- ----------------
 POINTS POINTS
 LINES LINES, LINE_LOOP , and LINE_STRIP
 TRIANGLES TRIANGLES, TRIAN GLE_STRIP,
 TRIANGLE_FAN, QU ADS, QUAD_STRIP,
 and POLYGON

 Table X.1 Legal combinations between the transform feedback primitive
 mode, as passed to BeginTransformFeedbackNV and the current primitive
 mode.

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 436

 If a geometry program or geometry shader is act ive, the output primitive
 type of the currently active program is used as the render primitive in
 table X.1, otherwise the Begin mode is used.

 Quads and polygons will be tessellated and reco rded as triangles (the
 order of tessellation within a primitive is und efined); primitives
 specified in strips or fans will be assembled a nd recorded as individual
 primitives. Incomplete primitives are not recor ded. Begin or any operation
 that implicitly calls Begin (such as DrawElemen ts) will generate
 INVALID_OPERATION if the begin mode is not an a llowed begin mode for the
 current transform feedback buffer state. If a g eometry program or geometry
 shader is active, its output primtive mode is u sed for the error check
 instead of the begin mode.

 It is an invalid operation error to call BeginT ransformFeedbackNV,
 TransformFeedbackBufferNV, TransformFeedbackVar yingsNV,
 TransformFeedbackAttribsNV, or UseProgram or Li nkProgram on the currently
 active program object while transform feedback is active. It is an
 invalid operation error to call EndTransformFee dbackNV while transform
 feedback is inactive.

 Transform feedback can operate in either INTERL EAVED_ATTRIBS_NV or
 SEPARATE_ATTRIBS_NV mode. In the INTERLEAVED_AT TRIBS_NV mode, several
 vertex attributes can be written, interleaved, into a single buffer
 object. In the SEPARATE_ATTRIBS_NV mode, verte x attributes are recorded,
 non-interleaved, into several buffer objects si multaneously.

 It is an INVALID_OPERATION error to call BeginT ransformFeedbackNV if there
 is no buffer object bound to index 0 (see the d escription of the
 BindBuffer* commands below) in INTERLEAVED_ATTR IBS_NV mode. It is also an
 INVALID_OPERATION error to call BeginTransformF eedbackNV if the number of
 buffer objects bound in SEPARATE_ATTRIBS_NV mod e is less than the number
 of buffer objects required, as given by the cur rent transform feedback
 state. It is also an INVALID_OPERATION error t o call
 BeginTransformFeedbackNV if no attributes are s pecified to be captured in
 either separate or interleaved mode.

 Buffer objects are made to be targets of transf orm feedback by calling one
 of

 void BindBufferRangeNV(enum target, uint inde x, uint buffer,
 intptr offset, sizeipt r size)
 void BindBufferOffsetNV(enum target, uint ind ex, uint buffer,
 intptr offset)
 void BindBufferBaseNV(enum target, uint index , uint buffer)

 where <target> is set to TRANSFORM_FEEDBACK_BUF FER_NV. Any of the three
 BindBuffer* commands perform the equivalent of BindBuffer(target,
 buffer). <buffer> specifies which buffer object to bind to the target at
 index number <index>. <index> exists for use wi th the SEPARATE_ATTRIBS_NV
 mode and must be less than the value of
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV. <offset> specifies a starting
 offset into the buffer object <buffer>. <size> specifies the number of
 elements that can be written during transform f eedback mode. This is
 useful to prevent the GL from writing past a ce rtain position in the
 buffer object. Both <offset> and <size> are in basic machine units. The
 error INVALID_VALUE is generated if the value o f <size> is less than or

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 437

 equal to zero. The error INVALID_VALUE is gene rated if <offset> or <size>
 are not word-aligned. The error INVALID_OPERATI ON is generated when any of
 the BindBuffer* commands is called while transf orm feedback is active.

 BindBufferBaseNV is equivalent to calling BindB ufferOffsetNV with an
 <offset> of 0. BindBufferOffsetNV is the equiva lent of calling
 BindBufferRangeNV with <size> = sizeof(buffer) - <offset> and rounding
 <size> down so that it is word-aligned.

 If recording the vertices of a primitive to the buffer objects being used
 for transform feedback purposes would result in either exceeding the
 limits of any buffer object's size, or in excee ding the end position
 <offset> + <size> - 1, as set by BindbufferRang eNV, then no vertices of
 the primitive are recorded, and the counter cor responding to the
 asynchronous query target TRANSFORM_FEEDBACK_PR IMITIVES_WRITTEN_NV (see
 Section 2.Z) is not incremented.

 Two methods exist to specify which transformed vertex attributes are
 streamed to one, or more, buffer objects in tra nsform feedback mode. If
 an OpenGL Shading Language vertex and/or geomet ry shader is active, then
 the state set with the TransformFeedbackVarying sNV() command determines
 which attributes to record. If neither a vertex nor geometry shader is
 active, the state set with the TransformFeedbac kAttribsNV() command
 determines which attributes to record.

 When a program object containing a vertex shade r and/or geometry shader is
 active, the set of vertex attributes recorded i n transform feedback mode
 is specified by

 void TransformFeedbackVaryingsNV(uint program , sizei count,
 const int *l ocations,
 enum bufferM ode)

 This command sets the transform feedback state for <program> and specifies
 which varying variables to record when transfor m feedback is active. The
 array <locations> contains <count> locations of active varying variables,
 as queried with GetActiveVaryingNV(), to stream to a buffer object. See
 section 2.15.3. <bufferMode> is one of INTERLEA VED_ATTRIBS_NV or
 SEPARATE_ATTRIBS_NV. The error INVALID_OPERATI ON is generated if any
 value in <locations> does not reference an acti ve varying variable, or if
 any value in <locations> appears more than once in the array. The same
 error is generated if <program> has not been li nked successfully. The
 program object's state value TRANSFORM_FEEDBACK _BUFFER_MODE_NV will be set
 to <bufferMode> and the program object's state value
 TRANSFORM_FEEDBACK_VARYINGS_NV set to <count>. These values can be queried
 with GetProgramiv (see section 6.1.14).

 In the INTERLEAVED_ATTRIBS_NV mode, varying var iables are written,
 interleaved, into one buffer object. This is th e buffer object bound to
 index 0. Varying variables are written out to t hat buffer object in the
 order that they appear in the array <locations> . The error
 INVALID_OPERATION is generated if the total num ber of components of all
 varying variables specified in the array <locat ions> is greater than
 MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV.

 In the SEPARATE_ATTRIBS_NV mode, varying variab les are recorded,
 non-interleaved, into several buffer objects si multaneously. The first

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 438

 varying variable in the array <locations> is wr itten to the buffer bound
 to index 0. The last varying variable is writte n to the buffer object
 bound to index <count> - 1. No more than
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV buffer objects can be written
 to simultaneously. The error INVALID_VALUE is g enerated if <count> is
 greater than that limit. Furthermore, the numbe r of components for each
 varying variable in the array <locations> canno t exceed
 MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_NV. The error INVALID_VALUE is
 generated if any varying variable in <locations > exceeds this limit.

 It is not necessary to (re-)link <program> afte r calling
 TransformFeedbackVaryingsNV(). Changes to the t ransform feedback state
 will be picked up right away after calling Tran sformFeedbackVaryingsNV().

 The value for any attribute specified to be str eamed to a buffer object
 but not actually written by a vertex or geometr y shader is undefined.

 When neither a vertex nor geometry shader is ac tive, the vertex attributes
 produced by fixed-function vertex processing or an assembly vertex or
 geometry program can be recorded in transform f eedback mode. The set of
 attributes to record is specified by

 void TransformFeedbackAttribsNV(sizei count, const int *attribs,
 enum bufferMo de)

 This command specifies which attributes to reco rd into one, or more,
 buffer objects. The value TRANSFORM_FEEDBACK_BU FFER_MODE_NV will be set
 to <bufferMode> and the value TRANSFORM_FEEDBAC K_ATTRIBS_NV set to
 <count>. The array <attribs> contains an inter leaved representation of
 the attributes desired to be fed back containin g 3*count values. For
 attrib i, the value at 3*i+0 is the enum corres ponding to the attrib, as
 given in table X.2. The value at 3*i+1 is the n umber of components of the
 provided attrib to be fed back and is between 1 and 4. The value at 3*i+2
 is the index for attribute enumerants correspon ding to more than one real
 attribute. For an attribute enumerant correspon ding to only one attribute,
 the index is ignored. For an attribute enumeran t corresponding to more
 than one attribute, the error INVALID_VALUE is generated if the index
 value is outside the allowable range for that a ttribute.

 permitted GPU_program_4
 attrib sizes index? result name
 --------------------- -------- -------- --------------
 POSITION 1,2,3,4 no position
 PRIMARY_COLOR 1,2,3,4 no color.front.primary
 SECONDARY_COLOR_NV 1,2,3,4 no color.front.secondary
 BACK_PRIMARY_COLOR_NV 1,2,3,4 no color.back.primary
 BACK_SECONDARY_COLOR_NV 1,2,3,4 no color.back.secondary
 FOG_COORDINATE 1 no fogcoord
 POINT_SIZE 1 no pointsize
 TEXTURE_COORD_NV 1,2,3,4 yes texcoord[index]
 CLIP_DISTANCE_NV 1 yes clip[index]
 VERTEX_ID_NV 1 no vertexid
 PRIMITIVE_ID_NV 1 no primid
 GENERIC_ATTRIB_NV 1,2,3,4 yes attrib[index]
 LAYER_NV 1 no layer

 Table X.2: Transform Feedback Attribute Specifiers.The 'attr ib' column

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 439

 specifies which attribute to record. The 'permi tted sizes' column
 indicates how many components of the attribute can be recorded. The
 'index' column indicates if the attribute is in dexed. The 'gpu program 4'
 column shows which result variable of a vertex or geometry program
 corresponds to the attribute to record.

 The TransformFeedbackAttribsNV() command sets t ransform feedback state
 which is used both when the GL is in fixed-func tion vertex processing
 mode, as well as when an assembly vertex and/or geometry program is
 active.

 The parameter <bufferMode> has the same meaning as described for
 TransformFeedbackVaryingsNV(). Attributes are e ither written interleaved,
 or into separate buffer objects, in the same ma nner as described earlier
 for TransformFeedbackVaryingsNV().

 In the INTERLEAVED_ATTRIBS_NV mode, the error I NVALID_VALUE is generated
 if the sum of the values of elements 3*i+1 in t he array <attribs> is
 greater than MAX_TRANSFORM_FEEDBACK_INTERLEAVED _COMPONENTS_NV.

 In the SEPARATE_ATTRIBS_NV mode, no more than
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV buffer objects can be written
 to simultaneously. The error INVALID_VALUE is g enerated if <count> is
 greater than that limit.

 The error INVALID_OPERATION is generated if any attribute appears more
 than once in the array <attribs>.

