During work on this issue of the ARMv8 ARM, a software issue led to several text insertions
disappearing from chapter D1, including a number of references to ESR_ELX, and this was
not spotted before release. This updated release is an edited version of the original release
PDF, and those omissions are identified, and rectified as far as possible.

ARM' Architecture Reference Manual
ARMvS, for ARMv8-A architecture profile

ARM

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
ARM DDI 0487A.k_iss10775 (ID092916)

ARM editor
Text Box
During work on this issue of the ARMv8 ARM, a software issue led to several text insertions disappearing from chapter D1, including a number of references to ESR_ELx, and this was not spotted before release. This updated release is an edited version of the original release PDF, and those omissions are identified, and rectified as far as possible.

ARM Architecture Reference Manual
ARMvS8, for ARMv8-A architecture profile

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Release Information

The following releases of this document have been made.

Release history

Date Issue Confidentiality Change

30 April 2013 Aal Confidential-Beta Draft Beta draft of first issue, limited circulation
12 June 2013 A.a2 Confidential-Beta Draft Second beta draft of first issue, limited circulation
04 September 2013 Aa Non-Confidential Beta Betarelease.

24 December 2013 Ab Non-Confidential Beta Second betarelease.

18 July 2014 Ac Non-Confidential Beta Third betarelease.

09 October 2014 Ad Non-Confidential Beta Fourth beta release.

17 December 2014 Ae Non-Confidential Beta Fifth betarelease.

25 March 2015 Af Non-Confidential Beta Sixth beta release.

10 July 2015 Ag Non-Confidential Beta Seventh beta release.

30 September 2015 Ah Non-Confidential Beta Eighth betarelease.

28 January 2016 A Non-Confidential Beta Ninth betarelease.

03 June 2016 Aj Non-Confidential EAC EAC release.

30 September 2016 Ak Non-Confidential v8.0 EAC Updated EAC release. f—

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless

specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit othersto use

the information for the purposes of determining whether implementations infringe any third party patents.

THISDOCUMENT ISPROVIDED “ASIS’. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or

other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if thereis any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775

1D092916

ARM editor
Sticky Note
The PDF of issue A.k of this Manual was reissued on 02 November 2016 to incorporate the corrections summarized in the text box at the top of the cover page. This reissue can be identified by the suffix _iss10775 on the document number in the page footers.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
isnot exported, directly or indirectly, in violation of such export laws. Use of theword “partner” in referenceto ARM’s customers
isnot intended to create or refer to any partnership relationship with any other company. ARM may make changesto thisdocument
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means“ARM or any of its subsidiaries as appropriate”.

Note
. The term ARM can refer to versions of the ARM architecture, for example ARMv8 refers to version 8 of the ARM
architecture. The context makesit clear when the term is used in this way.

. This document describes only the ARMv8-A architecture profile. For the behaviors required by the previous version of
this architecture profile, ARMv7-A, see the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictionsin
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document isfinal, that is for a developed product.
Web Address

http://www.arm.com

Limitations of issue A.k

Thisissue A .k of the ARMv8 Architecture Reference Manual contains many improvements and corrections. Validation of this
document has identified the following issues that ARM will addressin the next issue:

. In consultation with Architectural partners, ARM ischanging the formal definition of the ARM memory model. Whilethe
new definition will form part of the ARMV8-A Final specification, it isnot yet ready for publication, and therefore will be
introduced in afuture issue of this Manual. However, this redefinition has no practical implications for implementations
of the ARMV8-A architecture.

. Generally, where this manual refersto “executing an ISB instruction”, this can be generalized to “ performing a Context
synchronization event”. The Glossary defines the set of Context synchronization events.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. iii

1D092916

Non-Confidential

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

Contents

ARM Architecture Reference Manual ARMvS8, for
ARMv8-A architecture profile

Preface
ADOUL thiS MANUAIeeiiiiiiii e e XVi
USING thiS MANUAI ... e e e s eeanees XViii
(0] 01V7=T 01110] o E- T P PP PPPR XXiii
AdItIoNAl TEATINGveeiiiiieiieee et XXV
[=T<To | o= Tod QRS ERT R RII XXVi
Part A ARMv8 Architecture Introduction and Overview
Chapter A1 Introduction to the ARMv8 Architecture
Al.l About the ARM arChiteCtUreccooiuiiiiiiiiiiiie e A1-30
Al.2 ArChiteCture ProfileScoueiiiiiiiie e Al1-32
Al1.3 ARMV8 architeCtural CONCEPLSeeiiieiiiiiiie et A1-33
Al.4 SUPPOITEd AAtA TYPES ...eeeeiieeiiiiiiie ettt e e et e e e e e s e e e e e s enaee e e e anees Al1-36
Al.5 Floating-point and Advanced SIMD SUPPOIcuueeeieeiiiiieee e Al-46
Al.6 CryptographiC EXIENSIONccciiiiiiiieiiiiiii et e et e e e e e s sarae e e Al1-52
Al.7 The ARM mMemOory MOEIcoiiiiiiieiiiiiiie et e e Al1-53
Part B The AArch64 Application Level Architecture
Chapter B1 The AArch64 Application Level Programmers’ Model
B1l.1 About the Application level programmers’ modelccccccoviiiiiiiiiiniiiiee e, B1-58
B1.2 Registers in AArch64 EXECULION StAteccceveeiiiiiiieeiiiiieiee e ccsireee e sivee e B1-59
B1.3 Software control features and ELOcccoviiiiiieeiniiie e B1-64
ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. v

ID092916

Non-Confidential

Contents

Chapter B2 The AArch64 Application Level Memory Model
B2.1 ACArESS SPACE ..eeeiiiiie ittt ettt
B2.2 MEMOTY TYPE OVEIVIEW ...ttt ettt et e
B2.3 Caches and memory hierarChyoooooiiiiiie e
B2.4 Alignment support
B2.5 Endian supportccccceeiiiiineiininnnn.
B2.6 Atomicity in the ARM architecture
B2.7 MEMOTY OFAEIING ..ttt ettt
B2.8 Memory types and attribUtesoocveiiiiiii e
B2.9 Mismatched memory attributes

B2.10 Synchronization and semaphores

Part C The AArch64 Instruction Set
Chapter C1 The A64 Instruction Set
C1.1 About the AB4 INSIIUCION SELeiiiiiiiiieieiiee e
Cl1.2 Structure of the A64 assembler language
C1.3 Address generationccccceeeevueeeeeeenniieeeeennninen
Cl4 INSEFUCEION @lIASESeeiiiiiiiiie et
Chapter C2 About the A64 Instruction Descriptions
c21 Understanding the A64 instruction descriptionsccceevieriiiieieeeiiiieiee s C2-134
Cc2.2 General information about the A64 instruction descriptionsccccccevecvveeennn. C2-137
Chapter C3 A64 Instruction Set Overview

C31 Branches, Exception generating, and System instructions
C3.2 Loads and stores
C3.3 Data processing - immediate
C34 Data processing - registercccccoeceveeiiieeneenininns
C35 Data processing - SIMD and floating-point

Chapter C4 A64 Instruction Set Encoding
C4.1 AB64 instruction iNndex DY @NCOTINGoovuviiiiiiiiiiiie e C4-192
C4.2 Data processing - iMMEIAteecooiiiiiiiiiiiiiiiee e C4-193
C4.3 Branches, exception generating and system instructionsc.cccoccvvereeennnnne C4-197
C4.4 Loads and stores
C4.5 Data proCessing - FEQISLETviiiiieiiiie ettt C4-224
C4.6 Data processing - SIMD and floating point ..o C4-233
Chapter C5 The A64 System Instruction Class
C5.1 The System instruction class encoding SPACEcccoiiiiiiieeiiiiiiiee e
C5.2 SPECIal-PUIPOSE FEOISIEISeieeiiieiiieiie ettt e e e e e e

C5.3 A64 system instructions for cache maintenance
C5.4 A64 system instructions for address translation

C55 A64 system instructions for TLB Mmaintenancecccccceeeveivieeeeeiiiieeee e
Chapter C6 A64 Base Instruction Descriptions
C6.1 About the AB4 base INSIIUCLIONSccceeriiiiienii e C6-432
C6.2 Alphabetical list of A64 base iNSIUCHIONScccoviieeiiiiiiee e C6-434
Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.1 About the A64 SIMD and floating-point iNStruCtionsccccooceeeviieenieee e C7-768
C7.2 Alphabetical list of A64 floating-point and Advanced SIMD instructions C7-770
Vi Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

Contents

Part D The AArch64 System Level Architecture

Chapter D1 The AArch64 System Level Programmers’ Model
D1.1 EXCEPLION [EVEIS ...oeiiieeie e D1-1498
D1.2 Exception terminology D1-1499
D1.3 Execution state D1-1501
D1.4 SECUNLY SEALE ..eiiiiiie ittt et e et e e D1-1502
D1.5 VIFEUANZATION ...t e et e e e tbee e e e enees D1-1504
D1.6 Registers for instruction processing and exception handlingcccccceeeue D1-1507
D1.7 Process State, PSTATE ... D1-1513
D1.8 Program counter and stack pointer alignment D1-1515
D1.9 RESEE ittt b e bbbt be e D1-1517
D1.10 EXCEPLON ENEIY oiitiieiiiiieiiee ettt ettt ettt e e naneees D1-1521
D1.11 Exception returnocccccveeeiiiieneeennnnns D1-1536
D1.12 The Exception level hierarchy D1-1540
D1.13 Synchronous exception types, routing and priofitiesccccovvveeeeeiiiiieeeenn. D1-1547
D1.14 Asynchronous exception types, routing, masking and priorities D1-1555
D1.15 Configurable instruction enables and disables, and trap controls D1-1562
D1.16 SYStEM CAIIS ...eeiiiiiiiieiiii et D1-1598
D1.17 Mechanisms for entering a low-power state D1-1599
D1.18 Self-hosted debugccocceeeiiiiiiiie D1-1604
D1.19 The Performance Monitors EXtENSIONcccueeiiiiiiiiiiieiiiiiiiiee s D1-1606
D1.20 INTEIPIOCESSING ..vveiuviireeiiiietieiti ettt e sttt ettt st esir e b e sereenreeneneens D1-1607
D1.21 The effect of implementation choices on the programmers’ model D1-1619

Chapter D2 AArch64 Self-hosted Debug
D2.1 About self-hosted debUGcooviiiiiiii e D2-1626
D2.2 The debug exception enable controls D2-1630
D2.3 Routing debug eXCEPLIONSoiii it e e D2-1631
D2.4 Enabling debug exceptions from the current Exception level and Security state

D2-1633

D2.5 The effect of powerdown on debug exceptionsc.cccccuenne. D2-1635
D2.6 Summary of the routing and enabling of debug exceptions D2-1636
D2.7 Pseudocode description of debug eXceptionsccccoceeeiiiieeiiie e D2-1638
D2.8 Breakpoint INStruction @XCePLIONScooiuiiiiiaiiiiiiie e e e D2-1639
D2.9 Breakpoint exceptionsccccceeevune D2-1641
D2.10 Watchpoint exceptions D2-1657
D2.11 Vector Catch exceptions D2-1672
D2.12 Software Step exceptions D2-1673
D2.13 Synchronization and debug eXCeptionScccovieeeiiiieiiiie e D2-1687

Chapter D3 The AArch64 System Level Memory Model
D3.1 About the memory system architeCtureccooceeeiiiiiiieiie e D3-1690
D3.2 F N [0 [{ ST o - Lo = RS PRR D3-1691
D3.3 Mixed-endian support D3-1692
D3.4 CaCNE SUPPOIT ittt e e e as D3-1693
D3.5 EXternal abOortsoocioiiiiii D3-1714
D3.6 Memory barrier INSIrUCHIONScoiiiiiii e e e D3-1716
D3.7 Pseudocode description of general memory system instructions D3-1717

Chapter D4 The AArch64 Virtual Memory System Architecture
D4.1 About the Virtual Memory System Architecture (VMSA)ccocoveviirenieeenneen, D4-1722
D4.2 The VMSAV8-64 address translation SyStemccccceeeiiieiiieeiiiieeee e D4-1726
D4.3 VMSAV8-64 translation table format descriptors D4-1774
D4.4 MEMOIY GCCESS CONIOLoiiiiiiiiiiei ittt e e D4-1783
D4.5 Memory region attribULEScviiiiiiiii e D4-1792
D4.6 MMU faults D4-1800
D4.7 Translation Lookaside BUfers (TLBS)cccveviiiiiiieeeiieeenec e D4-1810

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Vii

ID092916

Non-Confidential

Contents

D4.8 TLB maintenance requirements and the TLB maintenance instructions D4-1815
D4.9 Caches in a VMSAV8-64 implementationccceeeiiiiiiiieeeeniiiieee e D4-1829
Chapter D5 The Performance Monitors Extension
D5.1 About the Performance MONItOrSccccocvieiiiiiirieeereee e D5-1834
D5.2 Accuracy of the Performance MONITOrScceeeiiiiiiiiieiiiiiiecee e D5-1836
D5.3 Behavior on overflow D5-1838
D5.4 Attributabilityc....... D5-1840
D5.5 Effect of EL3 and EL2 D5-1841
D5.6 EVENL FIEIING oo D5-1843
D5.7 Performance Monitors and Debug Stateccceiiiiiiiiiiien e D5-1845
D5.8 Counter enables D5-1846
D5.9 Counter access D5-1847
D5.10 Events, event numbers, and MNEMONICSccoervieiiieriiiiiienee e D5-1848
D5.11 Performance Monitors EXtension regiStersccccovimrieeeriieeniiieesniee e D5-1871
Chapter D6 The Generic Timer in AArch64 state
D6.1 AbOULt the GENENIC TIMETeeiiiiie it D6-1876
D6.2 The AArch64 view of the Generic TIMEToocvviiiieeiiiee e D6-1880
Chapter D7 AArch64 System Register Descriptions
D7.1 About the AArch64 SyStem rEQISLErScoocveiieieiiiee e D7-1888
D7.2 General system control registers D7-1895
D7.3 DEDUQ FEOISLEIS ..ottt e e e et e e e e e e e D7-2147
D7.4 Performance MONItOrS rEQISLErScccuiiiiiiiiaiiiiieee ettt e e D7-2215
D7.5 GENENIC TIMET TEQISLEIS ..uvviiiiiiiiiie e e ettt e et e e e e e e et r e e e st e e e e s etraeeae s D7-2255
Part E The AArch32 Application Level Architecture
Chapter E1 The AArch32 Application Level Programmers’ Model
El.1 About the Application level programmers’ modelcccccooiiiiiiiiniiiiiiee s E1-2288
E1.2 The Application level programmers’ model in AArch32 state E1-2289
E1.3 Advanced SIMD and floating-point instructions E1-2300
E1.4 About the AArch32 System register interface E1-2312
E1.5 EXCEPLONS ..o E1-2313
Chapter E2 The AArch32 Application Level Memory Model
E2.1 ACArESS SPACE ..eieiiiieiiie ettt E2-2316
E2.2 MEMOTY LYPE OVEIVIEWeiiiiiiiiieeeietieee et e ettt e e e et e e e e e entae e e e e s e bnneeaeeenes E2-2317
E2.3 Caches and memory hierarChy ..o E2-2318
E2.4 Alignment support E2-2323
E2.5 Endian support E2-2325
E2.6 Atomicity in the ARM architecture E2-2328
E2.7 MEMOTY OFAEIING ..ottt e e E2-2332
E2.8 Memory types and attribULEScueiiiiiiiiiei e E2-2342
E2.9 Mismatched memory attributes E2-2352
E2.10 Synchronization and Semaphores ... E2-2355
Part F The AArch32 Instruction Sets
Chapter F1 The AArch32 Instruction Sets Overview
F1.1 Support for instructions in different versions of the ARM architecture F1-2368
F1.2 Unified Assembler LANQUAGEocueeieiiiiiiiiee et F1-2369
F1.3 Branch iNStrUCHIONSccviiiiiiiiiie e F1-2371
F1.4 Data-processing iNStrUCHIONScoccuviiieiiiiiiiee e .. F1-2372
F1.5 PSTATE and banked register access inStructionsccccccceevvvveeeeeiiiiiieneennns F1-2380
viii Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

Contents

F1.6 LOoAd/StOre INSIIUCLIONSooiiiiiiiiie et e e e e e eraeeee e e e F1-2381
F1.7 Load/store multiple iNSTIUCLIONSoo.eeeiiiiiiiii e F1-2384
F1.8 Miscellaneous INSIIUCHIONScccooiiiiiiieiiiiiiiceeee e ... F1-2385
F1.9 Exception-generating and exception-handling instructions ... F1-2386
F1.10 System register access iNStrUCLIONScccoovvvveeeeeiiiiieeeeeineenn. F1-2387

F1.11 Advanced SIMD and floating-point load/store instructions F1-2388
F1.12 Advanced SIMD and floating-point register transfer instructions F1-2390
F1.13 Advanced SIMD data-processing instructions .. F1-2391

F1.14 Floating-point data-processing instructions F1-2399

Chapter F2 About the T32 and A32 Instruction Descriptions
F2.1 Format of insStruction descCriptioNSocueviiiiiiiiiiee e F2-2402
F2.2 Standard assembler syntax fieldS ... F2-2406
F2.3 Conditional EXECULIONcoiiiiiiiiiciiicie e e F2-2407
F2.4 Shifts applied to a register F2-2410
F2.5 MEMOIY GCCESSES ...coiiriiieeiiiieee ettt F2-2412
F2.6 Encoding of lists of general-purpose registers and the PC ... F2-2413
F2.7 General information about the T32 and A32 instruction descriptions F2-2414
F2.8 Additional pseudocode support for instruction descriptionsccccoeevveeen. F2-2426
F2.9 Additional information about Advanced SIMD and floating-point instructions .. F2-2427

Chapter F3 The T32 Instruction Set Encoding
F3.1 Top level T32 instruction set eNCOAdINGccoccuvviieeiiiiiiie e F3-2434
F3.2 16-bit T32 instruction encoding F3-2436
F3.3 32-bit T32 instruction encoding F3-2447

Chapter F4 The A32 Instruction Set Encoding
F4.1 Top level A32 instruction Set eNCOAINGvveevveiiiiieieiie e F4-2500
F4.2 Data-processing and miscellaneous iNStruCtionscccccvveeiiiiieeeeeiiiiee e F4-2502
F4.3 Load/Store Word, Unsigned byte (immediate, literal) F4-2519
F4.4 Load/Store Word, Unsigned byte (register)ccccceevviiveeeeennns ... F4-2520
F4.5 Media iINStrUCtioNSccccoveiviriieiiciceeesee ... F4-2521
F4.6 Branch, branch with link, and block data transfer F4-2529
F4.7 System register access, Advanced SIMD, floating-point, and Supervisor Call F4-2531
F4.8 Unconditional INSIIUCTIONScoviueeeeiie e F4-2540

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions F5-2560
F5.2 Encoding and use of Banked register transfer instructionsccccceeeene F5-3228

Chapter F6 T32 and A32 Advanced SIMD and floating-point Instruction Descriptions
F6.1 Alphabetical list of floating-point and Advanced SIMD instructions F6-3234

Part G The AArch32 System Level Architecture

Chapter G1 The AArch32 System Level Programmers’ Model
G1.1 About the AArch32 System level programmers’ modelcccccevciierineennn G1-3782
G1.2 EXCEPLioN [EVEIScoiiiiiii it G1-3783
G1.3 Exception terminology G1-3784
Gl4 Execution state G1-3786
G1.5 INSLrUCHION ST SLALEeovviiiiiiiiieiie e e G1-3788
GL.6 SECUMLY STALE ..eiiiiiiiiiiiie ettt e e e e e e et e e e e st e e e e s st ae e e e s ennres G1-3789
G1.7 Security state, Exception levels, and AArch32 execution privilege G1-3792
GL1.8 VIMUANZALION ..oeeeiiiieiee ettt e G1-3794
G1.9 AArch32 PE modes, and general-purpose and Special-purpose registers G1-3796
G1.10 Process State, PSTATE ..o e e G1-3805
G111 INSLrUCHION SEL STALEScocviiiiiiiiieiee ettt G1-3810

ARM DDI 0487A.Kk_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ix

ID092916

Non-Confidential

Contents

G1.12 Handling exceptions that are taken to an Exception level using AArch32 G1-3812

G1.13 Exception return to an Exception level using AArch32ccoooviiiiiineeninnes G1-3834
G1.14 Asynchronous exception behavior for exceptions taken from AArch32 state . G1-3839
G1.15 AArch32 state exception descriptions G1-3849
G1.16 Resetinto AArch32 stateccccccevvevriiiiiicenieenne, G1-3868
G1.17 Mechanisms for entering a low-power state G1-3872
G1.18 The AArch32 System register interfaceccccoveviiiiieniiie G1-3877
G1.19 Advanced SIMD and floating-point SUPPOITcccoiiiiiiereaiiiiee e G1-3880
G1.20 Configurable instruction enables and disables, and trap controls G1-3885
Chapter G2 AArch32 Self-hosted Debug
G2.1 About Self-hosted debUgocvvviiiiiiiii e G2-3922
G2.2 The debug exception enable CONrOISooociiiiiiiiiiiiiie e G2-3926
G2.3 Routing debug eXCEPLIONSiiiiiiiiiie e e G2-3927
G2.4 Enabling debug exceptions from the current Privilege level and Security state
G2-3929
G2.5 The effect of powerdown on debug exceptionscccccoeiiiiiiieiiiiiiieee e, G2-3931
G2.6 Summary of permitted routing and enabling of debug exceptions G2-3932
G2.7 Pseudocode description of debug exceptionsccoccvevieeiiiiiiiie e G2-3934
G2.8 Breakpoint Instruction exceptionsccccceeeeenneen. G2-3935
G2.9 Breakpoint exceptionsccccoeevveennne G2-3938
G2.10 Watchpoint exceptions G2-3961
G2.11 Vector Catch exceptions G2-3975
G2.12 Synchronization and debug eXCeptionsccceeeiiiiiiiiiiieniiiiiiee e G2-3983
Chapter G3 The AArch32 System Level Memory Model
G3.1 About the memory system arChiteCtureccccceeiiiiiiiiniiiiee e G3-3986
G3.2 AAAIESS SPACE ..oeiiiiiiiie ittt e ettt ettt e e e s ab e e e e e e et e e e aanees G3-3987
G3.3 Mixed-endian SUPPOITcooviiireeiiiiiiiieeeiienee e G3-3988
G3.4 AArch32 cache and branch predictor support G3-3989

G3.5 System register support for IMPLEMENTATION DEFINED memory features G3-4013

G3.6 EXternal aDOISo.eiiiiie e e G3-4014
G3.7 Memory barrier instructions G3-4016
G3.8 Pseudocode description of general memory system instructions G3-4017
Chapter G4 The AArch32 Virtual Memory System Architecture
GA.1 ADOUE VMSAVB-32 ..ottt ettt ettt et seaee e e tbe e e nnee e e nnaeeeaneeeeans G4-4022
G4.2 The effects of disabling address translation stages on VMSAvV8-32 behavior G4-4031
G4.3 Translation tablescoooiiiiiiii s G4-4035
G4.4 The VMSAV8-32 Short-descriptor translation table formatccccoevveenee. G4-4040
G4.5 The VMSAV8-32 Long-descriptor translation table format G4-4049
G4.6 MEMOIY GCCESS CONIOIoiiiiiiiiiieiiieii e G4-4068
G4.7 Memory region attriDULESoiiiiiiiiii e G4-4077
G4.8 Translation Lookaside BUffers (TLBS)cccoiviiiiieieiiiiiiiee e G4-4089
G4.9 TLB maintenance reqUIrEMENTScoccvieiiiiiuiiieeeiiiiieeeeessiirereessnivereaesennnens G4-4093
G4.10 Caches in VMSAV8-32 G4-4106
G4.11 VMSAV8-32 memory aborts G4-4110
G4.12 Exception reporting in a VMSAV8-32 implementationccccovecveieeenninenn. G4-4123
G4.13 Address translation iNStruCtioNSocccceeeiiiiiiieee e G4-4142
G4.14 About the System registers for VMSAv8-32 G4-4148

G4.15 VMSAV8-32 organization of registers in the (coproc==0b1110) encoding space

G4-4172
G4.16 VMSAV8-32 organization of registers in the (coproc==0b1111) encoding space
G4-4175
G4.17 Functional grouping of VMSAV8-32 System registersccoocceeevniiveeeeenniinen. G4-4193
G4.18 Pseudocode description of VMSAV8-32 memory system operations G4-4215
X Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

Contents

Chapter G5 The Generic Timer in AArch32 state
G5.1 About the Generic Timer in AArch32 Statecccceeeiieeiiiiieiee e G5-4218
G5.2 The AArch32 view of the Generic TIMErccccovviiiiiiiieene e G5-4222
Chapter G6 AArch32 System Register Descriptions
G6.1 About the AArch32 SyStem regiStErScccveiivieriieei e G6-4230
G6.2 General system CONtrol FEQISIEIScoiieiiieeiiiiiiee e G6-4231
G6.3 DEDUQ FEOISLEIS ..ttt ettt e e e e e aeee G6-4668
G6.4 Performance Monitors registers G6-4758
G6.5 Generic Timer registersccoccvveennn. G6-4803
Part H External Debug
Chapter H1 About External Debug
H1.1 Introduction to external debug H1-4840
H1.2 External debugccccoovvviiiiiiiiiic, H1-4841
H1.3 Required debug authentication H1-4842
Chapter H2 Debug State
H2.1 ADOUL DEIBUQG STALE ..oiiiiiiiiiiic s H2-4844
H2.2 Halting the PE 0N debug @VENLScooiiiiiiiiiiic e H2-4845
H2.3 Entering Debug statecccevieene H2-4852
H2.4 Behavior in Debug state H2-4855
H2.5 EXiting DEbUQ STALEcccviiiiiiiiiiiec e H2-4880
Chapter H3 Halting Debug Events
H3.1 Introduction to Halting debug events H3-4884
H3.2 Halting Step debug events H3-4886
H3.3 Halt Instruction debug VENTcuuiiiiiiii e H3-4896
H3.4 Exception Catch debug VENL ..o H3-4897
H3.5 External Debug Request debug event H3-4900
H3.6 OS Unlock Catch debug eVentccueiiiiiiiiieie e H3-4901
H3.7 Reset Catch debug @VENLS ..o H3-4902
H3.8 Software ACCESS dEDUQG BVENTcooiiiiiiiiiiieiee e H3-4903
H3.9 Synchronization and Halting debug eventscccccciviiiiiie i H3-4904
Chapter H4 The Debug Communication Channel and Instruction Transfer Register
H4.1 INIFOAUCTION ..ttt H4-4908
H4.2 DCC and ITR registers H4-4909
H4.3 DCC and ITR access modes H4-4912
H4.4 Flow control of the DCC and ITR registers H4-4916
H4.5 Synchronization of DCC and ITR accesses H4-4919
H4.6 Interrupt-driven use Of the DCCcoiiiiiiiiieiiieie e H4-4924
H4.7 Pseudocode description of the operation of the DCC and ITR registers H4-4925
Chapter H5 The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger (ECT) ..occvvveeeiiiiiieee e H5-4928
H5.2 Basic operation 0N the ECTcoooiiiiiiie it e et e e H5-4930
H5.3 Cross-triggers on a PE in an ARMv8 implementationccccovcvveiieeeninennn H5-4934
H5.4 Description and allocation of CTItHQQErSooiiiiiiieeiiiiiiee e H5-4935
H5.5 CTI registers programmers’ MOlcoouiiiiiaiiiiiei e H5-4939
H5.6 EXAMIPIES et e e H5-4940
Chapter H6 Debug Reset and Powerdown Support
H6.1 About Debug over powerdown H6-4944
H6.2 Power domains and debugccooviiiiiiiie e H6-4945
ARM DDI 0487A.Kk_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Xi

ID092916

Non-Confidential

Contents

H6.3 Core power domain POWET SEAIESc.eeeiiiiieiiiiieiiee et H6-4946
H6.4 Emulating loW-pOWET STAESc.eveiiiieiiiieieeeire e H6-4949
H6.5 Debug OS Save and ReStOre SEQUENCEScceevvivieriieienirie e H6-4951
H6.6 Reset and debugcccooiiiiiiiii s H6-4955
Chapter H7 The PC Sample-based Profiling Extension
H7.1 Sample-based profiling of the PCooiii e H7-4958
Chapter H8 About the External Debug Registers
H8.1 Relationship between external debug and System registerscccccceeeennne H8-4962
H8.2 SUPPOIEA ACCESS SIZES .vvviiiiiiiiiieeiiiiiie e e e eetee e e e st e e e e st e e e e st e e e e s seaaeeae s H8-4963
H8.3 Synchronization of changes to the external debug registerscccceevneen. H8-4964
H8.4 Memory-mapped accesses to the external debug interfacecccccevieene H8-4968
H8.5 External debug interface register access permissionsccoccceeeveiieeeeennnns H8-4970
H8.6 External debug interface regiSters ... H8-4974
H8.7 Cross-trigger interface regiSters ... H8-4979
H8.8 External debug register r@SEtScuvviiiiiiiiiiie e H8-4981
Chapter H9 External Debug Register Descriptions
H9.1 About the debug regiStErScouviiiiie e H9-4986
H9.2 External debug regiSIEISoiiiiiiiiiie et H9-4987
H9.3 Cross-Trigger Interface regiSterscccvierieeiiiie e H9-5076
Part | Memory-mapped Components of the ARMv8 Architecture
Chapter I1 System Level Implementation of the Generic Timer
11.1 About the Generic Timer SPecifiCationcccccvveeeiiiiiiee e 11-5122
11.2 Memory-mapped counter MOAUIEccooviieiiiiiiiii e 11-5124
11.3 Memory-mapped timer COMPONENTScoriieiiiiie et 11-5128
11.4 Providing a complete set of counter and timer featuresccccceeiiiiiieeennnne 11-5132
11.5 Gray-count scheme for timer distribution Schemeccccooeeiiniiniieeee, 11-5134
Chapter 12 Recommended External Interface to the Performance Monitors
2.1 About the external interface to the Performance Monitors registers 12-5136
Chapter I3 External System Control Register Descriptions
13.1 About the external system control register descriptionsccccovevveeeeerinneen. 13-5142
13.2 External Performance Monitors registers SUMMarycccccovcvieeeeniiiieeeeennens 13-5143
13.3 Performance Monitors external register descriptionscccccoccvvveeeviiiineeeennns 13-5145
13.4 Generic Timer memory-mapped regiSters OVEIVIEWccccoveerieeerneeeniineennns 13-5198
13.5 Generic Timer memory-mapped register descriptionscccccvevveeeineeeiiieenns 13-5199
Part J Architectural Pseudocode
Chapter J1 ARMv8 Pseudocode
Ji.1 Pseudocode for AArchB64 Operationscccceeeveiiviereeiiiiiiie e esiier e e e esiare e J1-5242
J1.2 Pseudocode for AArch32 Operationccccceeeviiiiiereeiiiiiie e e J1-5302
J1.3 Shared PSEUAOCOUEcoueiiiiiieiiii et J1-5374
Part K Appendixes
Appendix K1 Architectural Constraints on UNPREDICTABLE behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviorscccccocviiiennns K1-5456
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviorscccccocviiiennns K1-5479
Xii Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

Appendix K2

Appendix K3

Appendix K4

Appendix K5

Appendix K6

Appendix K7

Appendix K8

Appendix K9

Appendix K10

Appendix K11

Contents

Recommended External Debug Interface

K2.1 About the recommended external debug interfaceccccooeveiiiiiniiieninen, K2-5494
K2.2 PMUEVENT BUS .ottt sttt sttt K2-5497
K2.3 Recommended authentication interfacec.ccocceiiiiiiei e K2-5498
K2.4 Management registers and CoreSight complianceccccoociviiiiiiiiinnnns K2-5499

Recommendations for Performance Monitors Event Numbers for

IMPLEMENTATION DEFINED Events

K3.1 ARM recommendations for IMPLEMENTATION DEFINED event numbers ... K3-5510

K3.2 Summary of events for exceptions taken to an Exception level using AArch64
K3-5524

Recommendations for reporting memory attributes on an interconnect
K4.1 ARM recommendations for reporting memory attributes on an interconnect .. K4-5528

ARMv8 Changes to the T32 and A32 Instruction Sets

K5.1 The A32 and T32 INSIIUCLION SEIS ...cccoiiuiiiiiiiiiiiie e K5-5530
K5.2 Partial deprecation Of ITeoiiiiiiiie e K5-5531
K5.3 New A32 and T32 Load-Acquire/Store-Release instructions K5-5532
K5.4 New A32 and T32 scalar floating-point iNStrUCLIONSccovvveeriiiiinieeerieeee K5-5533
K5.5 New A32 and T32 Advanced SIMD floating-point instructions K5-5536
K5.6 New A32 and T32 instructions provided by the Cryptographic Extension K5-5538
K5.7 New A32 and T32 System instructions K5-5539
K5.8 CRC32 INSIIUCLIONS ...veeviiiiieiee ittt K5-5541
Legacy Instruction Syntax for AArch32 Instruction Sets

K6.1 Legacy INStrUCHION SYNTAX ...c.vuviiiiiiiiiee ettt r e e e e e e e K6-5544
Address Translation Examples

K7.1 AArch64 Address translation eXamplesccccccvvieeiiiiiiiee e K7-5552
K7.2 AArch32 Address translation eXxamplesccoccveviieeinieeineee e K7-5565
Example OS Save and Restore Sequences

K8.1 SaVE DEDUQ FEUISTENSuviieiiiii ettt K8-5576
K8.2 Restore DEDUQ FEQISIEISvviiiiiiiiiiie ettt K8-5578

Recommended Upload and Download Processes for External Debug
K9.1 Using memory access mode in AArch64 stateccoecveveeeiiiiiiee e K9-5582

Barrier Litmus Tests

| 0 I8 A [01 (o To [0 T [o T K10-5586
K10.2 Load-Acquire, Store-Release and barrierscccooceeeeeiiiiiiee e K10-5589
K10.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers K10-5596
K10.4 Using a mailbox to send an interruptcooooeeeiiiiiiiiiiie e K10-5601
K10.5 Cache and TLB maintenance instructions and barriersccccceeevvvnvnnnes K10-5602

K10.6 ARMv7 compatible approaches for ordering, using DMB and DSB barriers . K10-5614

ARM Pseudocode Definition

K11.1 About the ARM PSEUAOCOUEcvvviieiiiiiiiiee et eeiie e e e K11-5630
K11.2 Pseudocode for instruction desCriptionsccoocvveriieeniiienniee e K11-5631
QR T B - = 1 1 01 TP P T PP P TP U TR K11-5633
K11.4 Operatorscoooeccuvmrvrninnieieieeeeeaeenns K11-5638
K11.5 Statements and control structures K11-5644
K11.6 BUilt-in fUNCLIONS ...ceeeeiiiiiiiiiieeceee e K11-5650
K11.7 Miscellaneous helper procedures and functions K11-5653
K11.8 ARM pseudocode definition iINAEXcccoooveeeriiiiiiieiiiee e K11-5655
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Xiii

ID092916

Non-Confidential

Contents

Appendix K12

Registers Index

K12.1 Introduction and register disambiguationccccviieiriiieniiee e K12-5660
K12.2 Alphabetical index of AArch64 registers and system instructions K12-5665
K12.3 Functional index of AArch64 registers and system instructions K12-5674
K12.4 Alphabetical index of AArch32 registers and system instructions K12-5684
K12.5 Functional index of AArch32 registers and system instructions K12-5692
K12.6 Alphabetical index of memory-mapped registersccccoevvvveeeiiiiireeesesinnen, K12-5702
K12.7 Functional index of memory-mapped registerscccoevvveeriieeiierenieeenne K12-5707
Glossary

Xiv

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential 1D092916

ARM DDI 0487A.k _iss10775

Preface

This preface introduces the ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. It

contains the following sections:

About this manual on page xvi.
Using this manual on page xviii.
Conventions on page xxiii.
Additional reading on page xxv.
Feedback on page xxvi.

Note

This document describes only the ARMV8-A architecture profile. For the behaviors required by the ARMv7-A and
ARMV7-R architecture profiles, see the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

ARM DDI 0487A .K_iss10775

ID092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

XV

Preface
About this manual

About this manual

This manual describes the ARM® architecture v8, ARMv8. The architecture describes the operation of an
ARMVS8-A Processing element (PE), and this manual includes descriptions of:

. The two Execution states, AArch64 and AArch32.

. The instruction sets:
In AArch32 state, the A32 and T32 instruction sets, that are compatible with earlier versions of the

ARM architecture.
In AArch64 state, the A64 instruction set.

. The states that determine how a PE operates, including the current Exception level and Security state, and in
AArch32 state the PE mode.

. The Exception model.

. The interprocessing model, that supports transitioning between AArch64 state and AArch32 state.

. The memory model, that defines memory ordering and memory management. This manual coversasingle
architecture profile, ARMV8-A, that defines a Virtual Memory System Architecture (VMSA).

. The programmers' model, and its interfaces to System registers that control most PE and memory system
features, and provide status information.

. The Advanced SIMD and floating-point instructions, that provide high-performance:

. The security model, that provides two security states to support secure applications.

Single-precision and double-precision floating-point operations.

Conversions between double-precision, single-precision, and half-precision floating-point values.
Integer, single-precision floating-point, and in A64, double-precision vector operationsin all

instruction sets.
Double-precision floating-point vector operations in the A64 instruction set.

. The virtualization model, that support the virtualization of Non-secure operation.

. The Debug architecture, that provides software access to debug features.

This manual gives the assembler syntax for the instructions it describes, meaning that it describes instructionsin
textual form. However, this manual is not atutorial for ARM assembler language, nor does it describe ARM
assembler language, except at avery basic level. To make effective use of ARM assembler language, read the
documentation supplied with the assembler being used.

This manual is organized into parts:

Part A

PartB

pPart C

PartD

Provides an introduction to the ARMv8-A architecture, and an overview of the AArch64 and

AArch32 Execution states.

Describes the application level view of the AArch64 Execution state, meaning the view from ELO.
It describes the application level view of the programmers' model and the memory model.

Describesthe A64 instruction set, that isavailablein the AArch64 Execution state. The descriptions
for each instruction also include the precise effects of each instruction when executed at ELO,
described asunprivileged execution, including any restrictions on its use, and how the effects of the
instruction differ at higher Exception levels. Thisinformation is of primary importance to authors
and users of compilers, assemblers, and other programs that generate ARM machine code.

Describes the system level view of the AArch64 Execution state. It includes details of the System
registers, most of which are not accessiblefrom ELO, and the system level view of the programmers’
model and the memory model. This part includes the description of self-hosted debug.

XVi

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

PartE

Part F

Part G

PartH

Part |

Part J

Preface
About this manual

Describes the application level view of the AArch32 Execution state, meaning the view from the
ELO. It describes the application level view of the programmers’ model and the memory model.

Note
In AArch32 state, execution at ELO is execution in User mode.

Describesthe T32 and A32 instruction sets, that are availablein the AArch32 Execution state. These
instruction sets are backwards-compatible with earlier versions of the ARM architecture. This part
describes the precise effects of each instruction when executed in User mode, described as
unprivileged execution or execution at EL O, including any restrictionsonitsuse, and how the effects
of the instruction differ at higher Exception levels. Thisinformation is of primary importance to
authors and users of compilers, assemblers, and other programs that generate ARM machine code.

Note
User mode is the only mode where software execution is unprivileged.

Describes the system level view of the AArch32 Execution state, that is generally compatible with
earlier versions of the ARM architecture. This part includes details of the System registers, most of
which are not accessible from ELO, and the instruction interface to those registers. It also describes
the system level view of the programmers' model and the memory model.

Describes the Debug architecture for external debug. This provides configuration, breakpoint and
watchpoint support, and a Debug Communications Channel (DCC) to a debug host.

Describes additional features of the architecturethat are not closely coupled to aprocessing element
(PE), and therefore are accessed through memory-mapped interfaces. Some of these features are
OPTIONAL.

Provides pseudocode that describes various features of the ARMv8 architecture.

Part K, Appendixes

Provide additional information. Some appendixes give information that is not part of the ARMv8
architectural requirements. The cover page of each appendix indicates its status.

ARM DDI 0487A.k_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Xvii

Non-Confidential

Preface
Using this manual

Using this manual

Theinformation in this manual is organized into parts, as described in this section.

Part A, Introduction and Architecture Overview

Part A gives an overview of the ARMV8-A architecture profile, including its relationship to the other ARM PE
architectures. It introduces the terminology used to describe the architecture, and gives an overview of the
Executions states, AArch64 and AArch32. It contains the following chapter:
Chapter Al Introduction to the ARMv8 Architecture

Read this for an introduction to the ARMv8 architecture.

Part B, The AArch64 Application Level Architecture
Part B describes the AArch64 state application level view of the architecture. It contains the following chapters:

Chapter B1 The AArch64 Application Level Programmers’ Model
Read thisfor an application level description of the programmers’ model for software executing in
AArch64 state. It describes execution at ELO when ELO isusing AArch64 state.

Chapter B2 The AArch64 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch64 state. It describes the memory model for execution in ELO when ELO isusing AArch64
state. It includes information about ARM memory types, attributes, and memory access controls.

Part C, The A64 Instruction Set
Part C describes the A64 instruction set, that is used in AArch64 state. It contains the following chapters:

Chapter C1 The A64 Instruction Set
Read this for a description of the A64 instruction set and common instruction operation details.

Chapter C2 About the A64 Instruction Descriptions
Read thisto understand the format of the A64 instruction descriptions.

Chapter C3 A64 Instruction Set Overview
Read this for an overview of theindividual A64 instructions, that are divided into five functional
groups.

Chapter C4 A64 Instruction Set Encoding
Read this for a description of the A64 instruction set encoding.

Chapter C5 The A64 System Instruction Class
Read this for a description of the AArch64 system instructions and register descriptions, and the
system instruction class encoding space.

Chapter C6 A64 Base Instruction Descriptions
Read this for information on key aspects of the A64 base instructions and for descriptions of the
individual instructions, which are listed in alphabetical order.

Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions

Read thisfor information on key aspects of the A64 Advanced SIM D and floating-point instructions
and for descriptions of the individual instructions, which are listed in alphabetical order.

Xviii Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Preface
Using this manual

Part D, The AArch64 System Level Architecture
Part D describes the AArch64 state system level view of the architecture. It contains the following chapters:

Chapter D1 The AArch64 System Level Programmers’ Model
Read this for a description of the AArch64 state system level view of the programmers’ model.

Chapter D2 AArch64 Self-hosted Debug
Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter D3 The AArch64 System Level Memory Model
Read this for a description of the AArch64 state system level view of the general features of the
memory system.
Chapter D4 The AArch64 Virtual Memory System Architecture
Read thisfor a system level view of the AArch64 Virtual Memory System Architecture (VMSA),
the memory system architecture of an ARMv8 implementation that is executing in AArch64 state.
Chapter D5 The Performance Monitors Extension
Read this for a description of an implementation of the ARM Performance Monitors, that are an
optional non-invasive debug component.
Chapter D6 The Generic Timer in AArch64 state
Read this for a description of the AArch64 view of an implementation of the ARM Generic Timer.

Chapter D7 AArch64 System Register Descriptions
Read this for an introduction to, and description of, each of the AArch64 System registers.

Part E, The AArch32 Application Level Architecture
Part E describes the AArch32 state application level view of the architecture. It contains the following chapters:

Chapter E1 The AArch32 Application Level Programmers’ Model
Read thisfor an application level description of the programmers’ model for software executing in
AArch32 state. It describes execution at ELO when ELO isusing AArch32 state.

Chapter E2 The AArch32 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch32 state. It describes the memory model for execution in ELO when ELO isusing AArch32
state. It includes information about ARM memory types, attributes, and memory access controls.

Part F, The AArch32 Instruction Sets
Part F describes the T32 and A32 instruction sets, that are used in AArch32 state. It containsthe following chapters:

Chapter F1 The AArch32 Instruction Sets Overview
Read this for an overview of the T32 and A32 instruction sets.

Chapter F2 About the T32 and A32 Instruction Descriptions
Read this to understand the format of the T32 and A32 instruction descriptions.

Chapter F3 The T32 Instruction Set Encoding
Read this for a description of the T32 instruction set encoding. This includes the T32 encoding of
the Advanced SIMD and floating-point instructions.

Chapter F4 The A32 Instruction Set Encoding

Read this for a description of the A32 instruction set encoding. This includes the A32 encoding of
the Advanced SIMD and floating-point instructions.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. XiX
ID092916 Non-Confidential

Preface
Using this manual

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions
Read this for a description of each of the T32 and A32 base instructions.

Chapter F6 T32 and A32 Advanced SIMD and floating-point Instruction Descriptions

Read this for a description of each of the T32 and A32 Advanced SIMD and floating-point
instructions.

Part G, The AArch32 System Level Architecture
Part G describes the AArch32 state system level view of the architecture. It contains the following chapters:

Chapter G1 The AArch32 System Level Programmers’ Model
Read this for a description of the AArch32 state system level view of the programmers' model for
execution in an Exception level that isusing AArch32.

Chapter G2 AArch32 Self-hosted Debug
Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter G3 The AArch32 System Level Memory Model
Read thisfor a system level view of the general features of the memory system.

Chapter G4 The AArch32 Virtual Memory System Architecture
Read this for a description of the AArch32 Virtual Memory System Architecture (VMSA).

Chapter G5 The Generic Timer in AArch32 state
Read this for a description of the AArch32 view of an implementation of the ARM Generic Timer.

Chapter G6 AArch32 System Register Descriptions
Read this for a description of each of the AArch32 System registers.

Part H, External Debug
Part H describes the architecture for external debug. It contains the following chapters:

Chapter H1 About External Debug
Read this for an introduction to external debug, and a definition of the scope of this part of the
manual.

Chapter H2 Debug State
Read thisfor adescription of debug state, which the PE might enter as the result of aHalting debug
event.

Chapter H3 Halting Debug Events
Read this for a description of the external debug events referred to as Halting debug events.

Chapter H4 The Debug Communication Channel and Instruction Transfer Register
Read thisfor a description of the communication between a debugger and the PE debug logic using
the Debug Communications Channel and the Instruction Transfer register.

Chapter H5 The Embedded Cross-Trigger Interface
Read this for a description of the embedded cross-trigger interface.

Chapter H6 Debug Reset and Powerdown Support
Read this for a description of reset and powerdown support in the Debug architecture.

XX Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Preface
Using this manual

Chapter H7 The PC Sample-based Profiling Extension
Read this for a description of the PC Sample-based Profiling Extension that is an OPTIONAL
extension to an ARMv8 implementation.

Chapter H8 About the External Debug Registers
Read this for some additional information about the external debug registers.

Chapter H9 External Debug Register Descriptions
Read this for a description of each external debug register.

Part I, Memory-mapped Components of the ARMv8 Architecture
Part | describes the memory-mapped components in the architecture. It contains the following chapters:

Chapter 11 System Level Implementation of the Generic Timer
Read this for a definition of a system level implementation of the Generic Timer.

Chapter 12 Recommended External Interface to the Performance Monitors
Read this for a description of the recommended memory-mapped and external debug interfacesto
the Performance Monitors.

Chapter 13 External System Control Register Descriptions
Read this for a description of each memory-mapped system control register.

Part J, Architectural Pseudocode

Part J contains pseudocode that describes various features of the ARM architecture. It contains the following
chapter:
Chapter J1 ARMv8 Pseudocode

Read this for the pseudocode definitions that describe various features of the ARMv8 architecture,
for operation in AArch64 state and in AArch32 state.

Part K, Appendixes
Thismanual contains the following appendixes:

Appendix K1 Architectural Constraints on UNPREDICTABLE behaviors

Read thisfor adescription of the architecturally-required constraints on UNPREDICTABLE behaviors
in the ARMv8 architecture, including AArch32 behaviors that were UNPREDICTABLE in previous
versions of the architecture.

Appendix K2 Recommended External Debug Interface
Read this for a description of the recommended external debug interface.

Note

This description is not part of the ARM architecture specification. It isincluded here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K3 Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION
DEFINED Events

Read thisfor adescription of ARM recommendations for the use of the IMPLEMENTATION DEFINED
event numbers.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. XXi
ID092916 Non-Confidential

Preface
Using this manual

—— Note

This description is not part of the ARM architecture specification. It isincluded here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K4 Recommendations for reporting memory attributes on an interconnect
Read this for the ARM recommendations about how the architectural memory attributes are
reported on an interconnect.

Appendix K5 ARMv8 Changes to the T32 and A32 Instruction Sets
Read this for a summary of the changes that are introduced to the T32 and A32 instruction setsin
ARMvS.

Appendix K6 Legacy Instruction Syntax for AArch32 Instruction Sets
Read thisfor information about the pre-UAL syntax of the AArch32 instruction sets, which can still
be valid for the A32 instruction set.

Appendix K7 Address Translation Examples

Read this for examples of tranglation table lookups using the translation regimes described in
Chapter D4 The AArch64 Virtual Memory System Architecture and Chapter G4 The AArch32 Virtual
Memory System Architecture.

Appendix K8 Example OS Save and Restore Sequences

Read this for software examples that perform the OS Save and Restore sequences for an ARMv8
debug implementation.

Note
Chapter H6 Debug Reset and Powerdown Support describes the OS Save and Restore mechanism.

Appendix K9 Recommended Upload and Download Processes for External Debug
Read this for information about implementing and using the ARM architecture.

—— Note

This description is not part of the ARM architecture specification. It isincluded here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K10 Barrier Litmus Tests
Read this for examples of the use of barrier instructions provided by the ARMv8 architecture.

—— Note

This description is not part of the ARM architecture specification. It isincluded here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K11 ARM Pseudocode Definition
Read this for definitions of the AArch32 pseudocode.

Appendix K12 Registers Index

Read this for an alphabetic and functional index of AArch32 and AArch64 registers, and
memory-mapped registers.

XXii Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Conventions

Preface
Conventions

The following sections describe conventions that this book can use:

. Typographic conventions.

. Signals.

. Numbers.

. Pseudocode descriptions.

. Assembler syntax descriptions on page xxiv.

Typographic conventions

Signals

Numbers

The typographical conventions are:

italic Introduces special terminology, and denotes citations.
bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS
Used in body text for afew terms that have specific technical meanings, and are defined in the
Glossary.

Colored text Indicatesalink. This can be:
. A URL, for example http://infocenter.arm.com.

. A cross-reference, that includes the page number of the referenced information if it isnot on
the current page, for example, Assembler syntax descriptions on page xxiv.

. A link, to a chapter or appendix, or to aglossary entry, or to the section of the document that
defines the colored term, for example Simple sequential execution or SCTLR.

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
. HIGH for active-HIGH signals.
. LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers are normally written in decimal. Binary numbers are preceded by @b, and hexadecimal numbers by ox. In
both cases, the prefix and the associated value are written in amonospace font, for example 0xFFFFe000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
0xFFFF_0000_0000_0000. |gnore any underscores when interpreting the value of a number.

Pseudocode descriptions

This manual uses aform of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in monospace font, and is described in Appendix K11 ARM Pseudocode Definition.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. XXiii

1D092916

Non-Confidential

Preface
Conventions

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in amonospace font, and use the conventions described in Structure of the A64

assembler language on page C1-123, Appendix K11 ARM Pseudocode Definition, and Pseudocode operators and
keywords on page K12-5648.

XXiv Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Preface
Additional reading

Additional reading

This section lists relevant publications from ARM and third parties.

See the Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

Other publications

ARM® AMBA® 4 ATB Protocol Specification, ATBv1.0 and ATBv1.1, (ARM IHI 0032B).
ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).
ARM® Debug Interface Architecture Specification, ADIV5.0 to ADIV5.2 (ARM IHI 0031).
ARM® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
(ARM IHI 0069).

ARM® CoreSight™ SoC Technical Reference Manual (ARM DDI 0480).
ARM® CoreSight™ v2.0 Architecture Specification (ARM IHI 0029).
ARM® Procedure Call Standard for the ARM 64-bit Architecture (ARM IHI 0055).

The following publications are referred to in this manual, or provide more information:

Announcing the Advanced Encryption Standard (AES), Federal |nformation Processing Standards
Publication 197, November 2001.

IEEE Std 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
IEEE Std 754-1985, IEEE Standard for Floating-point Arithmetic, March 1985.
Secure Hash Standard (SHA), Federal Information Processing Standards Publication 180-2, August 2002.

The Galois/Counter Mode of Operation, McGraw, D. and Viega, J., Submission to NIST Modes of Operation
Process, January 2004.

Memory Consistency Models for Shared Memory-Multiprocessors, Gharachorloo, Kourosh, 1995, Stanford
University Technical Report CSL-TR-95-685.

JEDEC Solid State Technology Association, Standard Manufacturer’s ldentification Code, JEP106.

ARM DDI 0487A.k_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. XXV
Non-Confidential

Preface
Feedback

Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

. Thetitle.

. The number, ARM DDI 0487A k.

. The page numbers to which your comments apply.
. A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

XXVi Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Part A

ARMvS8 Architecture Introduction and Overview

_iss10775

_iss10775

Chapter Al

Introduction to the ARMv8 Architecture

This chapter introduces the ARM architecture. It contains the following sections:

About the ARM architecture on page A1-30.

Architecture profiles on page A1-32.

ARMV8 architectural concepts on page A1-33.

Supported data types on page A1-36.

Floating-point and Advanced SIMD support on page A1-46.
Cryptographic Extension on page A1-52.

The ARM memory model on page A1-53.

ARM DDI 0487A .K_iss10775

ID092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

Al1-29

A1l Introduction to the ARMv8 Architecture
Al.1 About the ARM architecture

A1.1 About the ARM architecture

The ARM architecture described in this Architecture Reference Manual definesthe behavior of an abstract machine,
referred to asaprocessing element, often abbreviated to PE. Implementations compliant with the ARM architecture
must conform to the described behavior of the processing element. It is not intended to describe how to build an
implementation of the PE, nor to limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the ARM architecture must be the same as a simple sequential execution of the program on the
processing element. This programmer-visible behavior does not include the execution time of the program.

