Homework 5 Solution

Problem 1: Design a scheduling algorithm which ensures that over a relatively long interval CPU time is divided evenly between all tasks. For example, consider a system running this algorithm with two tasks, one I/O bound, the other compute bound. The run time of the tasks is long compared to the interval. The I/O-bound task and the CPU-intensive task would each get 50% of the CPU time (unless the time to complete I/O requests is very large).

Key Points:

- When a task goes into the Wait state it normally forfeits the remainder of its quantum.
- The scheduling algorithm should allow the task to “catch up.”

Solution:

Use two priority levels:

1: Normal tasks.

2: Tasks which have fallen behind.

Within each priority level, use FCFS scheduling.

OS is task-preemptive.

The following actions are taken when a priority-1 task must wait:

- The remaining time in its quantum is stored, use symbol t_{rq} for this time.
- The time at which it went into the wait state is stored, t_w.
- Its priority is set to 2 and it is placed in the wait list.
Priority 1 tasks used a fixed quantum and are scheduled normally.

Tasks at priority 2 will be allowed to run for a total of t_{rq}, after which they will move back to priority 1.

When a task is moved back to the priority-1 ready list, its arrival time is set to t_w, not the current time.

By setting the arrival time to this value the task does not lose its place in line.

Priority 2 task X is run with a quantum of $t_{rq}(X)$, for all X at priority 2.

If it uses up its quantum it is moved back to priority 1.

Otherwise $t_{rq}(X)$ is replaced with $t_{rq}(X) - t_x$, where t_x is the amount of time it ran.
Problem 2: Find timing constraints for the code in the self-balancing washing machine example. Briefly justify each constraint. Show how the code might be scheduled, including interrupt handlers and tasks. Show a situation in which there might be timing difficulties and explain how they might be resolved.

Solution steps:

- Estimate run times.
- Estimate timing constraints.
- Find scheduling.

Run Times

CDT, $t_h = 1 \mu$s. Time is small because it only has to increment a variable and, sometimes, read a wobble.

SPEED, $t_h = 5 \mu$s. Must compute speed and update a table. Checking for table-length overflow and other conditions results in the longer run time.

SPRAY, $t_h = 50 \mu$s. In addition to adjusting actuators must set next timer interrupt. It might have to do some computation to determine when the next timer interrupt should be.

wobble, run time 500 ms.
Timing Constraints

Suppose maximum spin speed is 1200 RPM.

Suppose CDT has 1024 marks.

Then minimum period for CDT is 49 μs.

Reasonable assumption: response must occur before next event.

Constraint:

Normal: Mark \rightarrow CtrInc < 49 μs,

where event Mark occurs when a mark passes under mark readers in the CDT,

and response CtrInc occurs when CDT finishes.

Similarly, for speed:

Normal: Speed \rightarrow Cntr < 49 μs,

where event Speed occurs at the timer interrupt and,

response Cntr occurs after SPEED has run.

Suppose buckets had a target that was 30° wide and jets could turn on or off no more than 10° late.

Then response time constrain is the time for the tub to turn 10° at maximum speed.

Normal: JetOnI \rightarrow JetOn < 1.39 ms,

Normal: JetOffII \rightarrow JetOff < 1.39 ms,

where event JetOnI and JetOffII are the respective timer interrupts,

and response JetOn and JetOff occur when the SPRAY handler
Scheduling

The \textit{SPRAY} handler’s run time could result in \textit{CDT} or \textit{SPEED} missing their deadlines so:

Strong priority 2: \textit{CDT} and \textit{SPEED}.

Strong priority 1: \textit{SPRAY}.

The \textit{wobble} task will be scheduled as a daemon task since it is not associated with any hard deadlines.
Problem 3: Find the actual run time, latency, and response time for the event types described in the table below.

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Strong Pri.</th>
<th>Weak Pri.</th>
<th>Handler Run Time</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>3</td>
<td>10 µs</td>
<td>Periodic, (t_b(A) = 54 \mu s).</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>2</td>
<td>4 µs</td>
<td>Twice, any time between occurrences of A.</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>1</td>
<td>12 µs</td>
<td>Once, any time between occurrences of A.</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1</td>
<td>50 µs</td>
<td>Periodic, (t_b(D) = 23 \text{ ms}).</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td>10 µs</td>
<td>One shot.</td>
</tr>
</tbody>
</table>

Event B will not recur until after a previous occurrence of event B has been responded to. That is, there cannot be an occurrence of B after an occurrence of B and before the response for this occurrence of B.

Events A and C occur the same number of times, B occurs twice as many times as A and C.

Solution:

Strong Priority Level 3:

Latency of A: \(t_l(A) = t_h(C) = 12 \mu s \).

Latency of B: \(t_l(B) = t_h(A) + t_h(C) = 22 \mu s \).

Event B can occur twice just before and just after A so:

Latency of C: \(t_l(C) = t_h(A) + 4t_h(B) = 26 \mu s \).

Actual run times: \(t_a(A) = t_h(A), \ t_a(B) = t_h(B) \), and \(t_a(C) = t_h(C) \).

Since there is no preemption at the highest strong priority level response times are sum of latency and actual run times:

\[
\begin{align*}
 t_r(A) &= t_l(A) + t_a(A) = 22 \mu s, \\
 t_r(B) &= t_l(B) + t_a(B) = 26 \mu s, \\
 \text{and } t_r(C) &= t_l(C) + t_a(C) = 38 \mu s.
\end{align*}
\]
Strong Priority Level 2:

Unlucky situation for D: two Bs, an A, 2 Bs, and a C.

Latency of D: $t_l(D) = t_h(A) + 4t_h(B) + 2t_h(C) = 50 \mu s$.

A similar unlucky situation:

Actual duration $t_a(D) = 3t_h(A) + 8t_h(B) + 4t_h(C) + t_h(D) = 160 \mu s$.

In this case, response time $t_r(D) = t_a(D)$.

Strong Priority Level 1:

Latency of E is response time of D, $t_l(E) = 160 \mu s$.

Actual duration is $t_a(E) = t_r(D) + t_h(E) = 170 \mu s$.

Response time is $t_r(E) = t_a(E) = 170 \mu s$.