 The value for any attribute specified to be str eamed to a buffer object
 but not actually written by a vertex or geometr y program is undefined.
 The values of PRIMITIVE_ID_NV or LAYER_NV for a vertex is defined if and
 only if a geometry program is active and that p rogram writes to the result
 variables "result.primid" or "result.layer", re spectively. The value of
 VERTEX_ID_NV is only defined if and only if a v ertex program is active, no
 geometry program is active, and the vertex prog ram writes to the output
 attribute "result.id".

 Section 2.Z, Primitive Queries

 Primitive queries use query objects to track th e number of primitives
 generated by the GL and to track the number of primitives written to
 transform feedback buffers.

 When BeginQuery is called with a <target> of PR IMITIVES_GENERATED_NV, the
 primitives-generated count maintained by the GL is set to zero. When the
 generated primitive query is active, the primit ives-generated count is
 incremented every time a primitive reaches the Discarding Rasterization
 stage (see Section 3.x) right before rasterizat ion. This counter counts
 the number of primitives emitted by a geometry shader, if active, possibly
 further tessellated into separate primitives du ring the transform-feedback
 stage, if active.

 When BeginQuery is called with a <target> of
 TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV, the t ransform-feedback-
 primitives-written count maintained by the GL i s set to zero. When the
 transform feedback primitive written query is a ctive, the
 transform-feedback-primitives-written count is incremented every time a

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 440

 primitive is recorded into a buffer object. If transform feedback is not
 active, this counter is not incremented. If the primitive does not fit in
 the buffer object, the counter is not increment ed.

 These two queries can be used together to deter mine if all primitives have
 been written to the bound feedback buffers; if both queries are run
 simultaneously and the query results are equal, all primitives have been
 written to the buffer(s). If the number of prim itives written is less than
 the number of primitives generated, the buffer is full.

 Modify section 2.15.3 "Shader Variables", page 75.

 Change the second sentence in the first paragra ph on p. 84 as follows:

 . . . or read by a fragment shader, will count against this limit. The
 transformed vertex position (gl_Position) does not count against this
 limit.

 Add the following paragraphs on p.84:

 A varying variable is considered active if it i s determined by the linker
 that the varying will actually be used when the executable code in a
 program object is executed. The linker will mak e this determination
 regardless of the transform-feedback state set with the
 TransformFeedbackVaryingsNV() command. In cases where the linker cannot
 make a conclusive determination, the varying wi ll be considered active. It
 is possible to override this determination and force the linker to
 consider a varying variable as active by callin g ActiveVaryingNV(). This
 can be useful in transform feedback mode if the re are varying variables to
 be recorded but not otherwise needed.

 To find the location of an active varying varia ble, call

 int GetVaryingLocationNV(uint program, const char *name)

 This command will return the location of varyin g variable <name>. <name>
 is a null-terminated string without whitespace. If <name> is not the name
 of an active varying variable in <program>, -1 is returned. Locations for
 both user-defined as well as built-in varying v ariables can be queried. If
 <program> has not been successfully linked, the error INVALID_OPERATION is
 generated. After a program is linked, the locat ion will not change, unless
 the program is re- linked. A valid name cannot be any portion of a single
 vector or matrix, but can be a single element o f an array or the whole
 array. Note that varying variables cannot be s tructures.

 To determine the set of active varying variable s used by a program object,
 and their data types, use the command:

 void GetActiveVaryingNV(uint program, uint in dex,
 sizei bufSize, sizei *length, sizei *size,
 enum *type, char *nam e);

 This command provides information about the var ying selected by
 <index>. An <index> of 0 selects the first acti ve varying variable, and an
 <index> of ACTIVE_VARYINGS_NV-1 selects the las t active varying
 variable. The value of ACTIVE_VARYINGS_NV can b e queried with
 GetProgramiv (see section 6.1.14). If <index> i s greater than or equal to

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 441

 ACTIVE_VARYINGS_NV, the error INVALID_VALUE is generated. The parameter
 <program> is the name of a program object for w hich the command
 LinkProgram has been issued in the past. It is not necessary for <program>
 to have been linked successfully. The link coul d have failed because the
 number of active varying variables exceeded the limit.

 The name of the selected varying is returned as a null-terminated string
 in <name>. The actual number of characters writ ten into <name>, excluding
 the null terminator, is returned in <length>. I f <length> is NULL, no
 length is returned. The maximum number of chara cters that may be written
 into <name>, including the null terminator, is specified by <bufSize>. The
 returned varying name can be the name of a user defined varying variable
 or the name of a built- in varying (which begin with the prefix "gl_", see
 the OpenGL Shading Language specification for a complete list). The length
 of the longest varying name in program is given by
 ACTIVE_VARYING_MAX_LENGTH_NV, which can be quer ied with GetProgramiv (see
 section 6.1.14).

 For the selected varying variable, its type is returned into <type>. The
 size of the varying is returned into <size>. Th e value in <size> is in
 units of the type returned in <type>. The type returned can be any of
 FLOAT, FLOAT_VEC2, FLOAT_VEC3, FLOAT_VEC4, INT, INT_VEC2, INT_VEC3,
 INT_VEC4, UNSIGNED_INT, UNSIGNED_INT_VEC2_EXT, UNSIGNED_INT_VEC3_EXT,
 UNSIGNED_INT_VEC4_EXT, FLOAT_MAT2, FLOAT_MAT3, or FLOAT_MAT4. If an error
 occurred, the return parameters <length>, <size >, <type> and <name> will
 be unmodified. This command will return as much information about active
 varying variables as possible. If no informatio n is available, <length>
 will be set to zero and <name> will be an empty string. This situation
 could arise if GetActiveVaryingNV is issued aft er a failed link.

 To force the linker to mark a varying variable as active, call

 void ActiveVaryingNV(uint program, const char *name)

 to specify that the varying variable <name> in <program> should be marked
 as active when the program is next linked. In p articular, it does not
 modify the list of active varying variables in a program object that has
 already been linked. For any varying variable i n <program> not passed to
 ActiveVaryingNV, the linker will determine thei r active status. <name>
 must be a null-terminated string without whites pace. A valid name cannot
 be an element of an array, or any portion of a single vector or
 matrix. ActiveVaryingNV may be issued before an y shader objects are
 attached to <program>. Hence, <name> can contai n any string, including a
 name that is never used as a varying variable i n any shader object. Such
 names are ignored by the GL.

 The application is advised to force any varying variable live that it
 needs for transform feedback purposes. The set of active varying variables
 are linker dependent.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 (Add new section 3.X, Discarding Rasterization)

 Primitives can be optionally discarded before r asterization by calling
 Enable and Disable with RASTERIZER_DISCARD_NV. When enabled, primitives
 are discared right before the rasterization sta ge, but after the optional

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 442

 transform feedback stage. When disabled, primit ives are passed through to
 the rasterization stage to be processed normall y. RASTERIZER_DISCARD_NV
 applies to the DrawPixels, CopyPixels, Bitmap, Clear and Accum commands as
 well.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 (Replace section 4.1.7, "Occlusion Queries", p. 204, with the following)

 Occlusion queries use query objects to track th e number of fragments or
 samples that pass the depth test. An occlusion query can be started and
 finished by calling BeginQuery and EndQuery, re spectively, with a <target>
 of SAMPLES_PASSED.

 When an occlusion query starts, the samples-pas sed count maintained by the
 GL is set to zero. When an occlusion query is active, the samples-passed
 count is incremented for each fragment that pas ses the depth test. If the
 value of SAMPLE BUFFERS is 0, then the samples- passed count is
 incremented by 1 for each fragment. If the valu e of SAMPLE BUFFERS is 1,
 then the samples-passed count is incremented by the number of samples
 whose coverage bit is set. However, implementat ions, at their discretion,
 may instead increase the samples-passed count b y the value of SAMPLES if
 any sample in the fragment is covered. When an occlusion query finishes
 and all fragments generated by the commands iss ued prior to EndQuery have
 been generated, the samples-passed count is wri tten to the corresponding
 query object as the query result value, and the query result for that
 object is marked as available.

 If the samples-passed count overflows, (i.e., e xceeds the value 2^n - 1,
 where n is the number of bits in the samples-pa ssed count), its value
 becomes undefined. It is recommended, but not required, that
 implementations handle this overflow case by sa turating at 2^n - 1 and
 incrementing no further.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 (Add to section 5.4, Display Lists p. 237)

 On p. 241, add the following to the list of ver tex buffer object commands
 not compiled into a display list: BindBufferRan geNV, BindBufferOffsetNV,
 BindBufferBaseNV, TransformFeedbackAttribsNV,
 TransformFeedbackVaryingsNV, and ActiveVaryingN V.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 Modify the second paragraph of section 6.1.1 (S imple Queries) p244 to read
 as follows:

 ...<data> is a pointer to a scalar or array of the indicated type in which
 to place the returned data. The commands

 void GetIntegerIndexedvEXT(enum param, uint i ndex, int *values);
 void GetBooleanIndexedvEXT(enum param, uint i ndex, boolean *values);

 are used to query indexed state. <target> is t he name of the indexed

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 443

 state and <index> is the index of the particula r element being queried.
 <data> is a pointer to a scalar or array of the indicated type in which to
 place the returned data. In addition ...

 (Replace Section 6.1.12, Occlusion Queries, p. 2 54)

 Section 6.1.12, Asynchronous Queries

 The command

 boolean IsQuery(uint id);

 returns TRUE if <id> is the name of a query obj ect. If <id> is zero, or if
 <id> is a non-zero value that is not the name o f a query object, IsQuery
 returns FALSE.

 Information about a query target can be queried with the command

 void GetQueryiv(enum target, enum pname, int *params);

 <target> identifies the query target and can be SAMPLES_PASSED for
 occlusion queries or PRIMITIVES_GENERATED_NV an d
 TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV for pr imitive queries.

 If <pname> is CURRENT_QUERY, the name of the cu rrently active query for
 <target>, or zero if no query is active, will b e placed in <params>.

 If <pname> is QUERY_COUNTER_BITS, the implement ation-dependent number of
 bits used to hold the query result for <target> will be placed in
 params. The number of query counter bits may be zero, in which case the
 counter contains no useful information.

 For primitive queries (PRIMITIVES_GENERATED_NV and
 TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV) if th e number of bits is
 non-zero, the minimum number of bits allowed is 32.

 For occlusion queries (SAMPLES_PASSED), if the number of bits is non-
 zero, the minimum number of bits allowed is a f unction of the
 implementation's maximum viewport dimensions (M AX_VIEWPORT_DIMS). The
 counter must be able to represent at least two overdraws for every pixel
 in the viewport. The formula to compute the all owable minimum value (where
 n is the minimum number of bits) is:

 n = min(32, ceil(log_2(maxViewportWidth *
 maxViewportHeight * 2))).

 The state of a query object can be queried with the commands

 void GetQueryObjectiv(uint id, enum pname, in t *params);
 void GetQueryObjectuiv(uint id, enum pname, u int *params);

 If <id> is not the name of a query object, or i f the query object named by
 <id> is currently active, then an INVALID_OPERA TION error is generated.

 If <pname> is QUERY_RESULT, then the query obje ct's result value is
 returned as a single integer in <params>. If t he value is so large in
 magnitude that it cannot be represented with th e requested type, then the

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 444

 nearest value representable using the requested type is returned. If the
 number of query counter bits for any <target> i s zero, then the result is
 returned as a single integer with a value of 0.