The ARM Architecture Reference Manual also describes rules for software to use the processing element.
The ARM architecture includes definitions of:

. An associated debug architecture, see:
— Chapter D2 AArch64 Self-hosted Debug.
— Chapter G2 AArch32 Self-hosted Debug.
— Part H of this manual, External Debug on page 4837.

. Associated trace architectures, that define trace macrocells that implementers can implement with the
associated processor hardware. For more information see the Embedded Trace Macrocell Architecture
Specification.

The ARM architectureis aReduced Instruction Set Computer (RISC) architecture with the following RISC
architecture features:

. A large uniform register file.

. A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

. Simple addressing modes, with all load/store addresses determined from register contents and instruction
fieldsonly.

The architecture definesthe interaction of the PE with memory, including caches, and includesamemory translation
system. It also describes how multiple PEs interact with each other and with other observersin a system.

This document defines the ARMV8-A architecture profile. See Architecture profiles on page A1-32 for more
information.

The ARM architecture supports implementations across a wide range of performance points. Implementation size,
performance, and very low power consumption are key attributes of the ARM architecture.

Animportant feature of the ARMv8 architectureis backwards compatibility, combined with the freedom for optimal
implementation in awide range of standard and more specialized use cases. The ARMV8 architecture supports:

. A 64-bit Execution state, AArch64.
. A 32-bit Execution state, AArch32, that is compatible with previous versions of the ARM architecture.

Note

. The AArch32 Execution state is compatible with the ARMv7-A architecture profile, and enhances that
profile to support some featuresincluded in the AArch64 Execution state.

. This document describes only the ARMV8-A architecture profile. For the behaviors required by the
ARMvV7-A and ARMV7-R architecture profiles, seethe ARM® Architecture Reference Manual, ARMv7-A and
ARMvV7-R edition.

Features that are optional are explicitly defined as such in this Manual.

Note
The presence of an ID register field for afeature does not imply that the feature is optional.

A1-30 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Al Introduction to the ARMv8 Architecture
Al.1 About the ARM architecture

Both Execution states support SIMD and floating-point instructions:

. AArch32 state provides:
— SIMD instructionsin the base instruction sets, that operate on the 32-bit general-purpose registers.

— Advanced SIMD instructions that operate on registersin the SIMD and floating-point register
(SIMD& FP register) file.

— Floating-point instructions that operate on registersin the SIMD& FP register file.

. AArch64 state provides:
— Advanced SIMD instructions that operate on registersin the SIMD& FP register file.
— Floating-point instructions that operate on registersin the SIMD& FP register file.

Note

See Conventions on page xxiii for information about conventions used in this manual, including the use of SMALL
CAPITALS for particular terms that have ARM-specific meanings that are defined in the Glossary.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. A1-31

1D092916

Non-Confidential

A1l Introduction to the ARMv8 Architecture
A1.2 Architecture profiles

A1.2 Architecture profiles

The ARM architecture has evolved significantly since itsintroduction, and ARM continues to develop it. Eight
major versions of the architecture have been defined to date, denoted by the version numbers 1 to 8. Of these, the
first three versions are now obsol ete.

The generic names AArch64 and AArch32 describe the 64-bit and 32-bit Execution states:

AArch64 Isthe 64-hit Execution state, meaning addresses are held in 64-hit registers, and instructionsin the
base instruction set can use 64-bit registers for their processing. AArch64 state supports the A64
instruction set.

AArch32 Isthe 32-bit Execution state, meaning addresses are held in 32-bit registers, and instructionsin the

base instruction sets use 32-hit registers for their processing. AArch32 state supports the T32 and
A32 instruction sets.

Note

The Base instruction set comprises the supported instructions other than the Advanced SIMD and floating-point
instructions.

See sections Execution state on page A1-33 and The ARM instruction sets on page A1-34 for more information.

ARM defines three architecture profiles:

A Application profile, described in this manual:
. Supports a Virtual Memory System Architecture (VM SA) based on a Memory Management
Unit (MMU).
—— Note

An ARMvV8-A implementation can be called an AArchv8-A implementation.

. Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

. Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

. Supports the A32 and T32 instruction sets.

M Microcontroller profile:

. Implements a programmers model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlersin high-level
languages.

. Implements avariant of the R-profile PMSA.

. Supports avariant of the T32 instruction set.

Note
This Architecture Reference Manual describes only the ARMV8-A profile.

For information about the R and M architecture profiles, and earlier ARM architecture versions see:
. The ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

. The ARM®7-M Architecture Reference Manual.

. The ARM®v6-M Architecture Reference Manual.

A1.21 Debug architecture version

The ARM Debug architectureisfully integrated with the architecture, and does not have a separate version number.

A1-32 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1l Introduction to the ARMv8 Architecture
A1.3 ARMvS architectural concepts

A13 ARMv8 architectural concepts

ARMv8 introduces major changes to the ARM architecture, while maintaining a high level of consistency with
previous versions of the architecture. The ARMv8 Architecture Reference Manual includes significant changesin
theterminol ogy used to describethe architecture, and this section introduces both the ARMv8 architectural concepts
and the associated terminol ogy.

The following subsections describe key ARMV8 architectural concepts. Each section introduces the corresponding
terms that are used to describe the architecture:

. Execution state.

. The ARM instruction sets on page A1-34.
. System registers on page A1-34.

. ARMv8 Debug on page A1-35.

A1.3.1 Execution state

The Execution state defines the PE execution environment, including:
. The supported register widths.
. The supported instruction sets.
. Significant aspects of:
— The exception model.
— The Virtual Memory System Architecture (VMSA).
— The programmers model.

The Execution states are:

AArch64 The 64-hit Execution state. This Execution state:

Provides 31 64-bit general-purpose registers, of which X30 is used as the procedure link
register.

Provides a 64-bit program counter (PC), stack pointers (SPs), and exception link registers
(ELRs).

Provides 32 128-hit registers for SIMD vector and scalar floating-point support.

Provides asingle instruction set, A64. For more information, see The ARM instruction sets
on page A1-34.

Defines the ARMv8 Exception model, with up to four Exception levels, ELO - EL 3, that
provide an execution privilege hierarchy, see Exception levels on page D1-1498.

Provides support for 64-bit virtual addressing. For moreinformation, including the limits on
address ranges, see Chapter D4 The AArch64 Virtual Memory System Architecture.

Defines anumber of Process state (PSTATE) elements that hold PE state. The A64
instruction set includes instructions that operate directly on various PSTATE elements.

Names each System register using a suffix that indicates the lowest Exception level at which
the register can be accessed.

AArch32 The 32-bit Execution state. This Execution state:

Provides 13 32-bit general -purpose registers, and a32-bit PC, SP, and link register (LR). The
LR is used as both an ELR and a procedure link register.
Some of these registers have multiple banked instances for use in different PE modes.

Provides asingle ELR, for exception returns from Hyp mode.
Provides 32 64-hit registers for Advanced SIMD vector and scalar floating-point support.

Provides two instruction sets, A32 and T32. For more information, see The ARM instruction
sets on page A1-34.

Supports the ARMv7-A exception model, based on PE modes, and maps this onto the
ARMV8 Exception model, that is based on the Exception levels.

Provides support for 32-bit virtual addressing.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. A1-33

1D092916

Non-Confidential

A1l Introduction to the ARMv8 Architecture
A1.3 ARMvS architectural concepts

. Defines anumber of Process state (PSTATE) elements that hold PE state. The A32 and T32
instruction sets include instructions that operate directly on various PSTATE elements, and
instructions that access PSTATE by using the Application Program Status Register (APSR)
or the Current Program Status Register (CPSR).

Later subsections give more information about the different properties of the Execution states.

Transitioning between the AArch64 and AArch32 Execution statesis known as interprocessing. The PE can move
between Execution states only on a change of Exception level, and subject to the rules given in Interprocessing on
page D1-1607. This means different software layers, such as an application, an operating system kernel, and a
hypervisor, executing at different Exception levels, can execute in different Execution states.

A1.3.2 The ARM instruction sets

In ARMv8 the possible instruction sets depend on the Execution state:

AArch64 AArch64 state supports only a single instruction set, called A64. Thisis afixed-length instruction
set that uses 32-bit instruction encodings.

For information on the A64 instruction set, see Chapter C3 A64 Instruction Set Overview.

AArch32 AArch32 state supports the following instruction sets:

A32 Thisisafixed-length instruction set that uses 32-hit instruction encodings.
T32 Thisisavariable-length instruction set that uses both 16-hit and 32-bit instruction
encodings.

In previous documentation, these instruction setswere called the ARM and Thumb instruction sets.
ARMYV8 extends each of theseinstruction sets. In AArch32 state, the I nstruction set state determines
the instruction set that the PE executes.

For information on the A32 and T32 instruction sets, see Chapter F1 The AArch32 Instruction Sets
Overview.

The ARMv8 instruction sets support SIMD and scalar floating-point instructions. See Floating-point and Advanced
SIMD support on page A1-46.

A1.3.3 System registers
System registers provide control and status information of architected features.

The System registers use a standard naming format: <register_name>.<bit_field_name> to identify specific
registers as well as control and status bits within aregister.

Bits can a so be described by their numerical position in the form <register_name>[x:y] or the generic form
bitg[x:y].

In addition, in AArch64 state, most register names include the lowest Exception level that can accessthe register as
asuffix to the register name:

. <register_name>_ELx, wherex isO, 1, 2, or 3.

For information about Exception levels, see Exception levels on page D1-1498.

The System registers comprise:

. The following registers that are described in this manual:
— General system control registers.
— Debugregisters.
— Generic Timer registers.
— Optionally, Performance Monitor registers.

Al-34 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1l Introduction to the ARMv8 Architecture
A1.3 ARMvS architectural concepts

. Optionally, one or more of the following groups of registers that are defined in other ARM architecture
specifications:

— Trace System registers, as defined in the Embedded Trace Macrocell Architecture Specification,
ETMvA4.

— Generic Interrupt Controller (GIC) System registers, see The ARM Generic Interrupt Controller
System registers.

For information about the AArch64 System registers, see Chapter D7 AArch64 System Register Descriptions.
For information about the AArch32 System registers, see Chapter G6 AArch32 System Register Descriptions.

The ARM Generic Interrupt Controller System registers

From version 3 of the ARM Generic Interrupt Controller architecture, GICv3, the GIC architecture specification
defines a System register interface to some of its functionality. The System register summariesin this manual
include these registers, see:

. About the GIC System registers on page C5-290, for more information about the AArch64 GIC System
registers.

. Generic Interrupt Controller System registers, functional groups on page G4-4207, for more information
about the AArch32 GIC System registers.

These sections give only short overviews of the GIC System registers. For more information, including descriptions
of theregisters, seethe ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0
and version 4.0 (ARM IHI 0069).

Note
The programmers model for earlier versions of the GIC architecture is wholly memory-mapped.

A1.34 ARMv8 Debug
ARMV8 supports the following:

Self-hosted debug

In this model, the PE generates debug exceptions. Debug exceptions are part of the ARMv8
Exception model.

External debug

In this model, debug events cause the PE to enter Debug state. In Debug state the PE is controlled
by an external debugger.

All ARMv8 implementations support both models. The model chosen by a particular user depends on the debug
requirements during different stages of the design and development life cycle of the product. For example, external
debug might be used during debugging of the hardware implementation and OS bring-up, and self-hosted debug
might be used during application development.

For more information about self-hosted debug:
. In AArch64 state, see Chapter D2 AArch64 Self-hosted Debug.
. In AArch32 state, see Chapter G2 AArch32 Self-hosted Debug.

For more information about external debug, see Part H External Debug.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. A1-35
ID092916 Non-Confidential

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

A1.4 Supported data types

The ARMVS architecture supports the following integer data types:

Byte 8 hits.
Halfword 16 bits.
Word 32 hits.

Doubleword 64 bits.
Quadword 128 hits.

The architecture a so supports the following floating-point data types:

. Half-precision, see Half-precision floating-point formats on page A1-40 for details.
. Single-precision, see Single-precision floating-point format on page A1-42 for details.
. Double-precision, see Double-precision floating-point format on page A1-43 for details.

It also supports:
. Fixed-point interpretation of words and doublewords. See Fixed-point format on page A1-44.

. Vectors, where aregister holds multiple elements, each of the same data type. See Vector formats on
page A1-37 for details.

The ARMv8 architecture provides two register files:
. A genera-purpose register file.
. A SIMD&FP register file.

In each of these, the possible register widths depend on the Execution state.
In AArch64 state:

. A genera-purpose register file contains 64-bit registers:
— Many instructions can access these registers as 64-bit registers or as 32-bit registers, using only the
bottom 32 bits.
. A SIMD& FP register file contains 128-hit registers:
— The quadword integer datatypes only apply to the SIMD& FP register file.
— Thefloating-point data types only apply to the SIMD& FP register file.

— Whilethe AArch64 vector registers support 128-bit vectors, the effective vector length can be 64-bits
or 128-bits depending on the A64 instruction encoding used, see Instruction Mnemonics on
page C1-123.

For more information on the register filesin AArch64 state, see Registers in AArch64 Execution state on
page B1-59.

In AArch32 state:
. A general-purpose register file contains 32-hit registers:
— Two 32-hit registers can support a doubleword.
— Vector formatting is supported, see Figure A1-4 on page A1-40.

. A SIMD& FP register file contains 64-hit registers:
— AArch32 state does not support quadword integer or floating-point data types.

Note
Two consecutive 64-bit registers can be used as a 128-hit register.

For more information on the register filesin AArch32 state, see The general-purpose registers, and the PC, in
AArch32 state on page E1-2291.

Al1-36 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

A1.4.1 Vector formats

In an implementation that includes the SIMD instructions that operate on the SIMD& FP register file, aregister can
hold one or more packed elements, al of the same size and type. The combination of aregister and a data type
describes avector of elements. The vector is considered to be an array of elements of the data type specified in the
instruction. The number of elementsin the vector isimplied by the size of the data elements and the size of the
register.

Vector indices arein the range 0 to (number of elements—1). Anindex of O refersto theleast significant end of the
vector.

Vector formats in AArch64 state
In AArch64 state, the SIMD& FP registers can be referred to as Vn, wheren isavaue from 0 to 31.

The SIMD& FP registers support three data formats for loads, stores and data-processing operations:
. A single, scalar, element in the least significant bits of the register.

. A 64-bit vector of byte, halfword, or word elements.

. A 128-bit vector of byte, halfword, word or doubleword elements.

The element sizes are defined in Table A1-1 with the vector format described as:
. For a128-hit vector: Vr{.2D, .4S, .8H, .16B}.
. For a64-bit vector: Vn{.1D, .2S, .4H, .8B}.

Table A1-1 SIMD elements in AArch64 state

Mnemonic Size

B 8 hits
H 16 bits
S 32 bits
D 64 bits
Figure A1-1 on page A1-38 shows the SIMD vectorsin AArch64 state.
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. A1-37

1D092916 Non-Confidential

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

127 112111 96 95 8079 64 63 48 47 32 31 16 15 0
Vn
128-bit vector of 64-bit elements (.2D) .D .D
(11 []
128-bit vector of 32-bit elements (.4S) .S .S .S .S
[3] [2 (1] [0]
128-bit vector of 16-bit elements (.8H) H H H H H H H H
[7] [6] (3] [4] [3] [2 (11 [0]
128-bit vector of 8-bit elements (.16B)(B| B| B|(.B|({B|B|.B|.B|B|B|.B|B|B|B|.B|.B

(151 [14] [13] [12] (1] [10] [9] [8]

—

71 [6] [51 4 [31 [21 (1] [0]

63 48 47 32 31 16 15 0
Vn
64-bit vector of 32-bit elements (.2S) .S .S
1] [0]
64-bit vector of 16-bit elements (.4H) H H H H
[3] [2] (1 [0]
64-bit vector of 8-bit elements (8B) | B|.B|{.B|.B|.B|.B|.B|.B

(71 6] 8] 4 [3] [21 [1] [O]

Figure A1-1 SIMD vectors in AArch64 state

Vector formats in AArch32 state

Table A1-2 shows the available formats. Each instruction description specifies the data types that the instruction
supports.

Table A1-2 Advanced SIMD data types in AArch32 state

Data type specifier Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

I<sizes Signed or unsigned integer of <size> bits
.P<size> Polynomial over {0, 1} of degreelessthan <size>
.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits

Polynomial arithmetic over {0, 1} on page A1-45 describes the polynomial data type.
The .F16 data type is the half-precision data type sel ected by the FPSCR.AHP bit.

The .F32 datatypeisthe ARM standard single-precision floating-point data type, see Single-precision
floating-point format on page A1-42.

Theinstruction definitions use adatatype specifier to define the datatypes appropriate to the operation. Figure A1-2
on page A1-39 shows the hierarchy of the Advanced SIMD data types.

A1-38 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

S8
18
5 .us
' P8
516
6 116 .U16
' P16t
F16
532
132
u32
32 us
F32
564
o 164 .ue4
: P64t

T Output format only. See VMULL instruction description.

I Available only if the Cyptographic Extension is implemented.
See VMULL instruction description.

Figure A1-2 Advanced SIMD data type hierarchy in AArch32 state
For example, a multiply instruction must distinguish between integer and floating-point data types.

An integer multiply instruction that generates a double-width (long) result must specify the input data types as
signed or unsigned. However, some integer multiply instructions use modulo arithmetic, and therefore do not have

to distinguish between signed and unsigned inputs.
Figure A1-3 on page A1-40 shows the Advanced SIMD vectorsin AArch32 state.

Note
In AArch32 state, apair of even and following odd numbered doubleword registers can be concatenated and treated
as asingle quadword register.
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. A1-39

1D092916 Non-Confidential

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

A1.4.2

128-bit vector of double-precision
(64-bit) elements

128-bit vector of single-precision
(32-bit) elements

128-bit vector of 16-bit elements

128-bit vector of 8-bit elements

127 112111 96 95 80 79 64 63 48 47 32 31 16 15 0
Qn
.64 .64
(1] [0]
.32 .32 .32 .32
(3] [2] (] [0]

.16 .16 .16 .16 .16 .16 .16 .16
[7] [6] [8] [4] [3] (2] 11 [
8|18(8(8]8|8(8|]8|]8(8(8|].8|8|38|.38].8
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [O]

63 48 47 3231 16 15 0
Dn
64-bit vector of 32-bit elements .32 .32
] [0]
64-bit vector of 16-bit elements 16 16 16 .16
[3] (2] 11 [
64-bit vector of 8-bitelements | 8 | 8| .8 8.8 .8].8].8
[7] [6] [5] (41 3] [2] [1]1 [O]

Figure A1-3 Advanced SIMD vectors in AArch32 state

The AArch32 general -purpose registers support vectors formats for use by the SIMD instructions in the Base
instruction set. Figure A1-4 shows these formats, that means that a general -purpose register can be treated as either
two halfwords or four bytes.

32-bit general-purpose register
as a set of two halfwords

32-bit general-purpose register
as a set of four bytes

31

24 23

16 15

16

.16

(1]

[0]

.8

8

.8

(3]

Half-precision floating-point formats

(2]

(1]

(0]

Figure A1-4 Vector formatting in AArch32 state

ARMV8 supports two half-precision floating-point formats:
|EEE half-precision, as described in the | EEE 754-2008 standard.

Alternative half-precision.

Note

Half-precision floating-point formats can only be converted to and from other floating-point formats. They cannot
be used in any other data-processing operations. This applies to both AArch32 state and AArch64 state.

A1-40

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775

1D092916

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

The description of | EEE half-precision includes ARM-specific detailsthat are |eft open by the standard, and isonly
an introduction to the formats and to the values they can contain. For more information, especially on the handling
of infinities, NaNs and signed zeros, see the |EEE 754 standard.

For both half-precision floating-point formats, the layout of the 16-bit format is the same. The format is:

1514

10 9 0

S

exponent fraction

Theinterpretation of the format depends on the value of the exponent field, bits[14:10] and on which half-precision
format is being used.

0 < exponent < 0x1F

The valueis anormalized number and is equal to:

(—1)S x 2(exponent-15) x (1 fraction)

The minimum positive normalized number is 2-14, or approximately 6.104 x 10-5,
The maximum positive normalized number is (2 — 2-10) x 215, or 65504.

Larger normalized numbers can be expressed using the alternative format when the
exponent == Ox1F.

exponent ==

The valueis either azero or adenormalized number, depending on the fraction bits:

fraction ==0
Thevalueisazero. There are two distinct zeros:
+0 when S==0
-0 when S==1.

fraction =0

The valueis a denormalized number and is equal to:
(-1)S x 2-14 x (0.fraction)
The minimum positive denormalized number is 2-24, or approximately 5.960 x 10-8.

exponent == 0x1F

The value depends on which half-precision format is being used:

IEEE half-precision
Thevaueiseither an infinity or aNot aNumber (NaN), depending on the fraction bits:

fraction ==
Thevalueis aninfinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too
big to be represented accurately as a normalized number.

-infinity ~ When S==1. Thisrepresents all negative numbers with an
absolute value that is too big to be represented accurately asa
normalized number.

fraction =0

ThevalueisaNaN, and is either aquiet NaN or asignaling NaN.

The two types of NaN are distinguished by their most significant fraction

bit, bit[9]:

bit[9] == 0 The NaN isasignaling NaN. The sign bit can take any value,
and the remaining fraction bits can take any value except all
Zeros.

bit[9] ==1 TheNaN isaquiet NaN. The sign bit and remaining fraction
bits can take any value.

ARM DDI 0487A.K_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Al-41
Non-Confidential

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

A143

Alternative half-precision

The valueis anormalized number and is equal to:

-1S x 216 x (1.fraction)
The maximum positive normalized number is (2-2-10) x 216 or 131008.

Single-precision floating-point format

The single-precision floating-point format is as defined by the IEEE 754 standard.

This description includes ARM-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs and signed zeros, see the |EEE 754 standard.

A single-precision value is a 32-bit word with the format:

3130

23 22

S

exponent

fraction

The interpretation of the format depends on the value of the exponent field, bitg30:23]:

0 < exponent < OxFF

The valueisanormalized number and is equal to:
(—12)S x 2(exponent—127) x (1.fraction)

The minimum positive normalized number is 2-126, or approximately 1.175 x 10-38,

The maximum positive normalized number is (2 — 2-23) x 2127 or approximately 3.403 x 1038,

exponent ==

The valueis either azero or adenormalized number, depending on the fraction bits:

fraction ==

fraction I=

Thevalueisazero. There are two distinct zeros:

+0
-0

When S==0.
When S==1.

These usually behave identically. In particular, the result isequal if +0 and -0 are
compared as floating-point numbers. However, they yield different resultsin some
circumstances. For example, the sign of the infinity produced as the result of dividing
by zero depends on the sign of the zero. The two zeros can be distinguished from each

other by performing an integer comparison of the two words.

0

Thevalueis a denormalized number and is equal to:
(-1)S x 2-126 x (0.fraction)

The minimum positive denormalized number is 2-149, or approximately 1.401 x 10-45.

Denormalized numbers are awaysflushed to zeroin Advanced SIMD processing in AArch32 state.
They are optionally flushed to zero in floating-point processing and in Advanced SIMD processing

in AArch64 state. For details see Flush-to-zero on page A1-49.

exponent == 0xFF

The valueis either an infinity or aNot a Number (NaN), depending on the fraction bits:

fraction ==

Thevalueis aninfinity. There are two distinct infinities:

+infinity

-infinity

When S==0. This represents all positive numbers that are too big to be

represented accurately as a normalized number.

When S==1. Thisrepresents all negative numbers with an absolute value
that istoo big to be represented accurately as a normalized number.

Al-42

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

A144

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

fraction =0

ThevalueisaNaN, and is either aquiet NaN or asignaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[22]:

bit[22] ==
The NaN isasignaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except al zeros.

bit[22] ==
The NaN isaquiet NaN. The sign bit and remaining fraction bits can take
any vaue.

For details of the default NaN see NaN handling and the Default NaN on page A1-50.

Note
NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. Thisis because the |EEE 754 standard specifiesthat a NaN compares
as unordered with everything, including itself.

Double-precision floating-point format

63 62

The double-precision floating-point format is as defined by the | EEE 754 standard. Doubl e-precision floating-point
issupported by both floating-point and SIMD instructionsin AArch64 state, and only by floating-point instructions
in AArch32 state.

This description includesimplementation-specific detail sthat are left open by the standard. Itisonly intended asan
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs and signed zeros, see the |EEE 754 standard.

A double-precision value is a 64-bit doubleword, with the format:

52 51 32 31 0

((((((

)T)T)T

exponent fraction

((((((

Double-precision values represent numbers, infinities and NaNs in asimilar way to single-precision values, with
the interpretation of the format depending on the value of the exponent:
0 < exponent < Ox7FF

The valueis anormalized number and is equal to:

(—1)S x 2(exponent=1023) x (1 fraction)

The minimum positive normalized number is 2-1922, or approximately 2.225 x 10-308,

The maximum positive normalized number is (2 — 2-52) x 21023 or gpproximately 1.798 x 10308,

exponent ==

The valueis either azero or adenormalized number, depending on the fraction bits:

fraction ==
Thevaueisazero. There are two distinct zerosthat behave in the same way asthe two
single-precision zeros:
+0 when S==0
-0 when S==1.

fraction =0
Thevalueis a denormalized number and is equal to:
(-1)S x 21022 x (0.fraction)

The minimum positive denormalized number is 2-1074, or gpproximately 4.941 x 10-324,

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Al1-43

1D092916

Non-Confidential

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

Optionally, denormalized numbers are flushed to zero in floating-point calculations. For details see
Flush-to-zero on page A1-49.

exponent == 0x7FF

Thevalueis either an infinity or aNaN, depending on the fraction bits:

fraction ==
Thevaueisan infinity. Asfor single-precision, there are two infinities:
+infinity When S==0.
-infinity When S==1.

fraction =0

ThevalueisaNaN, and is either aquiet NaN or asignaling NaN.
Thetwo types of NaN are distinguished by their most significant fraction bit, bit[51] of
the doubleword:
bit[51] ==
The NaN isasignaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.
bit[51] ==
The NaN isaquiet NaN. The sign bit and the remaining fraction bits can
take any value.

For details of the default NaN see NaN handling and the Default NaN on page A1-50.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. Thisis because the |[EEE 754 standard specifiesthat a NaN compares
as unordered with everything, including itself.

A1.4.5 Fixed-point format

Fixed-point formats are used only for conversions between floating-point and fixed-point values. They apply to
general-purpose registers.

Fixed-point values can be signed or unsigned, and can be 16-bit or 32-bit. Conversion instructionstake an argument
that specifies the number of fraction bitsin the fixed-point number. That is, it specifies the position of the binary
point.

A1.4.6 Conversion between floating-point and fixed-point values

ARMV8 supports the conversion of a scalar floating-point to or from asigned or unsigned fixed-point valuein a
general-purpose register.

Theinstruction argument #fbitsindicatesthat the general -purpose register holds afixed-point number with fhitsbits
after the binary point, wherefbitsisin the range 1 to 64 for a 64-bit general -purpose register, or 1 to 32 for a 32-bit
general-purpose register.
More specifically:
. For a64-bit register Xq:

— Theinteger part is X4[63:#fbits].

— Thefractiona part is X[(#fbits-1):0].
. For a32-bit register Wy or Ry:

— Theinteger part is Wy[31:#fbits] or Rq[31:#fbits].

— Thefractiona part is W[(#fbits-1):0] or Ry[(#fbits-1):0].

Al-44 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1l Introduction to the ARMv8 Architecture
Al.4 Supported data types

These instructions might generate the following exceptions:

Invalid Operation ~ When the floating-point input is NaN or Infinity or when anumerical value cannot be
represented within the destination register.

Inexact When the numeric result differs from the input.

Input Denormal When flush-to-zero mode is enabled and the denormal input is replaced by a zero.

Note
An out of range fixed-point result is saturated to the destination size.

A1.4.7 Polynomial arithmetic over {0, 1}

Some SIMD instructionsthat operate on SIM D& FP registers can operate on polynomialsover { 0, 1}, see Supported
data types on page A1-36. The polynomial data type represents a polynomial in x of the form by_gx™21 + ... + bix
+ bg where by is bit[K] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:
. 0+0=1+1=0

. 0+1=1+0=1

. 0x0=0x1=1x0=0

. 1x1=1
That is:
. Adding two polynomials over {0, 1} is the same as a bitwise exclusive OR.

. Multiplying two polynomialsover {0, 1} isthe same asinteger multiplication except that partial productsare
exclusive-ORed instead of being added.

A64, A32 and T32 provide instructions for performing polynomial multiplication of 8-bit values.

. For AArch32, see VMUL (integer and polynomial) on page F6-3533 and VMULL (integer and polynomial)
on page F6-3537.

. For AArch64, see PMUL on page C7-1137 and PMULL, PMULL?2 on page C7-11309.

The Cryptographic Extension adds the ability to perform long polynomia multiplies of 64-bit values. See PMULL,
PMULL2 on page C7-1139.

Pseudocode description of polynomial multiplication

In pseudocode, polynomial addition is described by the EOR operation on bitstrings.

Polynomia multiplication isdescribed by the PolynomialMult() function defined in Chapter J1 ARMv8 Pseudocode.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Al1-45
ID092916 Non-Confidential

A1l Introduction to the ARMv8 Architecture
A1.5 Floating-point and Advanced SIMD support

A1.5 Floating-point and Advanced SIMD support

Note

In AArch32 state, the SIMD instructionsthat operate on SIMD& FP registers are always described as the Advanced
SIMD instructions, to distinguish them from the SIMD instructions in the base instruction sets, that operate on the
32-bit general-purpose registers. The A64 instruction set does not provide any SIMD instructions that operate on
the general -purposeregisters, and therefore some AArch64 state descriptionsuse SIMD asasynonym for Advanced
SIMD. Unless the context clearly indicates otherwise, this section describes the support for SIMD instructions that
operate on SIMD& FP registers.

ARMvV8 can support the following levels of support for floating-point and Advanced SIMD instructions:
. Full floating-point and SIMD support without exception trapping.
. Full floating-point and SIMD support with exception trapping.

. No floating-point or SIMD support. This option islicensed only for implementations targeting specialised
markets.

Note

All systems that support standard operating systems with rich application environments provide hardware
support for floating-point and Advanced SIMD. It isarequirement of the ARM Procedure Call Standard for
AArch64, see Procedure Call Standard for the ARM 64-bit Architecture.

ARMV8 supports single-precision (32-bit) and double-precision (64-hit) floating-point data types and arithmetic as
defined by the |EEE 754 floating-point standard. It a so supportsthe half-precision (16-bit) floating-point datatype
for data storage only, by supporting conversions between single-precision and half-precision data types and
double-precision and half-precision data types.

The SIMD instructions provide packed Single Instruction Multiple Data (SIMD) and single-element scalar
operations, and support:

. Single-precision and double-precision arithmetic in AArch64 state.
. Single-precision arithmetic only in AArch32 state.

Floating-point support in AArch64 state SIMD is |EEE 754-2008 compliant with:
. Configurable rounding modes.

. Configurable Default NaN behavior.

. Configurable Flush-to-zero behavior.

Floating-point computation using AArch32 Advanced SIMD instructions remains unchanged from ARMv7. A32
and T32 Advanced SIMD floating-point always uses ARM standard floating-point arithmetic and performs
|EEE 754 floating-point arithmetic with the following restrictions:

. Denormalized numbers are flushed to zero, see Flush-to-zero on page A1-49.

. Only default NaNs are supported, see NaN handling and the Default NaN on page A1-50.
. The Round to Nearest rounding mode is used.

. Untrapped floating-point exception handling is used for al floating-point exceptions.

ARMV8 introduces new instructions for AArch32 state:
. Floating-point selection, see VSELEQ, VSELGE, VSELGT, VSELVS on page F6-3690.

. Floating-point maximum and minimum numbers, see VMAXNM on page F6-3471 and VMINNM on
page F6-3478.

. Floating-point integer conversions with directed rounding modes, see:
— VCVTA (Advanced SIMD) on page F6-3367 and VCVTA (floating-point) on page F6-3369.
— VCVTM (Advanced SIMD) on page F6-3374 and VCVTM (floating-point) on page F6-3376.
— VCVTN (Advanced SIMD) on page F6-3378 and VCVTN (floating-point) on page F6-3380.
— VCVTP (Advanced SIMD) on page F6-3382 and VCVTP (floating-point) on page F6-3384.

Al-46 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1l Introduction to the ARMv8 Architecture
A1.5 Floating-point and Advanced SIMD support

. Floating-point round to integral floating-point, see:

— VRINTA (Advanced SIMD) on page F6-3646 and VRINTA (floating-point) on page F6-3648.
— VRINTM (Advanced SIMD) on page F6-3650 and VRINTM (floating-point) on page F6-3652.
— VRINTN (Advanced SIMD) on page F6-3654 and VRINTN (floating-point) on page F6-3656.
— VRINTP (Advanced SIMD) on page F6-3658 and VRINTP (floating-point) on page F6-3660.
— VRINTR on page F6-3662.

— VRINTX (Advanced SIMD) on page F6-3664 and VRINTX (floating-point) on page F6-3666.
— VRINTZ (Advanced SIMD) on page F6-3668 and VRINTZ (floating-point) on page F6-3670.

. Floating-point conversions between half-precision and double-precision, see VCVTB on page F6-3371 and
VCVTT on page F6-3389.

If floating-point exception trapping is supported, floating-point exceptions, such as overflow or division by zero,
can be handled without trapping. This applies to both floating-point and SIMD operations. When handled in this
way, a floating-point exception causes a cumulative status register bit to be set to 1 and a default result to be
produced by the operation. For more information about floating-point exceptions, see Floating-point exception
traps on page D1-1552.

In AArch64 state, the following registers control floating-point operation and return floating-point status
information:
. The Floating-Point Control Register, FPCR, controls:

— The half-precision format where applicable, FPCR.AHP hit.

— Default NaN behavior, FPCR.DN hit.

— Fushto zero behavior, FPCR.FZ bit.

— Rounding mode support, FPCR.Rmode field.

— Lenand Stride fields associated with execution in AArch32 state, and only supported for a context
save and restore from AArch64 state. These fields are obsoletein ARMv8 and can be implemented as
RAZ/WI. If they areimplemented as RW and are programmed to a nonzero value, they make some
AArch32 floating-point instructions UNDEFINED.

— Floating-point exception trap controls, the FPCR.{IDE, IXE, UFE, OFE, DZE, |IOE} hits, see
Floating-point exception traps on page D1-1552. In an implementation that does not support trapping
of floating-point exceptions these bits are RESO.

. The Floating-Point Status Register, FPSR, provides:

— Cumulative floating-point exceptions flags, FPSR.{IDC, IXC, UFC, OFC, DZC, IOC and QC}.
— The AArch32 floating-point comparison flags{N,Z,C,V}. These bits are RESO if AArch32
floating-point is not implemented.
Note

In AArch64 state, the process state flags, PSTATE.{N,Z,C,V} are used for all data-processing
compares and any associated conditional execution.

AArch32 state provides a single Floating-Point Status and Control Register, FPSCR, combining the FPCR and

FPSR fields.
For system level information about the SIMD and floating-point support, see Advanced SIMD and floating-point
support on page G1-3880.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Al1-47

1D092916 Non-Confidential

A1l Introduction to the ARMv8 Architecture
A1.5 Floating-point and Advanced SIMD support

A1.5.1 Instruction support
The floating-point and SIMD support includes the following types of instructions:
. Load and store for single elements and vectors of multiple elements.

Note
Single elements are also referred to as scalar elements.

. Data processing on single and multiple elements for both integer and floating-point data types.
. Floating-point conversion:

— Half-precision, single-precision, and double-precision conversions.
— Single-precision, double-precision, and fixed point integer conversions.
— Single-precision, double-precision, and integer conversions.

. Floating-point rounding.

For more information on the floating-point and SIMD instructions in AArch64 state, see Chapter C3 A64
Instruction Set Overview.

For moreinformation on the floating-point and Advanced SIMD instructionsin AArch32 state, see Chapter F1 The
AArch32 Instruction Sets Overview.

A1.5.2 Floating-point standards, and terminology

The ARM includes support for all the required features of ANSI/IEEE Std 754-2008, IEEE Standard for Binary
Floating-Point Arithmetic, referred to as |[EEE 754-2008. However, some termsin this manual are based on the
1985 version of this standard, referred to as | EEE 754-1985:

. ARM floating-point terminology generally uses the | EEE 754-1985 terms. This section summarizes how
IEEE 754-2008 changes these terms.

. Referencesto |EEE 754 that do not include the issue year apply to either issue of the standard.
Table A1-3 shows how the terminology in this manual differs from that used in |EEE 754-2008.

Table A1-3 Floating-point terminology

This manual |IEEE 754-2008
Normalized 2 Normal

Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardsNegative
Round towards Plus Infinity (RP) roundTowardsPositive
Round towards Zero (RZ) roundTowardZero

Round to Nearest (RN) roundTiesToEven

Round to Nearest with Ties to Away roundTiesToAway
Rounding mode Rounding-direction attribute

a. Normalized number is used in preference to normal number, because of the other
specific uses of normal in this manual.

Al1-48 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1.53

A154

A1l Introduction to the ARMv8 Architecture
A1.5 Floating-point and Advanced SIMD support

ARM standard floating-point input and output values

ARMV8 provides full IEEE 754 floating-point arithmetic support. In AArch32 state, floating-point operations
performed using Advanced SIMD instructions are limited to ARM standard floating-point operation, regardless of
the selected rounding modein the FPSCR. Unlike AArch32, AArch64 SIMD floating point arithmetic is performed
using the rounding mode selected by the FPCR.

ARM standard floating-point arithmetic supports the following input formats defined by the IEEE 754
floating-point standard:

. Zeros.

. Normalized numbers.

. Denormalized numbers are flushed to 0 before floating-point operations, see Flush-to-zero.

. NaNs.

. Infinities.

ARM standard floating-point arithmetic supports the Round to Nearest (roundTiesToEven) rounding mode defined
by the IEEE 754 standard.

ARM standard floating-point arithmetic supports the following output result formats defined by the | EEE 754
standard:

. Zeros.
. Normalized numbers.
. Results that are less than the minimum normalized number are flushed to zero, see Flush-to-zero.

. NaNs produced in floating-point operations are always the default NaN, see NaN handling and the Default
NaN on page A1-50.

. Infinities.

Flush-to-zero

The performance of floating-point processing can be reduced when doing calculations involving denormalized
numbers and Underflow exceptions. In many algorithms, this performance can be recovered, without significantly
affecting the accuracy of the final result, by replacing the denormalized operands and intermediate results with
zeros. To permit this optimization, ARM floating-point implementations have a processing mode called
Flush-to-zero mode. AArch32 Advanced SIMD floating-point instructions always use Flush-to-zero mode.

Behavior in Flush-to-zero mode differs from standard |EEE 754 arithmetic in the following ways:

. All inputs to floating-point operations that are double-precision denormalized numbers or single-precision
denormalized numbers are treated as though they were zero. This causes an Input Denormal exception, but
does not cause an Inexact exception. The Input Denormal exception occurs only in Flush-to-zero mode.

In AArch32 state the FPSCR contains a cumulative exception bit FPSCR.IDC and optional trap enable bit
FPSCR.IDE corresponding to Input Denormal exception.

In AArch64 state the FPSR contains a cumulative exception bit FPSR.IDC and optional trap enable bit
FPCR.IDE corresponding to the Input Denormal exception.

The occurrence of all exceptions except Input Denormal is determined using the input val ues after
flush-to-zero processing has occurred.

. The result of afloating-point operation is flushed to zero if the result of the operation before rounding
satisfies the condition:
0 < Abs(result) < MinNorm, where:
— MinNormis 2126 for single-precision
— MinNormis 2-1022 for double-precision.

This causes the FPSR.UFC bit to be set to 1, and prevents any Inexact exception from occurring for the
operation.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Al1-49

1D092916

Non-Confidential

A1l Introduction to the ARMv8 Architecture
A1.5 Floating-point and Advanced SIMD support

Underflow exceptions occur only when aresult is flushed to zero.

In all implementations Underflow exceptions that occur in Flush-to-zero mode are always treated as
untrapped, even when the Underflow trap enable bit, FPCR.UFE, isset to 1.

. An Inexact exception does not occur if the result is flushed to zero, even though the final result of zero is not
equivalent to the value that would be produced if the operation were performed with unbounded precision
and exponent range.

When aninput or aresult is flushed to zero the value of the sign bit of the zero is preserved. That is, the sign bit of
the zero matches the sign bit of the input or result that is being flushed to zero.

Flush-to-zero mode has no effect on half-precision numbers that are inputs to floating-point operations, or results
from floating-point operations.

Note

Flush-to-zero modeisincompatible with the |EEE 754 standard, and must not be used when |EEE 754 compatibility
is arequirement. Flush-to-zero mode must be used with care. Although it can improve performance on some
agorithms, there are significant limitations on its use. These are application dependent:

. On many algorithms, it has no noticeabl e effect, because the a gorithm does not normally use denormalized
numbers.

. On other algorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results of the
agorithm.

A1.5.5 NaN handling and the Default NaN
The |EEE 754 standard specifies that:

. An operation that produces an Invalid Operation floating-point exception generates aquiet NaN asits result
if that exception is untrapped.

. An operation involving aquiet NaN operand, but not asignaling NaN operand, returns an input NaN asits
result.

The floating-point processing behavior when Default NaN mode is disabled adheres to this, with the following
additions:
. If an untrapped Invalid Operation floating-point exception is produced, the quiet NaN result is derived from:
— Thefirst signaling NaN operand, if the exception was produced because at least one of the operands
isasignaling NaN.
— Otherwise, the default NaN.

. If an untrapped Invalid Operation floating-point exception is not produced, but at least one of the operands
isaquiet NaN, theresult is derived from the first quiet NaN operand.

Depending on the operation, the exact value of a derived quiet NaN result may differ in both sign and number of
fraction bits from its source. For aquiet NaN result derived from signaling NaN operand, the most-significant
fraction bit is set to 1.

Note

. In these descriptions, first operand relates to the left-to-right ordering of the arguments to the pseudocode
function that describes the operation.

. The |EEE 754 standard specifies that the sign bit of aNaN has no significance.

A1-50 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1l Introduction to the ARMv8 Architecture
A1.5 Floating-point and Advanced SIMD support

The floating-point and SIMD processing behavior when Default NaN modeis enabled isthat the Default NaN is

the result of all floating-point operations that either:
. Generate untrapped Invalid Operation floating-point exceptions.
. Have one or more quiet NaN inputs, but no signaling NaN inputs.

Table A1-4 shows the format of the default NaN for ARM floating-point operations.

Default NaN mode is selected for the floating-point processing by setting the FPCR.DN bit to 1.

Other aspects of the functionality of the Invalid Operation exception are not affected by Default NaN mode. These

arethat:
. If untrapped, it causes the FPSR.IOC bit be set to 1.
. If trapped, it causes a user trap handler to be invoked.
Table A1-4 Default NaN encoding
Half-precision, IEEE Format Single-precision Double-precision
Sign bit 0 0 0
Exponent 0x1F OxFF Ox7FF
Fraction Bit[9] == 1, bitg[8:0] == bit[22] == 1, bitg/21:0] == bit[51] == 1, bitg[50:0] ==
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Al1-51

1D092916

Non-Confidential

A1l Introduction to the ARMv8 Architecture
A1.6 Cryptographic Extension

A1.6 Cryptographic Extension

The presence of this Extension in an implementation is subject to export license controls. The Cryptographic
Extension is an extension of the SIMD support and operates on the vector register file. It provides instructions for
the acceleration of encryption and decryption to support the following:

. AES

. SHA1

. SHA2-256

The Cryptographic Extension a so provides multiply instructions that operate on long polynomials, see PMULL,
PMULL2 on page C7-1139.

Al1-52 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

A1l Introduction to the ARMv8 Architecture
Al1.7 The ARM memory model

A1.7 The ARM memory model

The ARM memory model supports:

. Generating an exception on an unaligned memory access.

. Restricting access by applications to specified areas of memory.

. Trandating virtual addresses provided by executing instructionsinto physical addresses.

. Altering the interpretation of multi-byte data between big-endian and little-endian.

. Controlling the order of accesses to memory.

. Controlling caches and address trangl ation structures.

. Synchronizing access to shared memory by multiple PEs.

Virtual address (VA) support depends on the Execution state, as follows:

AArch64 state
Supports 64-bit virtual addressing, with the Translation Control Register determining the supported
VA range. Execution at EL1 and EL 0 supports two independent VA ranges, each with its own
translation controls.

AArch32 state
Supports 32-hit virtual addressing, with the Translation Control Register determining the supported
VA range. For execution at EL 1 and ELO, system software can split the VA range into two
subranges, each with its own trandation controls.

The supported physical address space is IMPLEMENTATION DEFINED, and can be discovered by system software.

Regardless of the Execution state, the Virtual Memory System Architecture (VMSA) can trandate VAsto blocks or

pages of memory anywhere within the supported physical address space.

For more information, see:

For execution in AArch64 state
. Chapter B2 The AArch64 Application Level Memory Model.
. Chapter D3 The AArch64 System Level Memory Model.
. Chapter D4 The AArch64 Virtual Memory System Architecture.

For execution in AArch32 state
. Chapter E2 The AArch32 Application Level Memory Model.
. Chapter G3 The AArch32 System Level Memory Model.
. Chapter G4 The AArch32 Virtual Memory System Architecture.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. A1-53

1D092916

Non-Confidential

A1l Introduction to the ARMv8 Architecture
A1.7 The ARM memory model

Al-54 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Part B
The AArch64 Application Level Architecture

_iss10775

_iss10775

Chapter B1
The AArch64 Application Level Programmers’ Model

This chapter gives an application level view of the ARM programmers' model. It contains the following sections:
. About the Application level programmers’ model on page B1-58.

. Registers in AArch64 Execution state on page B1-59.

. Software control features and ELO on page B1-64.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B1-57
ID092916 Non-Confidential

B1 The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model

B1.1 About the Application level programmers’ model
This chapter contains the programmers’ model information required for application devel opment.

Theinformation in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of the system
information is needed to put the Application level programmers model into context.

Depending on the implementation choices, the architecture supports multiple levels of execution privilege,
indicated by different Exception levels that number upwards from ELO to EL3. ELO corresponds to the lowest
privilege level and is often described as unprivileged. The Application level programmers’ model is the
programmers’ model for software executing at ELO. For more information see Exception levels on page D1-1498.

System software determines the Exception level, and therefore the level of privilege, at which software runs. When
an operating system supports execution at both EL 1 and EL 0, an application usually runsunprivileged at ELO. This:

. Permits the operating system to allocate system resources to an application in a unique or shared manner.

. Provides a degree of protection from other processes, and so helps protect the operating system from
malfunctioning software.

This chapter indicates where some system level understanding is necessary, and where relevant it gives areference
to the system level description.

Execution at any Exception level above ELO is often referred to as privileged execution.

For more information on the system level view of the architecture refer to Chapter D1 The AArch64 System Level
Programmers’ Model.

B1-58 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

B1.2 Registers in AArch64 Execution state

Thissection describesthe registersand process state visible at EL 0 when executing in the AArch64 state. It includes
the following:

. Registers in AArch64 state
. Process state, PSTATE on page B1-61
. System registers on page B1-62

B1.2.1 Registers in AArch64 state
In the AArch64 application level view, an ARM processing element has:

R0-R30 31 general-purpose registers, RO to R30. Each register can be accessed as:

. A 64-bit general-purpose register named X0 to X30.

. A 32-bit general-purpose register named WO to W30.

See the register name mapping in Figure B1-1.
63 32 31 0
Rn

< Wn
Xn

Yy.v

A

Figure B1-1 General-purpose register naming
The X30 general-purpose register is used as the procedure call link register.

—— Note

In instruction encodings, the value 0b11111 (31) is used to indicate the ZR (zero register). This
indicates that the argument takes the value zero, but does not indicate that the ZR isimplemented
as aphysical register.

SP A 64-bit dedicated Stack Pointer register. The least significant 32 bits of the stack-pointer can be
accessed viathe register name WSP.

The use of SP as an operand in an instruction, indicates the use of the current stack pointer.

Note

Stack pointer alignment to a 16-byte boundary is configurable at EL 1. For moreinformation seethe
Procedure Call Standard for the ARM 64-bit Architecture.

PC A 64-bit Program Counter holding the address of the current instruction.

Software cannot write directly to the PC. It can only be updated on a branch, exception entry or
exception return.

Note

Attempting to execute an A64 instruction that is not word-aligned generates an Alignment fault, see
PC alignment checking on page D1-1515.

V0-V31 32 SIMD&FPregisters, VO to V31. Each register can be accessed as:
. A 128-hit register named QO to Q31.
. A 64-bit register named DO to D31.
. A 32-bit register named SO to S31.
. A 16-bit register named HO to H31.
. An 8-bit register named BO to B31.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B1-59
ID092916 Non-Confidential

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

. A 128-bit vector of elements.

. A 64-hit vector of elements.

Where the number of bits described by a register name does not occupy an entire SIMD& FP

register, it refersto the least significant bits. See Figure B1-2.

127 64 63 3231 1615 8 7 0
n

<-Bn—>»

<+—Hn—>»

< Sn >

< Dn >

< Qn >

Figure B1-2 SIMD and floating-point register naming

For moreinformation about datatypes and vector formats, see Supported data types on page A1-36.

FPCR, FPSR Two SIMD and floating-point control and status registers, FPCR and FPSR.

See Registers for instruction processing and exception handling on page D1-1507 for more information on the

registers.

Pseudocode description of registers in AArch64 state

In the pseudocode functions that access registers:
. The assignment form is used for register writes.
. The non-assignment for register reads.

The uses of the X[] function are:
. Reading or writing X0-X 30, using n to index the required register.
. Reading the zero register ZR, accessed as X[31].

Note

The pseudocode use of X[31] to represent the zero register does not indicate that hardware must implement this

register.

The AArch64 SP[] function is used to read or write the current SP.
The AArch64 PC[] function is used to read the PC.

The AArch64 v[] function is used to read or write the Advanced SIMD and floating-point registers V0-V 31, using

aparameter n to index the required register.

The AArch64 Vpart[] function is used to read or write a part of one of V0-V 31, using a parameter n to index the
required register, and a parameter part to indicate the required part of the register, see the function description for

more information.

TheSP[1, PC[1, V[1, and Vpart[] functions are defined in Chapter J1 ARMv8 Pseudocode.

B1-60

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

B1.2.2 Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.

The following PSTATE information is accessible at ELO:

The condition flags
Flag-setting instructions set these. They are:

N Negative condition flag. If the result of the instruction is regarded as atwao's
complement signed integer, the PE setsthisto:

. 1if the result is negative.

. 0if theresult is positive or zero.

Zz Zero condition flag. Set to:
. 1if the result of theinstruction is zero.
. 0 otherwise.

A result of zero often indicates an equal result from a comparison.

C Carry condition flag. Set to:
. 1if theinstruction resultsin acarry condition, for example an unsigned overflow
that is the result of an addition.
. 0 otherwise.
V Overflow condition flag. Set to:
. 1if theinstruction results in an overflow condition, for example a signed

overflow that is the result of an addition.
. 0 otherwise.

Conditional instructionstest the N, Z, C and V condition flags, combining them with the condition
code for the instruction to determine whether the instruction must be executed. In this way,
execution of theinstruction is conditional on the result of a previous operation. For more
information about conditional execution, see Condition flags and related instructions on

page C6-433.
The exception masking bits
D Debug exception mask bit. When ELO is enabled to modify the mask bits, thisbit is
visible and can be modified. However, this bit is architecturally ignored at ELO.
A SError interrupt mask bit.
I IRQ interrupt mask bit.
F FIQ interrupt mask bit.
For each hit, the values are:
0 Exception not masked.
1 Exception masked.

Access at ELO using AArch64 state depends on SCTLR_EL1.UMA. See Traps to EL1 of ELO
accesses to the PSTATE.{D, A, |, F} interrupt masks on page D1-1566.

See Process state, PSTATE on page D1-1513 for the system level view of PSTATE.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B1-61
ID092916 Non-Confidential

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

Accessing PSTATE fields at ELO

At ELO using AArch64 state, PSTATE fields can be accessed using Special-purpose registers that can be directly
read using the MRS instruction and directly written using the MSR (register) instructions. Table B1-1 showsthe
Special-purpose registers that access the PSTATE fields that hold AArch64 state when the PE isat ELO using
AArch64. All other PSTATE fields do not have direct read and write access at ELO.

Table B1-1 Accessing PSTATE fields at ELO using MRS and MSR (register)

Special-purpose register PSTATE fields
NZCV N,Z CV
DAIF D,AILF

Software can also use the M SR (immediate) instruction to directly writeto PSTATE.{D, A, |, F}. Table B1-2 shows
the M SR (immediate) operandsthat can directly writeto PSTATE.{ D, A, |, F} whenthe PE isat ELO using AArch64

state.
Table B1-2 Accessing PSTATE.{D, A, |, F} at EL0 using MSR (immediate)
Operand PSTATE fields Notes
DAIFSet D,AIF Directly sets any of the PSTATE{D,A, |, F} bitsto 1
DAIFCIr D,AIF Directly clears any of the PSTATE{D, A, |, F} bitsto 0

However, access to the PSTATE{D, A, |, F} fields at ELO using AArch64 state dependson SCTLR_EL1.UMA.
Traps to EL1 of ELO accesses to the PSTATE.{D, A, |, F} interrupt masks on page D1-1566.

Writes to the PSTATE fields have side-effects on various aspects of the PE operation. All of these side-effects, are

guaranteed:
. Not to be visible to earlier instructions in the execution stream.
. To be visible to later instructions in the execution stream.

B1.2.3 System registers

System registers provide support for execution control, status and general system configuration. The majority of the
System registers are not accessible at ELO.

However, some System registers can be configured to allow access from software executing at EL0O. Any access
from ELO to a System register with the access right disabled causes the instruction to behave as UNDEFINED. The
registers that can be accessed from ELO are:

Cache ID registers The CTR_ELO and DCZID_ELO registers provide implementation parameters for ELO
cache management support.