 There may be an indeterminate delay before the above query returns. If
 <pname> is QUERY_RESULT_AVAILABLE, FALSE is ret urned if such a delay would
 be required, TRUE is returned otherwise. It mus t always be true that if
 any query object returns a result available of TRUE, all queries of the
 same type issued prior to that query must also return TRUE.

 Querying the state for any given query object f orces the corresponding
 query to complete within a finite amount of tim e.

 If multiple queries are issued using the same o bject name prior to calling
 GetQueryObject[u]iv, the result and availabilit y information returned will
 always be from the last query issued. The resu lts from any queries before
 the last one will be lost if they are not retri eved before starting a new
 query on the same <target> and <id>.

 (Add to Section 6.1.13, Buffer Objects, p. 255)

 Add the following paragraph to the bottom of th is section, p. 256.

 To query which buffer objects are the target(s) when transform feedback is
 active, call GetIntegerIndexedvEXT() with <para m> set to
 TRANSFORM_FEEDBACK_BUFFER_BINDING_NV. <index> h as to be in the range 0 to
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV - 1, otherwise the error
 INVALID_VALUE is generated. The name of the buf fer object bound to <index>
 is returned in <values>. If no buffer object is bound for <index>, zero is
 returned in <values>.

 To query the starting offset or size of the ran ge of each buffer object
 binding used for transform feedback, call GetIn tegerIndexedvEXT() with
 <param> set to TRANSFORM_FEEDBACK_BUFFER_START_ NV or
 TRANSFORM_FEEDBACK_BUFFER_SIZE_NV respectively. The error INVALID_VALUE
 is generated if <index> not in the range 0 to
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV - 1. If the parameter
 (starting offset or size) was not specified whe n the buffer object was
 bound, zero is returned. If no buffer object i s bound to <index>, -1 is
 returned.

 (Add a new Section 6.1.14 "Transform Feedback " and rename 6.1.14 to
 6.1.15)

 To query the attributes to stream to a buffer o bject when neither an
 OpenGL Shading Language vertex nor geometry sha der is active, call
 GetIntegerIndexedvEXT() with <param> set to
 TRANSFORM_FEEDBACK_RECORD_NV. This will return three values in <values>
 for each <index>. The first value returned is t he attribute. The second
 value the number of components of the attribute , and the third value the
 index of the attribute, if applicable. If the a ttribute is not indexed,
 the third component will return 0. The paramete r <index> has to be in the
 range 0 to TRANSFORM_FEEDBACK_ATTRIBS_NV - 1, o therwise the error
 INVALID_VALUE is generated. If no data exists f or <index> 0 is returned
 three times in <values>.

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 445

 To query the attributes to stream to a buffer o bject when a vertex and/or
 geometry shader is active, use the command
 GetTransformFeedbackVaryingNV(), as explained i n section 6.1.14.

 (add to Section 6.1.14, Shader and Program Quer ies, p. 256)

 Add the following paragraph to the bottom of pa ge 257:

 If <pname> is TRANSFORM_FEEDBACK_BUFFER_MODE_NV , the buffer mode,
 used when transform feedback is active, is retu rned. It can be one of
 SEPARATE_ATTRIBS_NV or INTERLEAVED_ATTRIBS_NV. If <pname> is
 TRANSFORM_FEEDBACK_VARINGS_NV, the number of va rying variables to stream
 to one, or more, buffer objects are returned. I f <pname> is
 ACTIVE_VARYINGS_NV, the number of active varyin g variables is
 returned. If no active varyings exist, 0 is ret urned. If <pname> is
 ACTIVE_VARYINGS_MAX_LENGTH_NV, the length of th e longest active varying
 name, including a null terminator, is returned. If no active varying
 variable exists, 0 is returned.

 The command

 void GetTransformFeedbackVaryingNV(uint progr am, uint index,
 int *locat ion)

 returns, for each <index>, the location of a va rying variable to stream to
 a buffer object in <location>. The <index> elem ent of the array
 <locations>, as passed to TransformFeedbackVary ingsNV, is
 returned. <index> has to be in the program obje ct specific range 0 to
 TRANSFORM_FEEDBACK_VARYINGS_NV - 1, otherwise t he error INVALID_VALUE is
 generated. If no location exists for <index>, - 1 is returned. If <program>
 is not the name of a program object, or if prog ram object has not been
 linked successfully, the error INVALID_OPERATIO N is generated.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Interactions with EXT_timer_query

 EXT_timer_query is the first extension to gener alize the BeginQuery and
 EndQuery mechanism introduced by ARB_occlusion_ query and OpenGL 1.5 to
 cover an additional query type. This extension is the second. This
 extension is written against the OpenGL 2.0 spe cification and uses most of
 the modifications in the EXT_timer_query specif ication. If
 EXT_timer_query is supported, timer queries nee d to be added as a third
 query type.

Dependencies on NV_geometry_program4 and EXT_geomet ry_shader4

 If NV_geometry_program4 is not supported, delet e the reference to the
 output primitive type in Section 2.Y. Delete t he reference to
 PRIMITIVE_ID_NV and LAYER_NV.

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 446

 If EXT_geometry_shader4 is not supported, delet e any reference to a
 geometry shader.

Dependencies on NV_vertex_program4 and NV_gpu_progr am4

 If NV_vertex_program4 is not supported, delete any reference to
 VERTEX_ID_NV. If NV_gpu_program4 is not suppor ted, table X.2 needs to
 refer to the "result" variables defined in the ARB_vertex_program
 specification instead.

Interactions with ARB_shader_objects and OpenGL 2.0

 If neither ARB_shader_objects nor OpenGL 2.0 is supported, all references
 to shader and program objects, as well as varyi ng variables, should be
 removed. This also means that functions includ ing
 TransformFeedbackVaryingsNV, GetVaryingLocation NV, GetActiveVaryingNV,
 ActiveVaryingNV, and GetTransformFeedbackVaryin gNV will not be
 supported, and enums that are relevant only in the context of shader and
 program objects will not be accepted.

Errors

 The error INVALID_OPERATION is generated by Beg inQuery if called with an
 <id> of zero, if the active query object name f or <target> is non- zero,
 or if <id> is the active query object name for any query type.

 The error INVALID_OPERATION is generated by End Query if the active query
 object name for <target> is zero.

 The error INVALID_OPERATION is generated if Beg in, or any command that
 performs an explicit Begin, is called when:

 * A geometry program or shader is not active AND the begin mode does not
 match the allowed begin modes for the curre nt transform feedback state
 as given by table X.1.

 * A geometry program or shader is active AND the output primitive type
 (of the geometry program / shader) does not match the allowed begin
 modes for the current transform feedback st ate as given by table X.1.

 The error INVALID_OPERATION is generated by Beg inTransformFeedbackNV if
 there is no buffer object bound to index 0 in I NTERLEAVED_ATTRIBS_NV
 mode.

 The error INVALID_OPERATION is generated by Beg inTransformFeedbackNV if
 the number of buffer objects bound in SEPARATE_ ATTRIBS_NV mode is less
 than the number of buffer objects required, as given by the current
 transform feedback state.

 The error INVALID_OPERATION is generated by Beg inTransformFeedbackNV if
 no attributes are specified to be captured.

 The error INVALID_OPERATION is generated by Beg inTransformFeedbackNV,
 TransformFeedbackBufferNV, TransformFeedbackVar yingsNV,
 TransformFeedbackAttribsNV, or UseProgram or Li nkProgram, called on the
 currently in use program object, while transfor m feedback is active.

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 447

 The error INVALID_OPERATION is generated by End TransformFeedbackNV while
 transform feedback is inactive.

 The error INVALID_OPERATION is generated by Bin dBufferRangeNV,
 BindBufferOffsetNV or BindBufferBaseNV if <inde x> is greater or equal
 than MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV.

 The error INVALID_VALUE is generated by BindBuf ferRangeNV if the value of
 <size> <= 0.

 The error INVALID_VALUE is generated by BindBuf ferRangeNV or
 BindBufferOffsetNV if <start> or <end> are not word-aligned.

 The error INVALID_OPERATION is generated when a ny of the BindBuffer*
 commands is called while transform feedback is active.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackVaryingsNV
 commands if any location appears more than once in the array <locations.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackVaryingsNV
 if any location in <locations> references a non -existing varying variable.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackVaryingsNV
 if <program> has not been linked successfully.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackVaryingsNV
 in INTERLEAVED_ATTRIBS_NV mode if the total num ber of components of all
 varying variables specified in the array <locat ions> is greater than
 MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV.

 The error INVALID_VALUE is generated by Transfo rmFeedbackVaryingsNV or
 TransformFeedbackAttribsNV in SEPARATE_ATTRIBS_ NV mode if <count> is
 greater than MAX_TRANSFORM_FEEDBACK_SEPARATE_AT TRIBS_NV.

 The error INVALID_VALUE is generated by Transfo rmFeedbackVaryingsNV in
 SEPARATE_ATTRIBS_NV mode if the number of compo nents for each varying
 variable in the array <locations> is greater th an
 MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_NV.

 The error INVALID_VALUE is generated by Transfo rmFeedbackAttribsNV in
 INTERLEAVED_ATTRIBS_NV mode if the sum of the v alues of the components of
 the attributes in the array <attribs> is greate r than
 MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackAttribsNV if
 an enum value is specified more than once in th e array <attribs>.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackAttribsNV if
 the number of components for each attribute in the array <attribs> is
 outside the range [0,4].

 The error INVALID_VALUE is generated by Transfo rmFeedbackAttribsNV if the
 index value is in the array <attribs> is outsid e the allowable range for
 an attribute enumerant corresponding to more th an one real attribute.

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 448

 The error INVALID_OPERATION is generated by Get VaryingLocationNV if
 <program> is not the name of a program object o r if <program> has not been
 linked successfully.

 The error INVALID_OPERATION is generated by Get ActiveVaryingNV or
 ActiveVaryingNV if <program> is not the name of a program object.

 The error INVALID_VALUE is generated by GetActi veVaryingNV if <index> is
 greater than or equal to ACTIVE_VARYINGS_NV.

 The error INVALID_VALUE is generated by GetInte gerIndexedvEXT() or
 GetBooleanIndexedv() with <param> set to TRANSF ORM_FEEDBACK_RECORD_NV if
 <index> is greater than or equal to TRANSFORM_F EEDBACK_ATTRIBS_NV.

 The error INVALID_VALUE is generated by GetInte gerIndexedvEXT() or
 GetBooleanIndexedvEXT() with <param> set to
 TRANSFORM_FEEDBACK_BUFFER_BINDING_NV if <index> is greater than or equal
 to MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV.

 The error INVALID_VALUE is generated by GetTran sformFeedbackVaryingsNV if
 <index> is greater than the program object spec ific value
 TRANSFORM_FEEDBACK_VARYINGS_NV - 1.

 The error INVALID_OPERATION is generated by
 GetTransformFeedbackVaryingsNV if <program> is not the name of a program
 object, or if program object has not been linke d successfully.

New State

 (Add a new table: Table 6.X, Transform Feedba ck State)

 Get Value Type Get Command I nit. Value Description Sec
Attrib
 ------------------ ------ -------------- - ----------- ------------------------- ----- -----
-
 TRANSFORM_FEEDBACK_ Z2 GetIntegerv I NTERLEAVED_ Transform feedback mode 2.Y -
 BUFFER_MODE_NV A TTRIBS_NV
 TRANSFORM_FEEDBACK_ Z2 GetIntegerv 0 Number of attributes to 2.Y -
 ATTRIBS_NV capture in transform
 feedback mode
 TRANSFORM_FEEDBACK_ Z+ GetIntegerv 0 Buffer object bound to 6.1.13 -
 BUFFER_BINDING_NV generic bind point for
 transform feedback.
 TRANSFORM_FEEDBACK_ nx3*Z+ GetInteger- 0 Name, component count, 6.1.14 -
 RECORD_NV IndexedvEXT and index of each
 attribute captured
 TRANSFORM_FEEDBACK_ nxZ+ GetInteger- 0 Buffer object bound to 6.1.13 -
 BUFFER_BINDING_NV IndexedvEXT each transform feedback
 attribute stream.
 TRANSFORM_FEEDBACK_ nxZ+ GetInteger- 0 Start offset of binding 6.1.13 -
 BUFFER_START_NV IndexedvEXT range for each transform
 feedback attrib. stream
 TRANSFORM_FEEDBACK_ nxZ+ GetInteger- 0 Size of binding range 6.1.13 -
 BUFFER_SIZE_NV IndexedvEXT for each transform
 feedback attrib. stream

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 449

 (Modify Table 6.37, p 298, updating the query ob ject state to cover
 transform feedback.)

 Get Value Type Get Command Init. Value Description Sec Attribute
 ---------------- ---- ---------------- ----- ------ ------------------------- ----- ---------
 CURRENT_QUERY 3xZ+ GetQueryiv 0 Active query object name 2.X -
 (occlusion, timer, xform
 feedback)
 QUERY_RESULT 3xZ+ GetQueryObjectiv 0 Query object result 2.X -
 (samples passed, Time
 elapsed, feedback data amount)
 QUERY_RESULT_AVAILABLE 3xZ+ GetQueryObjectiv TRUE Query object result 2.X -
 available?

 (Modify Table 6.29, p. 290, Program Object State . Add the following state.)

 Get Value Type Get Command Init. V alue Description Sec Attribute
 ---------------- ---- ------------ ------- ---- ------------------------- ----- ---------
 ACTIVE_VARYINGS_NV Z+ GetProgramiv 0 Number of active varyings 2.15.3 -
 ACTIVE_VARYING_MAX_ Z+ GetProgramiv 0 Maximum active varying 2.15.3 -
 LENGTH_NV name length
 TRANSFORM_FEEDBACK_ Z2 GetProgramiv INTERLE AVED_ Transform feedback mode 6.1.14 -
 BUFFER_MODE_NV ATTRIBS _NV for the program
 TRANSFORM_FEEDBACK_ Z+ GetProgramiv 0 Number of varyings to 6.1.14 -
 VARYINGS_NV stream to buffer object(s)
 - nxZ+ GetVarying- - Location of each active 2.15.3 -
 LocationNV varying variable
 - Z+ GetActive- - Size of each active 2.15.3 -
 VaryingNV varying variable
 - Z+ GetActive- - Type of each active 2.15.3 -
 VaryingNV varying variable
 - 0+x- GetActive- - Name of each active 2.15.3 -
 char VaryingNV varying variable
 - Z+ GetTransform- - Varying location for one 6.1.14 -
 Feedback- of the multiple varyings
 VaryingNV to capture

New Implementation Dependent State

 (Modify Table 6.34, p. 295. Update the query ob ject state to cover
 transform feedback.)

 Get Value Type Get Command Minim um Value Description Sec Attr ibute
 -------------------- ---- ----------- ----- -------- -------------------------- ------ ---- -----
 QUERY_COUNTER_BITS 2xZ+ GetQueryiv see 6 .1.12 Asynchronous query counter 6.1.12 -
 bits (occlusion, timer,
 tranform feedback queries)

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 450

 (Add a new table, Table 6.X. Transform Feedback State.)

 NOTE: In the "GetValue" columns below, MXFB sta nds for
 "MAX_TRANSFORM_FEEDBACK".

 Get Value Type Get Command Minim um Value Description Sec Attr ibute
 -------------------- ---- ----------- ----- -------- -------------------------- ------ ---- -----
 MXFB_INTERLEAVED_ Z+ GetIntegerv 64 Max number of components to 2.Y -
 COMPONENTS_NV write to a single buffer in
 interleaved mode
 MXFB_SEPARATE_ Z+ GetIntegerv 4 Max number of separate 2.Y -
 ATTRIBS_NV attributes or vayings that
 can be captured in transform
 feedback
 MXFB_SEPARATE Z+ GetIntegerv 16 Max number of components 2.Y -
 COMPONENTS_NV per attribute or varying
 in separate mode

Issues

 1. How does transform feedback differ from core GL feedback?

 * Transform feedback writes vertex data to bu ffer objects, which allows
 the data returned to be used directly by ve rtex pulling. GL feedback
 mode writes vertex data to a buffer in syst em memory.

 * Transform feedback is done after transforma tion, but prior to
 clipping. The primitives returned contain the original transformed
 vertices produced by vertex or geometry pro gram execution, and does
 not contain any primitives inserted by clip ping.

 * Transform feedback supports only a single b asic output primitive type
 (points, lines, or triangles), while core G L feedback mode supports
 all primitive types. Since only one primit ive type is supported, the
 data returned does not contain tokens descr ibing each primitive being
 fed back. Primitive tokens make the data r eturned by GL feedback mode
 irregular and unsuitable for vertex pulling .

 2. What should this extension be called?

 RESOLVED: The current name is "NV_transform_f eedback", playing off the
 fact that it is transformed primitives that a re handled and the
 similarities to GL feedback mode.

 3. What happens if you bind a buffer for transf orm feedback that is
 currently bound for other purposes? Should we somehow detect this case
 and produce an error?

 !!! NBC I feel strongly that we should follow the precedent for
 Map/Unmap. The reason that MapBuffer and Unma pBuffer are a precedent
 here is because while a buffer object is in t he mapped state, no GL
 commands are allowed to operate on the buffer object's data. So by
 analogy, while a buffer is being used for tra nsform feedback, no other
 GL commands should be allowed to operate on t he buffer object's data.
 This includes initiating any rendering which would cause the GL to
 source data from an active transform feedback buffer object.

 UNRESOLVED

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 451

 4. Should this extension include any new buffer object binding targets, or
 should it overload ARRAY_BUFFER, or should w e skip the binding target
 altogether in favor of a buffer object name accepted directly by the
 new GL commands?

 RESOLVED: There are new binding points for XF B along with a new API
 (BindBufferBase etc) to set the internal bind ing points. A new binding
 point, TRANSFORM_FEEDBACK_BUFFER_NV is also i ntroduced.

 5. Previous buffer object extensions provided a way to have existing GL
 commands reference a buffer object instead o f a user-supplied buffer.
 Should the new commands introduced here allo w referencing a
 user-supplied buffer in addition to a buffer object?

 RESOLVED: No. A program can get the contents of the feedback buffer back
 to the CPU using MapBuffer and GetBufferSubDa ta

 6. Is BeginTransformFeedback really necessary? Could the query just
 initiate the transform feedback mode?

 RESOLUTION: Using BeginTransformFeedback and EndTransformFeedback gives
 a clean place to spec all of the transform-fe edback-specific issues
 without cluttering up the query language. Als o, the queries don't have
 to be done at the same time as beginning and ending the feedback
 process.

 7. What usage enums should be provided to glBuf ferData for use in
 conjunction with transform feedback?

 RESOLVED: STREAM_COPY or STREAM_READ are expe cted to be the most common
 usages. If a buffer object is being written b y the GL through transform
 feedback, and the contents of the buffer obje ct are subsequently being
 consumed by the GL (e.g. by being used as a v ertex buffer object), then
 this is a *_COPY usage. If the buffer object is being written by the GL
 through transform feedback, but is being cons umed by the application
 (e.g. being mapped for read), this is a *_REA D usage. The temporal
 (STREAM, STATIC, or DYNAMIC) component of the usage enum is determined
 by the ratio between how often the contents o f the buffer object are
 modified and how often operations that source data from the buffer
 object occur.

 8. What should the behavior be when a buffer ob ject is the active target
 of transform feedback, and it is deleted via DeleteBuffers?

 RESOLVED: Deletion is deferred until the EndT ransformFeedback if
 transform feedback is active.

 9. Should we allow more buffers to be bound tha n are used?

 RESOLVED: Yes. The extra buffers are not in t he way and can stay bound.

 10. Should we allow feedback to buffer lists wi th holes (i.e. 0 and 2
 bound)?

 RESOLVED: No. This makes for an ugly API with the potential for bugs,
 without any real benefit. The application can as well bind all buffers

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 452

 needed to incremented indices. It is an inval id operation to not have a
 buffer bound where one is required.

 11. Why only one feedback primitive mode per fe edback invocation?

 RESOLVED: Having primitive tokens breaks up t he stream and makes it less
 amenable to being read back in as a vertex bu ffer. Also, mixing multiple
 primitive types makes the counting of primiti ves less clear for the
 application.

 12. Is RasterPos fed back?

 RESOLVED: No.

 13. Is DrawPixels/CopyPixels/Bitmap fed back?

 RESOLVED: No. Rasterization occurs as normal, but there is no
 output to the feedback buffer. This is consis tent with taking a
 tap out of the pipe before clipping.

 14. Why do we need new BindBuffer* functions?

 RESOLVED: All previous buffer object extensio ns have been retrofits of
 existing pointer-based APIs. New extensions b uilt assuming buffer
 objects don't have that history, so need a ne w API. The functionality of
 these new functions combines the functionalit y of BindBuffer, to set the
 external bind point used by calls like MapBuf fer and BufferSubData, with
 the functionality to set an internal bind poi nt like VertexAttribPointer
 does.

 15. How do the transform feedback indices, passe d to the BindBuffer*
 commands, work with multiple bindings?

 RESOLVED: The same way that they work with ve rtex arrays. There is one
 external bind point, TRANSFORM_FEEDBACK_BUFFE R_NV. There are n internal
 bind points, selected with the <index> parame ter to the BindBuffer*
 commands, where n is some implementation depe ndent limit. The
 BindBuffer* commands take the buffer passed a nd bind it to the external
 bind point, as well as to the selected intern al bind point.