Debug registers A debug communications channel is supported by the MDCCSR_ELO, DBGDTR_ELO,
DBGDTRRX_EL O and DBGDTRTX_ELO registers.

Performance Monitors registers
See Performance Monitors support on page B1-63.

Thread ID registers The TPIDR_ELO and TPIDRRO_EL O registers are two thread ID registers with different
accessrights.

Timer registers In ARMv8 the following operations are performed:
. Read access to the system counter clock frequency using CNTFRQ_ELO.
. Physical and virtual timer count registers, CNTPCT_ELO and CNTVCT_ELDO.

B1-62 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

. Physical up-count comparison, down-count value and timer control registers,
CNTP_CVAL_ELO, CNTP_TVAL_ELO, and CNTP_CTL_ELO.

. Virtual up-count comparison, down-count value and timer control registers,
CNTV_CVAL_ELO, CNTV_TVAL_ELO, and CNTV_CTL_ELO.

Performance Monitors support

The ARMvS architecture defines optional Performance Monitors.
The basic form of the Performance Monitorsis:

. A 64-bit cycle counter.

. Up to amaximum of 32 IMPLEMENTATION DEFINED event counters, where the number isidentified by the
PMCR_ELO.N field.

. System register access to the cycle counter and event registers, and related controls for:
— Enabling and resetting counters.
— Flagging overflows.
— Generating interrupts on overflow.

Software can enable the cycle counter independently of the event counters.

Software executing at EL 1 or a higher Exception level, for example an operating system, can enable access to the
counters from ELO. This allows an application to monitor its own performance with fine grain control without
requiring operating system support. For example, an application might implement per-function performance
monitoring.

For details on the features, configuration and control of the Performance Monitors, see Chapter D5 The
Performance Monitors Extension.

ELO access to Performance Monitors

To allow application code to make use of the Performance Monitors, software executing at a higher Exception level
must set the following bitsin the PMUSERENR_EL O System register:

EN When set to 1, accessto al Performance Monitors registersis allowed at ELO, except for writesto
PMUSERENR_ELO, and reads/writes of PMINTENSET_EL1 and PMINTENCLR_EL1.

ER When set to 1, read access to event countersis allowed at ELO. Thisincludes read/write access to
PMSELR_ELDO, so that the event counter to read through PMXEVCNTR_ELO can be set.

CR When set to 1, read accessto PMCCNTR_ELO isallowed at ELO.

SW When set to 1, write accessto PMSWINC_ELOisallowed at ELO.

Note

Register PMUSERENR_EL O is always read-only at ELO.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B1-63

1D092916

Non-Confidential

B1 The AArch64 Application Level Programmers’ Model
B1.3 Software control features and ELO

B1.3 Software control features and ELO

The following sections describe the ELO view of the ARMv8 software control features:

. Exception handling

. Wait for Interrupt and Wait for Event

. The YIELD instruction

. Application level cache management on page B1-65

. Instructions relating to Debug on page B1-65
B1.3.1 Exception handling

Inthe ARM architecture, an exception causes a change of program flow. Execution of an exception handler starts,
at an Exception level higher than ELO, from a defined vector that relates to the exception taken.

Exceptions include:

. Interrupts.

. Memory system aborts.

. Exceptions generated by attempting to execute an instruction that iS UNDEFINED.
. System calls.

. Secure monitor or Hypervisor traps.

. Debug exceptions.

Most details of exception handling are not visible to application level software, and are described in Chapter D1 The
AArch64 System Level Programmers’ Model.

The SVC instruction causes a Supervisor Call exception. This provides a mechanism for unprivileged software to
make a system call to an operating system.

The BRK instruction generates a Breakpoint Instruction exception. This provides a mechanism for debugging
software using debugger executing on the same PE, see Breakpoint Instruction exceptions on page D2-1639.

Note

The BRK instruction is supported only in the A64 instruction set. The equivalent instruction in the T32 and A32
instruction setsis BKPT.

B1.3.2 Wait for Interrupt and Wait for Event

Issuing aWFI instruction indicates that no further execution is required until a WFI wake-up event occurs, see Wait
For Interrupt on page D1-1602. This permits entry to alow-power state.

Issuing awFE instruction indicates that no further execution isrequired until a WFE wake-up event occurs, see Wait
for Event mechanism and Send event on page D1-1599. This permits entry to alow-power state.

B1.3.3 The YIELD instruction

The YIELD instruction provides a hint that the task performed by athread is of low importance so that it could yield,
see YIELD on page C6-765. This mechanism can be used to improve overall performance in aSymmetric
Multithreading (SMT) or Symmetric Multiprocessing (SMP) system.

Examples of when the YIELD instruction might be used include a thread that is sitting in a spin-lock, or where the
arbitration priority of the snoop bit in an SMP system is modified. The YIELD instruction permits binary
compatibility between SMT and SMP systems.

The YIELD instruction is a NOP (No Operation) hint instruction.

The YIELD instruction has no effect in a single-threaded system, but devel opers of such systems can use the
instruction to flag its intended use for future migration to a multiprocessor or multithreading system. Operating
systems can use YIELD in places where ayield hint iswanted, knowing that it will be treated asa NOP if thereisno
implementation benefit.

B1-64 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B1.3.4

B1.3.5

B1 The AArch64 Application Level Programmers’ Model
B1.3 Software control features and ELO

Application level cache management

A small number of cache management instructions can be enabled at ELO from higher levels of privilege using the
SCTLR_EL1 System register. Any access from ELO to an operation with the access right disabled causes the
instruction to behave as UNDEFINED.

About the available operations, see Application level access to functionality related to caches on page B2-72.

Instructions relating to Debug

Exception handling on page B1-64 refersto the BRK instruction, which generates a Breakpoint I nstruction exception.
In addition, in both AArch64 state and AArch32 state, the HLT instruction causes the PE to halt execution and enter
Debug state. This provides a mechanism for debugging software using a debugger that is external to the PE, see
Chapter H1 About External Debug.

Note

In AArch32 state, previous versions of the architecture defined the DBG instruction, that could provide a hint to the
debug system. In ARMVS, this instruction executes as aNOP. ARM deprecates the use of the DBG instruction.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B1-65

1D092916

Non-Confidential

B1 The AArch64 Application Level Programmers’ Model
B1.3 Software control features and ELO

B1-66 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Chapter B2
The AArch64 Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

Address space on page B2-68.

Memory type overview on page B2-609.

Caches and memory hierarchy on page B2-70.
Alignment support on page B2-76.

Endian support on page B2-78.

Atomicity in the ARM architecture on page B2-81.
Memory ordering on page B2-84.

Memory types and attributes on page B2-94.
Mismatched memory attributes on page B2-105.
Synchronization and semaphores on page B2-108.

Note

In this chapter, System register names usually link to the description of the register in Chapter D7 AArch64 System
Register Descriptions, for example SCTLR_EL 1.

ARM DDI 0487A .K_iss10775

ID092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B2-67

B2 The AArch64 Application Level Memory Model
B2.1 Address space

B2.1 Address space

Address calculations are performed using 64-bit registers. However, supervisory software can configure the top
eight address bitsfor use asatag, as described in Address tagging in AArch64 state on page D4-1724. If thisisdone,

address hits[63:56]:
. Are not considered when determining whether the addressis valid.
. Are never propagated to the program counter.

Supervisory software determinesthe valid addressrange. Attempting to access an addressthat is not valid generates
an MMU fault.

Simple sequential execution of instructions might overflow the valid address range. For more information see
Instruction address space overflow on page D3-1691.

Memory accesses usetheMem[] function. Thisfunction makes an access of therequired type. If supervisory software
configures the top eight address bits for use as atag, the top eight address bits are ignored.

The AccType{} enumeration defines the different access types.

Note
. Chapter D3 The AArch64 System Level Memory Model and Chapter D4 The AArch64 Virtual Memory System
Architecture include descriptions of memory system featuresthat aretransparent to the application, including
memory access, address translation, memory maintenance instructions, and alignment checking and the
associated fault handling. These chapters also include pseudocode descriptions of these operations.

. For information on the pseudocode that relates to memory accesses, see Basic memory access on
page D3-1717, Unaligned memory access on page D3-1718, and Aligned memory access on page D3-1717.

B2-68 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.2 Memory type overview

B2.2 Memory type overview
ARMV8 provides the following mutually-exclusive memory types:
Normal Thisis generally used for bulk memory operations, both read/write and read-only operations.
Device The ARM architecture forbids speculative reads of any type of Device memory. This means Device

memory types are suitable attributes for read-sensitive locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device
memory attribute.

Device memory has additional attributes that have the following effects:

. They prevent aggregation of reads and writes, maintaining the number and size of the
specified memory accesses. See Gathering on page B2-101.

. They preserve the access order and synchronization requirements, both for accessesto a
single peripheral and where there is a synchronization requirement on the observability of
one or more memory write and read accesses. See Reordering on page B2-102

. They indicate whether awrite can be acknowledged other than at the end point. See Early
Write Acknowledgement on page B2-103.

For more information on Normal memory and Device memory, see Memory types and attributes on page B2-94.

Note

Earlier versions of the ARM architecture defined a single Device memory type and a Strongly-ordered memory
type. A Note in Device memory on page B2-98 describes how these memory types map onto the ARMv8 memory

types.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-69
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

B2.3 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of
the memory system are IMPLEMENTATION DEFINED. ARMV8 defines the application level interface to the memory
system, including ahierarchical memory system with multiplelevels of cache. This section describesan application
level view of this system. It contains the subsections:

. Introduction to caches.

. Memory hierarchy on page B2-71.

. Application level access to functionality related to caches on page B2-72
. Implication of caches for the application programmer on page B2-73.

. Preloading caches on page B2-74.

B2.3.1 Introduction to caches

A cacheisablock of high-speed memory that contains a number of entries, each consisting of:
. Main memory address information, commonly known as atag.
. The associated data.

Caches increase the average speed of a memory access. Caching takes account of two principles of locality:

Spatial locality

An accessto onelocationislikely to befollowed by accessesto adjacent locations. Examplesof this

principle are:
. Sequential instruction execution.
. Accessing a data structure.

Temporal locality

An access to an area of memory islikely to be repeated in a short time period. An example of this
principle is the execution of a software |oop.

To minimize the quantity of control information stored, the spatial locality property groups several locations
together under the same tag. Thislogical block is commonly known as acache line. When dataisloaded into a
cache, accesstimesfor subsequent oads and stores are reduced, resulting in overall performance benefits. An access
to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a
cacheable memory location, the cache is checked. If the accessis a cache hit, the access occursin the cache.
Otherwise, the access is made to memory. Typically, when making this access, a cachelocation is alocated and the
cache line loaded from memory. ARMv8 permits different cache topologies and access policies, provided they
comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:
. Memory accesses can occur at times other than when the programmer would expect them.
. A dataitem can be held in multiple physical locations.

B2-70 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

B2.3.2 Memory hierarchy

Typically memory close to a PE has very low latency, but islimited in size and expensive to implement. Further
from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize
overal performance, an ARMv8 memory system can include multiple levels of cache in a hierarchical memory
system that exploits this trade-off between size and latency. Figure B2-1 shows an example of such asystem in an
ARMVS-A system that supports virtual addressing.

Processing
element
Addregs Physical address
translation
Virtual
address
System configuration
and control
PE A y y
’)| Level1 Level 2 Level 3

AArch64 state Cache Cache

X30 4_Instruction_ P DRAM

fetch N
L L SRAM
T T Level 4
Flash for example
X0 «—Data—>» «—» |« > —> < » ROM pie,
memory card,
disk
Figure B2-1 Multiple levels of cache in a memory hierarchy
Note

In this manual, in a hierarchical memory system, Level 1 refersto the level closest to the processing element, as
shown in Figure B2-1.

Instructions and data can be held in separate caches or in a unified cache. A cache hierarchy can have one or more
levels of separate instruction and data caches, with one or more unified caches that are located at the levels closest
to the main memory. Memory coherency for cache topol ogies can be defined by two conceptual points:

Point of Unification (PoU)

The point at which the instruction cache, data cache, and translation table walks of a particular PE
are guaranteed to see the same copy of amemory location. In many cases, the point of unification
isthe point in a uniprocessor memory system by which the instruction and data caches and the
tranglation table walks have merged. The point of unification might coincide with the point of
coherency.

Point of Coherency (PoC)

The point at which all agents that can access memory are guaranteed to see the same copy of a
memory location. In many cases this is effectively the main system memory, athough the
architecture does not prohibit the implementation of caches beyond the PoC that have no effect on
the coherency between memory system agents.

Note
The presence of system caches can affect the definition of point of coherency asdescribed in System
level caches on page D3-1713.

See also About cache maintenance in ARMv8 on page D3-1699.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-71
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

The cacheability and shareability memory attributes
Cacheability and shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

Cacheability This attribute defines whether memory locations are alowed to be allocated into a cache or not.
Cacheability is defined independently for Inner and Outer cacheability locations.

Shareability Thisattribute defineswhether memory locations are shareabl e between different agentsin asystem.
Marking a memory location as shareable for a particular domain requires hardware to ensure that
thelocation iscoherent for all agentsin that domain. Sharesbility is defined independently for Inner
and Outer shareability domains.

For more information about cacheability and shareability see Memory types and attributes on page B2-94.

B2.3.3 Application level access to functionality related to caches

Asindicated in About the Application level programmers’ model on page B1-58, the application level corresponds
to execution at ELO. The architecture defines a set of cache maintenance instructions that software can use to
manage cache coherency. Software executing at a higher Exception level can enable use of some of this
functionality from ELO, asfollows:
When the value of SCTLR_EL1.UCl is 1

Software executing at ELO can access:

. The data cache maintenance instructions, DC CVAU, DC CVAC, and DC CIVAC. See Data cache
maintenance instructions (DC*) on page D3-1704.

. The instruction cache maintenance instruction IC IVAU. See Instruction cache maintenance
instructions (IC*) on page D3-1704.

When the value of SCTLR_EL1.UCT is1
Software executing at ELO can access the cache type register. See CTR_ELO.
When the value of SCTLR_EL1.DZE is 1

Software executing at ELO can access the data cache zero instruction DC zVA. See Data cache zero
instruction on page D3-1711.

The SCTLR_EL1.{UCI, UCT, DZE} control fields are only accessible by software executing at EL 1 or higher.

This functionality is UNDEFINED at EL O when the value of the corresponding SCTLR_EL 1 control field is O, see:
. Traps to EL1 of ELO execution of cache maintenance instructions on page D1-1564.

. Traps to EL1 of ELO accesses to the CTR_ELO on page D1-1565.

. Traps to EL1 of ELO execution of DC ZVA instructions on page D1-1566.

When the value of SCTLR_EL1.UCl is 1:

. If aDC CVAU, DC CVAC, or DC CIVAC cache maintenance instruction is executed at ELO, and the target address
does not have read access permission at ELO, a Permission fault is generated.

. If the IC IVAU cache maintenance instruction, and the target address does not have read access permission at
ELO, it iSIMPLEMENTATION DEFINED Whether a Permission fault is generated.

B2-72 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

B2.3.4 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become

visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

. When memory locations are updated by other agentsin the system that do not use hardware management of
coherency.

. When memory updates made from the application software must be made visible to other agentsin the
system, without the use of hardware management of coherency.

For example:

. In the absence of hardware management of coherency of DMA accesses, in asystem withaDMA controller
that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when
the PE has written new datain the data cache, but the DMA controller reads the old data held in memory.

. In aHarvard cache implementation, where there are separate instruction and data caches, a breakdown of
coherency occurs when new instruction data has been written into the data cache, but the instruction cache
till contains the old instruction data.

Data coherency issues

Software can ensure the data coherency of cachesin the following ways:

. By not using the caches in situations where coherency issues can arise. This can be achieved by:

— Using Non-cacheable or, in some cases, Write-Through Cacheable memory.
— Not enabling cachesin the system.

. By using cache maintenance instructions to manage the coherency issues in software. See Application level
access to functionality related to caches on page B2-72.

. By using hardware coherency mechanismsto ensure the coherency of dataaccessesto memory for cacheable
locations by observers within the different shareability domains, see Non-shareable Normal memory on
page B2-96 and Shareable, Inner Shareable, and Outer Shareable Normal memory on page B2-95.

Note
The performance of these hardware coherency mechanismsiis highly implementation-specific. In some
implementations the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold datain caches while managing coherency between
observers within the shareability domains.
Note

Not all these mechanisms are directly available to software operating at EL0 and might involve interaction with

software operating at a higher Exception level.

Synchronization and coherency issues between data and instruction accesses

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such

prefetching can be either afixed or adynamically varying number of instructions, and can follow any or all possible

future execution paths. For all types of memory:

. The PE might have fetched the instructions from memory at any time since the last Context synchronization
event on that PE.

. Any instructions fetched in this way might be executed multiple times, if thisis required by the execution of
the program, without being refetched from memory. In the absence of a Context synchronization event, there
is no limit on the number of times such an instruction might be executed without being refetched from
memory.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-73

1D092916

Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

The ARM architecture does not require the hardware to ensure coherency between instruction caches and memory,
even for locations of shared memory.

If software requires coherency between instruction execution and memory, it must manage this coherency using
Context synchronization events, DSB memory barriers, and cache maintenance instructions. See Context
synchronization event. The following code sequence can be used to allow a PE to execute code that the same PE has
written.

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a Tocation pointed to by Xn.

STR Wt, [Xn]
DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)
DSB ISH ; Ensure visibility of the data cleaned from cache
IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
DSB ISH ; Ensure completion of the invalidations
ISB ; Synchronize the fetched instruction stream
Note
. For Non-cacheable or Write-Through accesses, the clean data cache by VA instruction is not required.

However, the invalidate instruction cache instruction is required because the ARMv8-A AArch64
architecture allows Non-cacheabl e accesses to be held in an instruction cache. See Non-cacheable accesses
and instruction caches on page D3-1698.

. This code can be used when the thread of execution modifying the code is the same thread of execution that
is executing the code. The ARMv8 architecture limits the set of instructions that can be executed by one
thread of execution as they are being modified by another thread of execution without requiring explicit
synchronization. See Concurrent modification and execution of instructions on page B2-83.

. The system software controls whether these cache maintenance instructions are available to the application
level by setting SCTLR_EL1.UCI.

Note

If this sequence is not executed between writing data to alocation and executing the instruction at that location, the
lack of coherency between instruction caches and memory means that the instructions that are executed might be
the old instruction or the updated instruction, and which is used can arbitrarily vary during execution. It must not
be assumed by software, before the synchronization sequenceis executed, that once the updated instruction has been
seen, the old instruction will not be seen again.

B2.3.5 Preloading caches

The ARM architecture provides memory system hints PRFM, LDNP, and STNP that software can use to communicate
the expected use of memory locations to the hardware. The memory system can respond by taking actions that are
expected to speed up the memory accesses if they occur. The effect of these memory system hintsis
IMPLEMENTATION DEFINED. Typically, implementations use this information to bring the data or instruction
locations into caches.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. Theinstructions cannot generate synchronous Data Abort exceptions, but the resulting
memory system operationsmight, under exceptional circumstances, generate an asynchronous external abort, which
istaken using an SError interrupt exception. For more information, see Exception from a Data abort on

page D1-1533.

PrefetchHint{} defines the prefetch hint types.

TheHint_Prefetch() function signals to the memory system that memory accesses of the type hint to or from the
specified address arelikely to occur in the near future. The memory system might take some action to speed up the
memory accesses When they do occur, such as prel oading the specified addressinto one or more caches asindicated
by the innermost cache level target and non-tempora hint stream.

B2-74 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

For more information on PRFM and L oad/Store instructions that provide hints to the memory system, see Prefetch
memory on page C3-156 and Load/Store SIMD and Floating-point Non-temporal pair on page C3-154.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-75
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.4 Alignment support

B2.4 Alignment support

This section describes alignment support. It contains the following subsections:

. Instruction alignment.

. Alignment of data accesses.

. Unaligned data access restrictions on page B2-77.
B2.4.1 Instruction alignment

A64 instructions must be word-aligned.

Attempting to fetch an instruction from a misaligned location resultsin a PC alignment fault. See PC alignment
checking on page D1-1515.

B2.4.2 Alignment of data accesses
An unaligned access to any type of Device memory causes an Alignment fault.
The aignment requirements for accesses to Normal memory are as follows:

. For al instructions that load or store asingle or multiple registers, other than
Load-Exclusive/Store-Exclusive and Load-Acquire/Store-Release, if the address that is accessed is not
aligned to the size of the data element being accessed, then one of the following occurs:

— AnAlignment fault is generated.
— Anunaligned accessis performed.

When the value of SCTLR_ELx.A at the current Exception level is 1, alignment checking is enabled, and
unaligned accesses generate Alignment faults.

Note

— The SCTLR_EL1.A bit appliesto software running at ELO and at EL 1, although it can only be
accessed from EL 1 and higher.

— Alignment checks are based on the size of the accessed elements, not the overall access size. This
affects SIMD element and structure loads and stores, and also L oad/Store pair instructions.

— Thesealignment checking rules mean the ARMV8 architecture introduces requirements for 64-bit and
128-hit alignment checking.

. For al Load-Exclusive/Store-Exclusive and Load-A cquire/Store-Rel ease memory accesses that access a
single element or a pair of elements, an Alignment fault is generated if the address being accessed is not
aligned to the size of the data structure being accessed.

A failed alignment check resultsin an Alignment fault, which is taken as a Data Abort exception, that is taken as
follows:

. For an access from Non-secure ELO or EL 1, if the Alignment fault is generated only because the trandlation
tablesidentify the address being accessed as Device memory then:

— Ifthefirst stage of addresstrand ation marksthe address as Device memory then the exceptionistaken
to EL1.

— If only the second stage of addresstransl ation marksthe address as Device memory then the exception
istaken to EL2.

. Otherwise, the exception istaken to the lowest Exception level that can handle the exception, consistent with
the basic requirement that the Exception level never decreases on taking an exception. Therefore:

— Alignment faults taken from ELO or EL1 aretaken to EL1 unlessredirected by HCR_EL2.TGE
— Alignment faults taken from EL 2 are taken to EL 2.
— Alignment faults taken from EL3 are taken to EL3.

B2-76 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.4 Alignment support

B2.4.3 Unaligned data access restrictions
The following points apply to unaligned data accesses in ARMVS:

. Accesses are not guaranteed to be single-copy atomic except at the byte access level, see Atomicity in the
ARM architecture on page B2-81.

. Unaligned accessestypically take anumber of additional cyclesto complete compared to anaturally-aligned
access.

. An operation that performs an unaligned access can abort on any memory accessthat it makes, and can abort
on more than one access. This means that an unaligned access that occurs across a page boundary can
generate an abort on either side of the boundary.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-77
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model

B2.5 Endian support

Endian support

B2.5

General description of endianness in the ARM architecture describes the relationship between endianness and

memory addressing in the ARM architecture.

The following subsections then describe the endianness schemes supported by the architecture:

Instruction endianness on page B2-79.

Data endianness on page B2-79.

General description of endianness in the ARM architecture

B2.5.1

This section only describes memory addressing and the effects of endianness for data elements up to quadwords of

128 hits. However, this description can be extended to apply to larger data elements.

For an address A, Figure B2-2 shows, for big-endian and little-endian memory systems, the relationship between:

The quadword at address A.

The doubleword at address A and A+8.

The words at addresses A, A+4, A+8, and A+12.

The halfwords at addresses A, A+2, A+4, A+6, A+8, A+10, A+12, and A+14.

The bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, A+7, A+8, A+9, A+10, A+11, A+12, A+13,

A+14, and A+15.

The termsin Figure B2-2 have the following definitions:

Byte at address A.

B_A
HW_A

Halfword at address A.
Most-significant byte.
Least-significant byte.

MSByte
LSByte

Big-endian memory system

» | SByte

Incrementing byte address:

MSByte

Quadword at address A

Doubleword at address A+8

HW_A+14

Word at address A+12

HW_A+12

HW_A+10

B_A+11|B_A+12[B_A+13|B_A+14|B_A+15

Word at address A+8

HW_A+8

Doubleword at address A

HW_A+6

Word at address A+4

HW_A+4

HW_A+2

Word at address A

HW_A

A+1|B_A+2(B_A+3|B_A+4|B_A+5|B_A+6|B_A+7 | B_A+8|B_A+9 [B_A+10

Little-endian memory system

LSByte

Incrementing byte address:

MSByte <

Quadword at address A

Doubleword at address A

Word at address A

B_

HW_A+2

Word at address A+4

HW_A+4

HW_A+6

Doubleword at address A+8

Word at address A+8

HW_A+8

HW_A+10

Word at address A+12

HW_A+12

B A+12IB A+11|B_A+10|B_A+9|B A+8|B A+7|B A+6|B A+5|B A+4|B A+3|B A+2|B_A+1

HW_A+14

B_A+15B_A+14[B_A+13

Figure B2-2 Endianness relationships

iss10775

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k

B2-78

1D092916

Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.5 Endian support

The big-endian and little-endian mapping schemes determine the order in which the bytes of a quadword,
doubleword, word or halfword areinterpreted. For example, aload of aword from address 0x1000 always resultsin
an access to the bytes at memory locations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme
determines the significance of these four bytes.

B2.5.2 Instruction endianness

In ARMV8-A, A64 instructions have afixed length of 32 bits and are always little-endian.

B2.5.3 Data endianness
SCTLR_EL1.EQE, configurable at EL1 or higher, determines the data endianness for execution at ELO.
The data size used for endianness conversions:

. Isthe size of the datavalue that isloaded or stored for SIMD and floating-point register and general-purpose
register loads and stores.

. Isthe size of the data element that is loaded or stored for SIMD element and data structure |oads and stores.
For more information see Endianness in SIMD operations on page B2-80.

Note
This means the ARMv8 architecture introduces a requirement for 128-bit endian conversions.

Instructions to reverse bytes in a general-purpose register or a SIMD and floating-point
register

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory
structuresthat are not the same endianness as the internal data structures. Similarly, the endianness of the operating
system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient
method to transform explicitly the endianness of the data.

Table B2-1 shows theinstructions that provide this functionality:

Table B2-1 Byte reversal instructions

Function Instructions Notes

Reverse bytes in 32-hit word or words? REV32 For use with general-purpose registers
Reverse bytes in whole register REV For use with general-purpose registers

Reverse bytesin 16-bit halfwords REV 16 For use with general-purpose registers

Reverse elementsin doublewords, vector REV64 For use with SIMD and floating-point registers
Reverse elements in words, vector REV32 For use with SIMD and floating-point registers
Reverse elements in halfwords, vector REV 16 For use with SIMD and floating-point registers

aCan operate on multiple words.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-79
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.5 Endian support

Endianness in SIMD operations

SIMD element L oad/Store instructions transfer vectors of elements between memory and the SIMD and
floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements
being transferred. Thisinformation is used to load and store data correctly in both big-endian and little-endian
systems.

For example:
LD1 {V@.4H}, [X1]

Thisloads a64-bit register with four 16-bit values. The four elements appear in the register in array order, with the
lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the
endianness configuration, as shown in Figure B2-3. Therefore, the order of the elementsin theregistersisthe same
regardless of the endianness configuration.

64-bit register containing four 16-bit elements

D[15:8] D[7:0] C[15:8] C[7:0] B[15:8] B[7:0] A[15:8] A[7:0]
L)
N\ 1 e
0 |A[7:0] 0 [A[15:8]
1 |A[15:8] 1 |A[7:0]
2 |B[7:0] 2 [B[15:8]
3 |B[15:8] . 3 [B[7:0]
4 |C[7:0] LD1 {V0.4H}, [X1] LD1 {v0.4H}, [x1] | #[C[15:8]
6 |D[7:0] 6 [D[15:8]
7 |D[15:8] 7 |D[7:0]
— N—
Memory system with Memory system with
little-endian addressing (LE) big-endian addressing (BE)

Figure B2-3 SIMD byte order example
TheBigEndian() pseudocode function determines the current endianness of the data.
The BigEndianReverse() pseudocode function reverses the endianness of a bitstring.

TheBigEndian() and BigEndianReverse() functions are defined in Chapter J1 ARMv8 Pseudocode.

B2-80 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2.6

B2.6.1

B2 The AArch64 Application Level Memory Model
B2.6 Atomicity in the ARM architecture

Atomicity in the ARM architecture

Atomicity is afeature of memory accesses, described as atomic accesses. The ARM architecture description refers
to two types of atomicity, single-copy atomicity and multicopy atomicity. In the ARMv8 architecture, the atomicity
requirements for memory accesses depend on the memory type, and whether the accessis explicit or implicit. For
more information see:

Requirements for single-copy atomicity.

Properties of single-copy atomic accesses on page B2-82.

Multi-copy atomicity on page B2-82.

Requirements for multi-copy atomicity on page B2-82.

Concurrent modification and execution of instructions on page B2-83.

For more information about the memory types, see Memory type overview on page B2-69.

Requirements for single-copy atomicity

For explicit memory accesses generated from an Exception level the following rules apply:

A read that isgenerated by aload instruction that |oads a single general -purpose register and isaligned to the
size of theread in the instruction is single-copy atomic.

A writethat is generated by a store instruction that stores a single general-purpose register and is aligned to
the size of the writein the instruction is single-copy atomic.

Reads that are generated by a Load Pair instruction that loads two general-purpose registers and are aligned
to the size of the load to each register are treated as two single-copy atomic reads, onefor each register being
loaded.

Writesthat are generated by a Store pair instruction that stores two general-purpose registers and are aligned
tothesize of the store of each register aretreated astwo single-copy atomic writes, onefor each register being
stored.

Load-Exclusive Pair instructions of two 32-bit quantities and Store-Exclusive Pair instructions of 32-bit
guantities are single-copy atomic.

When the Store-Exclusive of a Load-Exclusive/Store-Exclusive pair instruction using two 64-bit quantities
succeeds, it causes a single-copy atomic update of the entire memory location being updated.

Note

To atomically load two 64-bit quantities, perform a Load-Exclusive pair/Store-Exclusive pair sequence of
reading and writing the same value for which the Store-Exclusive pair succeeds, and use the read valuesfrom
the Load-Exclusive pair.

Where trandlation table walks generate aread of atrandlation table entry, thisread is single-copy atomic.

For the atomicity of instruction fetches, see Concurrent modification and execution of instructions on
page B2-83.

Readsto floating-point and SIMD registers of asingle 64-bit or smaller quantity that isaligned to the size of
the quantity being loaded are treated as single-copy atomic reads.

Writesfrom floating-point and SIMD registers of asingle 64-bit or smaller quantity that isaligned to the size
of the quantity being stored are treated as single-copy atomic writes.

Element or Structure Reads to floating-point and SIMD registers of 64-bit or smaller elements, where each
element isaligned to the size of the element being loaded, have each element treated as a single-copy atomic
read.

Element or Structure Writes from floating-point and SIMD registers of 64-bit or smaller elements, where
each element is aligned to the size of the element being stored, have each element treated as a single-copy
atomic store.

ARM DDI 0487A.K_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-81
Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.6 Atomicity in the ARM architecture

. Readsto floating-point and SIMD registers of a128-bit value that is 64-bit aligned in memory are treated as
apair of single-copy atomic 64-bit reads.

. Writes from floating-point and SIMD registers of a128-bit valuethat is 64-bit aligned in memory are treated
as apair of single-copy atomic 64-bit writes.

All other memory accesses are regarded as streams of accesses to bytes, and no atomicity between accesses to
different bytesis ensured by the architecture.

All accesses to any byte are single-copy atomic.

Note

In AArch64 state, no memory accesses from a DC ZVA have single-copy atomicity of any quantity greater than
individual bytes.

If, according to these rules, an instruction is executed as a sequence of accesses, exceptions, including interrupts,
can be taken during that sequence, regardless of the memory type being accessed. If any of these exceptions are
returned from using their preferred return address, the instruction that generated the sequence of accessesis
re-executed, and so any access performed before the exception was taken is repeated. See also Taking an interrupt
or other exception during a multiple-register load or store on page D1-1560.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writesto
memory for the purpose of software synchronization.

B2.6.2 Properties of single-copy atomic accesses
A read or write operation that is single-copy atomic has the following properties:

1 For asingle-copy atomic store, if the store overlaps another single-copy atomic store, then all of the writes
from one of the stores areinserted into the Coherence order of each overlapping byte before any of the writes
of the other store are inserted into the Coherence orders of the overlapping bytes.

2. If asingle-copy atomic |oad overlaps a single-copy atomic store and for any of the overlapping bytesthe load
returns the data written by the write inserted into the Coherence order of that byte by the single-copy atomic
store then the load must return data from a point in the Coherence order no earlier than the writes inserted
into the Coherence order by the single-copy atomic store of al of the overlapping bytes.

B2.6.3 Multi-copy atomicity

In amultiprocessing system, writesto amemory |ocation are multi-copy atomic if the following conditions are both

true:

. All writes to the same location are serialized, meaning they are observed in the same order by all observers,
athough some observers might not observe al of the writes.

. A read of alocation does not return the value of awrite until all observers observe that write.

Note
Writes that are not coherent are not multi-copy atomic.

B2.6.4 Requirements for multi-copy atomicity

In amultiprocessing system, coherent writes to a memory |location are multi-copy atomic if the read of alocation
returns the value of awrite only when all observers have observed that write.

For Normal memory, writes are not required to be multi-copy atomic.

For Device memory with the non-Gathering attribute, writesthat are single-copy atomic are al so multi-copy atomic.

B2-82 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.6 Atomicity in the ARM architecture

For Device memory with the Gathering attribute, writes are not required to be multi-copy atomic.

B2.6.5 Concurrent modification and execution of instructions

The ARMvS architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where the instruction before modification and the instruction after modification isaB, BL, NOP, BRK, SVC, HVC,
or SMC instruction.

For the B, BL, NOP, BRK, SVC, HVC, and SMC instructions the architecture guarantees that, after modification of the
instruction, behavior is consistent with execution of either:

. The instruction originally fetched.

. A fetch of the modified instruction.

If onethread of execution changesaconditional branchinstruction, such asB or BL, to another conditional instruction
and the change affects both the condition field and the branch target, execution of the changed instruction by another
thread of execution before the change is synchronized can lead to either:

. The old condition being associated with the new target address.
. The new condition being associated with the old target address.

These possibilities apply regardless of whether the condition, either before or after the change to the branch
instruction, is the always condition.

For all other instructions, to avoid UNPREDICTABLE Or CONSTRAINED UNPREDICTABLE behavior, instruction
modifications must be explicitly synchronized before they are executed. The required synchronization isasfollows:

1 No PE must be executing an instruction when another PE is modifying that instruction.

2. To ensure that the modified instructions are observable, the PE that modified the instructions must issue the
following segquence of instructions and operations:

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a Tocation pointed to by Xn.
STR Wt, [Xn]
DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)
DSB ISH ; Ensure visibility of the data cleaned from cache

IC IVAU, Xn ; Invalidate instruction cache by VA to PoU

DSB ISH ; Ensure completion of the invalidations

Note
The DC CVAU operation is not required if the area of memory is either Non-cacheable or Write-through
Cacheable.

3. In amultiprocessor system, the IC IVAU is broadcast to all PEs within the Inner Shareable domain of the PE
running this sequence. However, when the modified instructions are observable, each PE that is executing
the modified instructions must issue the following instruction to ensure execution of the modified
instructions:

ISB ; Synchronize fetched instruction stream

For more information about the required synchronization operation, see Synchronization and coherency issues
between data and instruction accesses on page B2-73.

Note
For information about memory accesses caused by instruction fetches, see Ordering requirements on page B2-85.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-83
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

B2.7 Memory ordering

This section describes observation ordering. It contains the following subsections:

. Observability and completion.

. Ordering requirements on page B2-85.

. Memory barriers on page B2-87.

. Summary of the memory ordering rules on page B2-91.

For information on endpoint ordering of memory accesses, see Reordering on page B2-102.
In the ARMv8 memory model, the shareability memory attribute indicates whether hardware must ensure memory
coherency.

The ARMv8 memory system architecture defines additional attributes and associated behaviors, defined in the

system level section of this manual. See:

. Chapter D3 The AArch64 System Level Memory Model.

. Chapter D4 The AArch64 Virtual Memory System Architecture.

See also Mismatched memory attributes on page B2-105.

B2.7.1 Observability and completion

An observer isamaster in the system that is capable of observing memory accesses. For a PE, the following

mechanisms must be treated as independent observers:

. The mechanism that performs reads or writes to memory.

. A mechanism that causes an instruction cache to be filled from memory or that fetches instructions to be
executed directly from memory. These are treated as reads.

. A mechanism that performs translation table walks. These are treated as reads.

The set of observersthat can observe amemory access is defined by the system.

In the definitions in this subsection, subsequent means whichever of the following is appropriate to the context:

. After the point in time where the location is observed by that observer.

. After the point in time where the location is globally observed.

For al memory:

. A writeto alocation in memory is said to be observed by an observer when:

— A subsequent read of the location by the same observer returnsthe val ue written by the observed write,
or written by awrite to that location by any observer that is sequenced in the Coherence order of the
location after the observed write.

— A subsequent write of the location by the same observer is sequenced in the Coherence order of the
location after the observed write.

. A writeto alocation in memory is said to be globally observed for a shareability domain or set of observers
when:

— A subsequent read of thelocation by any observer in that shareability domain returnsthe value written
by the globally observed write, or written by awrite to that location by any observer that is sequenced
in the Coherence order of the location after the globally observed write.

— A subsequent write of the location by any observer in that shareability domain is sequenced in the
Coherence order of the location after the globally observed write.

. A read of alocation in memory is said to be observed by an observer when a subsequent write to the location
by the same observer has no effect on the value returned by the read.

. A read of alocation in memory is said to be globally observed for a shareability domain when a subsequent
write to the location by any observer in that shareability domain has no effect on the value returned by the
read.

B2-84 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

Additionaly, for Device-nGnRnE memory:
. A read or write of amemory-mapped location in aperipheral that exhibits side-effectsis said to be observed,
and globally observed, only when the read or write:
— Maeetsthe general conditions listed.
— Can begin to affect the state of the memory-mapped peripheral.
— Cantrigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Note
This definition is consistent with the memory access having reached the peripheral.

For al memory, the completion rules are defined as:

. A read or write is complete for a shareability domain when al of the following are true:
— Theread or writeis globally observed for that shareability domain.
— Any trandation table walks associated with the read or write are complete for that shareability domain.

. A trandation table walk is compl ete for a shareability domain when the memory accesses associated with the
trandation table walk are globally observed for that shareability domain, and the TLB is updated.

. A cache or TLB maintenance instruction is complete for a shareability domain when the effects of the
instruction are globally observed for that shareability domain, and any trandation table walksthat arise from
theinstruction are complete for that shareability domain.

The completion of any cache or TLB maintenance instruction includes its completion on al PEs that are
affected by both the instruction and the DSB operation that is required to guarantee visibility of the
maintenance instruction.

Completion of side-effects of accesses to Device memory

The completion of amemory accessto Device memory other than Device-nGnRnE is ot guaranteed to be sufficient
to determine that the side-effects of the memory accessarevisibleto all observers. The mechanism that ensuresthe
visibility of side-effects of amemory accessis IMPLEMENTATION DEFINED.

B2.7.2 Ordering requirements
ARMvV8 defines restrictions for the permitted ordering of memory accesses. These restrictions depend on the
memory type of the addresses that are accessed, see Memory types and attributes on page B2-94.
Note
See Summary of the memory ordering rules on page B2-91 for the definition of address dependency.
The only stores by an observer that can be observed by another observer are those stores that have been
Architecturally executed. Speculative writes by an observer cannot be observed by another observer. For the
purposes of this requirement, speculative writes are all of:
. Writes generated by store instructions that appear in the Execution stream after a branch that is not
architecturally resolved.
. Writes generated by store instructions that appear in the Execution stream after an instruction where a
synchronous exception condition has not been architecturally resolved.
. Writes generated by conditional store instructions for which the conditions for the instruction have not been
architecturally resolved.
. Writes generated by storeinstructionsfor which the data being written comesfrom aregister that has not been
architecturally committed.
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-85
1D092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

The following additional restrictions apply to the order in which accesses to memory are observed:

. Reads and writes to different addresses can be observed in any order provided the following constraints are
met:

— If an address dependency exists between two reads or between aread and awrite, then those memory
accesses are observed in program order by all observerswithin the common shareability domain of the
memory addresses being accessed.

The ARMV8 architecture relaxes this rule for execution where the second read is generated by a L oad
Non-Temporal Pair instruction. See Load/Store Non-temporal Pair on page C3-149 and Load/Store
SIMD and Floating-point Non-temporal pair on page C3-154.

— Ordering can be achieved by using aDMB or DSB barrier. For more information on DMB and DSB
instructions, see Memory barriers on page B2-87.

. Reads and writes to the same address are coherent within the shareability domain of the memory address
being accessed.
. Two reads to the same address by the same observer are observed in program order by all observers within

the shareability domain of the memory address being accessed.

. Writes are not required to be multi-copy atomic. This means that in the absence of barriers, the observation
of astore by one observer does not imply the observation of the store by another observer.

. Instructions that access multiple elements have no defined ordering requirements for the memory accesses
relative to each other.

For Device memory with the non-Reordering attribute, the order of memory accesses arriving at asingle peripheral
is the same as occurs in a Simple sequential execution on page Glossary-5728 of the program. This meansthe
accesses arrive in program order. This ordering applies for all accesses using any of the memory types with the
non-Reordering attribute, which means Device-nGnRE accesses are ordered with respect to Device-nGnRnE
accessesto the same peripheral. If the memory accesses are not to aperiphera then there are no ordering restrictions
from the non-Reordering attribute. For the purposes of this definition, asingle peripheral isaregion of memory of
an IMPLEMENTATION DEFINED size that is defined by the peripheral.

Memory accesses caused by instruction fetches are not required to be observed in program order, unless they are
separated by an ISB or other Context synchronization event.

Address dependencies and order

In the ARMv8 architecture, aregister data dependency between the value returned by aload instruction and the
address used by a subsequent memory transaction creates order between that |oad instruction and the subsequent
memory transaction.

A register data dependency exists between afirst data value and a second data value when either:

. The register, excluding the zero register (XZR or WZR), used to hold the first data value is used in the
calculation of the second datavalue, and the cal cul ation between thefirst datavalue and the second datavalue
does not consist of either:

— A conditional branch whose condition is determined by the first data value.

— A conditional selection, move, or computation whose condition is determined by the first data value,
wheretheinput datavaluesfor the selection, move, or computation do not have a data dependency on
the first data value.

. Thereisaregister data dependency between thefirst data value and athird data value, and between the third
data value and the second data value.

B2-86 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

Note

A register data dependency can exist even if the value of thefirst data value is discarded as part of the calculation,
as might be the case if itis ANDed with 0x@ or if arithmetic using the first data value cancels out its contribution.

For example, each of the following code sequences creates order between the memory transactions:

Sequence 1 LDR X1, [X2]
AND X1, X1, XZR
LDR X4, [X3, X1]

Sequence 2 LDR X1, [X2]
ADD X3, X3, X1
SUB X3, X3, X1
STR X4, [X3]

Address dependencies of Load Non-temporal Pair instructions

Where an address dependency exists between two reads, and the second read was generated by a L oad
Non-temporal Pair instruction, then in the absence of any other barrier mechanism to achieve order, those memory
accesses can be observed in any order by other observers within the shareability domain of the memory addresses
being accessed.

This affects the following instruction:
. LDNP on page C6-542.

B2.7.3 Memory barriers

The ARM architecture is aweakly ordered memory architecture that supports out of order completion. Memory
barrier isthe general term applied to an instruction, or sequence of instructions, that forces synchronization events
by a PE with respect to retiring Load/Store instructions. The memory barriers defined by the ARMV8 architecture
provide arange of functionality, including:

. Ordering of Load/Store instructions.
. Completion of Load/Store instructions.
. Context synchronization.

The following subsections describe the ARMv8 memory barrier instructions:

. Instruction Synchronization Barrier (1ISB) on page B2-88

. Data Memory Barrier (DMB) on page B2-88.

. Data Synchronization Barrier (DSB) on page B2-89.

. Shareability and access limitations on the data barrier operations on page B2-90.
. Load-Acquire, Store-Release on page B2-90.

Note
Depending on the required synchroni zation, aprogram might use memory barriersontheir own, or it might usethem
in conjunction with cache maintenance and memory management instructions that in genera are only available
when software execution is at EL1 or higher.

TheDMB and DSB memory barriers affect reads and writesto the memory system generated by L oad/Storeinstructions
and data or unified cache maintenance instructions being executed by the PE. Instruction fetches or accesses caused
by a hardware translation table access are not explicit accesses.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-87
ID092916 Non-Confidentia

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the PE, so that all instructions that come after the ISB instruction in
program order are fetched from the cache or memory after the ISB instruction has completed. Using an ISB ensures
that the effects of context-changing operations executed before the ISB are visible to the instructions fetched after
the ISB instruction. Examples of context-changing operationsthat require theinsertion of an ISB instruction to ensure
the effects of the operation are visible to instructions fetched after the ISB instruction are:

. Completed cache and TLB maintenance instructions.

. Changes to System registers.

Any context-changing operations appearing in program order after the ISB instruction only take effect after the ISB
has been executed.

The pseudocode function for the operation of an ISB iSInstructionSynchronizationBarrier().

See also Memory barriers on page D3-1719.

Data Memory Barrier (DMB)

The DMB instruction is a datamemory barrier. The PE that executes the DMB instruction is referred to as the executing
PE, PEe. The DMB instruction takes an <option> argument that specifies the shareability domains and accesstypesto
which theinstruction applies, see Shareability and access limitations on the data barrier operations on page B2-90.

If the required shareability is Full system then the operation appliesto all observers within the system.
A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

. All explicit memory accesses of the required access types from observersin the same
reguired shareability domain as PEe that are observed by PEe before the DMB instruction.
These accesses include any accesses of the required access types performed by PEe.

. All loads of required access types from an observer PEx in the same required shareability
domain as PEe that have been observed by any given different observer, PEy, in the same
reguired shareability domain as PEe before PEy has performed a memory accessthat is a
member of Group A.

Group B Contains:

. All explicit memory accesses of the required accesstypes by PEethat occur in program order
after the DMB instruction.

. All explicit memory accesses of the required access types by any given observer PEx in the
same required shareability domain as PEethat can only occur after aload by PEX hasreturned
the result of a store that is a member of Group B.

Any observer with the same required shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the shareability and cacheability of the memory addresses accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary
system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory arrive
at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory. Where
the members of Group A and Group B that must be ordered are from the same PE, aDMB NSH is sufficient for this
guarantee.

B2-88 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

Note

. A memory access might bein neither Group A nor Group B. The DMB does not affect the order of observation
of such amemory access.

. The second part of the definition of Group A isrecursive. Ultimately, membership of Group A derivesfrom
the observation by PEy of aload before PEy performs an access that is a member of Group A as aresult of
the first part of the definition of Group A.

. The second part of the definition of Group B isrecursive. Ultimately, membership of Group B derives from
the observation by any observer of an access by PEe that isamember of Group B asaresult of the first part
of the definition of Group B.

DMB only affects memory accesses and the operation of data cache and unified cache maintenance instructions, see
Cache maintenance instructions on page D3-1703. It has no effect on the ordering of any other instructions
executing on the PE. A DMB instruction intended to ensure the completion of cache maintenance instructions must
have an access type of both loads and stores.

The pseudocode function for the operation of aDMB is DataMemoryBarrier().

See also Memory barriers on page D3-1719.

Data Synchronization Barrier (DSB)
The DSB instruction is amemory barrier, that synchronizes the execution stream with memory accesses.

TheDSB instruction takes an <option> argument that specifies the shareability domains and access typesto which the
instruction applies, see Shareability and access limitations on the data barrier operations on page B2-90.

If the required shareability is Full system then the operation applies to al observers within the system.

A DSB behaves as aDMB with the same arguments, and also has the additional properties defined in this section. The
PE that executes the DSB instruction is referred to as the executing PE, PEe

Execution of aDSB:

. At EL 2 ensuresthat any memory accesses caused by speculative translation table walks from the Non-secure
EL 1& 0 translation regime have been observed.

. At EL 3 ensures that any memory accesses caused by speculative transation table walks from any of the
following translation regimes have been observed:

— TheEL2 tranglation regime.
— The Secure EL1& 0 trandlation regime.
— TheNon-secure EL1& 0 tranglation regime.

For more information, see Use of out-of-context translation regimes on page D4-1735.
A DSB completes when al of the following apply:

. All explicit memory accesses that are observed by PEe before the DSB is executed and are of the required
access types, and are from observers in the same required shareability domain as PEe, are complete for the
set of observersin the required shareability domain.

. If therequired accesstypes of the DSB isreads and writes, then al cache maintenanceinstructionsand all TLB
mai ntenance instructions issued by PEe before the DSB are complete for the required shareability domain.

In addition, no instruction that appearsin program order after theDSB instruction can execute until the DSB compl etes.
The pseudocode function for the operation of aDSB isDataSynchronizationBarrier().

See also Memory barriers on page D3-1719.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-89
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

Shareability and access limitations on the data barrier operations

The DMB and DSB instructions take an argument that specifies:
. The shareability domain over which the instruction must operate. Thisis one of:
— Full system.
— Outer Shareable.
— Inner Shareable.
— Non-shareable.
. The accesses for which the instruction operates. Thisis one of:
— Read and write accesses in Group A and Group B.
— Write accesses only in Group A and Group B.
— Read accessonly in Group A and read and write accesses in Group B.

Note
Thisform of aDMB or DSB instruction can be described as a L oad-L oad/Store barrier.

Table B2-2 shows how these options are encoded in the <option> field of the instruction:

Table B2-2 Encoding of the DMB and DSB <option> parameter

Accesses Shareability domain

Group A Group B Full system Outer Shareable Inner Shareable = Non-shareable
Readsand writes ~ Readsand writes SY OSH ISH NSH

Writes Writes ST OSHST ISHST NSHST

Reads Reads and writes LD OSHLD ISHLD NSHLD

See the instruction descriptions for more information:
. DMB on page C6-515.
. DSB on page C6-518.

Note

ISB also supports an optional limitation argument that can only contain one value that corresponds to full system
operation, see ISB on page C6-532.

Load-Acquire, Store-Release

ARMV8 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores. See
Load-Acquire/Store-Release on page C3-151.

For al memory types, these instructions have the following ordering requirements:

. A Store-Release followed by a L oad-Acquire is observed in program order by any observersthat arein both:
— The shareability domain of the address accessed by the Store-Release.
— The shareability domain of the address accessed by the Load-Acquire.

. For aLoad-Acquire, observersin the shareability domain of the address accessed by the Load-Acquire
observe accesses in the following order:
1 The read caused by the Load-Acquire.

2. Reads and writes caused by |oads and stores that appear in program order after the Load-Acquire for
which the shareahility of the address accessed by the load or store requires that the observer observes
the access.

There are no additional ordering requirements on loads or stores that appear before the Load-Acquire.

B2-90 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

. For a Store-Release, observers in the shareability domain of the address accessed by the Store-Release
observe accesses in the following order:

1 All of the following for which the shareability of the address accessed requires that the observer

observes the access:

. Reads and writes caused by |oads and stores that appear in program order before the
Store-Release.

. Writes that were observed by the PE executing the Store-Release before it executed the
Store-Release.

2. The write caused by the Store-Release.

There are no other ordering requirements on loads or stores that appear in program order after the
Store-Release.

. A Store-Release instruction is multi-copy atomic when observed with a Load-Acquire instruction.

In addition, for accessesto amemory-mapped peripheral of an arbitrary system-defined size that are defined as any
type of Device memory accesses, these instructions have the following requirements:

. A Load-Acquire to an address in the memory-mapped peripheral ensures that all memory accesses using
Device memory typesto the same memory-mapped peripheral that are architecturally required to be observed
after the Load-Acquire will arrive at the memory-mapped periphera after the memory access of the
Load-Acquire.

. A Store-Release to an address in the memory-mapped peripheral ensures that all memory accesses using
Device memory typesto the same memory-mapped peripheral that are architecturally required to be observed
before the Store-Release will arrive at the memory-mapped peripheral before the memory access of the
Store-Release.

. If a Load-Acquire to amemory address in the memory-mapped peripheral has observed the value stored to
that address by a Store-Rel ease, then any memory access to the memory-mapped peripherd that is
architecturally required to be ordered before the memory access of the Store-Release will arrive at the
memory-mapped peripheral before any memory access to the same peripheral that isarchitecturally required
to be ordered after the memory access of the Load-Acquire.

Load-Acquire and Store-Rel ease, other than Load-Acquire Exclusive Pair and Store-Rel ease-Exclusive Pair, access
only asingle dataelement. This accessis single-copy atomic. The address of the data object must be aligned to the
size of the data element being accessed, otherwise the access generates an Alignment fault.

Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements. The address supplied to
the instructions must be aligned to twice the size of the element being |oaded, otherwise the access generates an
Alignment fault.

A Store-Release Exclusive instruction only has the rel ease semanticsif the store is successful.

Note
. Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the
equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity
properties:

— That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.
— That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

. The Load-Acquire/Store-Rel ease instructions can remove the requirement to use the explicit DM B memory
barrier instruction.

B2.7.4 Summary of the memory ordering rules

Thefollowing isaconcise list of the situations that are required, by the ARM architecture specification, to cause
externally-visible order of memory. This ordering means that if memory transaction A has externally visible order
ahead of memory transaction B, then all observers within the shareability domains of A and B will observe A
before B. See Terms used in the summary of the memory ordering rules for definitions of the terms used.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-91
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

Note
Thislist appliesto both AArch32 state and AArch64 state, and is consistent with the requirements of ARMv7.

1 DMB and DSB barrier instructions, and load acquire/store release instructions, create externally-visible order as
defined by those instructions.

2. A True or False Address dependency from aLoad to aLoad or from aLoad to a Store creates
externdly-visible order.

3. A True Control dependency from a Load to an ISB instruction creates externally-visible order between the
load and any memory accesses after the ISB instruction.