 For example:

 BindBufferOffsetNV(TRANSFORM_FEEDBACK_BUFFE R_NV, 0, 1, 12);
 // XFB index 0 points at buffer 1 with offs et 12

 BindBuffer(TRANSFORM_FEEDBACK_BUFFER_NV, 2) ;
 // Buffer 2 is now bound to the external bi nd point. XFB index 0 still
 // points at buffer 1

 MapBuffer(TRANSFORM_FEEDBACK_BUFFER_NV, ...);
 // Maps buffer 2

 16. How are quads/quadstrips/polygons tesselate d into triangles?

 RESOLVED: In an implementation-dependent mann er. OpenGL doesn't define
 quads or polygons in terms of triangles, so t here is no one correct way
 to do it, and different gpus may implement th e behavior differently. A

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 453

 quad may be split into two triangles in sever al different ways, and an
 application may not rely on this behavior.

 17. How does this extension interact with displ ay lists?

 RESOLVED: Just like the VBO extension, none o f the BindBuffer* commands
 are compiled into a display list.

 18. Does polygon mode state affect the logic th at determines if the
 transform feed back primitive mode and the render mode states are
 valid at the start of transform feedback mo de?

 RESOLVED: PolygonMode has no influence on the BeginTransFormFeedback
 primitiveMode check since it is performed lat er, in raster.

 19. What to do with incomplete primitives?

 RESOLVED: If there is no room to store one or more vertices of a
 primitive in a buffer object, none of the ver tices in that primitive are
 written to the buffer. If a partial primitive enters transform feedback
 (i.e. only two vertices sent in triangles mod e), none of the vertices in
 that primitive are written to the buffer obje ct.

 20. Why does TRANSFORM_FEEDBACK_PRIMITIVES_WRIT TEN_NV have a
 TRANSFORM_FEEDBACK prefix but PRIMITIVES_GE NERATED_NV doesn't?

 RESOLVED: The number of primitives generated is independent of any
 feedback that is active. The number of primit ives that are written is
 only valid for transform feedback - another e xtension could conceivably
 have a different way of writing out primitive s that would require a
 similar but distinct token.

 21. When a GLSL vertex shader is active, what h appens in transform
 feedback mode if non-active varying variabl es are specified?

 DISCUSSION: Active varying variables are vary ing variables, declared in
 the shader, that the linker determined are ac tually needed. As an
 optimization, the linker can discard the ones declared, but not
 needed. If non-active varying variables need to be fed into a buffer
 object, the linker should not perform this op timization.

 There are three suggested resolutions to this problem:

 1. The set of varying variables that need t o be streamed to a buffer
 object in transform feedback mode are se t as a property of the
 program object, and are taken into accou nt during the link step.
 This means that changing the set means t he application will have to
 re-link the program object in order to h ave the change take effect.

 2. The set of varying variables that need t o be streamed to a buffer
 object in transform feedback mode are sp ecified after the program
 object has been linked. This is the most flexible option from the
 applications perspective, but this might mean that a) specifying
 this set could force the GL to re-link ' under the covers', and b)
 could mean that the GL runs out of varyi ng variable slots because
 the combined total of the set of active varyings and the varyings
 to stream in transform feedback mode is too large.

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 454

 3. This solution is a hybrid of the above t wo approaches. The set of
 potential varying variables that need to be streamed to a buffer
 object are set as a property of the prog ram object. These varying
 variables are marked as active by the ap plication and therefore
 cannot be eliminated during the link ste p. However, a sub-set of
 varying variables to actually stream to a buffer object can be
 changed without the application having t o re-link the program
 object. This approach gives the applicat ion flexibility to change
 the set of varying variables to stream, while it eliminates the
 need for the GL to compile 'under the co vers'.

 RESOLUTION: Option 3 offers a good compromise , and therefore we'll go
 with that.

 22. Given option 3 in the previous resolution, how to specify that a
 varying variable has to be considered activ e by the linker?

 DISCUSSION: There are two approaches to the a pplication specifying which
 varying variables are active. We can either p rovide a simple flag that
 specifies that all varying variables are cons idered active, or we can
 provide a more complex mechanism where the ap plication can specify an
 individual varying variable as being active.

 RESOLUTION: RESOLVED. The 'all or nothing' fl ag is a simple idea, but
 has a drawback when used with a 'uber-shader' that implements many paths
 to achieve an effect, but only one path is us ed during any run of the
 shader. In this case, a lot more varying vari ables might be flagged as
 active then really is necessary, running the risk of running out of
 resources. Therefore, we'll provide a mechani sm for the application to
 specify on a per varying variable basis if it is active.

 23. Given the discussion in the previous issues , should a
 GetActiveVarying() command be added, modele d after the existing
 getActiveUniform() command?

 DISCUSSION: Such a command will return the li st of active uniforms,
 after the program object has been linked. As per issue 22's resolution,
 the complete set of varying variables that co uld be streamed to a buffer
 object needs to be specified before the progr am object is linked.

 It can be useful to an application to stream out a subset of the active
 varying variables or to find out the whole se t of active varyings,
 especially since the set can be implementatio n dependent.

 RESOLUTION: YES.

 24. What is proper use of the command ActiveVar yingNV()?

 RESOLVED: The application is well advised to force any varying variable
 live that it needs for transform feedback pur poses. The set of active
 varying variables are linker dependent. For e xample, if a program object
 has no fragment shader, then the LinkProgram command cannot typically
 determine which built-in varying variables, o utput by a geometry or
 vertex shader, are active. This is because th e fragment processing state
 can change, and therefore such a determinatio n cannot be made until a
 render command is issued. Furthermore, any us er-defined varyings are

NV_transform_feedback OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 455

 likely to be marked as non-active if there is no fragment shader because
 they are guaranteed to have no effect on fixe d-function fragment
 processing. If there is both a vertex (or geo metry) and fragment shader
 in a program object, the application can prob ably deduce what will be an
 active varying variable, or not. But beware o f any (static) flow-control
 that the linker can use to do cross vertex- f ragment optimization to
 cull any varying variables.

 25. Are primitives sent down the pipeline after transform feedback, or
 discarded?

 RESOLVED: Primitives can be optionally discar ded before rasterization by
 calling Enable and Disable with RASTERIZER_DI SCARD_NV. When enabled,
 primitives are discarded after vertex attribu tes are recorded into the
 buffer objects bound to transform feedback. When disabled, primitives
 are passed through to the rasterization stage to be clipped and
 rasterized normally. All rasterization operat ions are discarded, not
 just those that are fed back into the buffer.

 This applies to DrawPixels, CopyPixels, Bitma p, Clear, Accum as well.

 26. If a varying is declared as an array, is th e whole array streamed out?

 RESOLVED: No, the application has to specify which elements of an array
 it wants to stream out. Implementations might not be able to stream out
 a large number of components to a single buff er object. If that is the
 case, the application can stream each element of an array to a different
 buffer object in TRANSFORM_FEEDBACK_SEPARATE_ ATTRIBS mode.

 27. Is it possible to capture attributes when u sing the fixed-function
 pipeline?

 RESOLVED: Yes, there is nothing that preclude s this. The application is
 responsible for sending down the needed verte x attributes and setting
 the GL state, as desired, for the attributes it wants to stream to a
 buffer object. Note that VERTEX_ID is not def ined in fixed-function.

 28. Is it possible to record hardware-generated primitive ID values that
 would be available to a pixel shader?

 RESOLVED: Transform feedback can only record the primitive ID values
 emitted per-vertex by a geometry shader or pr ogram. While each
 primitive recorded for transform-feedback has a well-defined primitive
 ID, transform feedback is only capable of rec ording the attributes of
 individual vertices.

 29. Does transform feedback support the abilit y to capture per-vertex
 layer outputs, as provided by EXT_geometry _shader4 and
 NV_geometry_program4?

 RESOLVED: Yes. For GLSL shaders, it is suff icient to reference the
 built-in varying "gl_Layer". For assembly ge ometry programs, the
 original version of the spec did not provide an enum allowing you to
 name "result.layer" in TransformFeedbackAttri bsNV. This was an
 oversight in the original spec, which was fix ed by version 14. An
 updated driver will be required to take advan tage of this capability;
 NVIDIA drivers supporting this extension publ ished prior to February

OpenGL Extension Specifcations for GeForce 8 Series NV_transform_feedback

NVIDIA Proprietary 456

 2008 will not be able to capture "result.laye r". The value captured for
 LAYER_NV will be undefined unless a geometry program that writes
 "result.layer" is active.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- ------------------- ----------------------
 14 02/04/08 pbrown Fixed a problem wit h the spec where we were
 unable to record "r esult.layer" using the
 assembly interface. Added a new enum to
 address.

NV_vertex_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 457

Name

 NV_vertex_program4

Name Strings

 (none)

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 10/06/06
 NVIDIA Revision: 5

Number

 325

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 2. 0 specification.

 ARB_vertex_program is required.

 NV_gpu_program4 is required. This extension is supported if
 "GL_NV_gpu_program4" is found in the extension string.

 NVX_instanced_arrays affects the definition of this extension.

Overview

 This extension builds on the common assembly in struction set
 infrastructure provided by NV_gpu_program4, add ing vertex program-specific
 features.

 This extension provides the ability to specify integer vertex attributes
 that are passed to vertex programs using intege r data types, rather than
 being converted to floating-point values as in existing vertex attribute
 functions. The set of input and output binding s provided includes all
 bindings supported by ARB_vertex_program. This extension provides
 additional input bindings identifying the index of the vertex when vertex
 arrays are used ("vertex.id") and the instance number when instanced
 arrays are used ("vertex.instance", requires EX T_draw_instanced). It
 also provides output bindings allowing vertex p rograms to directly specify
 clip distances (for user clipping) plus a set o f generic attributes that
 allow programs to pass a greater number of attr ibutes to subsequent
 pipeline stages than is possible using only the pre-defined fixed-function
 vertex outputs.

OpenGL Extension Specifcations for GeForce 8 Series NV_vertex_program4

NVIDIA Proprietary 458

 By and large, programs written to ARB_vertex_pr ogram can be ported
 directly by simply changing the program header from "!!ARBvp1.0" to
 "!!NVvp4.0", and then modifying instructions to take advantage of the
 expanded feature set. There are a small number of areas where this
 extension is not a functional superset of previ ous vertex program
 extensions, which are documented in the NV_gpu_ program4 specification.

New Procedures and Functions

 void VertexAttribI1iEXT(uint index, int x);
 void VertexAttribI2iEXT(uint index, int x, int y);
 void VertexAttribI3iEXT(uint index, int x, int y, int z);
 void VertexAttribI4iEXT(uint index, int x, int y, int z, int w);

 void VertexAttribI1uiEXT(uint index, uint x);
 void VertexAttribI2uiEXT(uint index, uint x, ui nt y);
 void VertexAttribI3uiEXT(uint index, uint x, ui nt y, uint z);
 void VertexAttribI4uiEXT(uint index, uint x, ui nt y, uint z, uint w);

 void VertexAttribI1ivEXT(uint index, const int *v);
 void VertexAttribI2ivEXT(uint index, const int *v);
 void VertexAttribI3ivEXT(uint index, const int *v);
 void VertexAttribI4ivEXT(uint index, const int *v);

 void VertexAttribI1uivEXT(uint index, const uin t *v);
 void VertexAttribI2uivEXT(uint index, const uin t *v);
 void VertexAttribI3uivEXT(uint index, const uin t *v);
 void VertexAttribI4uivEXT(uint index, const uin t *v);

 void VertexAttribI4bvEXT(uint index, const byte *v);
 void VertexAttribI4svEXT(uint index, const shor t *v);
 void VertexAttribI4ubvEXT(uint index, const uby te *v);
 void VertexAttribI4usvEXT(uint index, const ush ort *v);

 void VertexAttribIPointerEXT(uint index, int si ze, enum type,
 sizei stride, const void *pointer);

 void GetVertexAttribIivEXT(uint index, enum pna me, int *params);
 void GetVertexAttribIuivEXT(uint index, enum pn ame, uint *params);

 (note: all these functions are shared with the EXT_gpu_shader4
 extension.)

New Tokens

 Accepted by the <pname> parameters of GetVertex Attribdv,
 GetVertexAttribfv, GetVertexAttribiv, GetVertex AttribIivEXT, and
 GetVertexAttribIuivEXT:

 VERTEX_ATTRIB_ARRAY_INTEGER_EXT 0x88FD

 (note: this token is shared with the EXT_gpu_s hader4 extension.)

NV_vertex_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 459

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify Section 2.7 (Vertex Specification), p.20

 (insert before last paragraph, p.22) The comman ds

 void VertexAttribI[1234]{i,ui}EXT(uint index, T values);
 void VertexAttribI[1234]{i,ui}vEXT(uint index , T values);
 void VertexAttribI4{b,s,ub,us}vEXT(uint index , T values);

 specify fixed-point coordinates that are not co nverted to floating-point
 values, but instead are represented as signed o r unsigned integer values.
 Vertex programs that use integer instructions m ay read these attributes
 using integer data types. A vertex program tha t attempts to read a vertex
 attribute as a float will get undefined results if the attribute was
 specified as an integer, and vice versa.

 (modify second paragraph, p.23) Setting generic vertex attribute zero
 specifies a vertex; the four vertex coordinates are taken from the values
 of attribute zero. A Vertex2, Vertex3, or Verte x4 command is completely
 equivalent to the corresponding VertexAttrib* o r VertexAttribI* command
 with an index of zero. ...

 (insert at end of function list, p.24)

 void VertexAttribIPointerEXT(uint index, int size, enum type,
 sizei stride, con st void *pointer);

 (modify last paragraph, p.24) The <index> param eter in the
 VertexAttribPointer and VertexAttribIPointerEXT commands identify the
 generic vertex attribute array being described. The error INVALID_VALUE
 is generated if <index> is greater than or equa l to MAX_VERTEX_ATTRIBS.
 Generic attribute arrays with integer <type> ar guments can be handled in
 one of three ways: converted to float by norma lizing to [0,1] or [-1,1]
 as specified in table 2.9, converted directly t o float, or left as integer
 values. Data for an array specified by VertexA ttribPointer will be
 converted to floating-point by normalizing if t he <normalized> parameter
 is TRUE, and converted directly to floating-poi nt otherwise. Data for an
 array specified by VertexAttribIPointerEXT will always be left as integer
 values.

OpenGL Extension Specifcations for GeForce 8 Series NV_vertex_program4

NVIDIA Proprietary 460

 (modify Table 2.4, p. 25)

 Integer
 Command Sizes Handling Types
 ---------------------- ------- --------- -----------------
 VertexPointer 2,3,4 cast ...
 NormalPointer 3 normalize ...
 ColorPointer 3,4 normalize ...
 SecondaryColorPointer 3 normalize ...
 IndexPointer 1 cast ...
 FogCoordPointer 1 n/a ...
 TexCoordPointer 1,2,3,4 cast ...
 EdgeFlagPointer 1 integer ...
 VertexAttribPointer 1,2,3,4 flag ...
 VertexAttribIPointerEXT 1,2,3,4 integer byte, ubyte, short,
 ushort, int, uint

 Table 2.4: Vertex array sizes (values per vertex) and data t ypes. The
 "integer handling" column indicates how fixed -point data types are
 handled: "cast" means that they converted to floating-point directly,
 "normalize" means that they are converted to floating-point by
 normalizing to [0,1] (for unsigned types) or [-1,1] (for signed types),
 "integer" means that they remain as integer v alues, and "flag" means
 that either "cast" or "normalized" applies, d epending on the setting of
 the <normalized> flag in VertexAttribPointer.

 (modify end of pseudo-code, pp. 27-28)

 for (j = 1; j < genericAttributes; j++) {
 if (generic vertex attribute j array enable d) {
 if (generic vertex attribute j array is a pure integer array) {
 VertexAttribI[size][type]vEXT(j, generi c vertex attribute j
 array element i);
 } else if (generic vertex attribute j arr ay normalization flag
 is set and <type> is not FLOAT or DOUBLE) {
 VertexAttrib[size]N[type]v(j, generic v ertex attribute j
 array ele ment i);
 } else {
 VertexAttrib[size][type]v(j, generic ve rtex attribute j
 array elem ent i);
 }
 }
 }

 if (generic vertex attribute 0 array enabled) {
 if (generic vertex attribute 0 array is a p ure integer array) {
 VertexAttribI[size][type]vEXT(0, generic vertex attribute 0
 array el ement i);
 } else if (generic vertex attribute 0 array normalization flag
 is set and <type> is not FLOAT o r DOUBLE) {
 VertexAttrib[size]N[type]v(0, generic ver tex attribute 0
 array eleme nt i);
 } else {
 VertexAttrib[size][type]v(0, generic vert ex attribute 0
 array elemen t i);
 }
 }

NV_vertex_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 461

 Modify Section 2.X, GPU Programs

 (insert after second paragraph)

 Vertex Programs

 Vertex programs are used to compute the transfo rmed attributes of a
 vertex, in lieu of the set of fixed-function op erations described in
 sections 2.10 through 2.13. Vertex programs ar e run on a single vertex at
 a time, and the state of neighboring vertices i s not available. The
 inputs available to a vertex program are the ve rtex attributes described
 in section 2.7. The results of the program are the attributes of a
 transformed vertex, which include (among other things) a transformed
 position, colors, and texture coordinates. The vertices transformed by a
 vertex program are then processed normally by t he remainder of the GL
 pipeline.

 Modify Section 2.X.2, Program Grammar

 (replace third paragraph)

 Vertex programs are required to begin with the header string "!!NVvp4.0".
 This header string identifies the subsequent pr ogram body as being a
 vertex program and indicates that it should be parsed according to the
 base NV_gpu_program4 grammar plus the additions below. Program string
 parsing begins with the character immediately f ollowing the header string.

 (add the following grammar rules to the NV_gpu_ program4 base grammar)

 <resultUseW> ::= <resultVarName> <ar rayMem> <optWriteMask>
 | <resultColor> <optW riteMask>
 | <resultColor> "." < colorType> <optWriteMask>
 | <resultColor> "." < faceType> <optWriteMask>
 | <resultColor> "." < faceType> "." <colorType>
 "." <optWriteMask>

 <resultUseD> ::= <resultColor>
 | <resultColor> "." < colorType>
 | <resultColor> "." < faceType>
 | <resultColor> "." < faceType> "." <colorType>
 | <resultMulti>

 <attribBasic> ::= <vtxPrefix> "positi on"
 | <vtxPrefix> "weight " <optArrayMemAbs>
 | <vtxPrefix> "normal "
 | <vtxPrefix> "fogcoo rd"
 | <attribTexCoord> <o ptArrayMemAbs>
 | <attribGeneric> <ar rayMemAbs>
 | <vtxPrefix> "id"
 | <vtxPrefix> "instan ce"

 <attribColor> ::= <vtxPrefix> "color"

 <attribMulti> ::= <attribTexCoord> <a rrayRange>
 | <attribGeneric> <ar rayRange>

OpenGL Extension Specifcations for GeForce 8 Series NV_vertex_program4

NVIDIA Proprietary 462

 <attribTexCoord> ::= <vtxPrefix> "texcoo rd"

 <attribGeneric> ::= <vtxPrefix> "attrib "

 <vtxPrefix> ::= "vertex" "."

 <resultBasic> ::= <resPrefix> "positi on"
 | <resPrefix> "fogcoo rd"
 | <resPrefix> "points ize"
 | <resultTexCoord> <o ptArrayMemAbs>
 | <resultClip> <array MemAbs>
 | <resultGeneric> <ar rayMemAbs>
 | <resPrefix> "id"

 <resultColor> ::= <resPrefix> "color"

 <resultMulti> ::= <resultTexCoord> <a rrayRange>
 | <resultClip> <array Range>
 | <resultGeneric> <ar rayRange>

 <resultTexCoord> ::= <resPrefix> "texcoo rd"

 <resultClip> ::= <resPrefix> "clip"

 <resultGeneric> ::= <resPrefix> "attrib "

 <resPrefix> ::= "result" "."

 (add the following subsection to Section 2.X.3. 2, Program Attribute
 Variables)

 Vertex program attribute variables describe the attributes of the vertex
 being transformed, as specified by the applicat ion. The set of available
 bindings is enumerated in Table X.X. Except wh ere otherwise noted, all
 vertex program attribute bindings are four-comp onent floating-point
 vectors.

 Vertex Attribute Binding Components Underly ing State
 ------------------------ ---------- ------- -----------------------
 vertex.position (x,y,z,w) object coordinates
 vertex.normal (x,y,z,1) normal
 vertex.color (r,g,b,a) primary color
 vertex.color.primary (r,g,b,a) primary color
 vertex.color.secondary (r,g,b,a) seconda ry color
 vertex.fogcoord (f,0,0,1) fog coo rdinate
 vertex.texcoord (s,t,r,q) texture coordinate, unit 0
 vertex.texcoord[n] (s,t,r,q) texture coordinate, unit n
 vertex.attrib[n] (x,y,z,w) generic vertex attribute n
 vertex.id (id,-,-,-) vertex identifier (integer)
 vertex.instance (i,-,-,-) primiti ve instance number (integer)
 vertex.texcoord[n..o] (x,y,z,w) array o f texture coordinates
 vertex.attrib[n..o] (x,y,z,w) array o f generic vertex attributes

 Table X.X, Vertex Program Attribute Bindings. <n> and <o> re fer to
 integer constants. Only the "vertex.texcoord " and "vertex.attrib"
 bindings are available in arrays.

NV_vertex_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 463

 NVIDIA Note: The "vertex.weight" and "vertex .matrixindex" bindings
 described in ARB_vertex_program use state pro vided only by extensions
 not supported by NVIDIA implementations and a re not available.

 If a vertex attribute binding matches "vertex.p osition", the "x", "y", "z"
 and "w" components of the vertex attribute vari able are filled with the
 "x", "y", "z", and "w" components, respectively , of the vertex position.

 If a vertex attribute binding matches "vertex.n ormal", the "x", "y", and
 "z" components of the vertex attribute variable are filled with the "x",
 "y", and "z" components, respectively, of the v ertex normal. The "w"
 component is filled with 1.