4, A True Register data dependency from a Load to a Store creates externally-visible order.
5. A True Control dependency from aLoad to a Store creates externally-visible order.

6. Memory is coherent within the shareability domain of a memory address, which meansthereis atotal order
of all writesto that addressthat all observers within that shareability domain will agree on.

Note
A consequence of thisis that reads to the same address by the same PE are observed in order.

7. A Dependency from a Storeto aL oad through memory between different PEs creates externally-visible order
but stores are not multi-copy atomic except where explicitly defined to be by the definition of the store.
Note

A consequence of the lack of multi-copy atomicity isthat a Store to Load dependency through memory on
the same PE does not create externally-visible order.

No other effects are required to create externally visible order in the ARM architecture.

Terms used in the summary of the memory ordering rules
The summary uses the following terms:

Register data dependency
Thisis defined in Address dependencies and order on page B2-86.

False Register data dependency
A False Register data dependency is a Register data dependency where no register in the system
holds avariable for which a change of the first data value causes a change of the second data value.
True Register data dependency
A True Register data dependency is a Register data dependency that is not a false Register data
dependency.
True Address dependency

A True Address dependency between aload and a subsequent memory transaction exists where
thereis a True Register data dependency between the data value returned from the load and the
address used by the subsequent memory transaction.

False Address dependency

A False Address dependency between aload and a subsegquent memory transaction exists where
there is a False Register data dependency between the data value returned from the load and the
address used by the subsequent memory transaction.

B2-92 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

True Control dependency

A True Control dependency between aload and a subsequent instruction exists:

. Where there is a True Register data dependency between the data value returned from the
load and data value used in the evaluation of a conditional branch and the subsequent
instruction is only executed as a result of one of the possible outcomes of that conditional
branch.

. Where there is a True Register data dependency between the data value returned from the
load and the data val ue used in the eval uation of a subsequent instruction that isaconditional
selection, move, or computation for which both:

— Thecondition is determined by the returned data value.

— Noinput data value for the selection, move, or computation has a register data
dependency on the returned data value.

Dependency from a Store to a Load through memory

A Dependency from a Store to a Load through memory exists where the Store and Load are to the
same physical address, and value returned by the Load is the value that was written by the Store,
and could not be the value that was previously held at that memory address.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-93

1D092916

Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

B2.8 Memory types and attributes

In ARMV8 the ordering of accesses for addressesin memory, referred to as the memory order model, is defined by
the memory attributes. The following sections describe this model:

. Normal memory.

. Device memory on page B2-98.

. Memory access restrictions on page B2-104.
B2.8.1 Normal memory

The Normal memory type attribute applies to most memory in asystem. It indicates that the hardware is permitted
by the architecture to perform speculative dataread accessesto these locations, regardless of the access permissions
for these locations.

The Norma memory type has the following properties:

. A writeto amemory location with the Normal attribute completesin finitetime. Thismeansthat itisglobally
observed for the shareability domain of the memory location in finitetime. For aNon-cacheablelocation, the
location is observed by all observersin finite time.

. A completed write to a memory location with the Normal attribute is globally observed for the shareability
domain of the memory location in finite time without the need for explicit cache maintenance instructions or
barriers. For a Non-cacheable location, the completed write is globally observed for al observersin finite
time without the need for explicit cache maintenance instructions or barriers.

. Writes to amemory location with the Normal memory attribute that are Non-cacheable must reach the
endpoint for that location in the memory system in finite time.

. Unaligned memory accesses can access Normal memory if the system is configured to generate such
accesses.

. Thereis no requirement for the memory system beyond the PE to be able to identify the elements accessed
by multi-register Load/Store instructions. See Multi-register loads and stores that access Normal memory on
page B2-98.

Note

. The Normal memory attributeis appropriate for locations of memory that are idempotent, meaning that they
exhibit all of the following properties:

— Read accesses can be repeated with no side-effects.
— Repeated read accesses return the last value written to the resource being read.
— Read accesses can fetch additional memory locations with no side-effects.

— Write accesses can be repeated with no side-effects if the contents of the location accessed are
unchanged between the repeated writes or as the result of an exception, as described in this section.

— Unaligned accesses can be supported.
— Accesses can be merged before accessing the target memory system.

. An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page B2-81 might be abandoned as aresult of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repesated write accesses to alocation that has been
changed between the write accesses.

The following sections describe the other attributes for Normal memory:
. Shareable Normal memory on page B2-95.

. Non-shareable Normal memory on page B2-96.

. Cacheability attributes for Normal memory on page B2-96.

B2-94 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

See also:
. Multi-register loads and stores that access Normal memory on page B2-98.
. Atomicity in the ARM architecture on page B2-81.

. Memory barriers on page B2-87. For accesses to Normal memory, aDMB instruction isrequired to ensure the
required ordering.

. Concurrent modification and execution of instructions on page B2-83.

Shareable Normal memory
A Normal memory location has a Shareability attribute that is one of:
. Inner Shareable, meaning it applies across the Inner Shareable shareability domain.

. Outer Shareable, meaning it applies across both the Inner Shareable and the Outer Shareabl e shareability
domains.

. Non-shareable.

The shareability attributes define the data coherency requirements of thelocation, that hardware must enforce. They
do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues between
data and instruction accesses on page B2-73.

Note

. System designers can use the shareahility attribute to specify the locations in Normal memory for which
coherency must be maintained. However, software devel opers must not assume that specifying a memory
location as Non-shareable permits software to make assumptions about the incoherency of the location
between different PEsin a shared memory system. Such assumptions are not portable between different
multiprocessing implementations that might use the shareability attribute. Any multiprocessing
implementation might implement caches that are shared, inherently, between different processing elements.

. This architecture assumesthat all PEs that use the same operating system or hypervisor arein the same Inner
Shareable shareability domain.

Shareable, Inner Shareable, and Outer Shareable Normal memory
The ARM architecture abstracts the system as a series of Inner and Outer Shareability domains.

Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Inner Shareable attribute made by any member of that set.

Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:

. Each observer is only amember of asingle Inner Shareability domain.
. Each observer is only amember of asingle Outer Shareability domain.
. All observersin an Inner Shareability domain are always members of the same Outer Shareability domain.
This means that an Inner Shareability domain is asubset of an Outer Shareability domain, although it is not
required to be a proper subset.
ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-95

1D092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Note

. Because all data accesses to Non-cacheable |ocations are data coherent to all observers, Non-cacheable
locations are always treated as Outer Shareable.

. The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating
system.

The details of the use of the shareability attributes are system-specific. Example B2-1 shows how they might be
used.

Example B2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

. In each cluster, the data caches or unified caches of the PEsin the cluster are transparent for al| data accesses
to memory locations with the Inner Shareable attribute.

. However, between the two clusters, the caches:
— Arenot required to be coherent for data accesses that have only the Inner Shareabl e attribute.
— Arecoherent for data accesses that have the Outer Shareable attribute.

Inthissystem, each cluster isin adifferent shareability domain for the Inner Shareable attribute, but all components
of the subsystem are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for
shared memory locations that do not need to be part of the Outer Shareable shareability domain.

For shareable Normal memory, the L oad-Exclusive and Store-Exclusive synchronization primitives take account of
the possibility of accesses by more than one observer in the same Shareability domain.

Non-shareable Normal memory

For Normal memory locations, the Non-shareabl e attribute identifies Norma memory that is likely to be accessed
only by asingle PE.

A location in Normal memory with the Non-sharesbl e attribute does not require the hardware to make data accesses
by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other
observers share the memory system, software must use cache maintenance instructions, if the presence of caches
might lead to coherency issues when communicating between the observers. This cache maintenance requirement
isin addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it iSIMPLEMENTATION DEFINED whether the Load-Exclusive and
Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

Cacheability attributes for Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory isassigned
a Cacheability attribute that is one of:

. Write-Through Cacheable.
. Write-Back Cacheable.
. Non-cacheable.

B2-96 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Also, for Write-Through Cacheable and Write-Back Cacheable Normal memory regions:
. A region might be assigned cache allocation hints for read and write accesses.

. It isIMPLEMENTATION DEFINED Whether the cache allocation hints can have an additional attribute of
Transient or Non-transient.

For more information see Cacheability, cache allocation hints, and cache transient hints on page D3-1695.

A memory location can be marked as having different cacheability attributes, for example when using aliasesin a
virtual to physical address mapping:

. If the attributes differ only in the cache allocation hint this does not affect the behavior of accesses to that
location.
. For other cases see Mismatched memory attributes on page B2-105.

The cacheability attributes provide amechanism of coherency control with observersthat lie outside the shareability
domain of aregion of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable regions of
memory might provide a better mechanism for controlling coherency than the use of hardware coherency
mechanismsor the use of cache maintenance routines. To thisend, the architecture requiresthefollowing properties
for Non-cacheable or Write-Through Cacheable memory:

. A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for alevel of
cache made by an observer accessing the memory system inside the level of cacheisvisibleto all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance.

. A completed write to a memory location that is Non-cacheable for alevel of cache made by an observer
accessing the memory system outside the level of cache isvisible to all observers accessing the memory
system inside the level of cache without the need of explicit cache maintenance.

. For accesses to Norma memory that is Non-cacheable, aDMB instruction ensures that all members of Group
A reach asingle peripheral or block of memory, of IMPLEMENTATION DEFINED Size, before any member of
Group B, where:

— Thedefinition of the operation of aDMB instruction defines Group A and Group B, see Data Memory
Barrier (DMB) on page B2-88.

— TheIMPLEMENTATION DEFINED size of the single peripheral or block of memory is defined by the
peripheral or block of memory.

This appliesfor all types of DMB instruction.

Note

Implementations can use the cache all ocation hints to indicate a probable performance benefit of caching. For
example, a programmer might know that a piece of memory is not going to be accessed again and would be better
treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache
alocation hints exists only as a hint for performance.

For Normal memory, the ARM architecture provides cacheability attributesthat are defined independently for each
of two conceptual levels of cache, the inner and the outer cache. The relationship between these conceptual levels
of cache and the implemented physical levels of cacheis IMPLEMENTATION DEFINED, and can differ from the
boundaries between the Inner and Outer Shareability domains. However:

. Inner refers to the innermost caches, meaning the caches that are closest to the PE, and aways includes the
lowest level of cache.

. No cachethat is controlled by the Inner cacheability attributes can lie outside acachethat is controlled by the
QOuter cacheability attributes.

. An implementation might not have any outer cache.

Example B2-2 on page B2-98, Example B2-3 on page B2-98, and Example B2-4 on page B2-98 describe the
possible ways of implementing a system with three levels of cache, level 1 (L1) to level 3 (L3).

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-97
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Note
. L1 cacheisthelevel closest to the PE, see Memory hierarchy on page B2-71.
. When managing coherency, system designs must consider both theinner and outer cacheability attributes, as

well as the shareability attributes. Thisis because hardware might have to manage the coherency of caches
at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

Example B2-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:
. The Inner cacheability attribute applied to L1 and L2 cache.
. The Outer cacheability attribute applied to L3 cache.

Example B2-3 Implementation with three inner and no outer cache levels

Implement the three levels of cachein the system, L1 to L3, with the Inner cacheability attribute appliedto L1, L2,
and L 3 cache. Do not use the Outer cacheability attribute.

Example B2-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:
. The Inner cacheability attribute applied to L1 cache.
. The Outer cacheability attribute applied to L2 and L3 cache.

Multi-register loads and stores that access Normal memory

For al instructions that load or store more than one general-purpose register from an Exception level thereisno
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For al instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture.

For al instructionsthat load or store one or more SIMD and floating-point register from an Exception level thereis
no requirement for the memory system beyond the PE to be ableto identify the size of the element accessed by these
load or store instructions.

B2.8.2 Device memory

The Device memory type attributes define memory locations where an accessto the | ocation can cause side-effects,
or where the value returned for aload can vary depending on the number of loads performed. Typically, the Device
memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for ARMv8 Device memory are:
Gathering Identified as G or nG, see Gathering on page B2-101.
Reordering Identified as R or nR, see Reordering on page B2-102.

Early Write Acknowledgement hint
Identified as E or nE, see Early Write Acknowledgement on page B2-103.

B2-98 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

The ARMv8

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Device memory types are:

Device-nGnRnE Device non-Gathering, non-Reordering, No Early write acknowledgement.

Equivalent to the Strongly-ordered memory typein earlier versions of the architecture.

Device-nGnRE Device non-Gathering, non-Reordering, Early Write Acknowledgement.

Equivalent to the Device memory type in earlier versions of the architecture.

Device-nGRE Device non-Gathering, Reordering, Early Write Acknowledgement.

Device-GRE

ARMV8 adds this memory type to the translation table formats found in earlier versions of
the architecture. The use of barriersisrequired to order accesses to Device-nGRE memory.

Device Gathering, Reordering, Early Write Acknowledgement.

ARMV8 adds this memory type to the translation table formats found in earlier versions of
the architecture. Device-GRE memory has the fewest constraints. It behaves similar to
Normal memory, with the restriction that speculative accesses to Device-GRE memory is
forbidden.

Collectively these are referred to as any Device memory type. Going down the list, the memory types are described
as getting weaker; conversely the going up the list the memory types are described as getting stronger.

Note

. Asthe

list of types shows, these additional attributes are hierarchical. For example, a memory location that

permits Gathering must also permit Reordering and Early Write Acknowledgement.

. The architecture does not require an implementation to distinguish between each of these memory types and
ARM recognizesthat not all implementationswill do so. The subsection that describes each of the attributes,
describes the implementation rules for the attribute.

. Earlier versions of the ARM architecture defined the following memory types:

Strongly-ordered memory. Thisis the equivalent of the Device-nGnRnE memory type.
Device memory. Thisis the equivalent of the Device-nGnRE memory type.

All of these memory types have the following properties:

. Specul

means

ative data accesses are not permitted to any memory location with any Device memory attribute. This
that each memory accessto any Device memory type must be onethat would be generated by asimple

sequential execution of the program.

The following exceptions to this apply:

Reads generated by the SIMD and floating-point instructions can access bytes that are not explicitly
accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to 16-bytes, that
contains at least one byte that is explicitly accessed by the instruction.

For Device memory with the Gathering attribute, reads generated by the LDNP instructions are
permitted to access bytes that are not explicitly accessed by the instruction, provided that the bytes
accessed are in a 128-byte window, aligned to 128-bytes, that contains at least one byte that is
explicitly accessed by the instruction.

Where aload or store instruction performs a sequence of memory accesses, as opposed to one
single-copy atomic access asdefined in the rulesfor single-copy atomicity, these accesses might occur
multiple times as aresult of executing the load or store instruction. See Properties of single-copy
atomic accesses on page B2-82.

Note

Aninstruction that generates a sequence of accesses as described in Atomicity in the ARM architecture
on page B2-81 might be abandoned as aresult of an exception being taken during the sequence of
accesses. On return from the exception the instruction is restarted, and therefore one or more of the
memory |ocations might be accessed multiple times. This can result in repeated accessesto alocation

ARM DDI 0487A.Kk_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-99

Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

where the program only defines a single access. For this reason, ARM strongly recommends that no
accesses to Device memory are performed from a single instruction that spans the boundary of a
translation granule or which in some other way could lead to some of the accesses being aborted.

— Write speculation that is visible to other observersis prohibited for all memory types.

. A writeto amemory location with any Device memory attribute completesin finite time. This meansthat it
is globally observed for all observersin the system in finite time.

. If alocation with any Device memory attribute changes without an explicit write by an observer, this change
must also be globally observed for all observersin the system in finite time. Such achange might occur in a
peripheral location that holds status information.

. A completed write to a memory location with any Device memory attribute is globally observed for all
observersin finite time without the need for explicit maintenance.

. Data accesses to memory locations are coherent for all observersin the system, and correspondingly are
treated as being Outer Shareable.

. A memory location with any Device memory attribute cannot be allocated into a cache.

. Writes to a memory location with any Device memory attribute must reach the endpoint for that addressin

the memory system in finite time. Typically, the endpoint is a peripheral or some physical memory.
. For accessesto any Device memory type, aDMB instruction ensuresthat all membersof Group A reachasingle
peripheral or block of memory, of IMPLEMENTATION DEFINED Size, before any member of Group B, where:

— Thedefinition of the operation of aDMB instruction defines Group A and Group B, see Data Memory
Barrier (DMB) on page B2-88.

— TheIMPLEMENTATION DEFINED Size of the single peripheral or block of memory is defined by the
peripheral or block of memory.

This appliesfor al types of DMB instruction.
. All accessesto memory with any Device memory attribute must be aligned. Any unaligned access generates
an Alignment fault at the first stage of trandlation that defined the location as being Device.

Note

IntheNon-secure EL1& O tranglation regimein systemswhere HCR_EL2.TGE==1and HCR_EL2.DC==0,
any Alignment fault that results from thefact that al locations are treated as Deviceisafault at thefirst stage
of trandation. This causes ESR_EL 2.1S5[24] to be 0.

. Hardware does not prevent specul ative instruction fetches from a memory location with any of the Device
memory attributes unless the memory location is also marked as Execute-never for al Exception levels.

Note

This means that to prevent speculative instruction fetches from memory locations with Device memory
attributes, any location that is assigned any Device memory type must aso be marked as Execute-never for
all Exception levels. Failure to mark amemory location with any Device memory attribute as Execute-never
for al Exception levelsis a programming error.

See also Memory access restrictions on page B2-104.

The memory types for Translation table walks cannot be defined as any Device memory type withinthe TCR_ELX.
For the Non-secure EL 1& O transl ation regime, the memory accesses made during a stage 1 translation table walk

are subject to astage 2 trandlation, and asaresult of this second stage of trandlation, the accesses from thefirst stage
trandlation table walk might be made to memory locations with any Device memory type. These accesses might be
made speculatively. When the value of the HCR_EL2.PTW bitis 1, astage 2 permission fault isgenerated if afirst
stage trand ation table walk is made to any Device memory type.

B2-100

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Note
In general, making atranglation table walk to any Device memory typeis the result of a programming error.

For instruction fetches, if branches cause the program counter to point to an area of memory with the Device
attribute which is not marked as Execute-never for the current Exception level, an implementation can either:

. Treat the instruction fetch asif it were to amemory location with the Normal Non-cacheable attribute.
. Take a Permission fault.

Gathering

In the Device memory attribute:
G Indicates that the location has the Gathering attribute.
nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.

The Gathering attribute determines whether it is permissible for either:

. Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a
single transaction.

. Multiple memory accesses of the same type, read or write, to different memory locations to be merged into
asingle memory transaction on an interconnect.

Note

This also applies to writebacks from the cache, whether caused by a Natural eviction or as aresult of a cache
maintenance instruction.

For memory typeswith the Gathering attribute, either of these behaviorsispermitted, provided that the ordering and
coherency rules of the memory location are followed.

For memory types with the non-Gathering attribute, neither of these behaviorsis permitted. As aresult:

. The number of memory accesses that are made corresponds to the number that would be generated by a
simple sequential execution of the program.

. All accesses occur at their programmed size, except that there is no requirement for the memory system
beyond the PE to be able to identify the elements accessed by multi-register Load/Store instructions. See
Multi-register loads and stores that access Device memory on page B2-103.

Gathering between memory accesses separated by amemory barrier that affects those memory accessesis not
permitted. Thisappliesif one memory accessisin Group A and onememory accessisin Group B. That is, gathering
is not permitted between amemory access in Group A and amemory access in Group B if the two accesses are
separated by a barrier that affects at least one of the accesses.

Gathering between two memory accesses generated by a L oad-Acquire/Store-Release is not permitted.

A read from amemory location with the non-Gathering attribute cannot come from a cache or a buffer, but must
come from the endpoint for that address in the memory system. Typically thisis a peripheral or physical memory.

Note

. A read from a memory location with the Gathering attribute can come from intermediate buffering of a
previous write, provided that:

— Theaccesses are not separated by aDMB or DSB barrier that affects both of the accesses, for example if
one accessisin Group A and the other isin Group B.

— The accesses are not separated by other ordering constructions that require that the accesses arein
order. Such a construction might be a combination of Load-Acquire and Store-Release.

— The accesses are not generated by a Store-Release instruction.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-101
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

. The ARM architecture only defines programmer visible behavior. Therefore, gathering can be performed if
aprogrammer cannot tell whether gathering has occurred.

Animplementation is permitted to perform an access with the Gathering attribute in a manner consistent with the
requirements specified by the Non-gathering attribute.

An implementation is not permitted to perform an access with the Non-gathering attribute in a manner consistent
with the relaxations allowed by the Gathering attribute.

Reordering
In the Device memory attribute:

R Indicates that the location has the Reordering attribute. Accesses to the location can be reordered
within the same rules that apply to accesses to Normal Non-cacheable memory. All memory types
with the Reordering attribute have the same ordering rules as accesses to Normal Non-cacheable
memory, see Memory ordering on page B2-84.

nR Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering.

—— Note

Some interconnect fabrics, such as PCle, perform very limited re-ordering, which is not important
for the software usage. It is outside the scope of the ARM architecture to prohibit the use of a
Non-reordering memory type with these interconnects.

For all memory typeswith the non-Reordering attribute, the order of memory accesses arriving at asingle peripheral
of IMPLEMENTATION DEFINED size, as defined by the peripheral, must be the same order that occursin asimple
sequential execution of the program. That is, the accesses appear in program order. This ordering appliesto all
accesses using any of the memory types with the non-Reordering attribute. As aresult, if there is a mixture of
Device-nGnRE and Device-nGnRNE accesses to the same peripheral, these occur in program order. If the memory
accesses are not to a peripheral, then this attribute imposes no restrictions.

Note

. The IMPLEMENTATION DEFINED size of the single peripheral isthe same as applies for the ordering guarantee
provided by the DMB instruction.

. The ARM architecture only defines programmer visible behavior. Therefore, reordering can be performed if
aprogrammer cannot tell whether reordering has occurred.

An implementation:

. Is permitted to perform an access with the Reordering attribute in a manner consistent with the requirements
specified by the non-Reordering attribute.

. Is not permitted to perform an access with the non-Reordering attribute in a manner consistent with the
relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which appliesto Normal
memory, between:

. Accesses with the non-Reordering attribute and accesses with the Reordering attribute.

. Accesses with the non-Reordering attribute and accesses to Normal memory.

. Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED Size.

The non-Reordering attribute has no effect on the ordering of cache maintenance instructions, even if the memory
location specified in the instruction has the non-Reordering attribute.

B2-102 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Early Write Acknowledgement

In the Device memory attribute:
E Indicates that the location has the Early Write Acknowledgement attribute.
nE Indicates that the location has the No Early Write Acknowledgement attribute.

Early Write Acknowledgement is a hint to the platform memory system. Assigning the No Early Write
Acknowledgement attribute to a Device memory location recommends that only the endpoint of the write access
returns a write acknowledgement of the access, and that no earlier point in the memory system returns awrite
acknowledge. This means that aDSB barrier, executed by the PE that performed the write to the No Early Write
Acknowledgement location, completes only after the write has reached its endpoint in the memory system.
Typically, this endpoint is a peripheral or physical memory.

When the Early Write Acknowledgement attribute is assigned to a Device memory location, there is no such
recommendation for the handling of accesses to that location.

Note

. The Early Write Acknowledgement hint has no effect on the ordering rules. The purpose of signaling no Early
Write Acknowledgement isto signa to the interconnect that the peripheral requires the ability to signal the
acknowledgement. The No Write Acknowledgement signal also provides an additional semantic that can be
interpreted by the driver that is accessing the peripheral.

. Thisattributeistreated asahint, asthe exact nature of theinterconnects accessed by a PE isoutside the scope
of the ARM architecture definition, and not all interconnects provide a mechanism to ensure that awrite has
reached the physical endpoint of the memory system.

. ARM recommends that writes with the No Early Write Acknowledgement hint are used for PCle
configuration writes. However, the mechanisms by which PCle configuration writes are identified are
IMPLEMENTATION DEFINED.

. ARM strongly recommends that the Early Write Acknowledgement hint is not ignored by a PE, but is made
available for use by the system.

Because the No Early Write Acknowledgement attribute is a hint:

. An implementation is permitted to perform an access with the Early Write Acknowledgement attributein a
manner consistent with the requirements specified by the No Early Write Acknowledgement attribute.

. Animplementation is permitted to perform an accesswith the No Early Write Acknowledgement attributein
amanner consistent with the relaxations allowed by the Early Write Acknowledgement attribute.

Multi-register loads and stores that access Device memory

For al instructions that load or store more than one general-purpose register from an Exception level thereisno
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For al instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture. This applies even to accesses to any type of
Device memory.

For al instructionsthat load or store one or more floating-point and SIMD register from an Exception level thereis
no requirement for the memory system beyond the PE to be ableto identify the size of the element accessed by these
load or store instructions, even for access to any type of Device memory.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-103
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

B2.8.3 Memory access restrictions
The following restrictions apply to memory accesses:

. For accesses to any two bytes, p and g, that are generated by the same instruction:

— Thebytesp and g must have the same memory type and shareability attributes, otherwise the results
are CONSTRAINED UNPREDICTABLE. For example, an LD1, ST1, or an unaligned |load or store that spans
the boundary between Normal memory and Device memory iS CONSTRAINED UNPREDICTABLE.

— Except for possible differences in the cache allocation hints, ARM deprecates having different
cacheability attributes for bytesp and g.

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a page boundary with different
memory types or Shareability attributes on page K1-5482.

. If the accesses of an instruction that causes multiple accesses to any type of Device memory cross an address
boundary that corresponds to the smallest implemented translation granule then behavior is CONSTRAINED
UNPREDICTABLE, and Crossing a peripheral boundary with a Device access on page K 1-5483 describes the
permitted behaviors. For this reason, it isimportant that an access to a volatile memory device is not made
using asingleinstruction that crosses an address boundary of the size of the smallest implemented trandlation
granule.

Note

— Theboundary referred to is between two Device memory regions that are both of the size of the
smallest implemented translation granule and aligned to the size of the smallest implemented
trandlation granule.

— Thisrestriction meansit is important that an access to a volatile memory device is not made using a
singleinstruction that crosses an address boundary of the size of the smallest implemented translation
granule.

— ARM expectsthisrestriction to constrain the placing of volatile memory devicesin the system
memory map, rather than expecting a compiler to be aware of the alignment of memory accesses.

B2-104 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.9 Mismatched memory attributes

B2.9 Mismatched memory attributes

Memory attributes are controlled by privileged software. For more information, see Chapter D4 The AArch64

Virtual Memory System Architecture.

Physical memory locations are accessed with mismatched attributes if all accesses to the location do not use a

common definition of all of the following attributes of that location:

. Memory type, Device or Normal.

. Shareahility.

. Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

Collectively these are referred to as memory attributes.

Note

The terms location and memory location refer to any byte within the current coherency granule and are used

interchangeably.

When amemory location is accessed with mismatched attributes the only software visible effects are one or more

of the following:

. Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

— A read of the memory location by one agent might not return the value most recently written to that
memory location by the same agent.

— Multiple writes to the memory location by one agent with different memory attributes might not be
ordered in program order.

. There might be aloss of coherency when multiple agents attempt to access a memory location.

. There might be aloss of properties derived from the memory type, as described in later bulletsin this section.

. If al Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory
location do not use consistent memory attributes, the exclusive monitor state becomes UNKNOWN.

. Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes
written with the Write-Back cacheabl e attribute might have their values reverted to the old values as aresult
of cache Write-Back.

Theloss of properties associated with mismatched memory type attributes refers only to the following properties of

Device memory that are additional to the properties of Norma memory:

. Prohibition of speculative read accesses.

. Prohibition on Gathering.

. Prohibition on Re-ordering.

For the following situations, when a physical memory location is accessed with mismatched attributes, a more

restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1 If the only memory type mismatch associated with amemory location acrossall users of the memory location
is between different types of Device memory, then all accesses might take the properties of the weakest
Device memory type.

2. Any agent that reads that memory |ocation using the same common definition of the shareability and
cacheability attributesis guaranteed to accessit coherently, to the extent required by that common definition
of the memory attributes, only if al of the following conditions are met:

. All aliases to the memory location with write permission both use a common definition of the
shareability and cacheability attributes for the memory location, and either:
— Havetheinner cacheability attribute the same as the outer cachesability attribute.
— In the Non-secure EL 1& 0 trandlation regime, have HCR_EL2.MIOCNCE set to 0.
. All aliasesto amemory location use a definition of the shareability attributes that encompasses all the
agents with permission to access the location.
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-105
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.9 Mismatched memory attributes

3. The possible software-visible effects caused by mismatched attributes for amemory location are defined
more precisely if al of the mismatched attributes define the memory location as one of:
. Any Device memory type.
. Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

. Possible loss of properties derived from the memory type when multiple agents attempt to access the
memory location.

. Possible reordering of memory transactions to the same memory location with different memory
attributes, potentially leading to aloss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory location that might use different attributes.

Where thereis aloss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1 If the mismatched attributes for amemory location all assign the same shareability attribute to the location,
any loss of uniprocessor semantics, ordering, or coherency within a shareability domain can be avoided by
use of software cache management. To do so, software must use the techniques that are required for the
software management of the ordering or coherency of cacheable |ocations between agentsin different
shareability domains. This means:

. Before writing to alocation not using the Write-Back attribute, software must invalidate, or clean, a
location from the cachesif any agent might have written to the location with the Write-Back attribute.
This avoids the possibility of overwriting the location with stale data.

. After writing to alocation with the Write-Back attribute, software must clean the location from the
caches, to make the write visible to external memory.

. Before reading the location with a cacheabl e attribute, software must invalidate the location from the
caches, to ensure that any value held in the caches reflects the last value made visible in externa

memory.

. Executing abMB barrier instruction, with scope that appliesto the common shareability of the accesses,
between any accesses to the same memory location that use different attributes.

In all cases:

. Location refersto any byte within the current coherency granule.

. A clean and invalidate instruction can be used instead of aclean instruction, or instead of aninvalidate
instruction.

. In the sequences outlined in this section, al cache maintenance instructions and memory transactions

must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the
use of acommon address, see Ordering and completion of data and instruction cache instructions on
page D3-1709.

Note

With software management of coherency, race conditions can cause loss of data. A race condition occurs
when different agents write simultaneoudly to bytes that are in the same location, and the invalidate, write,
clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also
occurs if the first operation of either sequence is a clean, rather than an invalidate.

2. If the mismatched attributes for alocation mean that multiple cacheable accesses to the location might be
made with different shareability attributes, then uniprocessor semantics, ordering, and coherency are
guaranteed only if:

. Each PE that accesses the location with a cacheable attribute performs a clean and invalidate of the
location before and after accessing that location.

. A DMB barrier with scopethat coversthefull shareability of the accessesis placed between any accesses
to the same memory location that use different attributes.

B2-106 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.9 Mismatched memory attributes

Note
The Notein rule 1 of thislist, about possible race conditions, also appliesto thisrule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access alocation,
and the accesses from the different agents have different memory attributes associated with the location, the
exclusive monitor state becomes UNKNOWN.

ARM strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-107

1D092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

B2.10 Synchronization and semaphores

ARMV8 provides non-blocking synchronization of shared memory, using synchronization primitives. The
information in this section about memory accesses by synchronization primitives appliesto accessesto both Normal
memory and to any type of Device memory.

Note
Use of the ARMV8 synchronization primitives scales for multiprocessing system designs.

Table B2-3 shows the synchronization primitives and the associated CLREX instruction.

Table B2-3 Synchronization primitives and associated instruction

Function A64 instruction
Load-Exclusive
Byte LDXRB, LDAXRB
Hafword LDXRH, LDAXRH
Registera LDXR, LDAXR
Paira LDXP, LDAXP

Store-Exclusive

Byte STXRB, STLXRB
Halfword STXRH, STLXRH
Registera STXR, STLXR
Paira STXP, STLXP
Clear-Exclusive CLREX

a. Theinstruction operates on adoubleword if accessing an
X register, or on aword if accessing aW register.

The model for the use of a L oad-Exclusive/Store-Exclusive instruction pair accessing a non-aborting memory

addressx is:
. The Load-Exclusive instruction reads a value from memory address x.
. The corresponding Store-Exclusiveinstruction succeedsin writing back to memory addressx only if no other

observer, process, or thread has performed a more recent store to address x. The Store-Exclusive instruction
returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction marks asmall block of memory for exclusive access. The size of the marked block is
IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block on page B2-115. A
Store-Exclusive instruction to any address in the marked block clears the marking.

Note

In this section, the term PE includes any observer that can generate a L oad-Exclusive or a Store-Exclusive
instruction.

The following sections give more information:

. Exclusive access instructions and Non-shareable memory locations on page B2-109.
. Exclusive access instructions and Shareable memory locations on page B2-111.

. Marking and the size of the marked memory block on page B2-115.

B2-108 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

. Context switch support on page B2-115.
. Load-Exclusive and Store-Exclusive instruction usage restrictions on page B2-115.
. Use of WFE and SEV instructions by spin-locks on page B2-118.

B2.10.1 Exclusive access instructions and Non-shareable memory locations

For memory locations for which the shareability attribute is Non-shareable, the exclusive access instructions rely
on alocal monitor that marks any address from which the PE executes a L oad-Exclusive instruction. Any
non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify any addressis guaranteed to
clear the marking.

A Load-Exclusiveinstruction performs aload from memory, and:
. The executing PE marks the physical memory address for exclusive access.
. The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusiveinstruction performs a conditional storeto memory that depends on the state of thelocal monitor:

If the local monitor is in the Exclusive Access state

. If the address of the Store-Exclusive instruction is the same as the address that has been
marked in the monitor by an earlier Load-Exclusive instruction, then the store occurs.
Otherwise, it isIMPLEMENTATION DEFINED Whether the store occurs.

. A status valueisreturned to aregister:
— If the store took place the status valueis 0.
— Otherwise, the status valueis 1.

. The local monitor of the executing PE transitions to the Open Access state.

If the local monitor is in the Open Access state

. No store takes place.
. A status value of 1 is returned to aregister.
. The local monitor remainsin the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.
When a PE writes using any instruction other than a Store-Exclusive instruction:

. If thewriteisto aphysical addressthat is not marked as Exclusive Access by itslocal monitor and that local
monitor isin the Exclusive Access stateit iSIMPLEMENTATION DEFINED whether the write aff ects the state of
the local monitor.

. If the write isto a physical addressthat is marked as Exclusive Access by itslocal monitor itis
IMPLEMENTATION DEFINED whether the write affects the state of the local monitor.

It isIMPLEMENTATION DEFINED Whether a store to a marked physical address causes a mark in the local monitor to
be cleared if that storeis by an observer other than the one that caused the physical address to be marked.

Figure B2-4 on page B2-110 shows the state machine for the local monitor and the effect of each of the operations
shown in the figure.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-109
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

LoadExc1(x) LoadExc1(x)

| v | J
Open Exclusive

|—> Access Access
Tf s

StoreExc1(x) Store(Marked_address)* Store(Marked_address)*
Store(x) Store(!Marked_address)* Store(!Marked_address)*
CLREX StoreExcl(Marked_address)
StoreExcl(!Marked_address)
CLREX

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExc1 represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the marked address to the most significant bits of the address x used for the operation.

Figure B2-4 Local monitor state machine diagram

For more information about marking see Marking and the size of the marked memory block on page B2-115.

Note
For the local monitor state machine, as shown in Figure B2-4:

. The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any physical address, but instead treats any access as matching the address
of the previous Load-Exclusive instruction.

. A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from
other PEs.
. The architecture does not require aload instruction by another PE, that is not a Load-Exclusive instruction,

to have any effect on the local monitor.

. It iSIMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs
when the Store or StoreExc1 isfrom another observer.

Changes to the local monitor state resulting from speculative execution

The architecture permits alocal monitor to transition to the Open Access state as a result of speculation, or from
some other cause. Thisisin addition to the transitions to Open Access state caused by the architectural execution
of an operation shown in Figure B2-4.

An implementation must ensure that:

. The local monitor cannot be seen to transition to the Exclusive Access state except as aresult of the
architectural execution of one of the operations shown in Figure B2-4.

. Any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown in Figure B2-4 must not indefinitely delay forward progress of execution.

B2-110 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

B2.10.2 Exclusive access instructions and Shareable memory locations

In the context of this section, a shareable memory location isamemory location that has, or istreated asif it has, a
Shareability attribute of Inner Shareable or Outer Shareable.

For shareable memory locations, exclusive access instructions rely on:

. A local monitor for each PE in the system, that marks any address from which the PE executes a
Load-Exclusive. Theloca monitor operates as described in Exclusive access instructions and Non-shareable
memory locations on page B2-109, except that for shareable memory any Store-Exclusive isthen subject to
checking by the global monitor if it is described in that section as doing at least one of the following:

— Updating memory.
— Returning a status value of 0.

The local monitor can ignore accesses from other PEs in the system.

. A global monitor that marks a physical address as exclusive access for a particular PE. Thismarking is used
|ater to determine whether a Store-Exclusive to that address that has not been failed by the local monitor can
occur. Any successful write to the marked block by any other observer in the shareability domain of the
memory location is guaranteed to clear the marking. For each PE in the system, the global monitor:

— Can hold at least one marked block.
— Maintains a state machine for each marked block it can hold.

Note

For each PE, the architecture only requires global monitor support for asingle marked address. Any situation
that might benefit from the use of multiple marked addresses on a single PE is UNPREDICTABLE or
CONSTRAINED UNPREDICTABLE, see Load-Exclusive and Store-Exclusive instruction usage restrictions on
page B2-115.

Note

The global monitor can either reside within the PE, or exist as a secondary monitor at the memory interfaces. The
IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor can be combined
into asingle unit, provided that the unit performs the global monitor and local monitor functions defined in this
manual .

For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementati ons might not implement this functionality
for dl locations of memory. In particular, this can apply to:

. Any type of memory in the system implementation that does not support hardware cache coherency.
. Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such asystem, it is defined by the system:
. Whether the global monitor isimplemented.
. If the global monitor isimplemented, which address ranges or memory types it monitors.

Note

To support the use of the L oad-Exclusive/Store-Exclusive mechanism when addresstransl ation isdisabled, asystem
might define at least one location of memory, of at least the size of the tranglation granule, in the system memory

map to support the global monitor for all ARM PEswithin acommon |nner Shareable domain. However, thisis not
an architectural requirement. Therefore, architecturally-compliant software that requires mutual exclusion must not
rely on using the L oad-Exclusive/Store-Exclusive mechanism, and must instead use a software algorithm such as

Lamport’s Bakery algorithm to achieve mutual exclusion.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-111
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

Because implementations can choose which memory types are treated as Non-cacheabl e, the only memory typesfor
which it is architecturally guaranteed that a global exclusive monitor isimplemented are:

. Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
alocation hints and not transient.

. Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read all ocation hints and Write
alocation hints and not transient.

The set of memory types that support atomic instructions must include al of the memory types for which a global
monitor isimplemented.

If the global monitor is not implemented for an address range or memory type, then performing a L oad-Exclusive
or a Store-Exclusive instruction to such alocation has one or more of the following effects:

. The instruction generates an external abort.

. The instruction generates an IMPLEMENTATION DEFINED MMU fault. Thisisreported using the Fault Status
code of ESR_ELX.DFSC = 110101.
If theIMPLEMENTATION DEFINED MMU fault is generated for the Non-secure EL 1& O trandlation regime then:

— If thefault is generated because of the memory type defined in the first stage of translation, or if the
second stage of trandation is disabled, then thisisafirst stage fault and the exception istaken to EL 1.

— Otherwise, the fault is a second stage fault and the exception is taken to EL 2.
The priority of thisfault iSIMPLEMENTATION DEFINED.

. Theinstruction is treated as aNOP.

. TheLoad-Exclusiveinstructionistreated asif it were accessing a Non-shareabl e location, but the state of the
local monitor becomes UNKNOWN.

. The Store-Exclusiveinstruction istreated asif it were accessing a Non-shareablelocation, but the state of the
local monitor becomes UNKNOWN. In this case, if the store exclusive instruction is a store exclusive pair of
64-bit quantities, then the two quantities being stored might not be stored atomically.

. The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observersthat do not implement exclusive accesses or other
atomic access mechanisms, the effect that writes have on the global and local monitors used by ARM PEsis
IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

. Some address ranges.
. Some memory types.
B2-112 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

Operation of the global monitor

A Load-Exclusive instruction from shareable memory performs aload from memory, and causes the physical
address of the access to be marked as exclusive access for the requesting PE. This access can aso cause the
exclusive access mark to be removed from any other physical address that has been marked by the requesting PE.

Note
The global monitor only supports a single outstanding exclusive access to shareable memory per PE.

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.
A Store-Exclusive instruction performs a conditional store to memory:

. The storeis guaranteed to succeed only if the physical address accessed is marked as exclusive accessfor the
requesting PE and both the local monitor and the global monitor state machines for the requesting PE arein
the Exclusive Access state. In this case:

— A dtatusvaue of Oisreturned to aregister to acknowledge the successful store.
— Thefinal state of the global monitor state machinefor therequesting PE iSIMPLEMENTATION DEFINED.

— Iftheaddress accessed ismarked for exclusive accessin the global monitor state machinefor any other
PE then that state machine transitions to Open Access state.

. If no addressis marked as exclusive access for the requesting PE, the store does not succeed:
— A statusvaue of 1isreturned to aregister to indicate that the store failed.
— Thegloba monitor is not affected and remains in Open Access state for the requesting PE.

. If adifferent physical addressis marked as exclusive access for the requesting PE, it iSIMPLEMENTATION
DEFINED Whether the store succeeds or not:

— If the store succeeds a status value of 0 isreturned to aregister, otherwise avalue of 1 isreturned.

— If the global monitor state machine for the PE wasin the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED Whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In ashared memory system, the global monitor implements a separate state machine for each PE in the system. The

state machine for accesses to shareable memory by PE(n) can respond to al the shareable memory accessesvisible

toit. Thismeans it responds to:

. Accesses generated by PE(n).

. Accesses generated by the other observersin the shareability domain of the memory location. These accesses
areidentified as (In).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-113

1D092916

Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

Clear global monitor event

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see Mechanisms
for entering a low-power state on page D1-1599.

Figure B2-5 shows the state machine for PE(n) in aglobal monitor.

LoadExc1(x,n)

LoadExc1(x,n)

Open
Access

-

|t

y |

Exclusive
Access

|

al

CLREX(n)
CLREX(!'n)
LoadExc1(x, !'n)
StoreExcl(x,n)
StoreExcl(x, !n)
Store(x,n)
Store(x, !'n)

StoreExc1(Marked_address, In)t
Store(Marked_address, !'n)
StoreExcl(Marked_address,n)*
StoreExcl(!Marked_address,n)*
Store(Marked_address,n)*
CLREX(n)*

StoreExc1(Marked_address, 'n)t
Store(!Marked_address,n)
StoreExcl(Marked_address,n)*
StoreExc1(!Marked_address,n)*
Store(Marked_address,n)*
CLREX(n)*
StoreExcl(!Marked_address, !'n)
Store(!Marked_address, !'n)
CLREX(!n)

$StoreExcT(Marked_address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExc]1 represents any Load-Exclusive instruction
StoreExcT represents any Store-Exclusive instruction

Store represents any other store instruction.

Any LoadExc1 operation updates the marked address to the most significant bits of the address x used for the operation.

Figure B2-5 Global monitor state machine diagram for PE(n) in a multiprocessor system

For more information about marking see Marking and the size of the marked memory block on page B2-115.

Note

For the global monitor state machine, as shown in Figure B2-5:

. The architecture does not require aload instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the global monitor.

. Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction,
and whether the local and global monitors arein the exclusive state. For this reason, Figure B2-5 only shows
how the operations by (!n) cause state transitions of the state machine for PE(n).

. A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

. When the global monitor isin the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.

. ItiSIMPLEMENTATION DEFINED:

Whether a modification to a Non-shareable memory location can cause a global monitor to transition

from Exclusive Access to Open Access state.

Whether aL oad-Exclusiveinstruction to aNon-shareable memory |ocation can cause agloba monitor
to transition from Open Access to Exclusive Access state.

B2-114

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidentia

ARM DDI 0487A.k _iss10775
1D092916

B2.10.3

B2.10.4

B2.10.5

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the
64-bit memory address.

When a Load-Exclusive instruction is executed, amarked block of size 22 bytesis created by ignoring the least
significant bits of the memory address. A marked address is any address within this marked block. The size of the
marked memory block is called the Exclusives reservation granule. The Exclusives reservation granule is
IMPLEMENTATION DEFINED in the range 4 - 512 words.

Note
This definition means that the Exclusives reservation granuleis:
. 4 wordsin an implementation wherea is 4.
. 512 words in an implementation where a is 11.

For example, in animplementation wherea is 4, asuccessful LDXRB of address 0x341B4 defines amarked block using
bitg[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for
exclusive access.

In someimplementationsthe CTR identifiesthe Exclusivesreservation granule, see CTR_EL 0. Otherwise, software
must assume that the maximum Exclusives reservation granule, 512 words, is implemented.

Context switch support

An exception return clears the local monitor. As aresult, performing aCLREX instruction as part of a context switch
is not required in most situations.

Note

Context switching is not an application level operation. However, thisinformation isincluded here to complete the
description of the exclusive operations.

Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDXP/STXP pair or aLDXR/STXR pair. To support different implementations of these functions, software must follow the
notes and restrictions given here.

The following notes describe the use of a LoadExc1/StoreExcl pair, to indicate the use of any of the
L oad-Exclusive/Store-Exclusive pairs shown in Table B2-3 on page B2-108. In this context, a LoadExc1/StoreExc]
pair comprises two instructionsin the same thread of execution:

. The exclusives support a single outstanding exclusive access for each PE thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal()
function. If the target virtual address of a StoreExc] is different from the virtual address of the preceding
LoadExc1 instruction in the same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with
the following behavior:

— TheStoreExc either passes or fails, and the status value returned by the StoreExcl iS UNKNOWN.

Note

Thismeansthe StoreExc1 might passfor someinstancesof alLoadExc1/StoreExcl pair with mismatched
addresses, and fail for other instances of a LoadExc1/StoreExcl pair with mismatched addresses.

— Thedataat the address accessed by the LoadExc1, and at the address accessed by the StoreExcl, is
UNKNOWN.

This means software can rely on aLoadExc1/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl are executed with the same virtual address.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-115

1D092916

Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

. If two StoreExcl instructions are executed without an intervening LoadExc1 instruction the second StoreExcl
instruction returns a status value of 1. This means that:
— ARM recommends that, in a given thread of execution, every StoreExc1 instruction has a preceding
LoadExc1 instruction associated with it.

It is not necessary for every LoadExc] instruction to have a subsequent StoreExc1 instruction.

. Animplementation of the L oad-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of aStoreExcl instruction is the same as the transaction size of the preceding
LoadExc1 instruction executed in that thread. If thetransaction size of aStoreExcl instructionis different from
the preceding LoadExc1 instruction in the same thread of execution, behavior can be CONSTRAINED
UNPREDICTABLE with the following behavior:

— TheStoreExcl either passes or fails, and the status value returned by the StoreExcl iS UNKNOWN.

Note

Thismeansthe StoreExc1 might passfor someinstances of aLoadExc1/StoreExc pair with mismatched
transaction sizes, and fail for other instances of alLoadExc1/StoreExc1 pair with mismatched transaction
sizes.

— Theblock of data of the size of the larger of the transaction sizes used by the LoadExc1/StoreExcl pair
at the address accessed by the LoadExc1/StoreExc] pair, iS UNKNOWN.

This means software can rely on aLoadExc1/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExc1 have the same transaction size.

. An implementation of the LoadExc1 and StoreExc1 instructions can require that, in any thread of execution,
the StoreExc1 instruction accesses the same number of registers as the preceding LoadExc1 instruction
executed in that thread. If the StoreExc1 instruction accesses adifferent number of registersthan the preceding
LoadExc1 instruction in the same thread of execution, behavior is CONSTRAINED UNPREDICTABLE. Asaresult,
software can rely on an LoadExc1/StoreExcl pair to eventually succeed only if they access the same number
of registers. For more information see CONSTRAINED UNPREDICTABLE behavior when
Load-Exclusive/Store-Exclusive access a different number of registers on page B2-118.

. LoadExc1/StoreExc1 loops are guaranteed to make forward progress only if, for any LoadExc1/StoreExcl loop
within a single thread of execution, the software meets all of the following conditions:

1 Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory accesses,
preloads, direct or indirect System register writes, address translation instructions, cache or TLB
maintenance instructions, exception generating instructions, exception returns, or indirect

branches.
2 Between the Store-Exclusive returning a failing result and the retry of the corresponding

Load-Exclusive:

. There are no stores or PLDW instructions to any address within the Exclusives reservation
granule accessed by the Store-Exclusive.

. There are no loads or preloads to any address within the Exclusives reservation granule
accessed by the Store-Exclusive that use a different VA aliasto that address.

. There are no direct or indirect System register writes, address trandlation instructions,

cache or TLB maintenance instructions, exception generating instructions, exception
returns, or indirect branches.

. All loads and stores are to a block of contiguous virtual memory of not more than 512
bytesin size.

The exclusive monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so asto prevent the forward progress in finite time of at least one of
the threads that is accessing the exclusive monitor.

. Implementations can benefit from keeping the LoadExc1 and StoreExc1 operations close together in asingle
thread of execution. This minimizes the likelihood of the exclusive monitor state being cleared between the
LoadExc] instruction and the StoreExc1 instruction. Therefore, for best performance, ARM strongly
recommends alimit of 128 bytes between LoadExc1 and StoreExc] instructionsin asingle thread of execution.

B2-116 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

. The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked
as exclusive. For performance reasons, ARM recommends that objects that are accessed by exclusive
accesses are separated by the size of the exclusive reservations granule. Thisis a performance guideline
rather than a functional requirement.

. After taking a Data Abort exception, the state of the exclusive monitors is UNKNOWN.

. For the memory location accessed by aLoadExc1/StoreExcl pai, if the memory attributes for a StoreExcl
instruction are different from the memory attributesfor the preceding LoadExc1 instruction in the same thread
of execution, behavior is CONSTRAINED UNPREDICTABLE. Where this occurs because the trand ation of the
accessed address changes between the LoadExc1 instruction and the StoreExc1 instruction, the CONSTRAINED
UNPREDICTABLE behavior is as follows:

— TheStoreExc either passes or fails, and the status value returned by the StoreExc1 iS UNKNOWN.

Note

This means the StoreExc1 might pass for some instances of a LoadExc1/StoreExc1 pair with changed
memory attributes, and fail for other instances of a LoadExc1/StoreExc1 pair with changed memory
attributes.

— Thedata at the address accessed by the StoreExc1 iS UNKNOWN.

Note

Another bullet point in thislist covers the case where the memory attributes of aLoadExc1/StoreExcl pair
differ as aresult of using different virtual addresses with different attributes that point to the same physical
address.

. The effect of adataor unified cache invalidate, clean, or clean and invalidate instruction on alocal or global
exclusive monitor that isin the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction
might clear the monitor, or it might leaveit in the Exclusive Access state. For address-based maintenance
instructions, this also appliesto the monitors of other PEsin the same shareability domain asthe PE executing
the cache maintenance instruction, as determined by the shareability domain of the address being maintained.

Note

ARM strongly recommends that implementations ensure that the use of such maintenance instructions by a
PE in the Non-secure state cannot cause adenial of service on a PE in the Secure state.

. If the mapping of the virtual to physical address is changed between the LoadExc1 instruction and the STREX
instruction, and the change is performed using a break-before-make sequence as described in Using
break-before-make when updating translation table entries on page D4-1816, if the StoreExc1 is performed
after another write to the same physical addressasthe StoreExc1, and that other write was performed after the
old translation was properly invalidated and that invalidation was properly synchronized, then the StoreExc1
will not pass its monitor check.

Note
ARM expects that, in many implementations, either:

— TheTLB invalidation will clear either the local or global monitor.
— Thephysica addresswill be checked between the LoadExc1 and StoreExcl.

Note

In the event of repeatedly-contending LoadExc1/StoreExcl instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. B2-117
ID092916 Non-Confidential

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

CONSTRAINED UNPREDICTABLE behavior when Load-Exclusive/Store-Exclusive
access a different number of registers

As stated in this section, an implementation can require that the instructions of a Load-Exclusive/Store-Exclusive
pair access the same number of registers. In such an implementation, this means behavior is CONSTRAINED
UNPREDICTABLE if, in asingle thread of execution, either:

. An LDXP instruction of two 32-bit quantitiesis followed by an STXR instruction of one 64-bit quantity at the
same address.

. An LDXR instruction of one 64-bit quantity is followed by an STXP instruction of two 32-bit quantities at the
same address.

In these cases, the CONSTRAINED UNPREDICTABLE behavior must be one of::
. The STXP or STXR instruction generates an external Data Abort.

. The STXP or STXR instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Fault
Status code of ESR_ELx.DFSC = 0b110101.

. The STXP or STXR instruction always fails, returning a status of 1.
. The STXP or STXR instruction always passes, returning a status of 0.

. This STXP or STXR instruction has the same pass or fail behavior that it would have had if the instruction had
used the same size and number of registers as the preceding LDXR or LDXP instruction.

B2.10.6 Use of WFE and SEV instructions by spin-locks

ARMV8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, and SEVL, that can assist
with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock.
These instructions can be used at the application level, but a complete understanding of what they do dependson a
system level understanding of exceptions. They are described in Wait for Event mechanism and Send event on
page D1-1599. However, in ARMv8, when the global monitor for a PE changes from Exclusive Access state to
Open Access state, an event is generated.

Note

Thisis equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the
need for spinlock code to include an SEV instruction after clearing a spinlock.

B2-118 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Part C
The AArch64 Instruction Set

_iss10775

_iss10775

Chapter C1

The A64 Instruction Set

This chapter describes the A64 instruction set. It contains the following sections:

About the A64 instruction set on page C1-122.

Structure of the A64 assembler language on page C1-123.
Address generation on page C1-128.

Instruction aliases on page C1-131.

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C1-121

C1 The A64 Instruction Set
C1.1 About the A64 instruction set

C1.1 About the A64 instruction set

The A64 instruction set is the instruction set supported in the AArch64 Execution state.