 If a vertex attribute binding matches "vertex.c olor" or
 "vertex.color.primary", the "x", "y", "z", and "w" components of the
 vertex attribute variable are filled with the " r", "g", "b", and "a"
 components, respectively, of the vertex color.

 If a vertex attribute binding matches "vertex.c olor.secondary", the "x",
 "y", "z", and "w" components of the vertex attr ibute variable are filled
 with the "r", "g", "b", and "a" components, res pectively, of the vertex
 secondary color.

 If a vertex attribute binding matches "vertex.f ogcoord", the "x" component
 of the vertex attribute variable is filled with the vertex fog coordinate.
 The "y", "z", and "w" coordinates are filled wi th 0, 0, and 1,
 respectively.

 If a vertex attribute binding matches "vertex.t excoord" or
 "vertex.texcoord[n]", the "x", "y", "z", and "w " components of the vertex
 attribute variable are filled with the "s", "t" , "r", and "q" components,
 respectively, of the vertex texture coordinate set <n>. If "[n]" is
 omitted, texture coordinate set zero is used.

 If a vertex attribute binding matches "vertex.i nstance", the "x" component
 of the vertex attribute variable is filled with the integer instance
 number for the primitive to which the vertex be longs. The "y", "z", and
 "w" components are undefined.

 If a vertex attribute binding matches "vertex.a ttrib[n]", the "x", "y",
 "z" and "w" components of the generic vertex at tribute variable are filled
 with the "x", "y", "z", and "w" components, res pectively, of generic
 vertex attribute <n>. Note that "vertex.attrib [0]" and "vertex.position"
 are equivalent. Generic vertex attribute bindi ngs are typeless, and can
 be interpreted as having floating-point, signed integer, or unsigned
 integer values, depending on how they are used in the program text. If a
 vertex attribute is read using a data type diff erent from the one used to
 specify the generic attribute, the values corre sponding to the binding are
 undefined.

 As described in section 2.7, setting a generic vertex attribute may leave
 a corresponding conventional vertex attribute u ndefined, and vice versa.
 To prevent inadvertent use of attribute pairs w ith undefined attributes, a
 vertex program will fail to load if it binds bo th a conventional vertex
 attribute and a generic vertex attribute listed in the same row of Table
 X.X.

OpenGL Extension Specifcations for GeForce 8 Series NV_vertex_program4

NVIDIA Proprietary 464

 Conventional Attribute Binding Generic A ttribute Binding
 ------------------------------ --------- ----------------
 vertex.position vertex.at trib[0]
 vertex.normal vertex.at trib[2]
 vertex.color vertex.at trib[3]
 vertex.color.primary vertex.at trib[3]
 vertex.color.secondary vertex.at trib[4]
 vertex.fogcoord vertex.at trib[5]
 vertex.texcoord vertex.at trib[8]
 vertex.texcoord[0] vertex.at trib[8]
 vertex.texcoord[1] vertex.at trib[9]
 vertex.texcoord[2] vertex.at trib[10]
 vertex.texcoord[3] vertex.at trib[11]
 vertex.texcoord[4] vertex.at trib[12]
 vertex.texcoord[5] vertex.at trib[13]
 vertex.texcoord[6] vertex.at trib[14]
 vertex.texcoord[7] vertex.at trib[15]
 vertex.texcoord[n] vertex.at trib[8+n]

 Table X.X: Invalid Vertex Attribute Binding Pairs. Vertex p rograms
 may not bind both attributes listed in any ro w. The <n> in the last row
 matches the number of any valid texture unit.

 If a vertex attribute binding matches "vertex.t excoord[n..o]" or
 "vertex.attrib[n..o]", a sequence of 1+<o>-<n> texture coordinate bindings
 are created. For texture coordinates, it is as though the sequence
 "vertex.texcoord[n], vertex.texcoord[n+1], ... vertex.texcoord[o]" were
 specfied. These bindings are available only in explicit declarations of
 array variables. A program will fail to load i f <n> is greater than <o>.

 When doing vertex array rendering using buffer objects, a vertex ID is
 also available. If a vertex attribute binding matches "vertex.id", the
 "x" component of this vertex attribute is fille d with the integer index
 <i> implicitly passed to ArrayElement() to spec ify the vertex. The vertex
 ID is defined if and only if:

 * the vertex comes from a vertex array comman d that specifies a complete
 primitive (e.g., DrawArrays, DrawElements),

 * all enabled vertex arrays have non-zero buf fer object bindings, and

 * the vertex does not come from a display lis t (even if the display list
 was compiled using DrawArrays/DrawElements using buffer objects).

 The "y", "z", and "w" components of the vertex attribute are always
 undefined.

 (add the following subsection to section 2.X.3. 5, Program Results.)

 Vertex programs produce vertices, and the set o f result variables
 available to such programs correspond to the at tributes of a transformed
 vertex. The set of allowable result variable b indings for vertex and
 fragment programs is given in Table X.4.

NV_vertex_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 465

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.position (x,y,z,w) po sition in clip coordinates
 result.color (r,g,b,a) fr ont-facing primary color
 result.color.primary (r,g,b,a) fr ont-facing primary color
 result.color.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.front (r,g,b,a) fr ont-facing primary color
 result.color.front.primary (r,g,b,a) fr ont-facing primary color
 result.color.front.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.back (r,g,b,a) ba ck-facing primary color
 result.color.back.primary (r,g,b,a) ba ck-facing primary color
 result.color.back.secondary (r,g,b,a) ba ck-facing secondary color
 result.fogcoord (f,*,*,*) fo g coordinate
 result.pointsize (s,*,*,*) po int size
 result.texcoord (s,t,r,q) te xture coordinate, unit 0
 result.texcoord[n] (s,t,r,q) te xture coordinate, unit n
 result.attrib[n] (x,y,z,w) ge neric interpolant n
 result.clip[n] (d,*,*,*) cl ip plane distance
 result.texcoord[n..o] (s,t,r,q) te xture coordinates n thru o
 result.attrib[n..o] (x,y,z,w) ge neric interpolants n thru o
 result.clip[n..o] (d,*,*,*) cl ip distances n thru o
 result.id (id,*,*,*) ve rtex id

 Table X.4: Vertex Program Result Variable Bindings. Compone nts labeled
 "*" are unused.

 If a result variable binding matches "result.po sition", updates to the
 "x", "y", "z", and "w" components of the result variable modify the "x",
 "y", "z", and "w" components, respectively, of the transformed vertex's
 clip coordinates. Final window coordinates wil l be generated for the
 vertex as described in section 2.14.4.4.

 If a result variable binding match begins with "result.color", updates to
 the "x", "y", "z", and "w" components of the re sult variable modify the
 "r", "g", "b", and "a" components, respectively , of the corresponding
 vertex color attribute in Table X.4. Color bin dings that do not specify
 "front" or "back" are consided to refer to fron t-facing colors. Color
 bindings that do not specify "primary" or "seco ndary" are considered to
 refer to primary colors.

 If a result variable binding matches "result.fo gcoord", updates to the "x"
 component of the result variable set the transf ormed vertex's fog
 coordinate. Updates to the "y", "z", and "w" c omponents of the result
 variable have no effect.

 If a result variable binding matches "result.po intsize", updates to the
 "x" component of the result variable set the tr ansformed vertex's point
 size. Updates to the "y", "z", and "w" compone nts of the result variable
 have no effect.

 If a result variable binding matches "result.te xcoord" or
 "result.texcoord[n]", updates to the "x", "y", "z", and "w" components of
 the result variable set the "s", "t", "r" and " q" components,
 respectively, of the transformed vertex's textu re coordinates for texture
 unit <n>. If "[n]" is omitted, texture unit ze ro is selected.

 If a result variable binding matches "result.at trib[n]", updates to the

OpenGL Extension Specifcations for GeForce 8 Series NV_vertex_program4

NVIDIA Proprietary 466

 "x", "y", "z", and "w" components of the result variable set the "x", "y",
 "z", and "w" components of the generic interpol ant <n>. Generic
 interpolants may be used by subsequent geometry or fragment program
 invocations, but are not available to fixed-fun ction fragment processing.

 If a result variable binding matches "result.cl ip[n]", updates to the "x"
 component of the result variable set the clip d istance for clip plane <n>.

 If a result variable binding matches "result.te xcoord[n..o]",
 "result.attrib[n..o]", or "result.clip[n..o]", a sequence of 1+<o>-<n>
 bindings is created. For texture coordinates, it is as though the
 sequence "result.texcoord[n], result.texcoord[n +1],
 ... result.texcoord[o]" were specfied. This bi nding is available only in
 explicit declarations of array variables. A pr ogram will fail to load if
 <n> is greater than <o>.

 If a result variable binding matches "result.id ", updates to the "x"
 component of the result variable provide a inte ger vertex identifier
 available to geometry programs using the "verte x[m].id" attribute binding.
 If a geometry program using vertex IDs is activ e and a vertex program is
 active, the vertex program must write "result.i d" or the vertex ID number
 is undefined.

 (add the following subsection to section 2.X.5, Program Options.)

 Section 2.X.5.Y, Vertex Program Options

 + Position-Invariant Vertex Programs (ARB_posit ion_invariant)

 If a vertex program specifies the "ARB_position _invariant" option, the
 program is used to generate all transformed ver tex attributes except for
 position. Instead, clip coordinates are comput ed as specified in section
 2.10. Additionally, user clipping is performed as described in section
 2.11. Use of position-invariant vertex program s should generally
 guarantee that the transformed position of a ve rtex should be the same
 whether vertex program mode is enabled or disab led, allowing for correct
 mixed multi-pass rendering semantics.

 When the position-invariant option is specified in a vertex program,
 vertex programs can no longer declare (explicit ly or implicitly) a result
 variable bound to "result.position". A semanti c restriction is added to
 indicate that a vertex program will fail to loa d if the number of
 instructions it contains exceeds the implementa tion-dependent limit minus
 four.

 (add the following subsection to section 2.X.6, Program Declarations.)

 Section 2.X.6.1, Vertex Program Declarations

 No declarations are supported at present for ve rtex programs.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

NV_vertex_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 467

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.14, Shader and Program Queri es (p. 256)

 (modify 2nd paragraph, p.259) The commands

 ...
 void GetVertexAttribIivEXT(uint index, enum p name, int *params);
 void GetVertexAttribIuivEXT(uint index, enum pname, uint *params);

 obtain the... <pname> must be one of VERTEX_AT TRIB_ARRAY_ENABLED,
 ... VERTEX_ATTRIB_ARRAY_NORMALIZED, VERTEX_ATTR IB_ARRAY_INTEGER_EXT, or
 CURRENT_VERTEX_ATTRIB. ...

 (split 3rd paragraph, p.259) ... The size, stri de, type, normalized flag,
 and unconverted integer flag are set by the com mands VertexAttribPointer
 and VertexAttribIPointerEXT. The normalized fl ag is always set to FALSE by
 by VertexAttribIPointerEXT. The unconverted in teger flag is always set to
 FALSE by VertexAttribPointer and TRUE by Vertex AttribIPointerEXT.