All A64 instructions have awidth of 32 bits. The A64 encoding structure breaks down into the following functional

groups:
. A miscellaneous group of branch instructions, exception generating instructions, and system instructions.
. Data-processing instructions associated with general-purpose registers. These instructions are supported by

two functional groups, depending on whether the operands:
— Areadl heldin registers.
— Include an operand with a constant immediate value.

. Load and storeinstructions associated with the general -purpose register file and the SIMD and floating-point
register file.

. SIMD and scalar floating-point data-processing instructions that operate on the SIMD and floating-point
registers.

The encoding hierarchy within afunctional group breaks down as follows:

. A functional group consists of a set of related instruction classes. A64 instruction index by encoding on
page C4-192 provides an overview of the instruction encodings in the form of alist of instruction classes
within their functional groups.

. Aninstruction class consists of aset of related instruction forms. Instruction forms are documented in one of
two aphabetic lists:

— Theload, store, and data-processing instructions associated with the general-purpose registers,
together with thosein the other instruction classes. See Chapter C6 A64 Base Instruction Descriptions.

— Theload, store, and data-processing instructions associated with the SIM D and floating-point support.
See Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.
. An instruction form might support a single instruction syntax. Where an instruction supports more than one
syntax, each syntax is an instruction variant. Instruction variants can occur because of differencesin:
— Thesize or format of the operands.
— Theregister file used for the operands.
— The addressing mode used for |oad/l oad/store memory operands.
Instruction variants might also arise as the result of other factors.
Instruction variants are described in the instruction description for the individual instructions.

A64 instructions have a regular bit encoding structure:
. 5-bit register operand fields at fixed positions within the instruction. For general -purpose register operands,
the values 0-30 select one of 31 registers. The value 31 isused as a special case that can:

— Indicate use of the current stack pointer, when identifying aload/store base register or in alimited set
of data-processing instructions. See The stack pointer registers on page D1-1507.

— Indicate the value zero when used as a source register operand.
— Indicate discarding the result when used as a destination register operand.
For SIMD and floating-point register access, the value used selects one of 32 registers.
. Immediate bits that provide constant data-processing values or address offsets are placed in contiguous

bitfields. Some computed valuesin instruction variants use one or moreimmediate bitfields together with the
secondary encoding bitfields.

All encodings that are not fully defined are described as unallocated. An attempt to execute an unallocated
instruction is UNDEFINED, unless the behavior is otherwise defined in this Manual .

C1-122 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

C1.2 Structure of the A64 assembler language

The letter W denotes a general-purpose register holding a 32-bit word, and X denotes a general -purpose register
holding a 64-bit doubleword.

An A64 assembler recognizes both upper-case and lower-case variants of the instruction mnemonics and register
names, but not mixed case variants. An A64 disassembler can output either upper-case or lower-case mnemonics
and register names. Program and data labels are case-sensitive.

The A64 assembly language does not require the # character to introduce constant immediate operands, but an
assembler must allow immediate valuesintroduced with or without the # character. ARM recommends that an A64
disassembler outputs a# before an immediate operand.

In Example C1-1 on page C1-124 the sequence// is used as a comment |leader and A64 assemblers are encouraged
to accept this syntax.

Cc1.21 Common syntax terms
The following syntax terms are used frequently throughout the A64 instruction set description.

UPPER Text in upper-case lettersis fixed. Text in lower-case |ettersis variable. This means that register
name Xn indicates that the X is required, followed by a variable register number, for example x29.

<> Any text enclosed by angle braces, < >, isavalue that the user supplies. Subsequent text might
supply additional information.

{1} Any item enclosed by curly brackets, { }, isoptional. A description of theitem and how its presence
or absence affects the instruction is normally supplied by subsequent text. In some cases curly
braces are actual symbolsin the syntax, for example when they surround aregister list. These cases
are called out in the surrounding text.

[1] Any items enclosed by square brackets, [], constitute alist of aternative characters. A single one
of the characters can be used in that position and the subsequent text describes the meaning of the
alternatives. In some case the square brackets are part of the syntax itself, such as addressing modes
or vector elements. These cases are called out in the surrounding text.

alb Alternative words are separated by avertical bar, |, and can be surrounded by parenthesesto delimit
them. For example, U(ADD|SUB)W represents UADDW Or USUBW.

I+

Thisindicates an optional + or - sign. If neither is used then + is assumed.

uimmn An n-bit unsigned, positive, immediate value.

simmn An n-bit two’'s complement, signed immediate value, where n includes the sign bit.
SP See Register names on page C1-124.

Wn See Register names on page C1-124.

WSP See Register names on page C1-124.

WZR See Register names on page C1-124.

Xn See Register names on page C1-124.

XZR See Register names on page C1-124

C1.2.2 Instruction Mnemonics

The A64 assembly language overloads instruction mnemonics and distinguishes between the different forms of an
instruction based on the operand types. For example, the following ADD instructions al have different opcodes.
However, the programmer must only remember one mnemonic, as the assembler automatically chooses the correct
opcode based on the operands. The disassembler follows the same procedure in reverse.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C1-123
ID092916 Non-Confidential

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

Example C1-1 ADD instructions with different opcodes

ADD WO, W1, W2 // add 32-bit register
ADD X0, X1, X2 // add 64-bit register
ADD X0, X1, W2, SXTW // add 64-bit extended register
ADD X0, X1, #42 // add 64-bit immediate

C1.2.3 Condition Code
The A64 ISA has some instructions that set condition flags or test condition codes or both. For information about
instructionsthat set the condition flags or use the condition mnemonics, see Condition flags and related instructions
on page C6-433.
Table C1-1 shows the available condition codes.

Table C1-1 Condition codes
cond Mnemonic Meaning (integer) Meaning (floating-point)a Condition flags
0000 EQ Equal Equal Z==
0001 NE Not equal Not equal or unordered Z==
0010 CSorHS Carry set Greater than, equal, or unordered C==
0011 CCorLo Carry clear Lessthan C==
0100 MI Minus, negative Lessthan N ==
0101 PL Plus, positive or zero Greater than, equal, or unordered N ==
0110 VS Overflow Unordered V==
0111 VC No overflow Ordered V==
1000 HI Unsigned higher Greater than, or unordered C==18&& Z==
1001 LS Unsigned lower or same Less than or equal (C==1&& Z==0)
1010 GE Signed greater than or equal Greater than or equal N ==
1011 LT Signed less than Less than, or unordered NI =V
1100 GT Signed greater than Greater than Z==0&& N==
1101 LE Signed less than or equal Lessthan, equal, or unordered (Z==0&& N==V)
1110 AL Always Always Any
1111 Nvb Always Always Any

a Unordered means at least one NaN operand.
b. The condition code Nv exists only to provide avalid disassembly of the 0b1111 encoding, otherwise its behavior isidentical to AL.
C1.24 Register names
This section describes the AArch64 registers. It contains the following subsections:
. General-purpose register file and the stack pointer on page C1-125.
. SIMD and floating-point register file on page C1-125.
. SIMD and floating-point scalar register names on page C1-126.
. SIMD vector register names on page C1-126.
C1-124 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

. SIMD vector element names on page C1-126.

General-purpose register file and the stack pointer

The 31 general-purpose registers in the general -purpose register file are named R0O-R30 and encoded in the
instruction register fields with values 0-30. A general-purpose register field that encodes the value 31 represents
either the current stack pointer or the zero register, depending on the instruction and the operand position.

When theregistersare used in aspecific instruction variant, they must be qualified to indicate the operand datasize,
32 hits or 64 hits, and the data size of the instruction.

When the data sizeis 32 hits, the lower 32 bits of the register are used and the upper 32 bits are ignored on aread
and cleared to zero on awrite.

Table C1-2 shows the qualified names for registers, wheren is aregister number 0-30.

Table C1-2 General-purpose register names

Name Size Encoding Description
Wn 32 hits 0-30 General-purpose register 0-30
Xn 64 hits 0-30 General-purpose register 0-30
WZR 32 hits 31 Zero register
XZR 64 hits 31 Zero register
WSP 32 bits 31 Current stack pointer

SP 64 hits 31 Current stack pointer

The following list provides further details relating to Table C1-2.
. The names Xn and Wn both refer to the same general-purpose register, Rn.
. Thereis no register named W31 or X31.

. The name SP represents the stack pointer for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as aread or write of the current stack pointer. When instructions
do not interpret this operand encoding as the stack pointer, use of the name SP is an error.

. The name WSP represents the current stack pointer in a 32-bit context.

. The name XZR represents the zero register for 64-bit operands where an encoding of the value 31 in the
corresponding register field isinterpreted as returning zero when read or discarding the result when written.
When instructions do not interpret this operand encoding asthe zero register, use of the name XZRisan error.

. The name WZR represents the zero register in a 32-bit context.

. The architecture does not define a specific namefor general -purpose register R30 to reflect itsrole asthelink
register on procedure calls. However, an A64 assembler must always use W30 and X30 for this purpose, and
additional software names might be defined as part of the Procedure Call Standard, see Procedure Call
Standard for the ARM 64-bit Architecture.

SIMD and floating-point register file

The 32 registersin the SIMD and floating-point register file, V0-V 31, hold floating-point operands for the scalar
floating-point instructions, and both scalar and vector operands for the SIMD instructions. When they areused in a
specific instruction form, the names must be further qualified to indicate the data shape, that isthe dataelement size
and the number of elements or lanes within the register. A similar requirement is placed on the general-purpose
registers. See General-purpose register file and the stack pointer.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C1-125
ID092916 Non-Confidential

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

Note

The datatypeis described by the instruction mnemonics that operate on the data. The datatype is not described by
the register name. The data type is the interpretation of bits within each register or vector element, whether these
are integers, floating-point values, polynomials or cryptographic hashes.

SIMD and floating-point scalar register names

SIMD and floating-point instructions that operate on scalar data only access the lower bits of aSIMD and
floating-point register. The unused high bits areignored on aread and cleared to 0 on awrite.

Table C1-3 shows the qualified names for accessing scalar SIMD and floating-point registers. The |etter n denotes
aregister number between 0 and 31.

Table C1-3 SIMD and floating-point scalar register names

Size Name
8 bits Bn
16 bits Hn
32 bits Sn
64 bits Dn
128 hits Qn

SIMD vector register names

If aregister holds multiple data elements on which arithmetic is performed in aparallel, SIMD, manner, then a
qualifier describesthe vector shape. The vector shapeisthe element size and the number of elements or lanes. If the
element sizein bits multiplied by the number of lanes does not equal 128, then the upper 64 bits of the register are
ignored on aread and cleared to zero on awrite.

Table C1-4 shows the SIMD vector register names. The letter n denotes a register number between 0 and 31.

Table C1-4 SIMD vector register names

Shape Name
8 bits x 8 lanes Vn.8B
8 bits x 16 lanes Vn.168B
16 bits x 4 lanes Vn.4H
16 bits x 8 lanes Vn.8H
32 bits x 2 lanes Vn.2S
32 bits x 4 lanes Vn.4S
64 bitsx 1 lane Vn.1D
64 bits x 2 lanes Vn.2D

SIMD vector element names

Appending a constant, zero-based element index to the register name inside square brackets indicates that asingle
element from aSIMD and floating-point register isused asascalar operand. The number of lanesis not represented,
asitisnot encoded in the instruction and can only be inferred from the index value.

C1-126 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

Table C1-5 shows the vector register names and the element index. The letter i denotes the element index.

Table C1-5 Vector register names with element index

Size Name
8 bits Vn.B[i]
16 bits Vn.H[i]
32 hits Vn.S[i]
64 bits Vn.D[i]

An assembler must accept afully qualified SIMD register name, if the number of lanesis greater than the index
value. See SIMD vector register names on page C1-126. For example, an assembler must accept all of the following
forms as the name for the 32-bit element in bits [63:32] of the SIMD and floating-point register V9:

V9.S[1] //standard disassembly
V9.2S5[1] //optional number of Tanes
V9.4S5[1] //optional number of Tanes

Note

The SIMD and floating-point register element name vn.S[@] isnot equivalent to the scalar SIMD and floating-point
register name Sn. Although they represent the same bits in the register, they select different instruction encoding
forms, either the vector element or the scalar form.

SIMD vector register list

Where an instruction operates on multiple SIMD and floating-point registers, for example vector Load/Store
structure and table lookup operations, the registers are specified asalist enclosed by curly braces. Thislist consists
of either asequence of registers separated by commas, or aregister range separated by ahyphen. The registers must
be numbered in increasing order, modulo 32, in increments of one. The hyphenated form is preferred for
disassembly if there are more than two registersin the list and the register number are increasing. The following
examplesare equivalent representations of a set of four registersv4 to v7, each holding four lanes of 32-bit elements:

{ V4.4S - V7.4S } //standard disassembly
{ V4.4S, V5.4S, V6.4S, V7.4S } //alternative representation

SIMD vector element list

Registersin alist can also have a vector element form. For example, the LD4 instruction can load one element into
each of four registers, and in this case the index is appended to thelist as follows:

{ V4.5 - V7.5 }[3] //standard disassembly
{ V4.4S, V5.4S, V6.4S, V7.4S }[3] //alternative with optional number of lanes

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C1-127

1D092916

Non-Confidential

C1 The A64 Instruction Set
C1.3 Address generation

C1.3 Address generation

The A64 instruction set supports 64-bit addresses. The valid address range is determined by the following factors:
. The size of the implemented virtual address space.
. Memory Management Unit (MMU) configuration settings.

The top 8 bits of the 64-bit address can be used as atag, see Address tagging in AArch64 state on page D4-1724.
For more information on memory management and address translation, see Chapter D4 The AArch64 Virtual
Memory System Architecture.

C1.31 Register indexed addressing

The A64 instruction set allows a 64-bit index register to be added to the 64-bit base register, with optional scaling
of theindex by the access size. Additionally it allows for sign-extension or zero-extension of a 32-bit value within
an index register, followed by optional scaling.

C1.3.2 PC-relative addressing
The A64 instruction set has support for position-independent code and data addressing:
. PC-relative literal loads have an offset range of + IMB.

. Process state flag and compare based conditional branches have arange of + IMB. Test bit conditional
branches have arestricted range of + 32KB.

. Unconditional branches, including branch and link, have arange of + 128MB.
PC-relative Load/Store operations, and address generation with arange of + 4GB can be performed using two
instructions.

C1.33 Load/Store addressing modes

L oad/Store addressing modesin the A64 instruction set require a64-bit base address from ageneral-purposeregister
X0-X30 or the current stack pointer, SP, with an optional immediate or register offset. Table C1-6 showsthe
assembler syntax for the complete set of Load/Store addressing modes.

Table C1-6 A64 Load/Store addressing modes

Offset
Addressing Mode
Immediate Register Extended Register

Base register only (no offset) [base{, #0}] - -

Base plus offset [base{, #imm}] [base, Xm{, LSL #imm}] [base, Wm, (S|U)XTW {#imm}]
Pre-indexed [base, #imm]! - -
Post-indexed [base], #imm [base], Xma -

Literal (PC-relative) Tabel - -

a Thepost-indexed by register offset mode can be used with the SIMD L oad/Store structureinstructions described in Load/Store
Vector on page C3-154. Otherwise the post-indexed by register offset modeis not available.

Sometypesof Load/Storeinstruction support only asubset of the L oad/Store addressing modeslisted in Table C1-6.
Details of the supported modes are as follows:

. Base plus offset addressing means that the address is the value in the 64-bit base register plus an offset.

. Pre-indexed addressing meansthat the addressisthe sum of the value in the 64-bit base register and an offset,
and the address is then written back to the base register.

C1-128 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C1 The A64 Instruction Set
C1.3 Address generation

. Post-indexed addressing means that the address is the value in the 64-bit base register, and the sum of the
address and the offset is then written back to the base register.

. Literal addressing means that the address is the value of the 64-bit program counter for thisinstruction plus
a19-bit signed word offset. Thismeansthat it isa4 byte aligned addresswithin +1MB of the address of this
instruction with no offset. Literal addressing can only be used for |oads of at least 32 bits and for prefetch
instructions. The PC cannot be referenced using any other addressing modes. The syntax for labelsis specific
to individual toolchains.

. Animmediate offset can be unsigned or signed, and scaled or unscal ed, depending on the type of L oad/Store
instruction. When theimmediate offset is scaled it is encoded as a multiple of the transfer size, although the
assembly language always uses a byte offset, and the assembler or disassembler performs the necessary
conversion. The usable byte offsets therefore depend on the type of Load/Store instruction and the transfer

size.
Table C1-7 shows the offset and the type of Load/Store instruction.

Table C1-7 Immediate offsets and the type of Load/Store instruction

Offset bits Sign Scaling Write-Back Load/Store type

0 - - - Exclusive/acquire/release
7 Signed Scaled Optional Register pair

9 Signed Unscaled Optional Single register

12 Unsigned Scaed No Single register

. A register offset means that the offset is the 64 bits from a general-purpose register, Xm, optionally scaled
by the transfer size, in bytes, if LSL #imm is present and where imm must be equal to logy(transfer_size).

. An extended register offset means that offset is the bottom 32 bits from a general-purpose register Wm,
sign-extended or zero-extended to 64 bits, and then scaled by the transfer size if so indicated by #imm, where
imm must be equal to logx(transfer_size). An assembler must accept Wm or Xm as an extended register
offset, but Wm is preferred for disassembly.

. Generating an address lower than the value in the base register requires a negative signed immediate offset
or aregister offset holding a negative value.

. When stack alignment checking is enabled by system software and the base register isthe SP, the current
stack pointer must beinitially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack
Alignment fault. The offset does not have to be amultiple of 16 bytes unless the specific Load/Store
instruction requires this. SP cannot be used as aregister offset.

Address calculation

General-purpose arithmetic instructions can cal cul ate the result of most addressing modes and write the address to
ageneral-purpose register or, in most cases, to the current stack pointer.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C1-129
ID092916 Non-Confidential

C1 The A64 Instruction Set
C1.3 Address generation

Table C1-8 shows the arithmetic instructions that can compute addressing modes.

Table C1-8 Arithmetic instructions to compute addressing modes

Addressing
Form

Offset

Immediate Register

Extended Register

Base register (no
offset)

MOV Xd|SP, base -

Base plus offset

ADD Xd|SP, base, #imm
or
SUB Xd|SP, base, #imm

ADD <Xd|SP>, base, Xm{,LSL#imm}

ADD <Xd|SP>, base, Wm, (S|U)XT(W|H|B|) {#imm}

Pre-indexed

Post-indexed

Literal
(PC-relative)

ADR Xd, Tabel -

Note

. To calculate a base plus immediate offset the ADD instructions defined in Arithmetic (immediate) on
page C3-158 accept an unsigned 12-bit immediate offset, with an optional left shift by 12. This meansthat a
single ADD instruction cannot support the full range of byte offsets available to a single register Load/Store
with a scaled 12-bit immediate offset. For example, a quadword LDR effectively has a 16-bit byte offset. To
calculate an address with a byte offset that requires more than 12 bitsit is necessary to use two ADD

instructions. The following example shows this:

ADD Xd, base, #(imm & OxFFF)
ADD Xd, Xd, #(imm>>12), LSL #12

. To calculate abase plus extended register offset, the ADD instructions defined in Arithmetic (extended register)
on page C3-164 provide a superset of the addressing mode that also supports sign-extension or
zero-extension of abyte or halfword value with any shift amount between 0 and 4, for example:

ADD Xd, base, Wm, SXTW #3
ADD Xd, base, Wm, UXTH #4

// Xd
// Xd

base + (SignExtend(Wm) LSL 3)
base + (ZeroExtend(Wm<15:0>) LSL 4)

. If the same extended register offset is used by more than one L oad/Store instruction, then, depending on the
implementation, it might be more efficient to calcul ate the extended and scaled intermediate result just once,
and then re-use it as a simple register offset. The extend and scale calculation can be performed using the
SBFIZ and UBFIZ hitfield instructions defined in Bitfield move on page C3-161, for example:

SBFIZ Xd, Xm, #3, #32
UBFIZ Xd, Xm, #4, #16

//Xd
//Xd

“Wm, SXTW #3”
“Wm, UXTH #4”

C1-130

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C1 The A64 Instruction Set
C1.4 Instruction aliases

C1.4 Instruction aliases

Some instructions have an associated architecture alias that is used for disassembly of the encoding when the
associated conditions are met. Architecture aliasinstructions areincluded in the al phabetic lists of instruction types
and clearly presented as an dlias form in descriptions for the individual instructions.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C1-131
ID092916 Non-Confidential

C1 The A64 Instruction Set
C1.4 Instruction aliases

C1-132 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Chapter C2
About the A64 Instruction Descriptions

This chapter describes the instruction descriptions contained in Chapter C6 A64 Base Instruction Descriptions and
Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

It contains the following sections:

. Understanding the A64 instruction descriptions on page C2-134.

. General information about the A64 instruction descriptions on page C2-137.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C2-133
ID092916 Non-Confidential

C2 About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

Cc21 Understanding the A64 instruction descriptions

Each instruction description in Chapter C6 and Chapter C7 has the following content:
A title.

An introduction to the instruction.

The instruction encoding or encodings.

Any alias conditions.

A list of the assembler symbols for the instruction.

Pseudocode describing how the instruction operates.

Notes, if applicable.

N o s~ wDNPRE

The following sections describe each of these.

C211 The title
Thetitle of an instruction description includes the base mnemonic for the instruction.

If different forms of an instruction use the same base mnemonic, each form hasits own description. In thiscase, the
titleis the mnemonic followed by a short description of theinstruction form in parentheses. Thisis most often used
when an operand is an immediate value in one instruction form, but is a register in another form.

For example, in Chapter C6 there are the following titles for different forms of the ADD instruction:
. ADD (extended register) on page C6-437.

. ADD (immediate) on page C6-439.

. ADD (shifted register) on page C6-441.

C2.1.2 An introduction to the instruction

This briefly describes the function of the instruction. The introduction is not a complete description of the
instruction, and it is not definitive. If thereisany conflict between it and the more detailed information that follows
it, the more detailed information takes priority.

C213 The instruction encoding or encodings

This shows the instruction encoding diagram, or if the instruction has more than one encoding, shows al of the
encoding diagrams. Each diagram has a subheading.

For example, for load and store instructions, the subheadings might be:
. Post-index.

. Pre-index.

. Unsigned offset.

Each diagram numbers the bits from 31 to 0. The diagram for an instruction at address A shows, from left to right,
the bytes at addresses A+3, A+2, A+1, and A.

There might be variants of an encoding, if the assembler syntax prototype differs depending on the value in one or
more of the encoding fields. In this case, each variant has a subheading that describes the variant and shows the
distinguishing field value or valuesin parentheses. For example, in Chapter C6 there are the following subheadings
for variants of the ADC instruction encoding:

. 32-bit variant (sf = 0).

. 64-bit variant (sf = 1).

The assembler syntax prototype for an encoding or variant of an encoding shows how to form acompl ete assembler
source code instruction that assembl es to the encoding. Unless otherwise stated, the prototypeis also the preferred
syntax for adisassembler to disassembl e the encoding to. Disassemblers are permitted to omit optional symbolsthat
represent the default value of afield or set of fields, to produce more readable disassembled code, provided that the
output re-assembles to the same encoding.

C2-134 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C2 About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

Each encoding diagram, and its associated assembler syntax prototypes, is followed by encoding-specific
pseudocode that translates the fields of that encoding into inputs for the encoding-independent pseudocode that
describesthe operation of theinstruction. See Pseudocode describing how the instruction operates on page C2-136.

C21.4 Any alias conditions, if applicable

Thisisan optional part of an instruction description. If included, it describes the set of conditions for which an
aternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes alink to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

ARM recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

C2.1.5 A list of the assembler symbols for the instruction

The Assembler symbols subsection of the instruction description contains alist of the symbols that the assembler
syntax prototype or prototypes use, if any.

In assembler syntax prototypes, the following conventions are used:

<> Angle brackets. Any symbol enclosed by theseis aname or avalue that the user supplies. For each
symbol, thereis adescription of what the symbol represents. The description usually also specifies
which encoding field or fields encodes the symbol.

{1} Brace brackets. Any symbols enclosed by these are optional. For each optional symbal, thereisa
description of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they
surround aregister list. When the use of brace bracketsis mandatory, they are separated from other
syntax items by one or more spaces.

Thisusually precedes anumeric constant. All uses of # are optional in A64 assembler source code.
ARM recommendsthat disassembl ers output the# where the assembler syntax prototypeincludesit.

+/- Thisindicates an optional + or - sign. If neither is coded, + is assumed.

Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Any characters not shown in this conventionslist must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, the characters shown are used as part of a meta-language to define the architectural
assembler syntax for an instruction encoding or dias, but have no architecturally defined significance in the input
to an assembler or in the output from a disassembler.

The following symbol conventions are used:

<Xn> The 64-bit name of a general-purpose register (X0-X30) or the zero register (XZR).

<Wn> The 32-bit name of a general-purpose register (W0-W30) or the zero register (WZR).
<Xn|SP> The 64-bit name of a general-purpose register (X0-X30) or the current stack pointer (SP).
<Wn |WSP> The 32-bit name of a general-purpose register (W0-W30) or the current stack pointer (WSP).

<Bn>, <Hn>, <Sn>, <Dn>, <Qn>
The 8, 16, 32, 64 or 128-bit name of a SIMD and floating-point register in a scalar context as
described in section Register names on page C1-124.

<Vn> The name of a SIMD and floating-point register name in avector context as described in Register
names on page C1-124.

If the description of asymbol specifiesthat the symbol isaregister, the description might also specify that therange
of permitted registersisextended or restricted. It also specifies any differences from the default rulesfor such fields.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C2-135
ID092916 Non-Confidential

C2 About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

Note
Register names on page C1-124 provides the A64 register names.

C2.1.6 Pseudocode describing how the instruction operates
The Operation subsection of the instruction description contains this pseudocode.

It is encoding-independent pseudocode that provides a precise description of what the instruction does.

Note

For adescription of ARM pseudocode, see Appendix K11 ARM Pseudocode Definition. This appendix also
describes the execution model for an instruction.

C21.7 Notes, if applicable
If applicable, other notes about the instruction appear under additional subheadings.

C2-136 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C2 About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions

C2.2 General information about the A64 instruction descriptions

This section provides general information about the A64 instruction descriptions. Some of this information also
appliesto System register descriptions, for example the terms defined in Fixed values in AArch64 instruction and
System register descriptions apply to the AArch64 descriptions throughout this manual. The following subsections
provide thisinformation:

. Fixed values in AArch64 instruction and System register descriptions.

. Modified immediate constants in A64 instructions on page C2-138.

C2.21 Fixed values in AArch64 instruction and System register descriptions

This section summarizes the terms used to describe fixed valuesin AArch64 register and instruction descriptions.
The Glossary gives full descriptions of these terms, and each entry in this section includes alink to the
corresponding Glossary entry.

Note

In register descriptions, the meaning of some bits depends on the PE state. This affects the definitions of ResO and
RES1, as shown in the Glossary.

The following terms are used to describe bits or fields with fixed values:
RAZ Read-As-Zero. See Read-As-Zero (RAZ).

In diagrams, a RAZ bit can be shown as 0.
(0), RESO Reserved, Should-Be-Zero (SBZ) or RESO.

In instruction encoding diagrams, and sometimes in other descriptions, (0) indicates an SBZ hit. If
the bit is set to 1, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

. The instruction is UNDEFINED.

. Theinstruction is treated as aNOP.

. The instruction executes as if the value of the bit was 0.

. Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so athree-bit field can be shown as either (0) () (0) or as
(000).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RESO. See the Glossary definition of RESO for more information.

—— Note

Some of the System instruction descriptionsin this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RESO fields,

The (0) and RESO descriptions can be applied to bits or bitfieldsthat are read-only, or are write-only.
The Glossary definitions cover these cases.

RAO Read-As-One. See Read-As-One (RAO).
In diagrams, a RAO bhit can be shown as 1.
(1), resl Reserved, Should-Be-One (SBO) or RESL.

In instruction encoding diagrams, and sometimes in other descriptions, (1) indicates a SBO bit. If
the hit is set to 0, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

. The instruction iS UNDEFINED.
. Theinstruction is treated as aNOP.
. The instruction executes as if the value of the bit was 1.

. Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so athree-bit field can be shown as either (1) (1) (1) or as
(111).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RESL. See the Glossary definition of RESL1 for more information.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C2-137
ID092916 Non-Confidential

C2 About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions

—— Note

Some of the System instruction descriptionsin this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include REsS1 fields,

The (1) and ResL descriptions can be applied to bits or bitfieldsthat are read-only, or are write-only.
The Glossary definitions cover these cases.
C2.2.2 Modified immediate constants in A64 instructions

It contains the following subsections:
. Modified immediate constants in A64 floating-point instructions.

Modified immediate constants in A64 floating-point instructions

Table C2-1 shows the immediate constants available in FMOV (scalar, immediate) and FMOV (vector, immediate)
floating-point instructions.

Table C2-1 A64 Floating-point modified immediate constants

Data type immediate Constant 2

F32 abcdefgh aBbbbbbc defgh00o 00000000 00000000

F64 abcdefgh aBbbbbbb bbcdefgh 0 000

a. Inthiscolumn, B = NOT(b). The bit pattern represents the floating-point number (—1)S x 2&xP x mantissa, where
S=UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa= (16+UInt(e:f:g:h))/16.

The immediate value shown in the table is either:

. The value of the immg8 field for an FMOV (scalar, immediate) instruction, see FMOV (scalar, immediate) on
page C7-978.

. The value obtained by concatenating the a:b:c:d:e:f:g:h fields field for an FMOV (vector, immediate)
instruction, see FMOV (vector, immediate) on page C7-973.

Table C2-2 shows the floating-point constant values encoded intheb:c:d:e: f:g:h fields of the FMOv (vector,
immediate) instruction.

Table C2-2 Floating-point constant values

bcd
efgh
000 001 010 011 100 101 110 111

000 2.0 4.0 8.0 16.00.125 0.25 0.5 1.0
0001 2.125 42585 17.0 0.1328125 0.265625 0.53125 1.0625
010 225 45 9.0 180 0.140625 0.28125 0.5625 1.125
0011 2.375 4.759.5 19.0 0.1484375 0.296875 0.59375 1.1875
0100 25 5.0 10.0 20.0 0.15625 03125 0.625 125
0101 2.625 5.2510.5 21.0 0.1640625 0.328125 0.65625 1.3125
0110 2.75 55 11.0 22.0 0.171875 0.34375 0.6875 1.375
0111 2.875 5.7511.5 23.0 0.1796875 0.359375 0.71875 1.4375
le00 3.0 6.0 12.0 24.0 0.1875 0.375 0.75 15
1001 3.125 6.2512.5 25.0 0.1953125 0.390625 0.78125 1.5625
1010 325 6.5 13.0 26.0 0.203125 0.40625 0.8125 1.625

C2-138 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C2 About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions

Table C2-2 Floating-point constant values (continued)

efgh

bcd
000 001 010 011 100 101 110 111

1011

3.375 6.75 13.5 27.0 0.2109375 0.421875 0.84375 1.6875

1100
1101

35 7.0 14.028.00.21875 04375 0875 175
3.625 7.25 14.5 29.0 0.2265625 0.453125 0.90625 1.8125

1110
1111

3.75 7.5 15.0 30.0 0.234375 0.46875 0.9375 1.875
3.875 7.75 15.5 31.0 0.2421875 0.484375 0.96875 1.9375

Operation of modified immediate constants, floating-point instructions

For an A64 floating-point instruction that uses a modified immediate constant, the operation described by the
VFPExpandImm() pseudocode function returns the value of the immediate constant.

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C2-139
Non-Confidential

C2 About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions

C2-140 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Chapter C3

A64 Instruction Set Overview

This chapter provides an overview of the A64 instruction set. It contains the following sections:

Branches, Exception generating, and System instructions on page C3-142.
Loads and stores on page C3-146.

Data processing - immediate on page C3-158.

Data processing - register on page C3-163.

Data processing - SIMD and floating-point on page C3-171.

For astructured breakdown of instruction groups by encoding, see Chapter C4 A64 Instruction Set Encoding.

ARM DDI 0487A .K_iss10775

ID092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C3-141

C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

C31 Branches, Exception generating, and System instructions

This section describes the branch, exception generating, and system instructions. It contains the following
subsections:

. Conditional branch.

. Unconditional branch (immediate) on page C3-143.
. Unconditional branch (register) on page C3-143.

. Exception generation and return on page C3-143.

. System register instructions on page C3-144.

. System instructions on page C3-144.

. Hint instructions on page C3-145.

. Barriers and CLREX instructions on page C3-145.

For information about the encoding structure of the instructions in thisinstruction group, see Branches, exception
generating and system instructions on page C4-197.

Note
Software must:
. Use only BLR or BL to perform a nested subroutine call when that subroutine is expected to return to the

immediately following instruction, that is, the instruction with the address of the BLR or BL instruction
incremented by four.

. Use only RET to perform a subroutine return, when that subroutine is expected to have been entered by aBL
or BLR instruction.

. Useonly B, BR, or the instructions listed in Table C3-1 to perform a control transfer that is not a subroutine
call or subroutine return described in this Note.

C3.11 Conditional branch

Conditional branches change theflow of execution depending on the current state of the condition flags or the value
in ageneral-purpose register. See Table C1-1 on page C1-124 for alist of the condition codes that can be used for
cond.

Table C3-1 shows the Conditional branch instructions.

Table C3-1 Conditional branch instructions

Mnemonic Instruction Branch offset range from the PC~ See
B.cond Branch conditionally +1IMB B.cond on page C6-462
CBNZ Compare and branch if nonzero +1MB CBNZ on page C6-476
(BZ Compare and branch if zero +1MB CBZ on page C6-477
TBNZ Test bit and branch if nonzero +32KB TBNZ on page C6-744
TBZ Test bit and branch if zero +32KB TBZ on page C6-745
C3-142 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

C3.1.2 Unconditional branch (immediate)

Unconditional branch (immediate) instructions change the flow of execution unconditionally by adding an
immediate offset with arange of +128MB to the value of the program counter that fetched the instruction. The BL
instruction also writes the address of the sequentially following instruction to general-purpose register, X30.

Table C3-2 shows the Unconditional branch instructions with an immediate branch offset.

Table C3-2 Unconditional branch instructions (immediate)

Immediate branch offset range

Mnemonic Instruction from the PC See
B Branch unconditionally +128MB B on page C6-463
BL Branch with link +128MB BL on page C6-472

C3.1.3 Unconditional branch (register)

Unconditional branch (register) instructions change the flow of execution unconditionally by setting the program
counter to the value in a general-purpose register. The BLR instruction also writes the address of the sequentially
following instruction to general-purpose register X30. TheRET instruction behavesidentically to BR, but providesan
additional hint to the PE that thisisareturn from a subroutine. Table C3-3 shows Unconditional branch instructions
that jump directly to an address held in a general-purpose register.

Table C3-3 Unconditional branch instructions (register)

Mnemonic Instruction See

BLR Branch with link to register BLR on page C6-473
BR Branch to register BR on page C6-474
RET Return from subroutine RET on page C6-653

C3.1.4 Exception generation and return

This section describes the following exceptions:
. Exception generating.

. Exception return on page C3-144.

. Debug state on page C3-144.

Exception generating

Table C3-4 shows the Exception generating instructions.

Table C3-4 Exception generating instructions

Mnemonic Instruction See

BRK Breakpoint Instruction BRK on page C6-475

HLT Halt Instruction HLT on page C6-529

HVC Generate exception targeting Exception level 2 HVC on page C6-530

SMC Generate exception targeting Exception level 3 SMC on page C6-675

SvC Generate exception targeting Exception level 1 SVC on page C6-738
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-143

1D092916 Non-Confidential

C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Exception return

Table C3-5 shows the Exception return instructions.

Table C3-5 Exception return instructions

Mnemonic Instruction See

ERET Exception return using current ELR and SPSR ERET on page C6-525

Debug state
Table C3-6 shows the Debug state instructions.

Table C3-6 Debug state instructions

Mnemonic Instruction See

DCPS1 Debug switch to Exception level 1 DCPS1 on page C6-512

DCPS2 Debug switch to Exception level 2 DCPS2 on page C6-513

DCPS3 Debug switch to Exception level 3 DCPS3 on page C6-514

DRPS Debug restore PE state DRPS on page C6-517
C3.1.5 System register instructions

For detailed information about the System register instructions, see Chapter C5 The A64 System Instruction Class.
Table C3-7 shows the System register instructions.

Table C3-7 System register instructions

Mnemonic Instruction See
MRS Move System register to general-purpose register MRS on page C6-622
MSR Move general -purpose register to System register MSR (register) on page C6-625
Move immediate to PE state field MSR (immediate) on page C6-623
C3.1.6 Systeminstructions

For detailed information about the System instructions, see Chapter C5 The A64 System Instruction Class.
Table C3-8 shows the System instructions.

Table C3-8 System instructions

Mnemonic Instruction See
SYS System instruction SYS on page C6-742
SYSL System instruction with result SYSL on page C6-743
IC Instruction cache maintenance I1C on page C6-531 and Table C5-2 on page C5-276
C3-144 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Table C3-8 System instructions (continued)

Mnemonic Instruction See

DC Data cache maintenance DC on page C6-511 and Table C5-2 on page C5-276
AT Address translation AT on page C6-461 and Table C5-3 on page C5-277
TLBI TLB Invalidate TLBI on page C6-746 and Table C5-4 on page C5-278

C3.1.7 Hint instructions
Table C3-9 shows the Hint instructions.
Table C3-9 Hint instructions

Mnemonic Instruction See
NOP No operation NOP on page C6-637
YIELD Yield hint YIELD on page C6-765
WFE Wait for event WFE on page C6-763
WFI Wait for interrupt WFI on page C6-764
SEV Send event SEV on page C6-672
SEVL Send event local SEVL on page C6-673
HINT Unallocated hint HINT on page C6-528

C3.1.8 Barriers and CLREX instructions

Table C3-10 shows the barrier and CLREX instructions.

Table C3-10 Barriers and CLREX instructions

Mnemonic Instruction See

CLREX Clear exclusive monitor CLREX on page C6-484
DSB Data synchronization barrier DSB on page C6-518
DMB Data memory barrier DMB on page C6-515
ISB Instruction synchronization barrier ISB on page C6-532

For more information about the barriers, see Memory barriers on page B2-87.

For information about the allocated values for the data barriers, see:
. DMB on page C6-515.
. DSB on page C6-518.

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C3-145

C3 A64 Instruction Set Overview
C3.2 Loads and stores

C3.2 Loads and stores

This section describes the Load/Store instructions. It contains the following subsections:
. Load/Store register.

. Load/Store register (unscaled offset) on page C3-147.

. Load/Store Pair on page C3-148.

. Load/Store Non-temporal Pair on page C3-149.

. Load/Store unprivileged on page C3-150.

. Load-Exclusive/Store-Exclusive on page C3-150.

. Load-Acquire/Store-Release on page C3-151.

. Load/Store scalar SIMD and floating-point on page C3-152.
. Load/Store Vector on page C3-154.

. Prefetch memory on page C3-156.

Apart from Load-Exclusive, Store-Exclusive, Load-Acquire, and Store-Rel ease, addresses can have any alignment
unless strict alignment checking is enabled, that isif SCTLR_ELx.A == 1.

The additional control bits SCTLR_ELx.SA and SCTLR_EL 1.SAO0 control whether the stack pointer must be
quadword aligned when used as a base register. See SP alignment checking on page D1-1515. Using a misaligned
stack pointer generates an SP alignment fault exception.

For information about the encoding structure of the instructions in thisinstruction group, see Loads and stores on
page C4-202.

Note

In some cases, Load/Store instructions can lead to CONSTRAINED UNPREDICTABLE behavior. See AArch64
CONSTRAINED UNPREDICTABLE behaviors on page K1-5479.

C3.21 Load/Store register

The Load/Store register instructions support the following addressing modes:

. Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.
. Base plus a 64-bit register offset, optionally scaled.

. Base plus a 32-bit extended register offset, optionally scaled.

. Pre-indexed by an unscaled 9-bit signed immediate offset.

. Post-indexed by an unscaled 9-bit signed immediate offset.

. PC-relative literal for loads of 32 bits or more.

See also Load/Store addressing modes on page C1-128.

If aLoad instruction specifies writeback and the register being loaded is al so the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. Theinstruction is treated as UNDEFINED.
. Theinstruction is treated as aNOP.
. The instruction performs the load using the specified addressing mode and the base register becomes

UNKNOWN. In addition, if an exception occurs during the execution of such an instruction, the base address
might be corrupted so that the instruction cannot be repeated.

C3-146 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C3 A64 Instruction Set Overview
C3.2 Loads and stores

If a Store instruction performs awriteback and the register that is stored is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. Theinstruction is treated as UNDEFINED.

. Theinstruction is treated as aNOP.

. The instruction performs the store to the designated register using the specified addressing mode, but the
value stored iS UNKNOWN.

Table C3-11 shows the Load/Store Register instructions.

Table C3-11 Load/Store register instructions

Mnemonic Instruction See
LDR Load register (register offset) LDR (register) on page C6-555
Load register (immediate offset) LDR (immediate) on page C6-550
Load register (PC-relative literal) LDR (literal) on page C6-553
LDRB Load byte (register offset) LDRB (register) on page C6-559
Load byte (immediate offset) LDRB (immediate) on page C6-557
LDRSB Load signed byte (register offset) LDRSB (register) on page C6-568
Load signed byte (immediate offset) LDRSB (immediate) on page C6-565
LDRH Load halfword (register offset) LDRH (register) on page C6-563
Load halfword (immediate offset) LDRH (immediate) on page C6-561
LDRSH Load signed halfword (register offset) LDRSH (register) on page C6-573
Load signed halfword (immediate offset) LDRSH (immediate) on page C6-570
LDRSW Load signed word (register offset) LDRSW (register) on page C6-578
Load signed word (immediate offset) LDRSW (immediate) on page C6-575
Load signed word (PC-relative literal) LDRSW (literal) on page C6-577
STR Store register (register offset) STR (register) on page C6-700
Store register (immediate offset) STR (immediate) on page C6-697
STRB Store byte (register offset) STRB (register) on page C6-704
Store byte (immediate offset) STRB (immediate) on page C6-702
STRH Store halfword (register offset) STRH (register) on page C6-708

Store halfword (immediate offset)

STRH (immediate) on page C6-706

C3.2.2

Load/Store register (unscaled offset)

The Load/Store register instructions with an unscaled offset support only one addressing mode:

. Base plus an unscaled 9-bit signed immediate offset.

See Load/Store addressing modes on page C1-128.

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C3-147

C3 A64 Instruction Set Overview
C3.2 Loads and stores

The Load/Store register (unscaled offset) instructions are required to disambiguate this instruction class from the
Load/Store register instruction forms that support an addressing mode of base plus a scaled, unsigned 12-bit
immediate offset, because that can represent some offset values in the same range.

The ambiguous immediate offsets are byte offsets that are both:
. In the range 0-255, inclusive.
. Naturally aligned to the access size.

Other byte offsets in the range -256 to 255 inclusive are unambiguous. An assembler program translating a
Load/Storeinstruction, for exampleLDR, is required to encode an unambiguous offset using the unscaled 9-bit offset
form, and to encode an ambiguous offset using the scaled 12-bit offset form. A programmer might force the
generation of the unscaled 9-bit form by using one of the mnemonicsin Table C3-12. ARM recommends that a
disassembler outputs all unscaled 9-bit offset forms using one of these mnemonics, but unambiguous offsets can be
output using a L oad/Store single register mnemonic, for example, LDR.

Table C3-12 shows the Load/Store register instructions with an unscaled offset.

Table C3-12 Load/Store register (unscaled offset) instructions

Mnemonic Instruction See

LDUR Load register (unscaled offset) LDUR on page C6-589
LDURB Load byte (unscaled offset) LDURB on page C6-591
LDURSB Load signed byte (unscaled offset) LDURSB on page C6-593
LDURH Load halfword (unscaled offset) LDURH on page C6-592
LDURSH Load signed halfword (unscaled offset) LDURSH on page C6-595
LDURSW Load signed word (unscaled offset) LDURSW on page C6-597
STUR Store register (unscaled offset) STUR on page C6-714
STURB Store byte (unscaled offset) STURB on page C6-715
STURH Store halfword (unscaled offset) STURH on page C6-716

C3.2.3 Load/Store Pair

The Load/Store Pair instructions support the following addressing modes:
. Base plus a scaled 7-bit signed immediate offset.

. Pre-indexed by a scaled 7-bit signed immediate offset.

. Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/Store addressing modes on page C1-128.

If aLoad Pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. Theinstruction is treated as UNDEFINED.
. Theinstruction is treated as aNOP.

. Theinstruction performsall theloads using the specified addressing mode and theregister that isloaded takes
an UNKNOWN value.

C3-148 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C3 A64 Instruction Set Overview
C3.2 Loads and stores

If aLoad Pair instruction specifies writeback and one of the registers being loaded is a so the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. Theinstruction is treated as UNDEFINED.
. Theinstruction is treated as aNOP.
. Theinstruction performsall of the loads using the specified addressing mode, and the base register becomes

UNKNOWN. In addition, if an exception occurs during the instruction, the base address might be corrupted so
that the instruction cannot be repeated.

If a Store Pair instruction performs awriteback and one of the registers being stored is a so the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. Theinstruction is treated as UNDEFINED.
. Theinstruction is treated as a NOP.

. Theinstruction performs all the stores of the registersindicated by the specified addressing mode, but the
value stored for the base register iS UNKNOWN.

Table C3-13 shows the L oad/Store Pair instructions.

Table C3-13 Load/Store Pair instructions

Mnemonic Instruction See
LDP Load Pair LDP on page C6-544
LDPSW Load Pair signed words ~ LDPSW on page C6-547
STP Store Pair STP on page C6-694
C3.24 Load/Store Non-temporal Pair
The Load/Store Non-temporal Pair instructions support only one addressing mode:
. Base plus a scaled 7-bit signed immediate offset.
See Load/Store addressing modes on page C1-128.
The Load/Store Non-temporal Pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This meansthat data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writesto
be gathered to accel erate bulk memory transfers.
In addition there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and aL oad Non-temporal Pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, the memory accesses can be observed in any order by the other observerswithin
the shareability domain of the memory addresses being accessed.
If aLoad Non-Temporal Pair instruction specifiesthe same register for the two registersthat are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following must occur:
. Theinstruction is treated as UNDEFINED.
. Theinstruction is treated as aNOP.
. Theinstruction performsall theloads using the specified addressing mode and theregister that isloaded takes
an UNKNOWN value.
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-149
1D092916 Non-Confidential

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-14 shows the Load/Store Non-temporal Pair instructions.

Table C3-14 Load/Store Non-temporal Pair instructions

Mnemonic Instruction See
LDNP Load Non-temporal Pair LDNP on page C6-542
STNP Store Non-temporal Pair STNP on page C6-692

C3.25 Load/Store unprivileged
The Load/Store unprivileged instructions support only one addressing mode:
. Base plus an unscaled 9-bit signed immediate offset.
See Load/Store addressing modes on page C1-128.

The Load/Store unprivileged instructions can be used when the PE is at EL 1 to perform unprivileged memory
accesses. If the PE is executing in any other Exception level, then the access permissions for that level apply.

Table C3-15 shows the L oad/Store unprivileged instructions.

Table C3-15 Load-Store unprivileged instructions

Mnemonic Instruction See
LDTR Load unprivileged register LDTR on page C6-580
LDTRB Load unprivileged byte LDTRB on page C6-582
LDTRSB Load unprivileged signed byte LDTRSB on page C6-584
LDTRH Load unprivileged halfword LDTRH on page C6-583
LDTRSH Load unprivileged signed halfword LDTRSH on page C6-586
LDTRSW Load unprivileged signed word LDTRSW on page C6-588
STTR Store unprivileged register STTR on page C6-710
STTRB Store unprivileged byte STTRB on page C6-712
STTRH Store unprivileged halfword STTRH on page C6-713
C3.2.6 Load-Exclusive/Store-Exclusive

The Load-Exclusive/Store-Exclusive instructions support only one addressing mode:
. Base register with no offset.
See Load/Store addressing modes on page C1-128.

The Load-Exclusive instructions mark the physical address being accessed as an exclusive access. This exclusive
access mark is checked by the Store-Exclusive instruction, permitting the construction of atomic read-modify-write
operations on shared memory variables, semaphores, mutexes, and spinlocks. See Synchronization and semaphores
on page B2-108.

The Load-Exclusive/Store-Exclusive instructions other than Load-Exclusive pair and Store-Exclusive pair require
natural alignment, and an unaligned address generates an Alignment fault. Memory accesses generated by
Load-Exclusive pair or Store-Exclusive pair instructions must be aligned to the size of the pair, otherwisethe access
generates an Alignment fault. When a Store-Exclusive pair succeeds, it causes a single-copy atomic update of the
entire memory location.

C3-150 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Table C3-16 shows the L oad-Exclusive/Store-Exclusive instructions.

C3 A64 Instruction Set Overview

C3.2 Loads and stores

Table C3-16 Load-Exclusive/Store-Exclusive instructions

Mnemonic

Instruction

See

LDXR

Load Exclusive register

LDXR on page C6-600

LDXRB

Load Exclusive byte

LDXRB on page C6-601

LDXRH

Load Exclusive hafword

LDXRH on page C6-602

LDXP

Load Exclusive pair

LDXP on page C6-598

STXR

Store Exclusive register

STXR on page C6-720

STXRB

STXRH

Store Exclusive byte

Store Exclusive halfword

STXRB on page C6-722
STXRH on page C6-724

STXP

Store Exclusive pair

STXP on page C6-717

C3.2.7 Load-Acquire/Store-Release

The Load-Acquire/Store-Rel ease instructions support only one addressing mode:

. Base register with no offset.
See Load/Store addressing modes on page C1-128.

The Load-Acquire/Store-Rel ease instructions can remove the requirement to use the explicit DMB memory barrier
instruction. For more information about the ordering of Load-Acquire/Store-Release, see Load-Acquire,

Store-Release on page B2-90.

The Load-Acquire/Store-Release instructions other than Load-Acquire pair and Store-Release pair require natural
alignment, and an unaligned address generates an Alignment fault. Memory accesses generated by Load-Acquire
pair or Store-Release pair instructions must be aligned to the size of the pair, otherwise the access generates an

Alignment fault.

A Store-Release Exclusive instruction only has the Release semantics if the storeis successful.

Table C3-17 shows the Non-exclusive Load-Acquire/ Store-Rel ease instructions.

Table C3-17 Non-exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See

LDAR Load-Acquire register LDAR on page C6-533
LDARB Load-Acquire byte LDARB on page C6-534
LDARH Load-Acquire halfword LDARH on page C6-535
STLR Store-Release register STLR on page C6-680
STLRB Store-Release byte STLRB on page C6-681
STLRH Store-Release halfword STLRH on page C6-682

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C3-151

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-18 shows the Exclusive Load-Acquire/Store-Release instructions.

Table C3-18 Exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See

LDAXR Load-Acquire Exclusive register LDAXR on page C6-538
LDAXRB Load-Acquire Exclusive byte LDAXRB on page C6-540
LDAXRH Load-Acquire Exclusive halfword LDAXRH on page C6-541
LDAXP Load-Acquire Exclusive pair LDAXP on page C6-536
STLXR Store-Release Exclusive register STLXR on page C6-686
STLXRB Store-Release Exclusive byte STLXRB on page C6-688
STLXRH Store-Release Exclusive halfword STLXRH on page C6-690
STLXP Store-Release Exclusive pair STLXP on page C6-683

C3.2.8 Load/Store scalar SIMD and floating-point

The Load/Store scalar SIMD and floating-point instructions operate on scalar valuesin the SIMD and floating-point
register fileasdescribed in SIMD and floating-point scalar register names on page C1-126. The memory addressing
modes available, described in Load/Store addressing modes on page C1-128, are identical to the general-purpose
register Load/Store instructions, and like those instructions permit arbitrary address alignment unless strict
alignment checking is enabled. However, unlike the L oad/Store instructions that transfer general-purpose registers,
Load/Store scalar SIMD and floating-point instructions make no guarantee of atomicity, even when the addressis
naturally aligned to the size of the data.

Load/Store scalar SIMD and floating-point register

The Load/Store scalar SIMD and floating-point register instructions support the following addressing modes:
. Base plus ascaled 12-bit unsigned immediate offset or base plus unscaled 9-bit signed immediate offset.
. Base plus 64-hit register offset, optionally scaled.

. Base plus 32-bit extended register offset, optionally scaled.
. Pre-indexed by an unscaled 9-bit signed immediate offset.
. Post-indexed by an unscaled 9-bit signed immediate offset.
. PC-relative literal for loads of 32 bits or more.

For more information on the addressing modes, see Load/Store addressing modes on page C1-128.

Note

The unscaled 9-bit signed immediate offset address mode requires its own instruction form, see Load/Store scalar
SIMD and floating-point register (unscaled offset) on page C3-153.

C3-152 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-19 shows the Load/Store instructions for asingle SIMD and floating-point register.

Table C3-19 Load/Store single SIMD and floating-point register instructions

Mnemonic Instruction See

LDR Load scalar SIMD& FP register (register offset) LDR (register, SIMD&FP) on page C7-1099

Load scalar SIMD& FP register (immediate offset) LDR (immediate, SIMD&FP) on page C7-1093

Load scalar SIMD & FP register (PC-relativeliteral) LDR (literal, SIMD&FP) on page C7-1097

STR Store scalar SIMD & FP register (register offset) STR (register, SIMD&FP) on page C7-1359

Store scalar SIMD & FP register (immediate offset) STR (immediate, SIMD&FP) on page C7-1355

Load/Store scalar SIMD and floating-point register (unscaled offset)

The Load /Store scalar SIMD and floating-point register instructions support only one addressing mode:
. Base plus an unscaled 9-bit signed immediate offset.

See also Load/Store addressing modes on page C1-128.

The Load/Store scalar SIMD and floating-point register (unscaled offset) instructions are required to disambiguate
thisinstruction class from the Load/Store single SIMD and floating-point instruction forms that support an
addressing mode of base plus ascaled, unsigned 12-bit immediate offset. Thisis similar to the Load/Store register
(unscaled offset) instructions, that disambiguate this instruction class from the L oad/Store register instruction, see
Load/Store register (unscaled offset) on page C3-147.

Table C3-20 shows the Load/Store SIMD and floating-point register instructions with an unscaled offset.

Table C3-20 Load/Store SIMD and floating-point register instructions

Mnemonic Instruction See
LDUR Load scalar SIMD& FP register (unscaled offset) LDUR (SIMD&FP) on page C7-1102
STUR Store scalar SIMD& FP register (unscaled offset) STUR (SIMD&FP) on page C7-1362

Load/Store SIMD and Floating-point register pair

The Load/Store SIMD and floating-point register pair instructions support the following addressing modes:
. Base plus a scaled 7-bit signed immediate offset.

. Pre-indexed by a scaled 7-bit signed immediate offset.

. Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/Store addressing modes on page C1-128.

If aLoad pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. Theinstruction is treated as UNDEFINED.
. Theinstruction is treated as a NOP.

. Theinstruction performs all of the loads using the specified addressing mode and the register being |oaded
takes an UNKNOWN value.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-153
ID092916 Non-Confidential

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-21 shows the Load/Store SIMD and floating-point register pair instructions.

Table C3-21 Load/Store SIMD and floating-point register pair instructions

Mnemonic Instruction See
LDP Load pair of scalar SSIMD& FPregisters ~ LDP (SIMD&FP) on page C7-1090
STP Store pair of scalar SIMD& FP registers ~ STP (SIMD&FP) on page C7-1352

Load/Store SIMD and Floating-point Non-temporal pair

The Load/Store SIMD and Floating-point Non-temporal pair instructions support only one addressing mode:
. Base plus ascaled 7-bit signed immediate offset.

See also Load/Store addressing modes on page C1-128.

The Load/Store Non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, theinstructions might permit memory reads to be preloaded and memory writesto
be gathered to accel erate bulk memory transfers.

In addition there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and aL oad non-temporal pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, those memory accesses can be observed in any order by the other observers
within the shareability domain of the memory addresses being accessed.

If aLoad Non-temporal pair instruction specifies the same register for the two registers that are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. Theinstruction is treated as UNDEFINED.
. Theinstruction is treated as aNOP.

. Theinstruction performsall theloads using the specified addressing mode and theregister that isloaded takes
an UNKNOWN value.

Table C3-22 shows the Load/Store SIMD and floating-point Non-temporal pair instructions.

Table C3-22 Load/Store SIMD and floating-point Non-temporal pair instructions

Mnemonic Instruction See

LDNP Load pair of scalar SIMD& FP registers LDNP (SIMD&FP) on page C7-1088

STNP Store pair of scalar SIMD& FP registers STNP (SIMD&FP) on page C7-1350
C3.2.9 Load/Store Vector

The Vector Load/Store structure instructions support the following addressing modes:
. Baseregister only.

. Post-indexed by a 64-bit register.

. Post-indexed by an immediate, equal to the number of bytes transferred.

Load/Store vector instructions, like other Load/Store instructions, allow any address alignment, unless strict
alignment checking is enabled. If strict alignment checking is enabled, then alignment checking to the size of the
element is performed. However, unlike the Load/Store instructions that transfer general-purpose registers, the

L oad/Store vector instructions do not guarantee atomicity, even when the address is naturally aligned to the size of
the element.

C3-154 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

Load/Store structures

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-23 shows the L oad/Store structure instructions. A post-increment immediate offset, if present, must be 8,
16, 24, 32, 48, or 64, depending on the number of elements transferred.

Table C3-23 Load/Store multiple structures instructions

Mnemonic Instruction See
LD1 Load single 1-element structure to one lane of one register LD1 (single structure) on page C7-1051
Load multiple 1-element structures to one register or to two, three or LD1 (multiple structures) on page C7-1047
four consecutive registers
LD2 Load single 2-element structure to one lane of two consecutive LD2 (single structure) on page C7-1061
registers
Load multiple 2-element structures to two consecutive registers LD2 (multiple structures) on page C7-1058
LD3 Load single 3-element structure to one lane of three consecutive LD3 (single structure) on page C7-1071
registers
Load multiple 3-element structures to three consecutive registers LD3 (multiple structures) on page C7-1068
LD4 Load single 4-element structure to one lane of four consecutive LD4 (single structure) on page C7-1081
registers
Load multiple 4-element structures to four consecutive registers LD4 (multiple structures) on page C7-1078
ST1 Store single 1-element structure from one lane of one register ST1 (single structure) on page C7-1325
Store multiple 1-element structures from one register, or from two, ST1 (multiple structures) on page C7-1321
three or four consecutive registers
ST2 Store single 2-element structure from one lane of two consecutive ST2 (single structure) on page C7-1332
registers
Store multiple 2-element structures from two consecutive registers ST2 (multiple structures) on page C7-1329
ST3 Store single 3-element structure from one lane of three consecutive ST3 (single structure) on page C7-1339
registers
Store multiple 3-element structures from three consecutive registers ST3 (multiple structures) on page C7-1336
ST4 Store single 4-element structure from one lane of four consecutive ST4 (single structure) on page C7-1346
registers
ST4 Store multiple 4-element structures from four consecutive registers ST4 (multiple structures) on page C7-1343

ARM DDI 0487A .K_iss10775

1D092916

Non-Confidential

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

C3-155

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Load single structure and replicate

Table C3-24 shows the Load single structure and replicate instructions. A post-increment immediate offset, if
present, must be 1, 2, 3, 4, 6, 8, 12, 16, 24, or 32, depending on the number of elements transferred.

Table C3-24 Load single structure and replicate instructions

Mnemonic Instruction See

LDIR Load single 1-element structure and replicate to all lanes of one register LD1R on page C7-1055
LD2R Load single 2-element structure and replicate to al lanes of two registers LD2R on page C7-1065
LD3R Load single 3-element structure and replicate to all lanes of threeregisters ~ LD3R on page C7-1075
LD4R Load single 4-element structure and replicate to al lanes of four registers LD4R on page C7-1085

C3.2.10 Prefetch memory

The Prefetch memory instructions support the following addressing modes:

. Base plus a scaled 12-hit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.
. Base plus a 64-bit register offset. This can be optionally scaled by 8-bits, for example LSL#3.

. Base plus a 32-bit extended register offset. This can be optionally scaled by 8-bits.

. PC-relative literal.

The prefetch memory instructions signal to the memory system that memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory access when they do occur, such as preloading the specified address into one or more caches. Because
these signals are only hints, it isvalid for the PE to treat any or all prefetch instructions as aNoP.

Because they are hints to the memory system, the operation of a PRFM instruction cannot cause a synchronous
exception. However, amemory operation performed as aresult of one of these memory system hints might in
exceptional casestrigger an asynchronous event, and thereby influence the execution of the PE. An example of an
asynchronous event that might be triggered is an SError interrupt.

A PRFM instruction can only have an effect on software visible structures, such as caches and translation lookaside
buffers associated with memory locations that can be accessed by reads, writes, or execution as defined in the
trandlation regime of the current Exception level.

A PRFM instruction is guaranteed not to access Device memory.

A PRFMinstruction using aPLI hint must not result in any accessthat could not be performed by the PE specul atively
fetching an instruction. Therefore, if all associated MMUs are disabled, aPLI hint cannot access any memory
location that cannot be accessed by instruction fetches.

The PRFM instructions require an additional <prfop> operand to be specified, which must be one of the following:
PLDL1KEEP, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM
PSTL1KEEP, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM
PLIL1KEEP, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM

<prfop> is defined as <type><target><policy>.

Here:
<type> Isone of:
PLD Prefetch for load.
PST Prefetch for store.
PLI Preload instructions.
C3-156 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

<target> Isone of:

L1
L2
L3

<policy> Is one of:

KEEP
STRM

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Level 1 cache.
Level 2 cache.
Level 3 cache.

Retained or temporal prefetch, allocated in the cache normally.
Streaming or non-temporal prefetch, for datathat is used only once.

PRFUM explicitly uses the unscaled 9-bit signed immediate offset addressing mode, as described in Load/Store
register (unscaled offset) on page C3-147.

Table C3-25 shows the Prefetch memory instructions.

Table C3-25 Prefetch memory instructions

Mnemonic Instruction See
PRFM Prefetch memory (register offset) PRFM (register) on page C6-648
Prefetch memory (immediate offset) PRFM (immediate) on page C6-644
Prefetch memory (PC-relative offset) PRFM (literal) on page C6-646
PRFUM Prefetch memory (unscaled offset) PRFM (unscaled offset) on page C6-650
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-157

1D092916

Non-Confidential

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

C3.3 Data processing - immediate
This section describesthe instruction groups for data processing with immediate operands. It containsthe following
subsections:
. Arithmetic (immediate).
. Logical (immediate) on page C3-159.
. Move (wide immediate) on page C3-159.
. Move (immediate) on page C3-160.
. PC-relative address calculation on page C3-160.
. Bitfield move on page C3-161.
. Bitfield insert and extract on page C3-161
. Extract register on page C3-161.
. Shift (immediate) on page C3-162.
. Sign-extend and Zero-extend on page C3-162.
For information about the encoding structure of the instructions in this instruction group, see Data processing -
immediate on page C4-193.
C3.3.1 Arithmetic (immediate)
The Arithmetic (immediate) instructions accept a12-bit unsigned immediate value, optionally shifted left by 12 bits.
The Arithmetic (immediate) instructions that do not set condition flags can read from and write to the current stack
pointer. The flag setting instructions can read from the stack pointer, but they cannot writeto it.
Table C3-26 shows the Arithmetic instructions with an immediate offset.
Table C3-26 Arithmetic instructions with an immediate
Mnemonic Instruction See
ADD Add ADD (immediate) on page C6-439
ADDS Add and set flags ADDS (immediate) on page C6-445
SUB Subtract SUB (immediate) on page C6-728
SUBS Subtract and set flags SUBS (immediate) on page C6-734
cvP Compare CMP (immediate) on page C6-494
CMN Compare negative CMN (immediate) on page C6-489
C3-158 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

C3.3.2

C3.33

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

Logical (immediate)

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern or a 64-bit pattern
viewed as avector of identical elementsof sizee=2, 4, 8, 16, 32 or, 64 hits. Each element contains the same

sub-pattern, that isasingle run of 1 to (e - 1) nonzero bits from bit O followed by zero bits, then rotated by O to (e -
1) bits. This mechanism can generate 5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwiseinverse.

Note

. Valuesthat consist of only zeros or only ones cannot be described in this way.

The Logica (immediate) instructions that do not set the condition flags can write to the current stack pointer, for
example to align the stack pointer in afunction prologue.

Note

Apart from ANDS, and itsTST alias, Logical (immediate) instructions do not set the condition flags. However, thefinal
results of a bitwise operation can be tested by a(Bz, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-27 shows the Logical immediate instructions.

Table C3-27 Logical immediate instructions

Mnemonic Instruction See

AND Bitwise AND AND (immediate) on page C6-451

ANDS Bitwise AND and set flags ANDS (immediate) on page C6-454

EOR Bitwise exclusive OR EOR (immediate) on page C6-522

ORR Bitwiseinclusive OR ORR (immediate) on page C6-640

TST Test bits TST (immediate) on page C6-748

Move (wide immediate)

The Move (wide immediate) instructions insert a 16-bit immediate, or inverted immediate, into a 16-bit aligned
position in the destination register. The value of the other bitsin the destination register depends on the variant used.
The optional shift amount can be any multiple of 16 that is smaller than the register size.

Table C3-28 shows the Move (wide immediate) instructions.

Table C3-28 Move (wide immediate) instructions

Mnemonic Instruction See

MovZ Move wide with zero MOVZ on page C6-620

MOVN Move wide with NOT MOVN on page C6-618

MOVK Move wide with keep MOVK on page C6-617

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-159

1D092916

Non-Confidential

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

C3.34 Move (immediate)

The Move (immediate) instructions are aliases for a single MOvVZ, MOVN, or ORR (immediate with zero register),
instruction to load an immediate value into the destination register. An assembler must permit asigned or unsigned
immediate, as long as its binary representation can be generated using one of these instructions, and an assembler
error results if the immediate cannot be generated in this way. On disassembly it is unspecified whether the
immediate is output as a signed or an unsigned value.

If there is a choice between the MOvVZ, MOVN, and ORR instruction to encode the immediate, then an assembler must
prefer MOVZ to MOVN, and MOVZ or MOVN to ORR, to ensure reversability. A disassembler must output ORR (immediate with
Zero register) MOVZ, and MOVN, as aMOV mnemonic except that the underlying instruction must be used when:

. ORR has an immediate that can be generated by aM0vz or MOVN instruction.
. A MOVN instruction has an immediate that can be encoded by MOvzZ.
. MOVZ #@ or MOVN #0 have a shift amount other than LSL #0.

Table C3-29 shows the Move (immediate) instructions.

Table C3-29 Move (immediate) instructions

Mnemonic Instruction See
0 Move (inverted wideimmediate) MOV (inverted wide immediate) on page C6-613
Move (wide immediate) MOV (wide immediate) on page C6-614
Move (bitmask immediate) MOV (bitmask immediate) on page C6-615
C3.35 PC-relative address calculation

TheADR instruction adds asigned, 21-bit immediate to the value of the program counter that fetched thisinstruction,
and then writes the result to a general-purpose register. This permits the calculation of any byte address within
+1MB of the current PC.

The ADRP instruction shiftsasigned, 21-bit immediate left by 12 bits, addsit to the value of the program counter with
the bottom 12 bits cleared to zero, and then writes the result to a general-purpose register. This permits the
calculation of the address at a4KB aligned memory region. In conjunction with an ADD (immediate) instruction, or
aload/Store instruction with a 12-bit immediate offset, this allows for the calculation of, or accessto, any address
within £4GB of the current PC.

Note

Theterm page used in the ADRP description is short-hand for the 4K B memory region, and isnot related to the virtual
memory translation granule size.

Table C3-30 shows the instructions used for PC-relative address calcul ations are as follows:

Table C3-30 PC-relative address calculation instructions

Mnemonic Instruction See
ADRP Compute address of 4KB page at a PC-relative offset ~ ADRP on page C6-450
ADR Compute address of label at a PC-relative offset. ADR on page C6-449
C3-160 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3.3.6 Bitfield move

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

The Bitfield move instructions copy afield of constant width from bit 0 in the source register to a constant bit
position in the destination register, or from a constant bit position in the source register to bit 0 in the destination
register. The remaining bitsin the destination register are set as follows:

. For BFM the remaining bits are unchanged.

. For UBFM the lower hits, if any, and upper bits, if any, are set to zero.

. For SBFM the lower hits, if any, are set to zero, and the upper bits, if any, are set to a copy of the

most-significant bit in the copied field.

Table C3-31 shows the Bitfield move instructions.

Table C3-31 Bitfield move instructions

Mnemonic Instruction See

BFM Bitfield move BFM on page C6-465
SBFM Signed bitfield move SBFM on page C6-668
UBFM Unsigned hitfield move (32-hit) UBFM on page C6-752

C3.3.7 Bitfield insert and extract

TheBitfield insert and extract instructions areimplemented as aliases of the Bitfield moveinstructions. Table C3-32

shows the Bitfield insert and extract aliases.

Table C3-32 Bitfield insert and extract instructions

Mnemonic Instruction See

BFI Bitfield insert BFI on page C6-464
BFXIL Bitfield extract and insert low BFXIL on page C6-467
SBFIZ Signed bitfield insert in zero SBFIZ on page C6-667
SBFX Signed bitfield extract SBFX on page C6-670
UBFIZ Unsigned bitfield insert in zero UBFIZ on page C6-751
UBFX Unsigned bitfield extract UBFX on page C6-754

C3.3.8 Extract register

Depending on the register width of the operands, the Extract register instruction copies a 32-bit or 64-bit field from
aconstant bit position within a double-width value formed by the concatenation of a pair of source registersto a

destination register.

Table C3-33 shows the Extract (immediate) instructions.

Table C3-33 Extract register instructions

Mnemonic Instruction

See

EXTR

Extract register from pair

EXTR on page C6-526

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C3-161

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

C3.3.9 Shift (immediate)

Shifts and rotates by a constant amount are implemented as aliases of the Bitfield move or Extract register
instructions. The shift or rotate amount must be in the range 0 to one |ess than the register width of the instruction,

inclusive.

Table C3-34 shows the aliases that can be used as immediate shift and rotate instructions.

Table C3-34 Aliases for immediate shift and rotate instructions

Mnemonic

Instruction See

ASR

LSL

Arithmetic shift right

Logical shift left

ASR (immediate) on page C6-459

LSL (immediate) on page C6-604

LSR

Logical shift right

LSR (immediate) on page C6-607

ROR

Rotate right

ROR (immediate) on page C6-660

C3.3.10 Sign-extend and Zero-extend

The Sign-extend and Zero-extend instructions are implemented as aliases of the Bitfield move instructions.

Table C3-35 shows the aliases that can be used as zero-extend and sign-extend instructions.

Table C3-35 Zero-extend and sign-extend instructions

Mnemonic Instruction See
SXTB Sign-extend byte SXTB on page C6-739
SXTH Sign-extend halfword SXTH on page C6-740
SXTW Sign-extend word SXTW on page C6-741
UXTB Unsigned extend byte UXTB on page C6-761
UXTH Unsigned extend halfword UXTH on page C6-762
C3-162 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

C3 A64 Instruction Set Overview
C3.4 Data processing - register

C34 Data processing - register

This section describes the instruction groups for data processing with all register operands. It containsthe following
subsections:

. Arithmetic (shifted register).

. Arithmetic (extended register) on page C3-164.
. Arithmetic with carry on page C3-165.

. Logical (shifted register) on page C3-165.
. Move (register) on page C3-166.

. Shift (register) on page C3-166.

. Multiply and divide on page C3-167.

. CRC32 on page C3-168.

. Bit operation on page C3-169.

. Conditional select on page C3-169.

. Conditional comparison on page C3-170.

For information about the encoding structure of the instructions in this instruction group, see Data processing -
register on page C4-224.

C3.4.1 Arithmetic (shifted register)

The Arithmetic (shifted register) instructions apply an optional shift operator to the second source register value
before performing the arithmetic operation. The register width of the instruction controls whether the new bits are
fed into the intermediate result on aright shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR and LSR accept an immediate shift amount in the range 0 to one less than the register
width of theinstruction, inclusive.

Omitting the shift operator impliesLSL #0, which means that there is no shift. A disassembler must not output LSL
#0. However, adisassembler must output all other shifts by zero.

The current stack pointer, SP or WSP, cannot be used with this class of instructions. See Arithmetic (extended
register) on page C3-164 for arithmetic instructions that can operate on the current stack pointer.

Table C3-36 shows the Arithmetic (shifted register) instructions.

Table C3-36 Arithmetic (shifted register) instructions

Mnemonic Instruction See
ADD Add ADD (shifted register) on page C6-441
ADDS Add and set flags ADDS (shifted register) on page C6-447
SUB Subtract SUB (shifted register) on page C6-730
SUBS Subtract and set flags SUBS (shifted register) on page C6-736
CMN Compare negative CMN (shifted register) on page C6-490
Cvp Compare CMP (shifted register) on page C6-495
NEG Negate NEG (shifted register) on page C6-631
NEGS Negate and set flags NEGS on page C6-633

ARM DDI 0487A.Kk_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-163

1D092916 Non-Confidential

C3 A64 Instruction Set Overview
C3.4 Data processing - register

C3.4.2 Arithmetic (extended register)

The extended register instructions provide an optional sign-extension or zero-extension of a portion of the second
source register value, followed by an optional |eft shift by a constant amount of 1-4, inclusive.

The extended shift is described by the mandatory extend operator SXTB, SXTH, SXTW, UXTB, UXTH, or UXTW. Thisis
followed by an optional left shift amount. If the shift amount is not specified, the default shift amount is zero. A
disassembler must not output a shift amount of zero.

For 64-bit instruction forms the additional operators UXTX and SXTX use all 64 bits of the second source register with
an optional shift. Inthat case ARM recommends UXTX as the operator. If and only if at |east one register is SB, ARM
recommends use of the LSL operator name, rather than UXTX, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

For 32-bit instruction forms the operators UXTW and SXTW both use all 32 bits of the second source register with an
optional shift. In that case ARM recommends UXTW as the operator. If and only if at least one register isWSP, ARM
recommends use of the LSL operator name, rather than UXTw, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

The non-flag setting variants of the extended register instruction permit the use of the current stack pointer as either
the destination register and thefirst source register. Theflag setting variants only permit the stack pointer to be used
asthefirst source register.

In the 64-bit form of theseinstructionsthe final register operand iswritten aswm for all except the UXTX/LSL and SXTX
extend operators. For example:

CMP X4, W5, SXTW
ADD X1, X2, W3, UXTB #2
SuB Sp, SP, X1 // SUB SP, SP, X1, UXTX #0

Table C3-37 shows the Arithmetic (extended register) instructions.

Table C3-37 Arithmetic (extended register) instructions

Mnemonic Instruction See

ADD Add ADD (extended register) on page C6-437

ADDS Add and set flags ADDS (extended register) on page C6-443
SUB Subtract SUB (extended register) on page C6-726

SUBS Subtract and set flags SUBS (extended register) on page C6-732
CMN Compare negative CMN (extended register) on page C6-487

CMP Compare CMP (extended register) on page C6-492

C3-164 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3 A64 Instruction Set Overview
C3.4 Data processing - register

C3.4.3 Arithmetic with carry
The Arithmetic with carry instructions accept two source registers, with the carry flag as an additional input to the
calculation. They do not support shifting of the second source register.
Table C3-38 shows the Arithmetic with carry instructions
Table C3-38 Arithmetic with carry instructions
Mnemonic Instruction See
ADC Add with carry ADC on page C6-435
ADCS Add with carry and set flags ADCS on page C6-436
SBC Subtract with carry SBC on page C6-663
SBCS Subtract with carry and set flags SBCS on page C6-665
NGC Negate with carry NGC on page C6-635
NGCS Negate with carry and set flags NGCS on page C6-636
C3.44 Logical (shifted register)
TheLogica (shifted register) instructions apply an optiona shift operator to the second source register value before
performing the main operation. The register width of the instruction controls whether the new bits are fed into the
intermediate result on aright shift or rotate at bit[63] or bit[31].
The shift operatorsLSL, ASR, LSR and ROR accept a constant immediate shift amount in the range 0 to one lessthan the
register width of the instruction, inclusive.
Omitting the shift operator and amount impliesLSL #0, which meansthat there is no shift. A disassembler must not
output LSL #@. However, adisassembler must output all other shifts by zero.
Note
Apart from ANDS, TST and BICS the logical instructions do not set the condition flags, but the final result of a bit
operation can usually directly control a Bz, CBNZ, TBZ, or TBNZ conditional branch.
Table C3-39 shows the Logical (shifted register) instructions.
Table C3-39 Logical (shifted register) instructions
Mnemonic Instruction See
AND Bitwise AND AND (shifted register) on page C6-452
ANDS Bitwise AND and set flags ANDS (shifted register) on page C6-456
BIC Bitwise bit clear BIC (shifted register) on page C6-468
BICS Bitwise bit clear and set flags BICS (shifted register) on page C6-470
EON Bitwise exclusive OR NOT EON (shifted register) on page C6-520
EOR Bitwise exclusive OR EOR (shifted register) on page C6-523
ORR Bitwiseinclusive OR ORR (shifted register) on page C6-642
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-165

1D092916

Non-Confidential

C3 A64 Instruction Set Overview
C3.4 Data processing - register

Table C3-39 Logical (shifted register) instructions (continued)

Mnemonic Instruction See

MVN Bitwise NOT MVN on page C6-629

ORN Bitwise inclusive OR NOT ORN (shifted register) on page C6-638
TST Test bits TST (shifted register) on page C6-749

C3.4.5 Move (register)

The Move (register) instructions are aliases for other data processing instructions. They copy avaue from a
general-purpose register to another general-purpose register or the current stack pointer, or from the current stack
pointer to a general-purpose register.

Table C3-40 MOV register instructions

Mnemonic Instruction See

MOV Move register MOV (register) on page C6-616

Move register to SP or move SP to register MOV (to/from SP) on page C6-612

C3.4.6 Shift (register)

In the Shift (register) instructions, the shift amount is the positive value in the second source register modulo the
register size. The register width of theinstruction controlswhether the new bits arefed into the result on aright shift
or rotate at bit[63] or bit[31].

Table C3-41 shows the Shift (register) instructions.

Table C3-41 Shift (register) instructions

Mnemonic Instruction See

ASRV Arithmetic shift right variable ASRV on page C6-460
LSLV Logical shift left variable LSLV on page C6-605

LSRV Logical shift right variable LSRV on page C6-608

RORV Rotate right variable RORV on page C6-662

However, the Shift (register) instructions have a preferred set of aliases that match the shift immediate aliases
described in Shift (immediate) on page C3-162.

Table C3-42 shows the aliases for Shift (register) instructions.

Table C3-42 Aliases for Variable shift instructions

Mnemonic Instruction See
ASR Arithmetic shift right ASR (register) on page C6-458
LSL Logical shift left LSL (register) on page C6-603
LSR Logical shift right LSR (register) on page C6-606
ROR Rotate right ROR (register) on page C6-661
C3-166 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3 A64 Instruction Set Overview
C3.4 Data processing - register

C3.4.7 Multiply and divide
This section describes the instructions used for integer multiplication and division. It contains the following
subsections:
. Multiply.
. Divide on page C3-168.
Multiply
The Multiply instructionswrite to asingle 32-bit or 64-bit destination register, and are built around the fundamental
four operand multiply-add and multiply-subtract operation, together with 32-bit to 64-bit widening variants. A
64-bit to 128-bit widening multiple can be constructed with two instructions, using SMULH or UMULH to generate the
upper 64 bits. Table C3-43 shows the Multiply instructions.
Table C3-43 Multiply integer instructions
Mnemonic Instruction See
MADD Multiply-add MADD on page C6-609
MSUB Multiply-subtract MSUB on page C6-626
MNEG Multiply-negate MNEG on page C6-611
MUL Multiply MUL on page C6-628
SMADDL Signed multiply-add long SMADDL on page C6-674
SMSUBL Signed multiply-subtract long SMSUBL on page C6-677
SMNEGL Signed multiply-negate long SMNEGL on page C6-676
SMULL Signed multiply long SMULL on page C6-679
SMULH Signed multiply high SMULH on page C6-678
UMADDL Unsigned multiply-add long UMADDL on page C6-756
UMSUBL Unsigned multiply-subtract long UMSUBL on page C6-758
UMNEGL Unsigned multiply-negate long UMNEGL on page C6-757
UMULL Unsigned multiply long UMULL on page C6-760
UMULH Unsigned multiply high UMULH on page C6-759
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-167
ID092916 Non-Confidential

C3 A64 Instruction Set Overview
C3.4 Data processing - register

Divide
The Divide instructions compute the quotient of a division, rounded towards zero. The remainder can then be

computed as (numerator - (quotient x denominator)), using the MSUB instruction.

If asigned integer division (INT_MIN / -1) is performed where INT_MIN is the most negative integer value
representable in the selected register size, then the result overflows the signed integer range. No indication of this
overflow is produced and the result that iswritten to the destination register is INT_MIN.

A division by zero resultsin a zero being written to the destination register, without any indication that the division
by zero occurred.

Table C3-44 shows the Divide instructions.

Table C3-44 Divide instructions

Mnemonic Instruction See
SDIV Signed divide SDIV on page C6-671
UDIvV Unsigned divide UDIV on page C6-755

C3.4.8 CRC32

The optional CRC32 instructions operate on the general -purpose register file to update a 32-bit CRC value from an
input value comprising 1, 2, 4, or 8 bytes. There are two different classes of CRC instructions, CRC32 and CRC32C, that
support two commonly used 32-bit polynomials, known as CRC-32 and CRC-32C.

To fit with common usage, the bit order of the valuesis reversed as part of the operation.
When bitg[19:16] of ID_AAG64I1SARO_EL 1 are set to 0b0001 the CRC instructions are implemented.
Table C3-45 showsthe CRC instructions.

Table C3-45 CRC32 instructions

Mnemonic Instruction See

(CRC32B CRC-32 sum from byte CRC32B, CRC32H, CRC32W, CRC32X on page C6-498

CRC32H CRC-32 sum from halfword CRC32B, CRC32H, CRC32W, CRC32X on page C6-498

CRC32W CRC-32 sum from word CRC32B, CRC32H, CRC32W, CRC32X on page C6-498

CRC32X CRC-32 sum from doubleword CRC32B, CRC32H, CRC32W, CRC32X on page C6-498

CRC32CB CRC-32C sum from byte CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-500
CRC32CH CRC-32C sum from halfword CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-500
CRC32CW CRC-32C sum from word CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-500
CRC32CX CRC-32C sum from doubleword CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-500

C3-168 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3 A64 Instruction Set Overview

C3.4 Data processing - register

C3.4.9 Bit operation
Table C3-46 shows the Bit operation instructions.
Table C3-46 Bit operation instructions

Mnemonic Instruction See
CLS Count leading sign bits CLS on page C6-485
Lz Count leading zero bits CLZ on page C6-486
RBIT Reverse bit order RBIT on page C6-652
REV Reverse bytesin register REV on page C6-654
REV16 Reverse bytesin halfwords REV16 on page C6-656
REV32 Reverses bytesin words REV32 on page C6-658

C3.4.10 Conditional select

The Conditional select instructions select between the first or second source register, depending on the current state
of the condition flags. When the named condition istrue, the first source register is selected and itsvalueis copied
without modification to the destination register. When the condition is fal se the second source register is selected

and itsvalue might be optionally inverted, negated, or incremented by one, before writing to the destination register.

Other useful conditional set and conditional unary operations are implemented as aliases of the four Conditional

select instructions.

Table C3-47 shows the Conditional select instructions.

Table C3-47 Conditional select instructions

Mnemonic Instruction See
CSEL Conditional select CSEL on page C6-502
CSINC Conditional select increment CSINC on page C6-505
CSINV Conditional select inversion CSINV on page C6-507
CSNEG Conditional select negation CSNEG on page C6-509
CSET Conditional set CSET on page C6-503
CSETM Conditional set mask CSETM on page C6-504
CINC Conditional increment CINC on page C6-482
CINV Conditional invert CINV on page C6-483
CNEG Conditional negate CNEG on page C6-497
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-169

1D092916

Non-Confidential

C3 A64 Instruction Set Overview
C3.4 Data processing - register

C3.4.11 Conditional comparison

The Conditional comparison instructions provide aconditional select for the NZCV condition flags, setting theflags
to the result of an arithmetic comparison of its two source register values if the named input condition istrue, or to
an immediate value if the input condition is false. There are register and immediate forms. The immediate form
compares the source register to a small 5-bit unsigned value.

Table C3-48 shows the Conditional comparison instructions.

Table C3-48 Conditional comparison instructions

Mnemonic Instruction See
CCMN Conditional compare negative (register) CCMN (register) on page C6-479
CCMN Conditional compare negative (immediate) = CCMN (immediate) on page C6-478
ccup Conditional compare (register) CCMP (register) on page C6-481
ccup Conditional compare (immediate) CCMP (immediate) on page C6-480
C3-170 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3.5

C3.5.1

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Data processing - SIMD and floating-point

This section describes the instruction groups for data processing with SIMD and floating-point register operands.

It contains the following subsections that describe the scalar floating-point data processing instructions:

Floating-point move (register) on page C3-172.
Floating-point move (immediate) on page C3-172.
Floating-point conversion on page C3-172.
Floating-point round to integral on page C3-174.
Floating-point multiply-add on page C3-175.
Floating-point arithmetic (one source) on page C3-175.
Floating-point arithmetic (two sources) on page C3-175.
Floating-point minimum and maximum on page C3-176.
Floating-point comparison on page C3-176.
Floating-point conditional select on page C3-177.

It aso contains the following subsections that describe the SIMD data processing instructions:

3

SIMD move on page C3-177

SIMD arithmetic on page C3-177.

SIMD compare on page C3-180.

SIMD widening and narrowing arithmetic on page C3-181.
SIMD unary arithmetic on page C3-182.

SIMD by element arithmetic on page C3-184.

SIMD permute on page C3-185.

SIMD immediate on page C3-185.

SIMD shift (immediate) on page C3-185.

SIMD floating-point and integer conversion on page C3-187.
SIMD reduce (across vector lanes) on page C3-188.

SIMD pairwise arithmetic on page C3-188.

SIMD table lookup on page C3-189.

The Cryptographic Extension on page C3-189.

For information about the encoding structure of the instructions in thisinstruction group, see Data processing -
SIMD and floating point on page C4-233.

For information about the floating-point exceptions, see Floating-point exception traps on page D1-1552.

Common features of SIMD instructions

A number of SIMD instructions come in three forms:

Wide Indicated by the suffix W. The element width of the destination register and the first source operand
is double that of the second source operand.

Long Indicated by the suffix L. The element width of the destination register is double that of both source
operands.

Narrow Indicated by the suffix N. The element width of the destination register is half that of both source
operands.

In addition, each vector form of theinstruction is part of apair, with a second and upper half suffix of 2, to identify
the variant of the instruction:

Where a SIMD operation widens or lengthens a 64-bit vector to a 128-hit vector, the instruction provides a
second part operation that can extract the source from the upper 64 bits of the source registers.

Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the instruction provides a second-part
operation that can pack the result of a second operation into the upper part of the same destination register.

ARM DDI 0487A .K_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-171
Non-Confidential

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Note
Thisisreferred to as a lane set specifier.

C3.5.2 Floating-point move (register)

The Floating-point move (register) instructions copy a scalar floating-point value from one register to another
register without performing any conversion.

Some of the Floating-point move (register) instructions overlap with the functionality provided by the Advanced
SIMD instructions DUP, INS, and UMOV. However, ARM recommends using the FMOV instructions when operating on

scalar floating-point data to avoid the creation of scalar floating-point code that depends on the availability of the
Advanced SIMD instruction set.

Table C3-49 shows the Floating-point move (register) instructions.

Table C3-49 Floating-point move (register) instructions

Mnemonic Instruction See

FMoV Floating-point move register without conversion FMOV (register) on page C7-974

Floating-point move to or from general-purpose register without conversion ~ FMOV (general) on page C7-975

C3.5.3 Floating-point move (immediate)

The Floating-point move (immediate) instructions convert a small constant immediate floating-point value into a
single-precision or double-precision scalar floating-point value in a SIMD and floating-point register.

The floating-point constant can be specified either in decimal notation, such as 12.0 or -1.2el, or asastring
beginning with ox followed by a hexadecimal representation of the IEEE 754 single-precision or double-precision
encoding. ARM recommends that a disassembler uses the decimal notation, provided that this displays the value
precisely.

The floating-point value must be expressible as (+ n/16 x 27), wheren isaninteger intherange16 <n<3landris
an integer in the range of -3 <r < 4, that isanormalized binary floating-point encoding with one sign hit, four bits
of fraction, and a 3-bit exponent.

Table C3-50 shows the Floating-point move (immediate) instruction:

Table C3-50 Floating-point move (immediate) instruction

Mnemonic Instruction See
FMOV Floating-point moveimmediate =~ FMOV (scalar, immediate) on page C7-978
C3.54 Floating-point conversion

The following subsections describe the conversion of floating-point values:
. Convert floating-point precision.
. Convert between floating-point and integer or fixed-point on page C3-173.

Convert floating-point precision

These instructions convert a floating-point scalar with one precision to afloating-point scalar with a different
precision, using the current rounding mode as specified by FPCR.RMode.

C3-172 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-51 shows the Floating-point precision conversion instruction.

Table C3-51 Floating-point precision conversion instruction

Mnemonic Instruction See

FCVT Floating-point convert precision (scalar) FCVT on page C7-869

Convert between floating-point and integer or fixed-point

These instructions convert a floating-point scalar in a SIMD and floating-point register to or from asigned or
unsigned integer or fixed-point in a general-purpose register. For afixed-point value, afinal immediate operand
indicates that the general -purpose register holds a fixed-point number and fbits indicates the number of bits after
the binary point. fbits isin therange 1- 32 inclusive for a 32-bit general-purpose register name, and 1-64 inclusive
for a 64-bit general-purpose register name.

These instructions generate the Invalid Operation exception, in response to a floating-point input of NaN, infinity,
or anumerical value that cannot be represented within the destination register. An out-of-range integer or
fixed-point result is saturated to the size of the destination register. A numeric result that differs from the input
generates an | nexact exception. When flush-to-zero modeis enabled, zero replaces a denormal input and generates
an Input Denormal exception.

Table C3-52 shows the Floating-point and fixed-point conversion instructions.

Table C3-52 Floating-point and integer or fixed-point conversion instructions

Mnemonic Instruction See

FCVTAS Floating-point scalar convert to signed integer, rounding to nearest ~ FCVTAS (scalar) on page C7-873
with ties to away (scalar form)

FCVTAU Floating-point scalar convert to unsigned integer, rounding to FCVTAU (scalar) on page C7-877
nearest with tiesto away (scalar form)

FCVTMS Floating-point scalar convert to signed integer, rounding toward FCVTMS (scalar) on page C7-883
minus infinity (scalar form)

FCVTMU Floating-point scalar convert to unsigned integer, rounding toward ~ FCVTMU (scalar) on page C7-887
minus infinity (scalar form)

FCVTNS Floating-point scalar convert to signed integer, rounding to nearest ~ FCVTNS (scalar) on page C7-893
with ties to even (scalar form)

FCVTNU Floating-point scalar convert to unsigned integer, rounding to FCVTNU (scalar) on page C7-897
nearest with ties to even (scalar form)

FCVTPS Floating-point scalar convert to signed integer, rounding toward FCVTPS (scalar) on page C7-901
positive infinity (scalar form)

FCVTPU Floating-point scalar convert to unsigned integer, rounding toward ~ FCVTPU (scalar) on page C7-905
positive infinity (scalar form)

FCVTZS Floating-point scalar convert to signed integer, rounding toward FCVTZS (scalar, integer) on page C7-916
zero (scalar form)
Floating-point convert to signed fixed-point, rounding toward zero FCVTZS (scalar, fixed-point) on page C7-914
(scalar form)

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-173
ID092916 Non-Confidential

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-52 Floating-point and integer or fixed-point conversion instructions (continued)

Mnemonic Instruction See

FCVTZU Floating-point scalar convert to unsigned integer, rounding toward ~ FCVTZU (scalar, integer) on page C7-925
zero (scalar form)
Floating-point scalar convert to unsigned fixed-point, rounding FCVTZU (scalar, fixed-point) on page C7-923
toward zero (scalar form)

SCVTF Signed integer scalar convert to floating-point, using the current SCVTF (vector, integer) on page C7-1175
rounding mode (scalar form)
Signed fixed-point convert to floating-point, using the current SCVTF (scalar, fixed-point) on page C7-1177
rounding mode (scalar form)

UCVTF Unsigned integer scalar convert to floating-point, using thecurrent ~ UCVTF (vector, integer) on page C7-1401
rounding mode (scalar form)
Unsigned fixed-point convert to floating-point, using the current UCVTF (scalar, fixed-point) on page C7-1403
rounding mode (scalar form)

C3.5.5 Floating-point round to integral

The Floating-point round to integral instructions round a floating-point value to an integral floating-point value of
the same size.

These instructions generate the Invalid Operation exception in response to asignaling NaN input, or the Input
Denormal exception in response to a denormal input when flush-to-zero mode is enabled. The FRINTX instruction
can a so generate the I nexact exception if the result is numeric and does not have the same numerical value asthe
input. A zero input givesazero result with the same sign, aninfiniteinput givesaninfinite result with the same sign,
and aNaN is propagated asin normal floating-point arithmetic.

Table C3-53 shows the Floating-point round to integral instructions.

Table C3-53 Floating-point round to integral instructions

Mnemonic Instruction See

FRINTA Floating-point round to integral, to nearest with ties to away FRINTA (scalar) on page C7-1007
FRINTI Floating-point round to integral, using current rounding mode FRINTI (scalar) on page C7-1011
FRINTM Floating-point round to integral, toward minus infinity FRINTM (scalar) on page C7-1015
FRINTN Floating-point round to integral, to nearest with tiesto even FRINTN (scalar) on page C7-1019
FRINTP Floating-point round to integral, toward positive infinity FRINTP (scalar) on page C7-1023
FRINTX Floating-point round to integral exact, using current rounding mode ~ FRINTX (scalar) on page C7-1027
FRINTZ Floating-point round to integral, toward zero FRINTZ (scalar) on page C7-1031

C3-174

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

Floating-point multiply-add

C3 A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-54 shows the Floating-point multiply-add instructions that require three source register operands.

Table C3-54 Floating-point multiply-add instructions

Mnemonic Instruction See

FMADD Floating-point scalar fused multiply-add FMADD on page C7-931
FMSUB Floating-point scalar fused multiply-subtract FMSUB on page C7-979
FNMADD Floating-point scalar negated fused multiply-add FNMADD on page C7-994
FNMSUB Floating-point scalar negated fused multiply-subtract ~ FNMSUB on page C7-996

Floating-point arithmetic (one source)

Table C3-55 shows the Floating-point arithmetic instructions that require a single source register operand.

Table C3-55 Floating-point arithmetic instructions with one source register

Mnemonic

Instructions

See

FABS

FNEG

Floating-point scalar absolute value

Floating-point scalar negate

FABS (scalar) on page C7-831

FNEG (scalar) on page C7-993

FSQRT

Floating-point scalar square root

FSQRT (scalar) on page C7-1038

Floating-point arithmetic (two sources)

Table C3-56 shows the Floating-point arithmetic instructions that require two source register operands.

Table C3-56 Floating-point arithmetic instructions with two source registers

Mnemonic

Instruction

See

FADD

Floating-point scalar add

FADD (scalar) on page C7-838

FDIV

Floating-point scalar divide

FDIV (scalar) on page C7-929

FMUL

Floating-point scalar multiply

FMUL (scalar) on page C7-985

FNMUL

FSuB

Floating-point scalar multiply-negate

Floating-point scalar subtract

FNMUL (scalar) on
page C7-998

FSUB (scalar) on page C7-1041

ARM DDI 0487A .K_iss10775

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C3-175

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.9 Floating-point minimum and maximum

Themin(x,y) andmax(x,y) operationsreturn aquiet NaN when either x or y isNaN. In flush-to-zero mode denormal
operands are flushed to zero before comparison, and if the result of the comparison isthe flushed value, then azero
valueisreturned. Where both x and y are zero, or denormal values flushed to zero, with different signs, then +0.0
is returned by max() and -0.0 by min().

TheminNum(x,y) and maxNum(x,y) operations follow the | EEE 754-2008 standard and return the numerical operand
when one operand isnumerical and the other aquiet NaN. Apart from thisadditional handling of asingle quiet NaN
the result isthen identical tomin(x,y) and max(x,y).

Table C3-57 shows the Floating-point instructions that can perform floating-point minimum and maximum
operations.

Table C3-57 Floating-point minimum and maximum instructions

Mnemonic Instruction See

FMAX Floating-point scalar maximum FMAX (scalar) on page C7-935
FMAXNM Floating-point scalar maximum number FMAXNM (scalar) on page C7-939
FMIN Floating-point scalar minimum FMIN (scalar) on page C7-951
FMINNM Floating-point scalar minimum number FMINNM (scalar) on page C7-955

C3.5.10 Floating-point comparison

These instructions set the NZCV condition flagsin PSTATE, based on the result of a comparison of two operands.
If the floating-point comparisons are unordered, where one or both operands are aform of NaN, the C and V bits
areset to 1 and the N and Z bits are cleared to O.

Note

The NZCV flagsin the FPSR are associated with AArch32 state. The A64 floating-point comparison instructions
do not change the condition flags in the FPSR.

For the conditional Floating-point comparison instructions, if the condition is TRUE, the flags are updated to the
result of the comparison, otherwise the flags are updated to the immediate value that is defined in the instruction
encoding.

The quiet compare instructions generate an Invalid Operation exception if either of the source operandsis a
signaling NaN. The signaling compare instructions generate an Invalid Operation exception if either of the source
operandsis any type of NaN.

Table C3-58 shows the Floating-point comparison instructions.

Table C3-58 Floating-point comparison instructions

Mnemonic Instruction See
FCMP Floating-point quiet compare FCMP on page C7-863
FCMPE Floating-point signaling compare FCMPE on page C7-865
FCCMP Floating-point conditional quiet compare FCCMP on page C7-843
FCCMPE Floating-point conditional signaling compare ~ FCCMPE on page C7-845
C3-176 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.11 Floating-point conditional select

Table C3-59 shows the Floating-point conditional select instructions.

Table C3-59 Floating-point conditional select instructions

Mnemonic Instruction See

FCSEL Floating-point scalar conditional select FCSEL on page C7-867

C3.5.12 SIMD move

The functionality of some data movement instructions overlaps with that provided by the scalar floating-point FMOV
instructions described in Floating-point move (register) on page C3-172.

Table C3-60 shows the SIMD move instructions.

Table C3-60 SIMD move instructions

Mnemonic Instruction See

DUP Duplicate vector element to vector or scalar DUP (element) on page C7-820

DUP Duplicate general-purpose register to vector DUP (general) on page C7-823

INSa Insert vector element from another vector element INS (element) on page C7-1043
Insert vector element from general-purpose register INS (general) on page C7-1045

MOV Move vector element to vector element MOV (element) on page C7-1114
Move general-purpose register to vector element MOV (from general) on page C7-1116
Move vector element to scalar MOV (scalar) on page C7-1112
Move vector element to general-purpose register MOV (to general) on page C7-1119

umov Unsigned move vector element to general-purposeregister UMOV on page C7-1433

SMov Signed move vector element to general-purpose register SMOV on page C7-1226

a. Disassembles asMov.

C3.5.13 SIMD arithmetic

Table C3-61 shows the SIMD arithmetic instructions.

Table C3-61 SIMD arithmetic instructions

Mnemonic Instruction See
ADD Add (vector and scalar form) ADD (vector) on page C7-773
AND Bitwise AND (vector form) AND (vector) on page C7-786
BIC Bitwise bit clear (register) (vector form) BIC (vector, register) on page C7-789
BIF Bitwise insert if false (vector form) BIF on page C7-790
BIT Bitwiseinsert if true (vector form) BIT on page C7-791
BSL Bitwise select (vector form) BSL on page C7-792
EOR Bitwise exclusive OR (vector form) EOR (vector) on page C7-825
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-177

1D092916 Non-Confidential

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-61 SIMD arithmetic instructions (continued)

Mnemonic Instruction See

FABD Floating-point absolute difference (vector and scalar form) FABD on page C7-828

FADD Floating-point add (vector form) FADD (scalar) on page C7-838

FDIV Floating-point divide (vector form) FDIV (vector) on page C7-927

FMAX Floating-point maximum (vector form) FMAXP (vector) on page C7-946

FMAXNM Floating-point maximum number (vector form) FMAXNM (vector) on page C7-937

FMIN Floating-point minimum (vector form) FMIN (vector) on page C7-949

FMINNM Floating-point minimum number (vector form) FMINNM (vector) on page C7-953

FMLA Floating-point fused multiply-add (vector form) FMLA (vector) on page C7-967

FMLS Floating-point fused multiply-subtract (vector form) FMLS (vector) on page C7-971

FMUL Floating-point multiply (vector form) FMUL (vector) on page C7-983

FMULX Floating-point multiply extended (vector and scalar form) FMULX on page C7-990

FRECPS Floating-point reciprocal step (vector and scalar form) FRECPS on page C7-1002

FRSQRTS Floating-point reciprocal square root step (vector and scalar form) FRSQRTS on page C7-1035

FSUB Floating-point subtract (vector form) FSUB (vector) on page C7-1039

MLA Multiply-add (vector form) MLA (vector) on page C7-1106

MLS Multiply-subtract (vector form) MLS (vector) on page C7-1110

MUL Multiply (vector form) MUL (vector) on page C7-1125

MOV Move vector register (vector form) MOV (vector) on page C7-1118

ORN Bitwiseinclusive OR NOT (vector form) ORN (vector) on page C7-1133

ORR Bitwiseinclusive OR (register) (vector form) ORR (vector, register) on page C7-1136

PMUL Polynomial multiply (vector form) PMUL on page C7-1137

SABA Signed absolute difference and accumulate (vector form) SABA on page C7-1154

SABD Signed absolute difference (vector form) SABD on page C7-1158

SHADD Signed halving add (vector form) SHADD on page C7-1191

SHSUB Signed halving subtract (vector form) SHSUB on page C7-1199

SMAX Signed maximum (vector form) SMAX on page C7-1204

SMIN Signed minimum (vector form) SMIN on page C7-1210

SQADD Signed saturating add (vector and scalar form) SQADD on page C7-1234

SQDMULH Signed saturating doubling multiply returning high half (vector andscalar SQDMULH (vector) on page C7-1253
form)

SQRSHL Signed saturating rounding shift left (register) (vector and scalar form) SQRSHL on page C7-1268

SQRDMULH Signed saturating rounding doubling multiply returning high half (vector ~ SQRDMULH (vector) on page C7-1266

and scalar form)

C3-178 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-61 SIMD arithmetic instructions (continued)

Mnemonic Instruction See

SQSHL Signed saturating shift |eft (register) (vector and scalar form) SQSHL (register) on page C7-1279
SQSuB Signed saturating subtract (vector and scalar form) SQSUB on page C7-1290

SRHADD Signed rounding halving add (vector form) SRHADD on page C7-1298

SRSHL Signed rounding shift left (register) (vector and scalar form) SRSHL on page C7-1303

SSHL Signed shift Ieft (register) (vector and scalar form) SSHL on page C7-1309

SUB Subtract (vector and scalar form) SUB (vector) on page C7-1364
UABA Unsigned absolute difference and accumulate (vector form) UABA on page C7-1380

UABD Unsigned absolute difference (vector form) UABD on page C7-1384

UHADD Unsigned halving add (vector form) UHADD on page C7-1407

UHSUB Unsigned halving subtract (vector form) UHSUB on page C7-1409

UMAX Unsigned maximum (vector form) UMAX on page C7-1411

UMIN Unsigned minimum (vector form) UMIN on page C7-1417

UQADD Unsigned saturating add (vector and scalar form) UQADD on page C7-1439

UQRSHL Unsigned saturating rounding shift left (register) (vector and scalar form) UQRSHL on page C7-1441

UQSHL Unsigned saturating shift |eft (register) (vector and scalar form) UQSHL (register) on page C7-1449
uQsuB Unsigned saturating subtract (vector and scalar form) UQSUB on page C7-1454

URHADD Unsigned rounding halving add (vector form) URHADD on page C7-1460

URSHL Unsigned rounding shift left (register) (vector and scalar form) URSHL on page C7-1462

USHL Unsigned shift Ieft (register) (vector and scalar form) USHL on page C7-1469

ARM DDI 0487A .K_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C3-179

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.14 SIMD compare

The SIMD compare instructions compare vector or scalar elements according to the specified condition and set the
destination vector element to all onesif the condition holds, or to zero if the condition does not hold.

Note

Some of the comparisons, such asLS, LE, LO, and LT, can be made by reversing the operands and using the
opposite comparison, HS, GE, HI, or GT.

Table C3-62 shows that SIMD compare instructions.

Table C3-62 SIMD compare instructions

Mnemonic Instruction See

CMEQ Compare bitwise equal (vector and scalar form) CMEQ (register) on page C7-797
Compare bitwise equal to zero (vector and scalar form) CMEQ (zero) on page C7-799

CMHS Compare unsigned higher or same (vector and scalar form) CMHS (register) on page C7-811

CMGE Compare signed greater than or equal (vector and scalar form) CMGE (register) on page C7-801
Compare signed greater than or equal to zero (vector and scalar form) CMGE (zero) on page C7-803

(MHI Compare unsigned higher (vector and scalar form) CMHI (register) on page C7-809

CMGT Compare signed greater than (vector and scalar form) CMGT (register) on page C7-805
Compare signed greater than zero (vector and scalar form) CMGT (zero) on page C7-807

CMLE Compare signed less than or equal to zero (vector and scalar form) CMLE (zero) on page C7-813

MLT Compare signed less than zero (vector and scalar form) CMLT (zero) on page C7-815

CMTST Compare hitwise test bits nonzero (vector and scalar form) CMTST on page C7-817

FCMEQ Floating-point compare equal (vector and scalar form) FCMEQ (register) on page C7-847
Floating-point compare equal to zero (vector and scalar form) FCMEQ (zero) on page C7-849

FCMGE Floating-point compare greater than or equal (vector and scalar form) FCMGE (register) on page C7-851

Floating-point compare greater than or equal to zero (vector and scalar form) FCMGE (zero) on page C7-853

FCMGT Floating-point compare greater than (vector and scalar form) FCMGT (register) on page C7-855
Floating-point compare greater than zero (vector and scalar form) FCMGT (zero) on page C7-857
FCMLE Floating-point compare less than or equal to zero (vector and scalar form) FCMLE (zero) on page C7-859
FCMLT Floating-point compare less than zero (vector and scalar form) FCMLT (zero) on page C7-861
FACGE Floating-point absolute compare greater than or equal (vector and scalar form) FACGE on page C7-832
FACGT Floating-point absolute compare greater than (vector and scalar form) FACGT on page C7-834
C3-180 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3.5.15 SIMD widening and narrowing arithmetic

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

For information about the variants of theseinstructions, see Common features of SIMD instructions on page C3-171.

Table C3-63 shows the SIMD widening and narrowing arithmetic instructions.