 The query CURRENT_VERTEX_ATTRIB returns the cur rent value for the generic
 attribute <index>. GetVertexAttribdv and GetVe rtexAttribfv read and
 return the current attribute values as floating -point values;
 GetVertexAttribiv reads them as floating-point values and converts them to
 integer values; GetVertexAttribIivEXT reads and returns them a signed
 integers; GetVertexAttribIuivEXT reads and retu rns them as unsigned
 integers. The results of the query are undefin ed if the current attribute
 values are read using one data type but specifi ed using a different one.
 The error INVALID_OPERATION is generated if <in dex> is zero.

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 TBD

Errors

 None.

Dependencies on EXT_draw_instanced

 If EXT_draw_instanced or a similar extension is not supported,
 references to the "vertex.instance" attribute b inding and a
 primitive's instance number should be eliminate d.

OpenGL Extension Specifcations for GeForce 8 Series NV_vertex_program4

NVIDIA Proprietary 468

New State

 (add to table 6.7, p. 268)
 In itial
 Get Value Type Get Command Va lue Description Sec. Attribute
 --------- ---- --------------- -- ----- -------------------- ---- ---------
 VERTEX_ATTRIB_ARRAY 16+xB GetVertexAttrib FA LSE vertex attrib array 2.8 vertex-array
 INTEGER_EXT has unconverted ints

New Implementation Dependent State

 None.

Issues

 (1) Should a new set of immediate-mode function s be provided for "real
 integer" attributes? If so, which ones should be provided?

 RESOLVED: Yes, although an incomplete subset is provided. This
 extension provides vector and non-vector func tions that accept 1-, 2-,
 3-, and 4-component "int" and "uint" values. Additionally, we provide
 only 4-component vector versions of functions that accept "byte",
 "ubyte", "short", and "ushort" values. Note that the ARB_vertex_program
 extension provided a similar incomplete subse t.

 Since existing VertexAttrib functions include versions that take integer
 values and convert them to float, it was nece ssary to create a different
 way to specify integer values that are not co nverted. We created a new
 set of functions using capital letter "I" to denote "real integer"
 values.

 This "I" approach is consistent with a simila r choice made by
 ARB_vertex_program for the existing integer a ttribute functions. There
 are two methods of converting to floating poi nt -- straight casts and
 normalization to [0,1] or [-1,+1]. The norma lization version of the
 attribute functions use the capital letter "N " to denote normalization.

 (2) For vertex arrays with "real integer" attri butes, should we provide a
 new function to specify the array or re-use the existing one?

 RESOLVED: Provide a new function, VertexAttr ibIPointerEXT. This
 function and VertexAttribPointer both set the same attribute state --
 state set by VertexAttribPointer for a given <index> will be overwritten
 by VertexAttribIPointerEXT() and vice versa. There is one new piece of
 state per array (VERTEX_ATTRIB_ARRAY_INTEGER_ EXT) which is set to TRUE
 for VertexAttribIPointerEXT() and FALSE by Ve rtexAttribPointer. The use
 of a new function with capital "I" in the nam e is consistent with the
 choice made for immediate-mode integer attrib utes.

 We considered reusing the existing VertexAttr ibPointer function by
 hijacking the <normalized> parameter, which s pecifies whether the
 provided arrays are converted to float by nor malizing or a straight
 cast. It would have been possible to add a t hird setting to indicate
 unconverted integer values, but that has two problems: (a) it doesn't
 agree with the <normalized> flag being specif ied as a "boolean" (which
 only has two values), and (b) the enum value that would be used would be

NV_vertex_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 469

 outside the range [0,255] and "boolean" may b e represented using
 single-byte data types.

 One other possibility would have been to crea te a new set of <type>
 values to indicate integer values that are ne ver converted to floating
 point -- for example, GL_INTEGER_INT.

 (3) Should we provide a whole new set of generi c integer vertex
 attributes?

 RESOLVED: No. This extension makes the exis ting generic vertex
 attributes "typeless", where they can store e ither integer or
 floating-point data. This avoids the need to introduce new hardware
 resources for integer vertex attributes or so ftware overhead in juggling
 integer and floating-point generic attributes .

 Vertex programs and any queries that access t hese attributes are
 responsible for ensuring that they are read u sing the same data type
 that they were specified using, and will get undefined results on type
 mismatches. Checking for such mismatches wou ld be an excellent feature
 for an instrumented OpenGL driver, or other d ebugging tool.

 (4) Should we provide integer forms of existing conventional attributes?

 RESOLVED: No. We could have provided "integ er" versions of Color,
 TexCoord, MultiTexCoord, and other functions, but it didn't seem useful.
 The use of generic attributes for such values is perfectly acceptable,
 and fixed-function vertex processing paths wo n't know what to do with
 integer values for position, color, normal, a nd so on.

 (5) With integers throughout the pipeline, shou ld we provide automatic
 identifiers that can be read to get a "vertex n umber"? If so, how should
 this functionality be provided?

 RESOLVED: The "vertex.id" binding provides a n integer "vertex number"
 for each vertex called the "vertex ID".

 When using vertex arrays in vertex buffer obj ects (VBOs), the vertex ID
 is defined to be the index of the vertex in t he array -- the value
 implicitly passed to ArrayElement() when Draw Arrays() or DrawElements()
 is called. In practice, vertex arrays in buf fer objects will be stored
 in memory that is directly accessible by the GPU. When functions such
 as DrawArrays() or DrawElements() are called, a set of vertex indices
 are passed to the GPU to identify the vertice s to pull out of the buffer
 objects. These same indices can be easily pa ssed to the vertex program.

 Vertex IDs can be used by applications in a v ariety of ways, for example
 to compute or look up some property of the ve rtex based on its position
 in the data set.

 Note: The EXT_texture_buffer_object extensio n can be used to bind a
 buffer object as a texture resource, which ca n the be used for lookups
 in a vertex program. If the amount of memory required for each vertex
 is very large or is variable, the existing ve rtex array model might not
 work very well. However, with TexBOs (textur e buffer objects), the
 vertex program can be used to compute an offs et into the buffer object
 holding the vertex data and fetch the data ne eded using texture lookups.

OpenGL Extension Specifcations for GeForce 8 Series NV_vertex_program4

NVIDIA Proprietary 470

 This approach blurs the line between texture and vertex pulling, and
 treats the "texture" in question as a simple array.

 (6) Should vertex IDs be provided for vertices in immediate mode?
 Vertices in display lists? Vertex arrays compi led into a display list?

 RESOLVED: No to all.

 A different definition would be needed for im mediate mode vertices,
 since the vertex attributes are not specified with an index. It would
 have been possible to implement some sort of counter where the vertex ID
 indicates that the vertex is the <N>th one si nce the previous Begin
 command.

 Vertex arrays compiled into a display list ar e an even more complicated
 problem, since either the "array element" def inition or the alternate
 "immediate mode" definition could be used. I f the "array element"
 definition were used, it would additionally b e necessary to compile the
 array element values into the display list. This would introduce
 additional overhead into the display list, an d the storage space for the
 array element numbers would be wasted if no p rogram using vertex ID were
 ever used.

 While such functionality may be useful, it is left to a subsequent
 extension.

 If such functionality is required, immediate mode VertexAttribI1i()
 calls can be used to specify the desired "ver tex ID" values as integer
 generic attributes. In this case, the vertex program needs to refer to
 the specified generic attribute, and not "ver tex.id".

 (7) Should vertex identifiers be provided for n on-VBO vertex arrays? For
 vertex arrays that are a mix of VBO and non-VBO arrays?

 RESOLVED: Non-VBO arrays are generally not s tored in memory directly
 accessible by the GPU; the data are instead c opied from the
 application's memory as they are passed to th e GPU. Additionally, the
 index ordering may not be preserved by the co py. For example, if a
 DrawElements() call passes vertices numbered 30, 20, 10, and 0 in order,
 the GPU might see vertex 30's data first, imm ediately followed by vertex
 20's data, and so on.

 It would be possible for the driver to provid e per-vertex ID values to
 the GPU during the copy, but defining such fu nctionality is left to a
 subsequent extension.

 For vertices with a mix of VBO arrays and non -VBO arrays, the non-VBO
 arrays still have the same copy issues, so th e automatic vertex ID is
 not provided.

 If such functionality is required, a generic vertex attribute array can
 be set up using VertexAttribIPointerEXT(), ho lding integer values 0
 through <maxSize>-1, where <maxSize> is the m aximum vertex index used.
 For each vertex, the appropriate "vertex ID" value will be taken from
 this array. In this case, the vertex program needs to refer to the
 specified generic attribute, and not "vertex. id".

NV_vertex_program4 OpenGL Extension Specifications for GeForce 8 Series

 NVIDIA Proprietary 471

 (8) Should vertex IDs be available to geometry programs, and if so, how?

 RESOLVED: Yes, vertex IDs can be passed to g eometry programs using the
 "result.id" binding in a vertex program. Not e there is no requirement
 that the "result.id" written for a vertex mus t match the "vertex.id"
 originally provided.

 Vertex IDs are not automatically provided to geometry programs; if a
 vertex program doesn't write to "result.id" o r if fixed-function vertex
 processing is used, the vertex ID visible to the geometry program is
 undefined.

 (9) For instanced arrays (EXT_draw_instanced), should a vertex program
 be able to read the instance number? If so, ho w?

 RESOLVED: Yes, instance IDs are available to vertex programs using the
 "vertex.instance" attribute. The instance ID is available in the "x"
 component and should be read as an integer.

 (10) Should instance IDs be available to geomet ry and fragment programs,
 and if so, how?

 UNRESOLVED: No. If a geometry or fragment p rogram needs the instance
 ID, the value read in the vertex program can be passed down using a
 generic integer vertex attribute.

 It would be possible to provide a named outpu t binding (e.g.,
 "result.instance") that could be used to pass the instance ID to the
 next pipeline stage. Using such a binding wo uld have no functional
 differences from using a generic attribute, e xcept for a name.

 In any event, instance IDs are not automatica lly available to geometry
 or fragment programs; they must be passed fro m earlier pipeline stages.

 (11) This is an NV extension (NV_vertex_program 4). Why do all the new
 functions and tokens have an "EXT" extension?

 RESOLVED: These functions and tokens are sha red between this extension
 and the comparable high-level GLSL programmab ility extension
 (EXT_gpu_shader4). Rather than provide a dup licate set of functions, we
 simply use the EXT version here.

Revision History

 None

	Table of NVIDIA OpenGL Extension Support
	EXT_bindable_uniform
	EXT_draw_buffers2
	EXT_draw_instanced
	EXT_framebuffer_sRGB
	EXT_geometry_shader4
	EXT_gpu_shader4
	EXT_packed_float
	EXT_texture_array
	EXT_texture_buffer_object
	EXT_texture_compression_latc
	EXT_texture_compression_rgtc
	EXT_texture_integer
	EXT_texture_shared_exponent
	NV_conditional_render
	NV_depth_buffer_float
	NV_fragment_program4
	NV_framebuffer_multisample_coverage
	NV_geometry_program4
	NV_geometry_shader4
	NV_gpu_program4
	NV_parameter_buffer_object
	NV_transform_feedback
	NV_vertex_program4