Table C3-63 SIMD widening and narrowing arithmetic instructions

Mnemonic

Instruction

See

ADDHN, ADDHN2

Add returning high, narrow (vector form)

ADDHN, ADDHN2 on page C7-775

PMULL, PMULL2

Polynomia multiply long (vector form)

PMULL, PMULL2 on page C7-1139

See also The Cryptographic Extension on
page C3-189

RADDHN, RADDHN2

Rounding add returning high, narrow (vector form)

RADDHN, RADDHN2 on page C7-1141

RSUBHN, RSUBHN2

Rounding subtract returning high, narrow (vector form)

RSUBHN, RSUBHNZ2 on page C7-1152

SABAL, SABAL2

SABDL, SABDL2

Signed absolute difference and accumulate long (vector form)

Signed absolute difference long (vector form)

SABAL, SABAL2 on page C7-1156
SABDL, SABDL2 on page C7-1160

SADDL, SADDL2

Signed add long (vector form)

SADDL, SADDL2 on page C7-1164

SADDW, SADDW2

Signed add wide (vector form)

SADDW, SADDW?2 on page C7-1170

SMLAL, SMLAL2

Signed multiply-add long (vector form)

SMLAL, SMLAL2 (vector) on page C7-1219

SMLSL, SMLSL2

Signed multiply-subtract long (vector form)

SMLSL, SMLSL2 (vector) on page C7-1224

SMULL, SMULL2

SQDMLAL, SQDMLAL2

SQDMLSL, SQDMLSL2

SQDMULL, SQDMULL2

SSUBL, SSUBL2

Signed multiply long (vector form)

Signed saturating doubling multiply-add long (vector and

scalar form)

Signed saturating doubling multiply-subtract long (vector and

scalar form)

Signed saturating doubling multiply long (vector and scalar

form)

Signed subtract long (vector form)

SMULL, SMULLZ2 (vector) on page C7-1230

SQDMLAL, SQDMLAL?2 (vector) on
page C7-1240

SQDMLSL, SQDMLSL2 (vector) on
page C7-1247

SQDMULL, SQDMULLZ2 (vector) on
page C7-1258

SSUBL, SSUBL2 on page C7-1317

SSUBW, SSUBW2

Signed subtract wide (vector form)

SSUBW, SSUBW2 on page C7-1319

SUBHN, SUBHN2

Subtract returning high, narrow (vector form)

SUBHN, SUBHN2 on page C7-1366

UABAL, UABAL2

Unsigned absolute difference and accumulate long (vector

form)

UABAL, UABAL?2 on page C7-1382

UABDL, UABDL2

Unsigned absolute difference long (vector form)

UABDL, UABDL?2 on page C7-1386

UADDL, UADDL2
UADDW, UADDW2

UMLAL, UMLAL2

Unsigned add long (vector form)
Unsigned add wide (vector form)

Unsigned multiply-add long (vector form)

UADDL, UADDL2 on page C7-1390
UADDW, UADDW?2 on page C7-1396

UMLAL, UMLALZ2 (vector) on page C7-1426

UMLSL, UMLSL2

Unsigned multiply-subtract long (vector form)

UMLSL, UMLSL2 (vector) on page C7-1431

ARM DDI 0487A .K_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-181
Non-Confidential

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-63 SIMD widening and narrowing arithmetic instructions (continued)

Mnemonic

Instruction See

UMULL, UMULL2

Unsigned multiply long (vector form)

UMULL, UMULL2 (vector) on page C7-1437

USUBL, USUBL2

Unsigned subtract long (vector form)

USUBL, USUBL2 on page C7-1479

USUBW, USUBW2

Unsigned subtract wide (vector form)

USUBW, USUBW2 on page C7-1481

C3.5.16 SIMD unary arithmetic
For information about the variants of theseinstructions, see Common features of SIMD instructions on page C3-171.
Table C3-64 shows the SIMD unary arithmetic instructions.
Table C3-64 SIMD unary arithmetic instructions
Mnemonic Instruction See
ABS Absolute value (vector and scalar form) ABS on page C7-771
CLS Count leading sign bits (vector form) CLS (vector) on page C7-793
CLz Count leading zero bits (vector form) CLZ (vector) on page C7-795
CNT Population count per byte (vector form) CNT on page C7-819
FABS Floating-point absolute (vector form) FABS (vector) on page C7-830
FCVTL, FCVTL2 Floating-point convert to higher precision long (vector form) FCVTL, FCVTL2 on page C7-879
FCVTN, FCVTN2 Floating-point convert to lower precision narrow (vector form) FCVTN, FCVTN2 on page C7-889

FCVTXN, FCVTXN2

Floating-point convert to lower precision narrow, rounding to odd
(vector and scalar form)

FCVTXN, FCVTXN2 on
page C7-907

FNEG Floating-point negate (vector form) FNEG (vector) on page C7-992

FRECPE Floating-point reciprocal estimate (vector and scalar form) FRECPE on page C7-1000

FRECPX Floating-point reciprocal square root (scalar form) FRECPX on page C7-1004

FRINTA Floating-point round to integral, to nearest with ties to away (vector FRINTA (scalar) on page C7-1007
form)

FRINTI Floating-point round to integral, using current rounding mode (vector FRINTI (vector) on page C7-1009
form)

FRINTM Floating-point round to integral, toward minus infinity (vector form) FRINTM (vector) on page C7-1013

FRINTN Floating-point round to integral, to nearest with ties to even (vector FRINTN (vector) on page C7-1017
form)

FRINTP Floating-point round to integral, toward positive infinity (vector form) FRINTP (vector) on page C7-1021

FRINTX Floating-point round to integral exact, using current rounding mode FRINTX (vector) on page C7-1025
(vector form)

FRINTZ Floating-point round to integral, toward zero (vector form) FRINTZ (vector) on page C7-1029

FRSQRTE Floating-point reciprocal square root estimate (vector and scalar form) FRSQRTE on page C7-1033

FSQRT Floating-point square root (vector form) FSQRT (vector) on page C7-1037

C3-182 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C3 A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-64 SIMD unary arithmetic instructions (continued)

Mnemonic Instruction See
MVN Bitwise NOT (vector form) MVN on page C7-1127
NEG Negate (vector and scalar form) NEG (vector) on page C7-1130
NOT Bitwise NOT (vector form) NOT on page C7-1132
RBIT Bitwise reverse (vector form) RBIT (vector) on page C7-1143
REV16 Reverse elements in 16-bit halfwords (vector form) REV16 (vector) on page C7-1144
REV32 Reverse elements in 32-bit words (vector form) REV32 (vector) on page C7-1146
REV64 Reverse elements in 64-bit doublewords (vector form) REV64 on page C7-1148
SADALP Signed add and accumulate long pairwise (vector form) SADALP on page C7-1162
SADDLP Signed add long pairwise (vector form) SADDLP on page C7-1166
SQABS Signed saturating absolute value (vector and scalar form) SQABS on page C7-1232
SQNEG Signed saturating negate (vector and scalar form) SQNEG on page C7-1261
SQXTN, SQXTN2 Signed saturating extract narrow (vector form) SQXTN, SQXTN2 on

page C7-1292
SQXTUN, SQXTUN2 Signed saturating extract unsigned narrow (vector and scalar form) SQXTUN, SQXTUN2 on

page C7-1295
SUQADD Signed saturating accumulate of unsigned value (vector and scalar SUQADD on page C7-1368

form)

SXTL, SXTL2 Signed extend long SXTL, SXTL2 on page C7-1370
UADALP Unsigned add and accumulate long pairwise (vector form) UADALP on page C7-1388
UADDLP Unsigned add long pairwise (vector form) UADDLP on page C7-1392

UQXTN, UQXTN2

Unsigned saturating extract narrow (vector form)

UQXTN, UQXTN2 on

page C7-1456
URECPE Unsigned reciprocal estimate (vector form) URECPE on page C7-1459
URSQRTE Unsigned reciprocal square root estimate (vector form) URSQRTE on page C7-1466
USQADD Unsigned saturating accumulate of signed value (vector and scalar USQADD on page C7-1475
form)
UXTL, UXTL2 Unsigned extend long UXTL, UXTL2 on page C7-1483
XTN, XTN2 Extract narrow (vector form) XTN, XTN2 on page C7-1489

ARM DDI 0487A .K_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C3-183

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.17 SIMD by element arithmetic
For information about the variants of theseinstructions, see Common features of SIMD instructions on page C3-171.

Table C3-65 shows the SIMD by element arithmetic instructions.

Table C3-65 SIMD by element arithmetic instructions

Mnemonic Instruction See
FMLA Floating-point fused multiply-add (vector and scalar form) FMLA (by element) on page C7-965
FMLS Floating-point fused multiply-subtract (vector and scalar form) FMLS (by element) on page C7-969.
FMUL Floating-point multiply (vector and scalar form) FMUL (by element) on page C7-981
FMULX Floating-point multiply extended (vector and scalar form) FMULX (by element) on page C7-987
MLA Multiply-add (vector form) MLA (by element) on page C7-1104
MLS Multiply-subtract (vector form) MLS (by element) on page C7-1108
MUL Multiply (vector form) MUL (by element) on page C7-1123
SMLAL, SMLAL2 Signed multiply-add long (vector form) SMLAL, SMLAL2 (by element) on
page C7-1216
SMLSL, SMLSL2 Signed multiply-subtract long (vector form) SMLSL, SMLSL2 (by element) on
page C7-1221
SMULL, SMULL2 Signed multiply long (vector form) SMULL, SMULL2 (by element) on
page C7-1228
SQDMLAL, SQDMLAL2 Signed saturating doubling multiply-add long (vector and scalar ~ SQDMLAL, SQDMLAL2 (by element) on
form) page C7-1236
SQDMLSL, SQDMLSL2 Signed saturating doubling multiply-subtract long (vector form) SQDMLSL, SQDMLSL2 (by element) on
page C7-1243
SQDMULH Signed saturating doubling multiply returning high half (vector SQDMULH (by element) on page C7-1250

and scalar form)

SQDMULL, SQDMULL2 Signed saturating doubling multiply long (vector and scalar form) SQDMULL, SQDMULL2 (by element) on

page C7-1255

SQRDMULH Signed saturating rounding doubling multiply returning highhalf ~ SQRDMULH (by element) on page C7-1263

(vector and scalar form)

UMLAL, UMLAL2 Unsigned multiply-add long (vector form) UMLAL, UMLAL2 (by element) on
page C7-1423

UMLSL, UMLSL2 Unsigned multiply-subtract long (vector form) UMLSL, UMLSL2 (by element) on
page C7-1428

UMULL, UMULL2 Unsigned multiply long (vector form) UMULL, UMULL2 (by element) on
page C7-1435

C3-184 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.18 SIMD permute
Table C3-66 showsthe SIMD permute instructions.

Table C3-66 SIMD permute instructions

Mnemonic Instruction See

EXT Extract vector from apair of vectors ~ EXT on page C7-826
TRN1 Transpose vectors (primary) TRNL1 on page C7-1376
TRN2 Transpose vectors (secondary) TRN2 on page C7-1378
uzp1 Unzip vectors (primary) UZP1 on page C7-1485
uzp2 Unzip vectors (secondary) UZP2 on page C7-1487
ZIP1 Zip vectors (primary) ZIP1 on page C7-1491
ZIP2 Zip vectors (secondary) ZIP2 on page C7-1493

C3.5.19 SIMD immediate
Table C3-67 shows the SIMD immediate instructions.

Table C3-67 SIMD immediate instructions

Mnemonic Instruction See

BIC Bitwise bit clear immediate BIC (vector, immediate) on page C7-787
FMOV Floating-point move immediate FMOV (vector, immediate) on page C7-973
MOVI Move immediate MOVI on page C7-1120

MVNI Move inverted immediate MVNI on page C7-1128

ORR Bitwiseinclusive OR immediate ORR (vector, immediate) on page C7-1134

C3.5.20 SIMD shift (immediate)
For information about the variants of theseinstructions, see Common features of SIMD instructions on page C3-171.

Table C3-68 shows the SIMD shift immediate instructions.

Table C3-68 SIMD shift (immediate) instructions

Mnemonic Instruction See
RSHRN, RSHRN2 Rounding shift right narrow immediate (vector form) RSHRN, RSHRN2 on page C7-1150
SHL Shift left immediate (vector and scalar form) SHL on page C7-1193
SHLL, SHLL2 Shift left long (by element size) (vector form) SHLL, SHLL2 on page C7-1195
SHRN, SHRN2 Shift right narrow immediate (vector form) SHRN, SHRN2 on page C7-1197
SLI Shift left and insert immediate (vector and scalar form) SLI on page C7-1201
SQRSHRN, SQRSHRN2 Signed saturating rounded shift right narrow immediate (vector SQRSHRN, SQRSHRN2 on
and scalar form) page C7-1270
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C3-185

1D092916 Non-Confidential

C3 A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-68 SIMD shift (immediate) instructions (continued)

Mnemonic

Instruction

See

SQRSHRUN, SQRSHRUN2

Signed saturating shift right unsigned narrow immediate (vector
and scalar form)

SQRSHRUN, SQRSHRUN2 on
page C7-1273

SQSHL

Signed saturating shift left immediate (vector and scalar form)

SQSHL (immediate) on page C7-1276

SQSHLU

Signed saturating shift left unsigned immediate (vector and scalar
form)

SQSHLU on page C7-1281

SQSHRN, SQSHRN2

Signed saturating shift right narrow immediate (vector and scalar
form)

SQSHRN, SQSHRN2 on page C7-1284

SQSHRUN, SQSHRUN2

Signed saturating shift right unsigned narrow immediate (vector
and scalar form)

SQSHRUN, SQSHRUN2 on
page C7-1287

SRI Shift right and insert immediate (vector and scalar form) SRI on page C7-1300
SRSHR Signed rounding shift right immediate (vector and scalar form) SRSHR on page C7-1305
SRSRA Signed rounding shift right and accumulateimmediate (vector and ~ SRSRA on page C7-1307.

SSHLL, SSHLL2

scalar form)

Signed shift left long immediate (vector form)

SSHLL, SSHLL?2 on page C7-1311

SSHR Signed shift right immediate (vector and scalar form) SSHR on page C7-1313
SSRA Signed integer shift right and accumulate immediate (vector and SSRA on page C7-1315
scalar form)
SXTL, SXTL2 Signed integer extend (vector only) SXTL, SXTL2 on page C7-1370

UQRSHRN, UQRSHRN2

Unsigned saturating rounded shift right narrow immediate (vector
and scalar form)

UQRSHRN, UQRSHRN2 on
page C7-1443

UQSHL

Unsigned saturating shift left immediate (vector and scalar form)

UQSHL (immediate) on page C7-1446

UQSHRN, UQSHRN2

Unsigned saturating shift right narrow immediate (vector and
scalar form)

UQSHRN, UQSHRN2 on page C7-1451

URSHR

Unsigned rounding shift right immediate (vector and scalar form)

URSHR on page C7-1464

URSRA

Unsigned integer rounding shift right and accumulate immediate
(vector and scalar form)

URSRA on page C7-1467

USHLL, USHLL2

Unsigned shift Ieft long immediate (vector form)

USHLL, USHLL2 on page C7-1471

Non-Confidential

USHR Unsigned shift right immediate (vector and scalar form) USHR on page C7-1473
USRA Unsigned shift right and accumulate immediate (vector and scalar ~ USRA on page C7-1477
form)
UXTL, UXTL2 Unsigned integer extend (vector only) UXTL, UXTL2 on page C7-1483
C3-186 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

ARM DDI 0487A.k _iss10775
1D092916

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.21 SIMD floating-point and integer conversion
The SIMD floating-point and integer conversion instructions generate the Invalid Operation exception in response
to afloating-point input of NaN, infinity, or anumerical value that cannot be represented within the destination
register. An out-of-range integer or afixed-point result is saturated to the size of the destination register. A numeric
result that differs from the input raises the Inexact exception.
Table C3-69 shows the SIMD floating-point and integer conversion instructions.
Table C3-69 SIMD floating-point and integer conversion instructions
Mnemonic Instruction See
FCVTAS Floating-point convert to signed integer, rounding to nearest withties ~ FCVTAS (vector) on page C7-871
to away (vector and scalar form)
FCVTAU Floating-point convert to unsigned integer, rounding to nearest withties FCVTAU (vector) on page C7-875
to away (vector and scalar form)
FCVTMS Floating-point convert to signed integer, rounding toward minus FCVTMS (vector) on page C7-881
infinity (vector and scalar form)
FCVTMU Floating-point convert to unsigned integer, rounding toward minus FCVTMU (vector) on page C7-885
infinity (vector and scalar form)
FCVTNS Floating-point convert to signed integer, rounding to nearest withties ~ FCVTNS (vector) on page C7-891
to even (vector and scalar form)
FCVTNU Floating-point convert to unsigned integer, rounding to nearest withties FCVTNU (vector) on page C7-895
to even (vector and scalar form)
FCVTPS Floating-point convert to signed integer, rounding toward positive FCVTPS (vector) on page C7-899
infinity (vector and scalar form)
FCVTPU Floating-point convert to unsigned integer, rounding toward positive FCVTPU (vector) on page C7-903
infinity (vector and scalar form)
FCVTZS Floating-point convert to signed integer, rounding toward zero (vector ~ FCVTZS (vector, integer) on page C7-912
and scalar form)
Floating-point convert to signed fixed-point, rounding toward zero FCVTZS (vector, fixed-point) on
(vector and scalar form) page C7-909
FCVTZU Floating-point convert to unsigned integer, rounding toward zero FCVTZU (vector, integer) on page C7-921
(vector and scalar form)
Floating-point convert to unsigned fixed-point, rounding toward zero, FCVTZU (vector, fixed-point) on
(vector and scalar form) page C7-918
SCVTF Signed integer convert to floating-point (vector and scalar form) SCVTF (vector, integer) on page C7-1175
Signed fixed-point convert to floating-point (vector and scalar form) SCVTF (vector, fixed-point) on
page C7-1172
UCVTF Unsigned integer convert to floating-point (vector and scalar form) UCVTF (vector, integer) on page C7-1401

Unsigned fixed-point convert to floating-point (vector and scalar form)

UCVTF (vector, fixed-point) on
page C7-1398

ARM DDI 0487A .K_iss10775

1D092916

Non-Confidential

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

C3-187

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.22 SIMD reduce (across vector lanes)

The SIMD reduce (across vector lanes) instructions perform arithmetic operations horizontally, that is across al
lanes of the input vector. They deliver asingle scalar result.

Table C3-70 shows the SIMD reduce (across vector lanes) instructions.

Table C3-70 SIMD reduce (across vector lanes) instructions

Mnemonic Instruction See

ADDV Add (across vector) ADDV on page C7-780
FMAXNMV Floating-point maximum number (across vector) FMAXNMYV on page C7-944
FMAXV Floating-point maximum (across vector) FMAXYV on page C7-948
FMINNMV Floating-point minimum number (across vector) FMINNMYV on page C7-960
FMINV Floating-point minimum (across vector) FMINV on page C7-964
SADDLV Signed add long (across vector) SADDLYV on page C7-1168
SMAXV Signed maximum (across vector) SMAXYV on page C7-1208
SMINV Signed minimum (across vector) SMINV on page C7-1214
UADDLV Unsigned add long (across vector) UADDLY on page C7-1394
UMAXV Unsigned maximum (across vector) UMAXYV on page C7-1415
UMINV Unsigned minimum (across vector) UMINV on page C7-1421

C3.5.23 SIMD pairwise arithmetic

The SIMD pairwise arithmetic instructions perform operations on pairs of adjacent elements and deliver a vector
result.

Table C3-71 shows the SIMD pairwise arithmetic instructions.

Table C3-71 SIMD pairwise arithmetic instructions

Mnemonic Instruction See

ADDP Add pairwise (vector and scalar form) ADDP (vector) on page C7-778

ADDRP (scalar) on page C7-777

FADDP Floating-point add pairwise (vector and scalar form) FADDP (vector) on page C7-841

FADDP (scalar) on page C7-840

FMAXNMP Floating-point maximum number pairwise (vector and scalar form) FMAXNMP (vector) on page C7-942

FMAXNMP (scalar) on page C7-941

FMAXP Floating-point maximum pairwise (vector and scalar form) FMAXP (vector) on page C7-946
FMAXP (scalar) on page C7-945

FMINNMP Floating-point minimum number pairwise (vector and scalar form) FMINNMP (vector) on page C7-958

FMINNMP (scalar) on page C7-957

C3-188 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C3 A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-71 SIMD pairwise arithmetic instructions (continued)

Mnemonic Instruction See

FMINP Floating-point minimum pairwise (vector and scalar form) FMINP (vector) on page C7-962
FMINP (scalar) on page C7-961

SMAXP Signed maximum pairwise SMAXP on page C7-1206

SMINP Signed minimum pairwise SMINP on page C7-1212

UMAXP Unsigned maximum pairwise UMAXP on page C7-1413

UMINP Unsigned minimum pairwise UMINP on page C7-1419

C3.5.24 SIMD table lookup

C3.5.25

Table C3-72 shows the SIMD table lookup instructions.

The Cryptographic Extension

Table C3-72 SIMD table lookup instructions

Mnemonic Instruction See
TBL Table vector lookup TBL on page C7-1372
TBX Table vector lookup extension TBX on page C7-1374

Theinstructions provided by the optional Cryptographic Extension share the SIMD and floating-point register file.

For more information see:

. Announcing the Advanced Encryption Standard.
. The Galois/Counter Mode of Operation.
. Announcing the Secure Hash Standard.

Table C3-73 shows the Cryptographic Extension instructions.

Table C3-73 Cryptographic Extension instructions

Mnemonic Instruction See

AESD AES single round decryption AESD on page C7-782

AESE AES single round encryption AESE on page C7-783
AESIMC AES inverse mix columns AESIMC on page C7-784
AESMC AES mix columns AESMC on page C7-785
PMULL Polynomia multiply long PMULL, PMULL2 on page C7-1139
SHALC SHA1 hash update (choose) SHA1C on page C7-1181
SHAIH SHA1 fixed rotate SHA1H on page C7-1182
SHAIM SHA1 hash update (magjority) SHA1M on page C7-1183
SHA1P SHA1 hash update (parity) SHALP on page C7-1184
SHA1SU@ SHA1 schedule update 0 SHA1SUO on page C7-1185
SHA1SU1 SHA1 schedule update 1 SHA1SU1 on page C7-1186

ARM DDI 0487A .K_iss10775

1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C3-189

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-73 Cryptographic Extension instructions (continued)

Mnemonic Instruction See
SHA256H SHA256 hash update (part 1) SHA256H on page C7-1188
SHA256H2 SHA256 hash update (part 2) SHA256H?2 on page C7-1187
SHA256SU0 SHA256 schedule update O SHA256SU0 on page C7-1189
SHA256SU1 SHA256 schedule update 1 SHA256SU1 on page C7-1190
C3-190 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

Chapter C4
A64 Instruction Set Encoding

This chapter describes the encoding of the A64 instruction set. It contains the following sections:
. A64 instruction index by encoding on page C4-192.

. Data processing - immediate on page C4-193.

. Branches, exception generating and system instructions on page C4-197.

. Loads and stores on page C4-202.

. Data processing - register on page C4-224.

. Data processing - SIMD and floating point on page C4-233.

In this chapter:

. In the decode tables, an entry of - for afield value means the value of the field does not affect the decoding.

. In the decode diagrams, a shaded field indicates that the bitsin that field are not used in that level of decode.
ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-191

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.1 A64 instruction index by encoding

C4.1 A64 instruction index by encoding

The encoding of an A64 instruction is:

|31 29 28| 25 24| 0|
| [op0] |

Table C4-1 Main encoding table for the A64 instruction set

Decode fields
Decode group or instruction page

op0
00xx Unallocated.
100x Data processing - immediate on page C4-193
101x Branches, exception generating and system instructions on page C4-197
x1x0 Loads and stores on page C4-202
x101 Data processing - register on page C4-224
0111 Data processing - SIMD and floating point on page C4-233
1111 Data processing - SIMD and floating point on page C4-233
C4-192 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.2 Data processing - immediate

C4.2 Data processing - immediate

This section describes the encoding of the Data processing (immediate) instruction group. This section is decoded
from A64 instruction index by encoding on page C4-192. For additional information on this functional group of
instructions, see Data processing - immediate on page C3-158.

131 29 28] 25 (2322 | | | | | 0]
| [100 | opo | |

Table C4-2 Encoding table for the Data Processing -- Inmediate group

Decode fields
Decode group or instruction page

op0

00x PC-rel. addressing on page C4-196

01x Add/subtract (immediate)

100 Logical (immediate) on page C4-195
101 Move wide (immediate) on page C4-195
110 Bitfield on page C4-194

111 Extract on page C4-194

C4.21 Add/subtract (immediate)

This section describes the encoding of the Add/subtract (immediate) instruction class. This section is decoded from
Data processing - immediate.

|31 30 29 28(27 26 25 24|23 22 21 | | | 109 | 5 4| 0]
[sflop|s]1 0 0 0 1]shift] imm12 | Rn | Rd |

Decode fields
Instruction Page
sf op S shift

- - - Ix Unallocated.

o 0 0 - ADD (immediate) - 32-bit variant on page C6-439
0 0 1 - ADDS (immediate) - 32-bit variant on page C6-445
0 1 0 - SUB (immediate) - 32-bit variant on page C6-728
0 1 1 - SUBS (immediate) - 32-bit variant on page C6-734
1 0 0 - ADD (immediate) - 64-bit variant on page C6-439
1 0 1 - ADDS (immediate) - 64-bit variant on page C6-445
1 1 0 - SUB (immediate) - 64-bit variant on page C6-728
1 1 1 - SUBS (immediate) - 64-bit variant on page C6-734
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-193

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.2 Data processing - immediate

C4.2.2 Bitfield
This section describes the encoding of the Bitfield instruction class. This section is decoded from Data processing
- immediate on page C4-193.
|31 30 29 28/27 26 25 24(23 22 21 | 16/15 | 109 | 5 4| 0|
[sflopc [1 0 0 1 1 0|N] immr | imms Rn | Rd |
Decode fields
Instruction Page
sf opc N
- 11 - Unallocated.
0 - 1 Unallocated.
0 00 0 SBFM - 32-bit variant on page C6-668
0 01 0 BFM - 32-bit variant on page C6-465
0 10 0 UBFM - 32-bit variant on page C6-752
1 - 0 Unallocated.
1 00 1 SBFM - 64-bit variant on page C6-668
1 01 1 BFM - 64-bit variant on page C6-465
1 10 1 UBFM - 64-bit variant on page C6-752
C4.2.3 Extract
This section describes the encoding of the Extract instruction class. This section is decoded from Data processing
- immediate on page C4-193.
|31 30 29 28(27 26 25 2423 22 21 20| 16]15 | 109 | 5 4| 0]
[sflop21[1 0 0 1 1 1[N]oo] Rm | imms Rn | Rd |
Decode fields
Instruction Page
sf op21 N 00 imms
- X1 - - - Unallocated.
- 00 -1 - Unallocated.
- Ix - - - Unallocated.
0 - - - Ixxxxx Unallocated.
0 - 1 - - Unallocated.
0 00 0 0 Oxxxxx EXTR - 32-bit variant on page C6-526
1 - 0 - - Unallocated.
1 00 1 0 - EXTR - 64-bit variant on page C6-526
C4-194 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

C4 A64 Instruction Set Encoding
C4.2 Data processing - immediate

C4.24 Logical (immediate)
This section describes the encoding of the Logical (immediate) instruction class. Thissection isdecoded from Data
processing - immediate on page C4-193.

31 30 29 28/27 26 25 24/23 2221 | 16/15 | 109 | 5 4| 0]
[sfl opc [1 0 0 1 0 O[N] immr | imms | Rn | Rd |

Decode fields
Instruction Page
sf opc N

0 - 1 Unallocated.

0 00 0 AND (immediate) - 32-bit variant on page C6-451

0 01 0 ORR (immediate) - 32-bit variant on page C6-640

0 10 0 EOR (immediate) - 32-bit variant on page C6-522

0 11 0 ANDS (immediate) - 32-bit variant on page C6-454

1 00 - AND (immediate) - 64-bit variant on page C6-451
1 01 - ORR (immediate) - 64-bit variant on page C6-640
1 10 - EOR (immediate) - 64-hit variant on page C6-522
1 11 - ANDS (immediate) - 64-bit variant on page C6-454

C4.25 Move wide (immediate)
This section describes the encoding of the Move wide (immediate) instruction class. This section is decoded from
Data processing - immediate on page C4-193.

31 30 29 2827 26 25 24[23 22 21 20| \ \ \ 5 4| 0
[sflopc [1 0 0 1 0 1] hw | imm16 | Rd |

Decode fields
Instruction Page
sf opc hw

- 01 - Unallocated.

0 - 1x Unallocated.

o 00 - MOVN - 32-bit variant on page C6-618
0 10 - MOV Z - 32-hit variant on page C6-620
0 11 - MOVK - 32-bit variant on page C6-617
1 00 - MOVN - 64-bit variant on page C6-618
1 10 - MOVZ - 64-bit variant on page C6-620
1 11 - MOVK - 64-bit variant on page C6-617

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-195

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.2 Data processing - immediate

C4.2.6 PC-rel. addressing

This section describes the encoding of the PC-rel. addressing instruction class. This section is decoded from Data
processing - immediate on page C4-193.

31 30 29 28|27 26 25 24|23 \ 5 4| 0|
[oplimmio]1 0 0 0 0] immhi | Rd |

Decode fields
Instruction Page

op
0 ADR
1 ADRP
C4-196 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.3 Branches, exception generating and system instructions

C4.3 Branches, exception generating and system instructions

This section describes the encoding of the Branch, exception generation and system instruction group. This section
is decoded from A64 instruction index by encoding on page C4-192. For additional information on this functional
group of instructions, see Branches, Exception generating, and System instructions on page C3-142.

131 29 28| 25 | 2221 | \ \ \ \ 0|
[op0 [101 | op1 | |

Table C4-3 Encoding table for the Branches, Exception Generating and System instructions

group
Decode fields
Decode group or instruction page
op0 op1
010 OxXX Conditional branch (immediate) on page C4-198
010 1xxx Unallocated.
110 00xx Exception generation on page C4-198
110 0100 System on page C4-199
110 0101 Unallocated.
110 011x Unallocated.
110 1xxx Unconditional branch (register) on page C4-201
x00 - Unconditional branch (immediate) on page C4-200
x01 OxxxX Compare & branch (immediate)
x01 1xxx Test & branch (immediate) on page C4-200
x11 - Unallocated.

C4.31 Compare & branch (immediate)
This section describes the encoding of the Compare & branch (immediate) instruction class. Thissection isdecoded

from Branches, exception generating and system instructions.

31 30 29 2827 26 25 24|23 \ \ \ 5 4| 0|
[sflo 1 1 0 1 0]op| imm19 | Rt |

Decode fields
Instruction Page

sf op

0 0 CBZ - 32-bit variant on page C6-477

0 1 CBNZ - 32-bit variant on page C6-476

1 0 CBZ - 64-bit variant on page C6-477

1 1 CBNZ - 64-bit variant on page C6-476
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-197

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.3 Branches, exception generating and system instructions

C4.3.2 Conditional branch (immediate)

This section describes the encoding of the Conditional branch (immediate) instruction class. Thissection isdecoded
from Branches, exception generating and system instructions on page C4-197.

31 30 29 28|27 26 25 24|23 \ \ \ \ 5 43 0]
(01010 1 0Jo1] imm19 [o0] cond |

Decode fields
Instruction Page

o1 o0

0 0 B.cond

0 1 Unallocated.
1 - Unallocated.

C4.33 Exception generation
This section describes the encoding of the Exception generation instruction class. This section is decoded from

Branches, exception generating and system instructions on page C4-197.

|31 30 29 28/27 26 25 24(23 21 20| | | | 54| 21 0]
|11010100|opc| imm16 |op2|LL|

Decode fields
Instruction Page
opc op2 LL

- xx1 - Unallocated.
- x1x - Unallocated.
- 1xx - Unallocated.

000 000 00 Unallocated.

000 000 01 SvC

000 000 10 HVC

000 000 11 SMC

001 000 x1 Unallocated.

001 000 00 BRK

001 000 1x Unallocated.

010 000 x1 Unallocated.

010 000 00 HLT

010 000 1x Unallocated.

011 000 - Unallocated.

C4-198 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C4.3.4 System

C4 A64 Instruction Set Encoding

C4.3 Branches, exception generating and system instructions

Decode fields
Instruction Page
opc op2 LL

100 000 - Unallocated.

101 000 00 Unallocated.

101 000 01 DCPS1

101 000 10 DCPS2

101 000 1 DCPS3

11x 000 - Unallocated.

This section describes the encoding of the System instruction class. This section is decoded from Branches,

exception generating and system instructions on page C4-197.

|31 30 29 28/27 26 25 24(23 22 21 20/1918 16|15 12[11 8|7 5 4 0]
[1101010100[L]opo| opt | CRn | CRm | op2 | Rt |
Decode fields
Instruction Page
L op0 op1 CRn CRm op2 Rt
0 00 - 000x - - - Unallocated.
0 00 - 0100 - - = 11111 Unallocated.
0 00 - 0100 - - 11111 MSR (immediate)
0 00 - 0101 - - - Unallocated.
0 00 - 011x - - - Unallocated.
0 00 - 1xxx - - - Unallocated.
0 00 xx0 001x - - - Unallocated.
0 00 X0x 001x - - - Unallocated.
0 00 011 001x - - = 11111 Unallocated.
0 00 011 0010 = 0000 - 11111 HINT - Hints 8 to 127 variant on page C6-528
0 00 011 0010 0000 000 11111 NOP
0 00 011 0010 0000 001 11111 YIELD
0 00 011 0010 0000 010 11111 WFE
0 00 011 0010 0000 011 11111 WFI
0 00 011 0010 0000 100 11111 SEV
0 00 011 0010 0000 101 11111 SEVL
0 00 011 00le 0000 11x 11111 HINT - Hints 6 and 7 variant on page C6-528
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-199

1D092916

Non-Confidential

C4 A64 Instruction Set Encoding
C4.3 Branches, exception generating and system instructions

Decode fields

Instruction Page

L op0 op1 CRn CRm op2 Rt

0 00 011 0011 - 000 - Unallocated.
0 00 011 0011 - 001 - Unallocated.
0 00 011 0011 - 010 11111 CLREX

0 00 011 0011 - 011 - Unallocated.
0 00 011 0011 - 100 11111 DSB

0 00 011 0011 - 101 11111 DMB

0 00 011 0011 - 110 11111 1SB

0 00 011 @011 - 111 - Unallocated.
0 00 1xx 001x - - - Unallocated.
o o1 - - - - - SYS

0 1Ix - - - - - MSR (register)
1 00 - - - - - Unallocated.
1 o1 - - - - - SYSL

1 1Ix - - - - - MRS

C4.3.5 Test & branch (immediate)
Thissection describesthe encoding of the Test & branch (immediate) instruction class. Thissectionisdecoded from
Branches, exception generating and system instructions on page C4-197.
|31 30 29 28|27 26 25 24|23 |19 18 | | | 5 4| 0|
[bs]o 1 1 0 1 1]op| b40 | imm14 | Rt |
Decode fields
Instruction Page
op
0 TBZ
1 TBNZ
C4.3.6 Unconditional branch (immediate)
This section describes the encoding of the Unconditional branch (immediate) instruction class. This section is
decoded from Branches, exception generating and system instructions on page C4-197.
C4-200 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

C4 A64 Instruction Set Encoding
C4.3 Branches, exception generating and system instructions

|313029 28272625 | \ 0|
lopl0 0 1 0 1] imm26 |

Decode fields
Instruction Page

op
0 B
1 BL

C4.3.7 Unconditional branch (register)
This section describes the encoding of the Unconditional branch (register) instruction class. This section is decoded
from Branches, exception generating and system instructions on page C4-197.

31 30 29 28|27 26 25 24| 21 20| 16/15 | 109 | 5 4| 0|
[1 10101 1] opc | op2 | op3 | Rn | op4 |

Decode fields
Instruction Page
opc op2 op3 Rn op4

- - - - 1= 00000 Unallocated.

- - = 000000 - - Unallocated.

- = 11111 - - - Unallocated.

0000 11111 000000 - 00000 BR

0001 11111 000000 - 00000 BLR

0010 11111 000000 - 00000 RET

0011 - - - - Unallocated.

010x - - = 11111 - Unallocated.

0100 11111 11111 ERET

0101 11111 11111 DRPS

011x - - - - Unallocated.

Ixxx - - - - Unallocated.
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-201

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding

C4.4 Loads and stores

C4.4

Loads and stores

This section describes the encoding of the Loads and stores instruction group. This section is decoded from A64
instruction index by encoding on page C4-192. For additional information on this functional group of instructions,
see Loads and stores on page C3-146.

131 30 29 28|27 26 25 2423 2221 | 16/15 121110 9 | \

0]

L[Topt]r] [ofop3] |

op4 I I op5 I

I
op0
op2

|

Table C4-4 Encoding table for the Loads and Stores group

Decode fields

Decode group or instruction page

op0 opl1l op2 op3 op4d op5
0 00 1 00 000000 - Advanced SIMD load/store multiple structures on page C4-203
0 00 1 01 OXXXXX - Advanced SIMD load/store multiple structures (post-indexed) on page C4-204
0 00 1 0x IXXXXX - Unallocated.
0 00 1 10 x00000 - Advanced SIMD load/store single structure on page C4-205
0 00 1 11 - - Advanced SIMD load/store single structure (post-indexed) on page C4-208
0 00 1 X0 XIXXXX - Unallocated.
0 00 1 x0 XXIXxx - Unallocated.
0 00 1 x0 XXx1xx - Unallocated.
0 00 1 x0 XXXX1X - Unallocated.
0 00 1 x0 xxxxx1l - Unallocated.
1 00 1 - - - Unallocated.
- 00 0 0x - - Load/store exclusive on page C4-212
- 00 0 1x - - Unallocated.
- 01 - 0x - - Load register (literal) on page C4-212
- 01 - 1x - - Unallocated.
- 10 - 00 - - Load/store no-allocate pair (offset) on page C4-213
- 10 - 01 - - Load/store register pair (post-indexed) on page C4-221
- 10 - 10 - - Load/store register pair (offset) on page C4-221
- 10 - 11 - - Load/store register pair (pre-indexed) on page C4-222
- 11 - 0x Oxxxxx 00 Load/store register (unscaled immediate) on page C4-219
- 11 - 0x Oxxxxx 01 Load/store register (immediate post-indexed) on page C4-214
- 11 - 0x Oxxxxx 10 Load/store register (unprivileged) on page C4-218
- 11 - 0x Oxxxxx 11 Load/store register (immediate pre-indexed) on page C4-215
- 11 - 0x Ixxxxx 00 Unallocated.
C4-202 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Table C4-4 Encoding table for the Loads and Stores group (continued)

Decode fields
Decode group or instruction page
op0 op1 op2 op3 opd op5

- 11 - 0x Ixxxxx 01 Unallocated.

- 11 - 0x Ixxxxx 10 Load/store register (register offset) on page C4-216

- 11 - 0x Ixxxxx 11 Unallocated.

- 11 - 1x - - Load/store register (unsigned immediate) on page C4-220
C4.41 Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. This
section is decoded from Loads and stores on page C4-202.

31 30 29 28|27 26 25 24/23 22 21 20[19 18 17 16/15 1201110 9 | 5 4| 0l
[o]afo 0 1 1 0 0 ofL]o 0 0 0 0 0] opcode | size | Rn | Rt |

Decode fields
Instruction Page

L opcode
0 0000 ST4 (multiple structures)
0 0001 Unallocated.
0 0010 ST1 (multiple structures) - Four registers variant on page C7-1321
0 0011 Unallocated.
0 0100 ST3 (multiple structures)
0 0101 Unallocated.
0 0110 ST1 (multiple structures) - Three registers variant on page C7-1321
0 0111 ST1 (multiple structures) - One register variant on page C7-1321
0 1000 ST2 (multiple structures)
0 1001 Unallocated.
0 1010 ST1 (multiple structures) - Two registers variant on page C7-1321
0 1011 Unallocated.
0 11xx Unallocated.
1 0000 LD4 (multiple structures)
1 0001 Unallocated.
1 0010 LD1 (multiple structures) - Four registers variant on page C7-1047
1 o011l Unallocated.
1 0100 LD3 (multiple structures)
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-203

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields
Instruction Page

L opcode

1 0101 Unallocated.

1 0110 LD1 (multiple structures) - Three registers variant on page C7-1047
1 0111 LD1 (multiple structures) - One register variant on page C7-1047

1 1000 LD2 (multiple structures)

1 1eei Unallocated.

1 1010 LD1 (multiple structures) - Two registers variant on page C7-1047
1 1011 Unallocated.

1 11xx Unallocated.

C4.4.2 Advanced SIMD load/store multiple structures (post-indexed)
This section describes the encoding of the Advanced SIMD |oad/store multiple structures (post-indexed) instruction
class. This section is decoded from Loads and stores on page C4-202.

|31 30 29 28|27 26 25 2423 22 21 20| 16/15 121110 9 | 5 4| 0]
[o]afo 0 1 1 0 0 1]L]0] Rm | opcode | size | Rn | Rt |

Decode fields
Instruction Page

L Rm opcode

0 - 0001 Unallocated.

0 - 0011 Unallocated.

0 - 0101 Unallocated.

0 - 1001 Unallocated.

0 - 1011 Unallocated.

0 - 11xx Unallocated.

0 !=11111 0000 ST4 (multiple structures) - Register offset variant on page C7-1343

0 !=11111 0010 ST1 (multiple structures) - Four registers, register offset variant on page C7-1322

0 !=11111 0100 ST3 (multiple structures) - Register offset variant on page C7-1336

0 !=11111 0110 ST1 (multiple structures) - Three registers, register offset variant on page C7-1322

0 !=11111 Q111 ST1 (multiple structures) - One register, register offset variant on page C7-1321

0 !=11111 1000 ST2 (multiple structures) - Register offset variant on page C7-1329

0 !=11111 1010 ST1 (multiple structures) - Two registers, register offset variant on page C7-1322

0 11111 0000 ST4 (multiple structures) - Immediate offset variant on page C7-1343

0 11111 0010 ST1 (multiple structures) - Four registers, immediate offset variant on page C7-1322
C4-204 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields

Instruction Page

L Rm opcode

0 11111 0100 ST3 (multiple structures) - Immediate offset variant on page C7-1336

0 11111 0110 ST1 (multiple structures) - Three registers, immediate offset variant on page C7-1322
0 11111 0111 ST1 (multiple structures) - One register, immediate offset variant on page C7-1321

0 11111 1000 ST2 (multiple structures) - Immediate offset variant on page C7-1329

0 11111 1010 ST1 (multiple structures) - Two registers, immediate offset variant on page C7-1322
1 - 0001 Unallocated.

1 - 0011 Unallocated.

1 - 0101 Unallocated.

1 - 1001 Unallocated.

1 - 1011 Unallocated.

1 - 11xx Unallocated.

1 1=11111 0000 LD4 (multiple structures) - Register offset variant on page C7-1078

1 1=11111 0010 LD1 (multiple structures) - Four registers, register offset variant on page C7-1048

1 1=11111 0100 LD3 (multiple structures) - Register offset variant on page C7-1068

1 1=11111 0110 LD1 (multiple structures) - Three registers, register offset variant on page C7-1048

1 1=11111 Q111 LD1 (multiple structures) - One register, register offset variant on page C7-1047

1 !=11111 1000 LD2 (multiple structures) - Register offset variant on page C7-1058

1 1=11111 1010 LD1 (multiple structures) - Two registers, register offset variant on page C7-1048

1 11111 0000 LD4 (multiple structures) - Immediate offset variant on page C7-1078

1 11111 0010 LD1 (multiple structures) - Four registers, immediate offset variant on page C7-1048
1 11111 0100 LD3 (multiple structures) - Immediate offset variant on page C7-1068

1 11111 0110 LD1 (multiple structures) - Three registers, immediate offset variant on page C7-1048
1 11111 0111 LD1 (multiple structures) - One register, immediate offset variant on page C7-1047

1 11111 1000 LD2 (multiple structures) - Immediate offset variant on page C7-1058

1 11111 1010 LD1 (multiple structures) - Two registers, immediate offset variant on page C7-1048

C4.4.3 Advanced SIMD load/store single structure

This section describes the encoding of the Advanced SIMD load/store single structureinstruction class. Thissection
is decoded from Loads and stores on page C4-202.

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-205

Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

31 30 29 28|27 26 25 24/23 22 21 20(19 18 17 16/15 1312[1110 9 | 5 4| 0|
[o]afo 0 1 1 0 1 ofL][R]0o 0 0 0 0fopcode [S] size | Rn [Rt |

Decode fields
Instruction Page
L R opcode S size

0 - 1Ix - - Unallocated.

0 0 000 - - ST1 (single structure) - 8-bit variant on page C7-1325
0 o o001 - - ST3 (single structure) - 8-bit variant on page C7-1339
0 o 010 - X0 ST1 (single structure) - 16-bit variant on page C7-1325
0 0 o010 - x1 Unallocated.

0 0 011 - X0 ST3 (single structure) - 16-bit variant on page C7-1339
o 0 011 - x1 Unallocated.

0 0 100 - 00 ST1 (single structure) - 32-bit variant on page C7-1325
o 0 100 - 1x Unallocated.

0 o 100 0 o1 ST1 (single structure) - 64-bit variant on page C7-1325
0 o 100 1 o1 Unallocated.

0 o 101 - 00 ST3 (single structure) - 32-bit variant on page C7-1339
o 0 101 - 10 Unallocated.

0o o 101 0 o1 ST3 (single structure) - 64-bit variant on page C7-1339
o 0 101 0 11 Unallocated.

o 0 101 1 x1 Unallocated.

0 1 000 - - ST2 (single structure) - 8-bit variant on page C7-1332
0 1 o0l - - ST4 (single structure) - 8-bit variant on page C7-1346
0 1 o010 - X0 ST2 (single structure) - 16-bit variant on page C7-1332
0 1 010 - x1 Unallocated.

0 1 o011 - X0 ST4 (single structure) - 16-bit variant on page C7-1346
0 1 011 - x1 Unallocated.

0 1 100 - 00 ST2 (single structure) - 32-bit variant on page C7-1332
0 1 100 - 10 Unallocated.

0 1 100 0 o1 ST2 (single structure) - 64-bit variant on page C7-1332
0 1 100 0 11 Unallocated.

0 1 100 1 x1 Unallocated.

0 1 101 - 00 ST4 (single structure) - 32-bit variant on page C7-1346

C4-206 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields
Instruction Page
L R opcode S size

0 1 101 - 10 Unallocated.

0 1 101 0 o1 ST4 (single structure) - 64-bit variant on page C7-1346

0 1 101 0 11 Unallocated.

0 1 101 1 x1 Unallocated.

1 0 000 - - LD1 (single structure) - 8-bit variant on page C7-1051

1 o0 001 - - LD3 (single structure) - 8-bit variant on page C7-1071

1 o o010 - X0 LD1 (single structure) - 16-bit variant on page C7-1051

1 o 010 - x1 Unallocated.

1 0 o1l - X0 LD3 (single structure) - 16-bit variant on page C7-1071

1 0 011 - x1 Unallocated.

1 0 100 - 00 LD1 (single structure) - 32-bit variant on page C7-1051

1 0 100 - 1x Unallocated.

1 o 1e0 0 o1 LD1 (single structure) - 64-bit variant on page C7-1051

1 o0 100 1 o1 Unallocated.

1 0 101 - 00 LD3 (single structure) - 32-bit variant on page C7-1071

1 o0 101 - 10 Unallocated.

1 0 101 0 o1 LD3 (single structure) - 64-bit variant on page C7-1071

1 0 101 0 11 Unallocated.

1 0 101 1 x1 Unallocated.

1 o 110 0 - LD1R

1 0 110 1 - Unallocated.

1 0 111 0 - LD3R

1 0 111 1 - Unallocated.

1 1 000 - - LD2 (single structure) - 8-bit variant on page C7-1061

1 1 01 - - LD4 (single structure) - 8-bit variant on page C7-1081

1 1 o010 - x0 LD2 (single structure) - 16-bit variant on page C7-1061

1 1 010 - x1 Unallocated.

1 1 o1 - X0 LD4 (single structure) - 16-bit variant on page C7-1081

1 1 011 - x1 Unallocated.

1 1 100 - 00 LD2 (single structure) - 32-bit variant on page C7-1061

1 1 100 - 10 Unallocated.

1 1 100 0 o1 LD2 (single structure) - 64-bit variant on page C7-1061
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-207

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields
Instruction Page
L R opcode S size

1 1 100 0 11 Unallocated.

1 1 100 1 x1 Unallocated.

1 1 101 - 00 LD4 (single structure) - 32-bit variant on page C7-1081
1 1 101 - 1o Unallocated.

1 1 101 0 o1 LD4 (single structure) - 64-bit variant on page C7-1081
1 1 101 0 11 Unallocated.

1 1 101 1 x1 Unallocated.

1 1 110 0 - LD2R

1 1 110 1 - Unallocated.

1 1 11 0 - LD4R

1 1 111 1 - Unallocated.

C4.44 Advanced SIMD load/store single structure (post-indexed)
This section describes the encoding of the Advanced SIMD load/store single structure (post-indexed) instruction
class. This section is decoded from Loads and stores on page C4-202.

31 30 29 28|27 26 25 24/23 22 21 20| 16115 1312/1110 9 | 5 4| 0l
[o]afo 0 1 1 0 1 1[L[R] Rm | opcode [S] size | Rn | Rt |

Decode fields
Instruction Page

L R Rm opcode S size

0o - - 11x - - Unallocated.

0 0 - 010 - x1 Unallocated.

o 0 - 011 - x1 Unallocated.

o 0 - 100 - 1x Unallocated.

o 0 - 100 1 o1 Unallocated.

o 0 - 101 - 10 Unallocated.

o 0 - 101 0 11 Unallocated.

o o - 101 1 xt Unallocated.

0 o !=11111 000 - - ST1 (single structure) - 8-bit, register offset variant on page C7-1325

0 0 !=11111 o0l - - ST3 (single structure) - 8-bit, register offset variant on page C7-1339

0 @0 !=11111 o10 - x0 ST1 (single structure) - 16-bit, register offset variant on page C7-1326

0 0 !=11111 o1l - x0 ST3 (single structure) - 16-bit, register offset variant on page C7-1340
C4-208 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields

Instruction Page

L R Rm opcode size

0 0 !=11111 100 00 ST1 (single structure) - 32-bit, register offset variant on page C7-1326

0 0 !=11111 100 01 ST1 (single structure) - 64-bit, register offset variant on page C7-1326

0 0 !=11111 101 00 ST3 (single structure) - 32-bit, register offset variant on page C7-1340

0 o !=11111 101 01 ST3 (single structure) - 64-bit, register offset variant on page C7-1340

0 o 11111 000 - ST1 (single structure) - 8-bit, immediate offset variant on page C7-1325

0 o 11111 001 - ST3 (single structure) - 8-bit, immediate offset variant on page C7-1339

0 o 11111 010 x0 ST1 (single structure) - 16-bit, immediate offset variant on page C7-1326

0 o 11111 011 x0 ST3 (single structure) - 16-bit, immediate offset variant on page C7-1340

0 o 11111 100 00 ST1 (single structure) - 32-bit, immediate offset variant on page C7-1326

0 o 11111 100 01 ST1 (single structure) - 64-bit, immediate offset variant on page C7-1326

0 o 11111 101 00 ST3 (single structure) - 32-bit, immediate offset variant on page C7-1340

0 o 11111 101 01 ST3 (single structure) - 64-bit, immediate offset variant on page C7-1340

0 1 - 010 x1 Unallocated.

e 1 - 011 x1 Unallocated.

0 1 - 100 10 Unallocated.

0 1 - 100 11 Unallocated.

0 1 - 100 x1 Unallocated.

0 1 - 101 10 Unallocated.

0 1 - 101 11 Unallocated.

e 1 - 101 x1 Unallocated.

0 1 !=11111 000 - ST2 (single structure) - 8-bit, register offset variant on page C7-1332

0 1 !=11111 o0l - ST4 (single structure) - 8-bit, register offset variant on page C7-1346

0 1 !=11111 o10 x0 ST2 (single structure) - 16-bit, register offset variant on page C7-1333

0 1 !=11111 11 x0 ST4 (single structure) - 16-bit, register offset variant on page C7-1347

0 1 !=11111 100 00 ST2 (single structure) - 32-bit, register offset variant on page C7-1333

0 1 !=11111 100 01 ST2 (single structure) - 64-bit, register offset variant on page C7-1333

0 1 !=11111 101 00 ST4 (single structure) - 32-bit, register offset variant on page C7-1347

0 1 !=11111 101 01 ST4 (single structure) - 64-bit, register offset variant on page C7-1347

0 1 11111 000 - ST2 (single structure) - 8-bit, immediate offset variant on page C7-1332

0 1 11111 001 - ST4 (single structure) - 8-bit, immediate offset variant on page C7-1346

0o 1 11111 010 x0 ST2 (single structure) - 16-bit, immediate offset variant on page C7-1333

0o 1 11111 011 x0 ST4 (single structure) - 16-bit, immediate offset variant on page C7-1347
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-209

1D092916

Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields
Instruction Page

L R Rm opcode S size
0 1 11111 100 - 00 ST2 (single structure) - 32-bit, immediate offset variant on page C7-1333
0o 1 11111 100 0 o1 ST2 (single structure) - 64-bit, immediate offset variant on page C7-1333
0 1 11111 101 - 00 ST4 (single structure) - 32-bit, immediate offset variant on page C7-1347
0 1 11111 101 0 01 ST4 (single structure) - 64-bit, immediate offset variant on page C7-1347
1 0 - 010 - x1 Unallocated.
1 0 - 011 - x1 Unallocated.
1 0 - 100 - 1x Unallocated.
1 0 - 100 1 o1 Unallocated.
1 0 - 101 - 10 Unallocated.
1 0 - 101 0 11 Unallocated.
1 0 - 101 1 x1 Unallocated.
1 0 - 110 1 - Unallocated.
1 0 - 111 1 - Unallocated.
1 0 !=11111 000 - - LD1 (single structure) - 8-bit, register offset variant on page C7-1051
1 0 !=11111 001 - - LD3 (single structure) - 8-bit, register offset variant on page C7-1071
1 0 !=11111 010 - x0 LD1 (single structure) - 16-bit, register offset variant on page C7-1052
1 0 !=11111 011 - X0 LD3 (single structure) - 16-hit, register offset variant on page C7-1072
1 0 !=11111 100 - 00 LD1 (single structure) - 32-bit, register offset variant on page C7-1052
1 0 !=11111 100 0 o1 LD1 (single structure) - 64-bit, register offset variant on page C7-1052
1 o0 !=11111 101 - 00 LD3 (single structure) - 32-bit, register offset variant on page C7-1072
1 0 !=11111 101 0 01 LD3 (single structure) - 64-bit, register offset variant on page C7-1072
1 0 !=11111 110 0 - LD1R - Register offset variant on page C7-1055
1 0 !=11111 111 0 - LD3R - Register offset variant on page C7-1075
1 0 11111 000 - - LD1 (single structure) - 8-bit, immediate offset variant on page C7-1051
1 o 11111 001 - - LD3 (single structure) - 8-bit, immediate offset variant on page C7-1071
1 o 11111 010 - x0 LD1 (single structure) - 16-bit, immediate offset variant on page C7-1052
1 0 11111 011 - x0 LD3 (single structure) - 16-bit, immediate offset variant on page C7-1072
1 0 11111 100 - 00 LD1 (single structure) - 32-hit, immediate offset variant on page C7-1052
1 0 11111 100 0 o1 LD1 (single structure) - 64-bit, immediate offset variant on page C7-1052
1 0 11111 101 - 00 LD3 (single structure) - 32-bit, immediate offset variant on page C7-1072
1 o 11111 101 0 o1 LD3 (single structure) - 64-bit, immediate offset variant on page C7-1072
1 o 11111 110 0o - LD1R - Immediate offset variant on page C7-1055

C4-210 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields

Instruction Page

L R Rm opcode size
1 0 11111 11 - LD3R - Immediate offset variant on page C7-1075
1 1 - 010 x1 Unallocated.
1 1 - 011 x1 Unallocated.
1 1 - 100 10 Unallocated.
1 1 - 100 11 Unallocated.
1 1 - 100 x1 Unallocated.
1 1 - 101 10 Unallocated.
1 1 - 101 11 Unallocated.
1 1 - 101 x1 Unallocated.
1 1 - 110 - Unallocated.
1 1 - 111 - Unallocated.
1 1 1=11111 000 - LD2 (single structure) - 8-bit, register offset variant on page C7-1061
1 1 1=11111 @01 - LD4 (single structure) - 8-bit, register offset variant on page C7-1081
1 1 1=11111 010 x0 LD2 (single structure) - 16-bit, register offset variant on page C7-1062
1 1 1=11111 011 x0 LD4 (single structure) - 16-bit, register offset variant on page C7-1082
1 1 1=11111 100 00 LD2 (single structure) - 32-bit, register offset variant on page C7-1062
1 1 !=11111 100 01 LD2 (single structure) - 64-hit, register offset variant on page C7-1062
1 1 1=11111 101 00 LD4 (single structure) - 32-bit, register offset variant on page C7-1082
1 1 1=11111 101 01 LD4 (single structure) - 64-bit, register offset variant on page C7-1082
1 1 !=11111 110 - LD2R - Register offset variant on page C7-1065
1 1 1=11111 111 - LD4R - Register offset variant on page C7-1085
1 1 11111 000 - LD2 (single structure) - 8-bit, immediate offset variant on page C7-1061
1 1 11111 001 - LD4 (single structure) - 8-hit, immediate offset variant on page C7-1081
1 1 11111 010 x0 LD2 (single structure) - 16-bit, immediate offset variant on page C7-1062
1 1 1111 011 x0 LD4 (single structure) - 16-bit, immediate offset variant on page C7-1082
1 1 11111 100 00 LD2 (single structure) - 32-bit, immediate offset variant on page C7-1062
1 1 11111 100 01 LD2 (single structure) - 64-bit, immediate offset variant on page C7-1062
1 1 11111 101 00 LD4 (single structure) - 32-bit, immediate offset variant on page C7-1082
1 1 11111 101 01 LD4 (single structure) - 64-bit, immediate offset variant on page C7-1082
1 1 11111 110 - LD2R - Immediate offset variant on page C7-1065
1 1 11111 11 - LD4R - Immediate offset variant on page C7-1085
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-211

1D092916

Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

C4.4.5 Load register (literal)
This section describes the encoding of the Load register (literal) instruction class. This section is decoded from
Loads and stores on page C4-202.

31 30 29 28|27 26 25 24|23 \ \ \ \ 5 4| 0]
[opc]o 1 1]v]o o] imm19 | Rt |

Decode fields
Instruction Page

opc \")

00 0 LDR (literal) - 32-bit variant on page C6-553

00 1 LDR (literal, SIMD&FP) - 32-bit variant on page C7-1097
01 0 LDR (literal) - 64-bit variant on page C6-553

01 1 LDR (literal, SIMD&FP) - 64-bit variant on page C7-1097
10 0 LDRSW (literal)

10 1 LDR (literal, SIMD&FP) - 128-bit variant on page C7-1097
1 0 PRFM (literal)

11 1 Unallocated.

C4.4.6 Load/store exclusive
This section describes the encoding of the Load/store exclusive instruction class. This section is decoded from

Loads and stores on page C4-202.

31 30 29 28|27 26 25 24[23 22 21 20| 16[15 14 | 109 | 5 4| 0l
[size[0 0 1 0 0 0]o2[L o] Rs |oo] Rt2 | Rn | Rt |

Decode fields
Instruction Page
size 02 L o1 o0

- 1 -0 0 Unallocated.
- 1 -1 - Unallocated.
0x - -1 - Unallocated.

00 0 0 0 0 STXRB

00 0 0 0 1 STLXRB

00 0 1 0 0 LDXRB

00 0 1 0 1 LDAXRB

00 1 0 0 1 STLRB

00 1 1 0 1 LDARB

C4-212 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields
Instruction Page
size 02 L o1 o0

01 0 0 0 0 STXRH

01 0 0 0 1 STLXRH

01 0 1 0 0 LDXRH

01 0 1 0 1 LDAXRH

01 1 0 0 1 STLRH

01 1 1 0 1 LDARH

10 0 0 0 0 STXR - 32-bit variant on page C6-720

10 0 0o 0 1 STLXR - 32-bit variant on page C6-686

10 0 0 1 0 STXP - 32-bit variant on page C6-717

10 0 0 1 1 STLXP - 32-bit variant on page C6-683

10 0 1 0 0 LDXR - 32-hit variant on page C6-600

10 0 1 0 1 LDAXR - 32-bit variant on page C6-538

10 0 1 1 0 LDXP - 32-bit variant on page C6-598

10 0 1 1 1 LDAXP - 32-bit variant on page C6-536

10 1 0 0 1 STLR - 32-bit variant on page C6-680

10 1 1 0 1 LDAR - 32-bit variant on page C6-533

11 0 o 0 0 STXR - 64-bit variant on page C6-720

11 0 0 0 1 STLXR - 64-bit variant on page C6-686

11 0 0 1 0 STXP - 64-bit variant on page C6-717

11 0 0 1 1 STLXP - 64-bit variant on page C6-683

11 0 1 0 0 LDXR - 64-bit variant on page C6-600

11 0 1 0 1 LDAXR - 64-bit variant on page C6-538

11 0 1 1 0 LDXP - 64-bit variant on page C6-598

11 0 1 1 1 LDAXP - 64-bit variant on page C6-536
11 1 0 0 1 STLR - 64-bit variant on page C6-680

11 1 1 0 1 LDAR - 64-bit variant on page C6-533

C4.4.7 Load/store no-allocate pair (offset)

This section describes the encoding of the Load/store no-allocate pair (offset) instruction class. This section is
decoded from Loads and stores on page C4-202.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-213
ID092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

31 30 29 28/27 26 25 24/23 2221 | 115 14 | 109 | 5 4| 0|
[opc[1 0 1]v[o 0 ofL] imm7 | Rt2 | Rn | Rt |

Decode fields
Instruction Page
opc V L

00 @ 0 STNP-32-bit variant on page C6-692

00 0 1 LDNP - 32-hit variant on page C6-542

00 1 @ STNP(SIMD&FP) - 32-bit variant on page C7-1350

00 1 1 LDNP (SIMD& FP) - 32-bit variant on page C7-1088

01 0 - Unallocated.

01 1 0 STNP(SIMD&FP) - 64-bit variant on page C7-1350

01 1 1 LDNP (SIMD&FP) - 64-bit variant on page C7-1088

10 @ 0 STNP-64-bit variant on page C6-692

10 0 1 LDNP - 64-bit variant on page C6-542

10 1 @ STNP(SIMD&FP) - 128-bit variant on page C7-1350

10 1 1 LDNP (SIMD&FP) - 128-bit variant on page C7-1088

11 - - Unallocated.

C4.438 Load/store register (immediate post-indexed)
This section describes the encoding of the Load/store register (immediate post-indexed) instruction class. This
section is decoded from Loads and stores on page C4-202.

31 30 29 28|27 26 25 24/23 22 21 20| \ 121110 9 | 5 4| 0|
[size[1 1 1]v]o 0] opc|o] imm9 [0 1] Rn | Rt |

Decode fields
Instruction Page
size V opc

x1 1 Ix Unallocated.

00 0 00 STRB (immediate)

00 0 o1 LDRB (immediate)

00 0 10 LDRSB (immediate) - 64-bit variant on page C6-565

00 0 11 LDRSB (immediate) - 32-bit variant on page C6-565

00 1 00 STR (immediate, SIMD& FP) - 8-bit variant on page C7-1355

00 1 o1 LDR (immediate, SIMD& FP) - 8-hit variant on page C7-1093

C4-214 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields
Instruction Page
size V opc

00 1 10 STR (immediate, SIMD& FP) - 128-bit variant on page C7-1355

00 1 11 LDR (immediate, SIMD& FP) - 128-bit variant on page C7-1093

01 0 00 STRH (immediate)

01 0 o1 LDRH (immediate)

01 0 10 LDRSH (immediate) - 64-bit variant on page C6-570

01 0 11 LDRSH (immediate) - 32-bit variant on page C6-570

01 1 00 STR (immediate, SIMD& FP) - 16-bit variant on page C7-1355

01 1 o1 LDR (immediate, SIMD&FP) - 16-bit variant on page C7-1093

1x 0 11 Unallocated.

1x 1 1x Unallocated.

10 0 00 STR (immediate) - 32-bit variant on page C6-697

10 0 o1 LDR (immediate) - 32-bit variant on page C6-550

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD& FP) - 32-bit variant on page C7-1355

10 1 o1 LDR (immediate, SIMD& FP) - 32-bit variant on page C7-1093

11 0 00 STR (immediate) - 64-bit variant on page C6-697

11 0 o1 LDR (immediate) - 64-hit variant on page C6-550

11 0 10 Unallocated.

11 1 00 STR (immediate, SIMD& FP) - 64-bit variant on page C7-1355

11 1 o1 LDR (immediate, SIMD&FP) - 64-bit variant on page C7-1093

C4.49 Load/store register (immediate pre-indexed)

This section describes the encoding of the Load/store register (immediate pre-indexed) instruction class. This
section is decoded from Loads and stores on page C4-202.

|31 30 29 28(27 26 25 2423 22 21 20| \ 1211110 9 | 5 4| 0|

[size[1 1 1]v]o o] opc|o] imm9 [1 1] Rn | Rt |

Decode fields
Instruction Page
size V opc

x1 1 1x Unallocated.

00 0 00 STRB (immediate)

00 0 o1 LDRB (immediate)

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-215
Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields
Instruction Page
size V opc

00 0 10 LDRSB (immediate) - 64-bit variant on page C6-565

00 0 11 LDRSB (immediate) - 32-bit variant on page C6-565

00 1 00 STR (immediate, SIMD& FP) - 8-bit variant on page C7-1355

00 1 o1 LDR (immediate, SIMD& FP) - 8-bit variant on page C7-1093

00 1 10 STR (immediate, SIMD& FP) - 128-hit variant on page C7-1356

00 1 1u LDR (immediate, SIMD& FP) - 128-bit variant on page C7-1094

01 0 00 STRH (immediate)

01 0 o1 LDRH (immediate)

01 0 10 LDRSH (immediate) - 64-bit variant on page C6-570

01 0 11 LDRSH (immediate) - 32-bit variant on page C6-570

01 1 00 STR (immediate, SIMD& FP) - 16-bit variant on page C7-1356

01 1 o1 LDR (immediate, SIMD& FP) - 16-bit variant on page C7-1094

1x 0 11 Unallocated.

1x 1 Ix Unallocated.

10 0 00 STR (immediate) - 32-bit variant on page C6-697

10 0 o1 LDR (immediate) - 32-bit variant on page C6-550

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD& FP) - 32-bit variant on page C7-1356

10 1 o1 LDR (immediate, SIMD& FP) - 32-bit variant on page C7-1094

11 0 00 STR (immediate) - 64-bit variant on page C6-697

11 0 o1 LDR (immediate) - 64-bit variant on page C6-550

11 0 10 Unallocated.

11 1 00 STR (immediate, SIMD& FP) - 64-bit variant on page C7-1356

11 1 o1 LDR (immediate, SIMD& FP) - 64-bit variant on page C7-1094

C4.4.10 Load/store register (register offset)

This section describes the encoding of the Load/store register (register offset) instruction class. This section is
decoded from Loads and stores on page C4-202.

C4-216 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

131 30 29 28|27 26 25 24/23 22 21 20| 16/15 1312/1110 9 | 5 4| 0]

[size[1 1 1]v]o 0] opc|1] Rm [option [s]1 0] Rn [Rt |

Decode fields

Instruction Page

size V opc option
- - X0x Unallocated.
x1 1x - Unallocated.
00 00 1= 011 STRB (register) - Extended register variant on page C6-704
00 00 011 STRB (register) - Shifted register variant on page C6-704
00 01 1= 011 LDRB (register) - Extended register variant on page C6-559
00 01 011 LDRB (register) - Shifted register variant on page C6-559
00 10 1= 011 LDRSB (register) - 64-bit with extended register offset variant on page C6-568
00 10 011 LDRSB (register) - 64-bit with shifted register offset variant on page C6-568
00 11 1= 011 LDRSB (register) - 32-bit with extended register offset variant on page C6-568
00 11 011 LDRSB (register) - 32-bit with shifted register offset variant on page C6-568
00 00 =011 STR (register, SMD&FP)
00 00 o1l STR (register, SIMD&FP)
00 01 =011 LDR (register, SMD&FP)
00 01 o1l LDR (register, SSMD&FP)
00 0 - STR (register, SIMD&FP)
00 1 - LDR (register, SIMD&FP)
01 00 - STRH (register)
01 01 - LDRH (register)
01 10 - LDRSH (register) - 64-bit variant on page C6-573
01 11 - LDRSH (register) - 32-bit variant on page C6-573
01 00 - STR (register, SIMD&FP)
01 o - LDR (register, SIMD&FP)
1x 11 - Unallocated.
1x 1x - Unallocated.
10 00 - STR (register) - 32-bit variant on page C6-700
10 01 - LDR (register) - 32-hit variant on page C6-555
10 10 - LDRSW (register)
10 0 - STR (register, SSIMD&FP)
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-217

1D092916

Non-Confidential

C4 A64 Instruction Set Encoding

C4.4 Loads and stores

Decode fields

Instruction Page

size V opc option

10 101 - LDR (register, SIMD&FP)

11 0 00 - STR (register) - 64-bit variant on page C6-700
11 0 o1 - LDR (register) - 64-bit variant on page C6-555
11 0 10 - PRFM (register)

11 1 00 - STR (register, SIMD& FP)

1 101 - LDR (register, SIMD&FP)

C4.4.11 Load/store register (unprivileged)

|31 30 29 28|27 26 25 24|23 22 21 20| |

This section describes the encoding of the Load/store register (unprivileged) instruction class. This section is
decoded from Loads and stores on page C4-202.

12/1110 9 | 5 4| 0|

[size[1 1 1]v[o 0] opc|o] imm9

[1 0] Rn | Rt |

Decode fields

Instruction Page

size V opc

- 1 - Unallocated.

00 0 00 STTRB

00 0 o1 LDTRB

00 0 10 LDTRSB - 64-bit variant on page C6-584
00 0 11 LDTRSB - 32-bit variant on page C6-584
01 0 00 STTRH

01 [/ LDTRH

01 0 10 LDTRSH - 64-bit variant on page C6-586
01 0 11 LDTRSH - 32-bit variant on page C6-586
1x 0 11 Unallocated.

10 0 00 STTR - 32-bit variant on page C6-710

10 0 o1 LDTR - 32-bit variant on page C6-580

10 0 10 LDTRSW

11 0 00 STTR - 64-bit variant on page C6-710

11 0 o1 LDTR - 64-bit variant on page C6-580

11 0 10 Unallocated.

C4-218

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

C4.412 Load/store register (unscaled immediate)
This section describes the encoding of the Load/store register (unscaled immediate) instruction class. This section
is decoded from Loads and stores on page C4-202.

31 30 29 28|27 26 25 24/23 22 21 20| \ 121110 9 | 5 4| 0|
[size[1 1 1]v]o 0] opc|o] imm9 [0 o] Rn | Rt |

Decode fields
Instruction Page
size V opc

x1 1 Ix Unallocated.

00 0 00 STURB

00 0 o1 LDURB

00 0 10 LDURSB - 64-bit variant on page C6-593

00 0 11 LDURSB - 32-bit variant on page C6-593

00 1 00 STUR (SIMD& FP) - 8-bit variant on page C7-1362

00 1 o1 LDUR (SIMD&FP) - 8-bit variant on page C7-1102

00 1 10 STUR (SIMD&FP) - 128-hit variant on page C7-1362

00 1 1 LDUR (SIMD&FP) - 128-bit variant on page C7-1102

01 0 00 STURH

01 0 o1 LDURH

01 0 10 LDURSH - 64-bit variant on page C6-595

01 0 11 LDURSH - 32-bit variant on page C6-595

01 1 00 STUR (SIMD&FP) - 16-hit variant on page C7-1362

01 1 o1 LDUR (SIMD&FP) - 16-bit variant on page C7-1102

1x 0 11 Unallocated.

1x 1 Ix Unallocated.

10 0 00 STUR - 32-bit variant on page C6-714

10 0 o1 LDUR - 32-hit variant on page C6-589

10 0 10 LDURSW

10 1 00 STUR (SIMD&FP) - 32-bit variant on page C7-1362

10 1 o1 LDUR (SIMD&FP) - 32-bit variant on page C7-1102

11 0 00 STUR - 64-bit variant on page C6-714

11 0 o1 LDUR - 64-bit variant on page C6-589

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-219
ID092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields

Instruction Page

size opc

11 10 PRFM (unscaled offset)

11 00 STUR (SIMD& FP) - 64-bit variant on page C7-1362
11 01 LDUR (SIMD&FP) - 64-bit variant on page C7-1102

C4.413 Load/store register (unsigned immediate)
This section describes the encoding of the Load/store register (unsigned immediate) instruction class. This section
is decoded from Loads and stores on page C4-202.
|31 30 29 28|27 26 25 24(23 2221 | | | 109 5 4| 0|
[size[1 1 1][v[o 1] opc] imm12 | Rn | Rt |
Decode fields
Instruction Page
size V opc
x1 1 1x Unallocated.
00 0 00 STRB (immediate)
00 0 o1 LDRB (immediate)
00 0 10 LDRSB (immediate) - 64-bit variant on page C6-566
00 0 11 LDRSB (immediate) - 32-bit variant on page C6-566
00 1 00 STR (immediate, SIMD& FP) - 8-bit variant on page C7-1356
00 1 o1 LDR (immediate, SIMD& FP) - 8-hit variant on page C7-1094
00 1 10 STR (immediate, SIMD& FP) - 128-bit variant on page C7-1357
00 1 11 LDR (immediate, SIMD&FP) - 128-bit variant on page C7-1095
01 0 00 STRH (immediate)
01 0 o1 LDRH (immediate)
01 0 10 LDRSH (immediate) - 64-bit variant on page C6-571
01 0 11 LDRSH (immediate) - 32-bit variant on page C6-571
01 1 00 STR (immediate, SIMD& FP) - 16-bit variant on page C7-1356
01 1 o1 LDR (immediate, SIMD&FP) - 16-bit variant on page C7-1094
1x 0 11 Unallocated.
1x 1 1x Unallocated.
10 0 00 STR (immediate) - 32-bit variant on page C6-698
10 0 o1 LDR (immediate) - 32-hit variant on page C6-551
10 0 10 LDRSW (immediate)
C4-220 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

C4.414 Load/store register pair (offset)

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields

size

Instruction Page

opc

10

10

00 STR (immediate, SIMD& FP) - 32-bit variant on page C7-1356

01 LDR (immediate, SIMD&FP) - 32-bit variant on page C7-1094

11

00 STR (immediate) - 64-bit variant on page C6-698

11

01 LDR (immediate) - 64-bit variant on page C6-551

1

10 PRFM (immediate)

1

00 STR (immediate, SIMD& FP) - 64-bit variant on page C7-1356

1

01 LDR (immediate, SIMD& FP) - 64-bit variant on page C7-1094

This section describes the encoding of the Load/store register pair (offset) instruction class. This section is decoded
from Loads and stores on page C4-202.

|31 30 29 28|27 26 25 2423 22 21

| |15 14

| 109 | 5 4] 0]

[opc[1 0 1]v[o 1 ofL]

imm7 |

Rt2 | Rn | Rt |

Decode fields

Instruction Page

opc V L

00 0 o STP-32-bitvariant on page C6-695

00 0 1 LDP - 32-bit variant on page C6-545

00 1 @ STP(SIMD&FP) - 32-bit variant on page C7-1353
00 1 1 LDP (SIMD&FP) - 32-bit variant on page C7-1091
01 0 0 Unallocated.

01 0 1 LDPSW

01 1 @ STP(SIMD&FP) - 64-bit variant on page C7-1353
01 1 1 LDP (SIMD& FP) - 64-bit variant on page C7-1091
10 @ 0 STP-64-bit variant on page C6-695

10 0 1 LDP - 64-bit variant on page C6-545

10 1 @ STP(SIMD&FP) - 128-bit variant on page C7-1353
10 1 1 LDP (SIMD&FP) - 128-bit variant on page C7-1091
11 - - Unalocated.

C4.4.15 Load/store register pair (post-indexed)

This section describes the encoding of the Load/store register pair (post-indexed) instruction class. This section is
decoded from Loads and stores on page C4-202.

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-221

Non-Confidential

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

31 30 29 28/27 26 25 24/23 2221 | 115 14 | 109 | 5 4| 0|
[opc[1 0 1]v[o 0 1]L] imm7 | Rt2 | Rn | Rt |

Decode fields
Instruction Page
opc V L

00 0 o STP-32-bitvariant on page C6-694

00 0 1 LDP - 32-hit variant on page C6-544

00 1 @ STP(SIMD&FP) - 32-bit variant on page C7-1352

00 1 1 LDP (SIMD&FP) - 32-bit variant on page C7-1090

01 0 0 Unallocated.

01 0 1 LDPSW

01 1 0 STP(SIMD&FP) - 64-bit variant on page C7-1352

01 1 1 LDP (SIMD&FP) - 64-bit variant on page C7-1090

10 0 0 STP-64-bit variant on page C6-694

10 0 1 LDP - 64-bit variant on page C6-544

10 1 o STP(SIMD&FP) - 128-bit variant on page C7-1352

10 1 1 LDP (SIMD&FP) - 128-bit variant on page C7-1090

11 - - Unallocated.

C4.4.16 Load/store register pair (pre-indexed)
This section describes the encoding of the Load/store register pair (pre-indexed) instruction class. This section is
decoded from Loads and stores on page C4-202.

31 30 29 28/27 26 25 24/23 2221 | 115 14 | 109 | 5 4| 0|
[opc[1 0 1]v[o 1 1]L] imm7 | Rt2 | Rn | Rt |

Decode fields
Instruction Page
opc V L

00 0 0 STP-32-bitvariant on page C6-694

00 0 1 LDP - 32-bit variant on page C6-544

00 1 o STP(SIMD&FP) - 32-bit variant on page C7-1352

00 1 1 LDP (SIMD&FP) - 32-bit variant on page C7-1090

01 0 0 Unallocated.

01 0 1 LDPSW

C4-222 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C4 A64 Instruction Set Encoding
C4.4 Loads and stores

Decode fields
Instruction Page
opc V L

01 1 @ STP(SIMD&FP) - 64-bit variant on page C7-1352

01 1 1 LDP (SIMD& FP) - 64-bit variant on page C7-1090

10 @ 0 STP-64-bit variant on page C6-694

10 0 1 LDP - 64-bit variant on page C6-544

10 1 @ STP(SIMD&FP) - 128-hit variant on page C7-1352

10 1 1 LDP (SIMD&FP) - 128-bit variant on page C7-1090

11 - - Unallocated.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-223
ID092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

C4.5 Data processing - register

This section describes the encoding of the Data processing (register) instruction group. Thissection isdecoded from
A64 instruction index by encoding on page C4-192. For additional information on this functional group of
instructions, see Data processing - register on page C3-163.

131 30 29 28|27 24| 21 20| \ 12/11 10 \ \ 0]
LIT T 101 | op2 | | | |

op0 J | op3
op1

Table C4-5 Encoding table for the Data Processing -- Register group

Decode fields
Decode group or instruction page
op0 op1 op2 op3

0 1 0110 - Data-processing (2 source) on page C4-229

1 1 0110 - Data-processing (1 source) on page C4-228

- 0 Oxxx - Logical (shifted register) on page C4-231

- 0 Ixx0 - Add/subtract (shifted register) on page C4-225
- 0 Ixx1 - Add/subtract (extended register)

- 1 0000 - Add/subtract (with carry) on page C4-225

- 1 0010 0 Conditional compare (register) on page C4-227
- 1 0010 1 Conditional compare (immediate) on page C4-226
- 1 0100 - Conditional select on page C4-227

- 1 Oxx1 - Unallocated.

- 1 Ixxx - Data-processing (3 source) on page C4-230

C4.51 Add/subtract (extended register)
This section describesthe encoding of the Add/subtract (extended register) instruction class. This section isdecoded
from Data processing - register.

31 30 29 28|27 26 25 24/23 22 21 20| 16/15 1312 109 | 5 4| 0|
[sflop]s]o 1 0 1 1] opt [1] Rm | option | imm3 | Rn | Rd |

Decode fields
Instruction Page
sf op S opt imm3

- - - - 1x1 Unallocated.
- - - - 11x Unallocated.
- - - x1 - Unallocated.
- - - Ix - Unallocated.
C4-224 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

Decode fields
Instruction Page
sf op S opt imm3

0 0 0 00 - ADD (extended register) - 32-bit variant on page C6-437
0 0 1 o0 - ADDS (extended register) - 32-bit variant on page C6-443
0 1 0 00 - SUB (extended register) - 32-bit variant on page C6-726
0 1 1 00 - SUBS (extended register) - 32-bit variant on page C6-732
1 0 0 00 - ADD (extended register) - 64-bit variant on page C6-437
1 0 1 o0 - ADDS (extended register) - 64-bit variant on page C6-443
1 1 0 00 - SUB (extended register) - 64-bit variant on page C6-726
1 1 1 o0 - SUBS (extended register) - 64-bit variant on page C6-732

C4.5.2 Add/subtract (shifted register)

This section describes the encoding of the Add/subtract (shifted register) instruction class. This section is decoded
from Data processing - register on page C4-224.

|31 30 29 28|27 26 25 2423 22 21 20| 16/15 | 109 | 5 4| 0]
[sflop]s]o 1 0 1 1]shift]o] Rm | imm6 | Rn | Rd |

Decode fields
Instruction Page
sf op S shift immé6

- - - 1 - Unallocated.

0 - - - Ixxxxx Unallocated.

0 0 0 - - ADD (shifted register) - 32-bit variant on page C6-441
0 0 1 - - ADDS (shifted register) - 32-bit variant on page C6-447
0 1 0 - - SUB (shifted register) - 32-bit variant on page C6-730

0 1 1 - - SUBS (shifted register) - 32-bit variant on page C6-736
1 e 0 - - ADD (shifted register) - 64-bit variant on page C6-441
1 0 1 - - ADDS (shifted register) - 64-bit variant on page C6-447
1 1 0 - - SUB (shifted register) - 64-bit variant on page C6-730

1 1 1 - - SUBS (shifted register) - 64-bit variant on page C6-736

C4.5.3 Add/subtract (with carry)

This section describes the encoding of the Add/subtract (with carry) instruction class. This section is decoded from
Data processing - register on page C4-224.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-225
ID092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

131 30 29 28|27 26 25 24/23 22 21 20| 16/15

| 109

\ 5 4|

[sflop]s]1 1 0 1 0 0 0 0O Rm |

opcode2 |

Rn

Decode fields

Instruction Page

sf op S opcode2

- - - xxxxxl Unallocated.

- - - xxxx1x Unallocated.

- - - xxxIxx Unallocated.

- - - xxIxxx Unallocated.

- - - xIxxxx Unallocated.

- - - Ixxxxx Unallocated.

0 0 0 000000 ADC - 32-bit variant on page C6-435
0 0 1 000000 ADCS - 32-hit variant on page C6-436
0 1 0 000000 SBC - 32-bit variant on page C6-663

0 1 1 000000 SBCS - 32-bit variant on page C6-665
1 0 0 000000 ADC - 64-bit variant on page C6-435
1 0 1 000000 ADCS - 64-bit variant on page C6-436
1 1 0 000000 SBC - 64-bit variant on page C6-663

1 1 1 000000 SBCS - 64-hit variant on page C6-665

C4.54 Conditional compare (immediate)
This section describes the encoding of the Conditional compare (immediate) instruction class. This section is
decoded from Data processing - register on page C4-224.
|31 30 29 28|27 26 25 24|23 22 21 20| 16|15 12]1110 9 | 5 413 0|
[sflop[s[1 1 01 001 0] imm5 | cond [1]o2 Rn 03] nzev |
Decode fields
Instruction Page
sf op S 02 o3
- - - - 1 Unallocated.
- - -1 - Unallocated.
- - 0 - - Unallocated.
0 0 1 0 0 CCMN (immediate) - 32-bit variant on page C6-478
C4-226 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

Decode fields
Instruction Page
sf op S 02 03

0 1 1 0 0 CCMP (immediate) - 32-bit variant on page C6-480

1 0 1 0 0 CCMN (immediate) - 64-bit variant on page C6-478

1 1 1 0 0 CCMP (immediate) - 64-bit variant on page C6-480

C4.5.5 Conditional compare (register)
This section describes the encoding of the Conditional compare (register) instruction class. This section is decoded
from Data processing - register on page C4-224.

31 30 29 28|27 26 25 24/23 22 21 20| 16/15 121110 9 | 5 43 0|
[sflop]s]1 1 0 1 0 0 1 0] Rm | cond Jo]o2] Rn [03] nzev |

Decode fields
Instruction Page
sf op S 02 o3

- - - - 1 Unallocated.

- - -1 - Unallocated.

- - 0 - - Unallocated.

0o 0 1 0 0 CCMN (register) - 32-bit variant on page C6-479

0 1 1 0 0 CCMP (register) - 32-bit variant on page C6-481

1 0 1 0 0 CCMN (register) - 64-bit variant on page C6-479

1 1 1 0 0 CCMP (register) - 64-bit variant on page C6-481

C4.5.6 Conditional select

This section describes the encoding of the Conditional select instruction class. This section is decoded from Data
processing - register on page C4-224.

31 30 29 28|27 26 25 24/23 22 21 20| 16[15 1201110 9 | 5 4| 0l
[sflop[s[1 1 0 1 0 1 0 0] Rm | cond [op2] Rn | Rd |

Decode fields
Instruction Page
sf op S op2

- - - Ix Unallocated.

- - 1 - Unallocated.

o 0 0 00 CSEL - 32-bit variant on page C6-502

0 0 0 01 CSINC - 32-bit variant on page C6-505

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-227
ID092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

Decode fields
Instruction Page
sf op S op2

0 1 0 00 CSINV - 32-bit variant on page C6-507

0 1 0 o1 CSNEG - 32-bit variant on page C6-509

1 0 0 00 CSEL - 64-bit variant on page C6-502

1 0 0 01 CSINC - 64-bit variant on page C6-505

1 1 0 00 CSINV - 64-hit variant on page C6-507

1 1 0 o1 CSNEG - 64-bit variant on page C6-509

C4.5.7 Data-processing (1 source)
This section describesthe encoding of the Data-processing (1 source) instruction class. Thissectionisdecoded from

Data processing - register on page C4-224.

|31 30 29 28(27 26 25 2423 22 21 20| 16]15 | 109 | 5 4| 0]
[stff[1]s[1 1 0101 1 0] opcode2 | opcode | Rn | Rd |

Decode fields
Instruction Page
sf S opcode2 opcode

- - - XX1XXX Unallocated.

- - XIXXXX Unallocated.

- - IXXXXX Unallocated.

- - xxxxl - Unallocated.

- - xxxx - Unallocated.

- - xx1xx - Unallocated.

- - xIxxx - Unallocated.

- - Ixxxx - Unallocated.

- 0 00000 00011x Unallocated.

- 1 - - Unallocated.

0 0 00000 000000 RBIT - 32-bit variant on page C6-652

0 0 00000 000001 REV 16 - 32-bit variant on page C6-656

0 0 00000 000010 REV - 32-bit variant on page C6-654

0 0 00000 000011 Unallocated.

0 0 00000 000100 CLZ - 32-bit variant on page C6-486

0 0 00000 000101 CLS - 32-hit variant on page C6-485

1 0 00000 000000 RBIT - 64-bit variant on page C6-652
C4-228 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

Decode fields

Instruction Page

sf S opcode2 opcode

1 0 00000 000001 REV 16 - 64-bit variant on page C6-656
1 0 00000 000010 REV 32

1 0 00000 000011 REV - 64-bit variant on page C6-654

1 0 00000 000100 CLZ - 64-bit variant on page C6-486

1 0 00000 000101 CLS - 64-hit variant on page C6-485

C4.5.8 Data-processing (2 source)

This section describesthe encoding of the Data-processing (2 source) instruction class. Thissectionisdecoded from

Data processing - register on page C4-224.

|31 30 29 28/27 26 25 24|23 22 21 20

16

15 |

109 | 5 4| 0|

[sflo]s]1 1 01011 0] Rm

| opcode

[Rn | Rd |

Decode fields
Instruction Page
sf S opcode

- - 00000x Unallocated.

- - 01lxxx Unallocated.

- - Ixxxxx Unallocated.

- 0 0001xx Unallocated.

- 0 0011xx Unallocated.

- 1 - Unallocated.

0 0 000010 UDIV - 32-bit variant on page C6-755

0 0 000011 SDIV - 32-bit variant on page C6-671

0 0 001000 LSLV - 32-bit variant on page C6-605

0 0 001001 L SRV - 32-bit variant on page C6-608

0 0 001010 ASRV - 32-bit variant on page C6-460

0 0 001011 RORV - 32-bit variant on page C6-662

0 0 010x11 Unallocated.

0 0 010000 CRC32B, CRC32H, CRC32W, CRC32X - CRC32B variant on page C6-498

0 0 0le00l CRC32B, CRC32H, CRC32W, CRC32X - CRC32H variant on page C6-498

0 0 0le0lo CRC32B, CRC32H, CRC32W, CRC32X - CRC32W variant on page C6-498

0 0 010100 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CB variant on page C6-500

0 0 0l0l0l CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CH variant on page C6-500

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-229
ID092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

Decode fields

sf S opcode

Instruction Page

0 0 010110

1 0 000010

CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CW variant on page C6-500

UDIV - 64-bit variant on page C6-755

1 0 000011

SDIV - 64-bit variant on page C6-671

1 0 001000

LSLV - 64-bit variant on page C6-605

1 0 001001

L SRV - 64-bit variant on page C6-608

1 0 001010

ASRV - 64-bit variant on page C6-460

1 0 001011

1 0 010xx0

RORYV - 64-bit variant on page C6-662

Unallocated.

1 0 010x0x

Unallocated.

1 0 010011

CRC32B, CRC32H, CRC32W, CRC32X - CRC32X variant on page C6-498

1 0 010111

CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CX variant on page C6-500

C4.5.9 Data-processing (3 source)
This section describesthe encoding of the Data-processing (3 source) instruction class. Thissectionisdecoded from
Data processing - register on page C4-224.
|31 30 29 28|27 26 25 24/23 21 20| 16/15 14 | 109 | 5 4| 0|
[sflops4[1 1 0 1 1] op31 | Rm |oo] Ra | Rn | Rd |
Decode fields
Instruction Page
sf op54 op31 o0
- 00 010 1 Unallocated.
- 00 011 - Unallocated.
- 00 100 - Unallocated.
- 00 110 1 Unallocated.
- 00 111 - Unallocated.
- ol - - Unallocated.
_ 1x - - Unallocated.
0 00 000 0 MADD - 32-bit variant on page C6-609
0 00 000 1 MSUB - 32-bit variant on page C6-626
0 00 001 0 Unallocated.
0 00 001 1 Unallocated.
0 00 010 0 Unallocated.
C4-230 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

Decode fields
Instruction Page
sf op54 op31 o0

0 00 101 0 Unallocated.

0 00 101 1 Unallocated.

0 00 110 0 Unallocated.

1 00 000 0 MADD - 64-bit variant on page C6-609
1 00 000 1 MSUB - 64-hit variant on page C6-626
1 00 001 0 SMADDL

1 00 001 1 SMSUBL

1 00 010 0 SMULH

1 00 101 0 UMADDL

1 00 101 1 UMSUBL

1 00 110 0 UMULH

C4.5.10 Logical (shifted register)

This section describes the encoding of the Logical (shifted register) instruction class. This section is decoded from
Data processing - register on page C4-224.

31 30 29 28|27 26 25 24/23 22 21 20| 16/15 | 109 | 5 4| 0|
[sfl opc JO 1 0 1 ofshift[N] Rm | imm6 | Rn | Rd |

Decode fields
Instruction Page
sf opc N imm6

0 - - Ixxxxx Unallocated.

0 00 0o - AND (shifted register) - 32-bit variant on page C6-452

0 00 1 - BIC (shifted register) - 32-bit variant on page C6-468

0 01 0 - ORR (shifted register) - 32-bit variant on page C6-642

0 01 1 - ORN (shifted register) - 32-bit variant on page C6-638

0 10 0 - EOR (shifted register) - 32-bit variant on page C6-523

0 10 1 - EON (shifted register) - 32-bit variant on page C6-520

0 11 0o - ANDS (shifted register) - 32-bit variant on page C6-456

0 11 1 - BICS (shifted register) - 32-bit variant on page C6-470

1 o0 0 - AND (shifted register) - 64-bit variant on page C6-452

1 00 1 - BIC (shifted register) - 64-bit variant on page C6-468

1 o1 0 - ORR (shifted register) - 64-bit variant on page C6-642
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-231

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.5 Data processing - register

Decode fields
Instruction Page
sf opc N immé6

1 o1 1 - ORN (shifted register) - 64-bit variant on page C6-638
1 10 0o - EOR (shifted register) - 64-bit variant on page C6-523
1 10 1 - EON (shifted register) - 64-bit variant on page C6-520
1 1 0 - ANDS (shifted register) - 64-bit variant on page C6-456
1 1 1 - BICS (shifted register) - 64-bit variant on page C6-470
C4-232 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

C4.6 Data processing - SIMD and floating point

This section describes the encoding of the Data processing (SIMD and floating-point) instruction group. This
section is decoded from A64 instruction index by encoding on page C4-192. For additional information on this
functional group of instructions, see Data processing - SIMD and floating-point on page C3-171.

31

2827

24|23 22

119 18 17 16/15 | 109 | \ 0]

op0

[111

[op1 |

op2

[op3 | | op4 I |

Table C4-6 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD

group

Decode fields

Decode group or instruction page

op0 opl1 op2 op3 op4
0000 0x x101 00 xxxx10 Unallocated.
0010 0x x101 00 xxxx10 Unallocated.
0100 0x x101 00 xxxx10 Cryptographic AES on page C4-257
0101 0x XXX - 0xxx00 Cryptographic three-register SHA on page C4-258
0101 0x X0XX - 0xxx10 Unallocated.
0101 0x x101 00 xxxx10 Cryptographic two-register SHA on page C4-259
0110 0x x101 00 xxxx10 Unallocated.
0111 ox XOXX - Oxxxx0 Unallocated.
0111 0x x101 00 xxxx10 Unallocated.
01x1 00 00xx - Oxxxx1 Advanced SIMD scalar copy on page C4-238
01x1 01 X0XX - oxxxx1 Unallocated.
01x1 0x 0111 00 xxxx10 Unallocated.
01x1 0x x100 00 xxxx10 Advanced SIMD scalar two-register miscellaneous on page C4-244
01x1 0x x110 00 xxxx10 Advanced SIMD scalar pairwise on page C4-238
01x1 0x x1xx 1x xxxx10 Unallocated.
01x1 0x x1xx x1 xxxx10 Unallocated.
01x1 0x X1xx - xxxx00 Advanced SIMD scalar three different on page C4-241
01x1 0x x1xx - xxxxx1 Advanced SIMD scalar three same on page C4-241
01x1 10 - - xxxxx1 Advanced SIMD scalar shift by immediate on page C4-239
01x1 11 - - xxxxx1 Unallocated.
01x1 1x - - xxxxx@ Advanced SIMD scalar x indexed element on page C4-246
0x00 0x XXX - 0xxx00 Advanced SIMD table lookup on page C4-248
0x00 0x X0XX - 0xxx10 Advanced SIMD permute on page C4-237
0x10 0x XXX - Oxxxx0 Advanced SIMD extract on page C4-236
0xx0 00 00xx - oxxxx1 Advanced SIMD copy on page C4-235
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-233

1D092916

Non-Confidential

C4 A64 Instruction Set Encoding

C4.6 Data processing - SIMD and floating point

Table C4-6 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD
group (continued)

Decode fields

Decode group or instruction page

op0 op1 op2 op3 op4

0xx0 01 XXX - Oxxxx1 Unallocated.

0xx0 0x 0111 00 xxxx10 Unallocated.

0xx0 0x 10xx - 01xxx1 Unallocated.

0xx0 0x XXX - Ixxxxx Unallocated.

0xx0 0x x100 00 xxxx10 Advanced SIMD two-register miscellaneous on page C4-253
0xx0 0x x110 00 xxxx10 Advanced SIMD across lanes

0xx0 0x X1xx 1x xxxx10 Unallocated.

0xx0 0x X1xx x1 xxxx10 Unallocated.

0xx0 0x X1xx - xxxx00 Advanced SIMD three different on page C4-249

0xx0 0x x1xx - xxxxx1 Advanced SIMD three same on page C4-250

0xx0 10 0000 - xxxxx1 Advanced SIMD modified immediate on page C4-237

0xx0 10 = 0000 - xxxxx1 Advanced SIMD shift by immediate on page C4-247

oxx0 11 - - xxxxx1 Unallocated.

0xx0 1x - - xxxxx@ Advanced SIMD vector x indexed element on page C4-256
11x1 - - - - Unallocated.

1xx0 - - - - Unallocated.

x0x1 0x XXX - - Conversion between floating-point and fixed-point on page C4-265
x0x1 0x X1xx - 000000 Conversion between floating-point and integer on page C4-266
x0x1 0x x1xx - 100000 Unallocated.

x0x1 0x x1xx - x10000 Floating-point data-processing (1 source) on page C4-261
X0x1 0x X1xx - xx1000 Floating-point compare on page C4-259

x0x1 0x x1xx - xxx100 Floating-point immediate on page C4-264

x0x1 0x X1xx - xxxx01 Floating-point conditional compare on page C4-260

x0x1 0x X1xx - xxxx10 Floating-point data-processing (2 source) on page C4-262
x0x1 0x X1xx - xxxx11 Floating-point conditional select on page C4-260

x0x1 1x - - - Floating-point data-processing (3 source) on page C4-263

C4.6.1 Advanced SIMD across lanes
This section describes the encoding of the Advanced SIMD across lanes instruction class. This section is decoded
from Data processing - SIMD and floating point on page C4-233.

C4-234 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

31 30 29 28|27 26 25 24/23 22 21 2019 18 17 16| 121110 9 | 5 4| 0|
[o]a[ufo 1 1 1 ofsize]1 1 0 0 0] opcode [1 O] Rn | Rd |

Decode fields
Instruction Page
U size opcode

- - 0000x Unallocated.
- - 00010 Unallocated.
- - 001xx Unallocated.
- - 0100x Unallocated.
- - 01011 Unallocated.
- - 01101 Unallocated.
- - 01110 Unallocated.
- - 10xxx Unallocated.
- - 1100x Unallocated.
- - 111xx Unallocated.
0 - 00011 SADDLV

0 - 01010 SMAXV

0 - 11010 SMINV

0 - 11011 ADDV

1 - 00011 UADDLV

1 - 01010 UMAXV

1 - 11010 UMINV

1 - 11011 Unallocated.
1 ox 01100 FMAXNMV
1 0x 01111 FMAXV

1 1Ix 01100 FMINNMV
1 1x 01111 FMINV

C4.6.2 Advanced SIMD copy

This section describes the encoding of the Advanced SIMD copy instruction class. This section is decoded from
Data processing - SIMD and floating point on page C4-233.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-235
ID092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

31 30 29 28|27 26 25 24/23 22 21 20| 16[15 14 11109 | 5 4| 0|
[o]Qfop[0 1 1 1 0 00 0] imms [o] imm4 [1] Rn | Rd |

Decode fields
Instruction Page
Q op imm5 imm4

- - x0000 - Unallocated.
-0 - 0000 DUP (element)
-0 - 0001 DUP (general)
-0 - 0010 Unallocated.

- 0 - 0100 Unallocated.
-0 - 0110 Unallocated.
-0 - 1xxx Unallocated.

0 0 - 0011 Unallocated.

0 0 - 0101 SMQOV

0 0 - 0111 umMmov

0 1 - - Unallocated.

1 0 - 0011 INS (genera)
1 0 - 0101 SMOV

1 0 x1000 0111 UMov

1 1 - - INS (element)

C4.6.3 Advanced SIMD extract

This section describes the encoding of the Advanced SIMD extract instruction class. This section is decoded from
Data processing - SIMD and floating point on page C4-233.

31 30 29 2827 26 25 24|23 22 21 20| 16[15 14 11109 | 5 4| 0
[o[a]1 0 1 1 1 0]op2]0] Rm [o] imm4 [o] Rn | Rd |

Decode fields
Instruction Page

op2
x1 Unallocated.
00 EXT
1x Unallocated.
C4-236 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

C4.6.4 Advanced SIMD modified immediate

This section describes the encoding of the Advanced SIMD modified immediate instruction class. This sectionis
decoded from Data processing - SIMD and floating point on page C4-233.

131 30 29 28|27 26 25 24[23 22 21 20/19 18 17 16|15 121110 9 8/7 6 5 4| 0]

[o]Qfop[0 1 1 1 1 0 000 0[]a]b[c|] cmode [o2[1[d]|e]f[g]n] Rd |

Decode fields

Instruction Page

Q op cmode 02

- - - 1 Unallocated.

-0 0xx0 0 MOQOVI - 32-bit shifted immediate variant on page C7-1120

-0 0xx1 0 ORR (vector, immediate) - 32-bit variant on page C7-1134

-0 10x0 0 MOVI - 16-bit shifted immediate variant on page C7-1120

-0 10x1 0 ORR (vector, immediate) - 16-bit variant on page C7-1134

-0 110x 0 MOVI - 32-bit shifting ones variant on page C7-1120

-0 1110 0 MOVI - 8-bit variant on page C7-1120

-0 1111 0 FMOV (vector, immediate) - Single-precision variant on page C7-973
-1 0xx0 0 MVNI - 32-bit shifted immediate variant on page C7-1128

-1 0xx1 0 BIC (vector, immediate) - 32-bit variant on page C7-787

-1 10x0 0 MVNI - 16-bit shifted immediate variant on page C7-1128

-1 10x1 0 BIC (vector, immediate) - 16-bit variant on page C7-787

-1 110x 0 MVNI - 32-bit shifting ones variant on page C7-1128

0 1 1110 0 MOVI - 64-bit scalar variant on page C7-1120

0 1 1111 0 Unallocated.

1 1 1110 0 MOVI - 64-bit vector variant on page C7-1120

1 1 1111 0 FMOQV (vector, immediate) - Double-precision variant on page C7-973

C4.6.5 Advanced SIMD permute

This section describes the encoding of the Advanced SIMD permute instruction class. This section is decoded from
Data processing - SIMD and floating point on page C4-233.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-237

1D092916

Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

31 30 29 28|27 26 25 24/23 22 21 20| 16/1514 121110 9 | 5 4| 0|
[o]afo 0 1 1 1 o]size|0] Rm [0] opcode [1 0] Rn | Rd |

Decode fields
Instruction Page

opcode

000 Unallocated.
001 UZP1

010 TRN1

011 ZIP1

100 Unallocated.
101 UzpP2

110 TRN2

111 ZIP2

C4.6.6 Advanced SIMD scalar copy

This section describes the encoding of the Advanced SIMD scalar copy instruction class. This section is decoded
from Data processing - SIMD and floating point on page C4-233.

31 30 29 28|27 26 25 24/23 22 21 20| 16[15 14 11109 | 5 4| 0|
[0 1fop[1 1 11000 0] imms [o] imm4 [1] Rn | Rd |

Decode fields
Instruction Page
op imm5 imm4

0 - xxx1 Unallocated.
0 - xx1x Unallocated.
0 - X1xx Unallocated.
0 - 0000 DUP (element)
0 - Ixxx Unallocated.

0 x0000 0000 Unallocated.

1 - - Unallocated.

C4.6.7 Advanced SIMD scalar pairwise

This section describes the encoding of the Advanced SIMD scalar pairwiseinstruction class. This section isdecoded
from Data processing - SIMD and floating point on page C4-233.

C4-238 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

31 30 29 28|27 26 25 24/23 22 21 2019 18 17 16| 121110 9 | 5 4| 0|
[0 1Ju]1 1 1 1 0]size]1 1 0 0 0] opcode [1 0] Rn | Rd |

Decode fields
Instruction Page
U size opcode

- - 00xxX Unallocated.

- - 010xx Unallocated.

- - 01110 Unallocated.

- - 10xxx Unallocated.

- - 1100x Unallocated.

- - 11010 Unallocated.

- - 111xx Unallocated.

- Ix 01101 Unallocated.

0 - 11011 ADDP (scalar)

1 - 11011 Unallocated.

1 ox 01100 FMAXNMP (scalar)
1 ox 01101 FADDP (scalar)

1 ox 01111 FMAXP (scalar)

1 Ix 01100 FMINNMP (scalar)
1 Ix 01111 FMINP (scalar)

C4.6.8 Advanced SIMD scalar shift by immediate
This section describes the encoding of the Advanced SIMD scalar shift by immediate instruction class. This section
is decoded from Data processing - SIMD and floating point on page C4-233.

31 30 29 28|27 26 25 24/23 22 11918 1615 11109 | 5 4| 0
[0 1Jul1 1 111 o] immh [immb | opcode [1] Rn | Rd |

Decode fields
Instruction Page
U immh opcode

- = 0000 00001 Unallocated.
- = 0000 00011 Unallocated.
- 1= 0000 00101 Unallocated.
- = 0000 00111 Unallocated.
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-239

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding

C4.6 Data processing - SIMD and floating point

Decode fields

Instruction Page

U immh opcode

- 1= 0000 01001 Unallocated.

- = 0000 01011 Unallocated.

- 1= 0000 01101 Unallocated.

- 1= 0000 01111 Unallocated.

- 1= 0000 101xx Unallocated.

- 1= 0000 11001 Unallocated.

- 1= 0000 11010 Unallocated.

- = 0000 11101 Unallocated.

- 1= 0000 11110 Unallocated.

- 0000 - Unallocated.

0 1= 0000 00000 SSHR

0 1= 0000 00010 SSRA

0 1= 0000 00100 SRSHR

0 1= 0000 00110 SRSRA

0 1= 0000 01000 Unallocated.

0 1= 0000 01010 SHL

0 1= 0000 01100 Unallocated.

0 !=0000 01110 SQSHL (immediate)
0 1= 0000 10000 Unallocated.

0 1= 0000 10001 Unallocated.

0 1= 0000 10010 SQSHRN, SQSHRN2
0 = 0000 10011 SQRSHRN, SQRSHRN2
0 = 0000 11100 SCVTF (vector, fixed-point)
0 = 0000 11111 FCVTZS (vector, fixed-point)
1 1= 0000 00000 USHR

1 1= 0000 00010 USRA

1 1= 0000 00100 URSHR

1 1= 0000 00110 URSRA

1 1= 0000 01000 SRI

1 1= 0000 01010 SLI

1 1=0000 01100 SQSHLU

1 !=0000 01110 UQSHL (immediate)

C4-240

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
U immh opcode

1 1=0000 10000 SQSHRUN, SQSHRUN2
1 1= 0000 10001 SQRSHRUN, SQRSHRUN2
1 1=0000 10010 UQSHRN, UQSHRN2

1 !=0000 10011 UQRSHRN, UQRSHRN2

1 1= 0000 11100 UCVTF (vector, fixed-point)
1 1= 0000 11111 FCVTZU (vector, fixed-point)

C4.6.9 Advanced SIMD scalar three different

This section describes the encoding of the Advanced SIMD scalar three different instruction class. This section is
decoded from Data processing - SIMD and floating point on page C4-233.

31 30 29 28|27 26 25 24/23 22 21 20| 16/15 121110 9 | 5 4| 0|
[0 1]ul1 1 1 1 o]size|1] Rm | opcode [0 O] Rn | Rd |

Decode fields
Instruction Page

U opcode

- 00xx Unallocated.

- 01xx Unallocated.

- 1000 Unallocated.

- 1010 Unallocated.

- 1100 Unallocated.

- 111x Unallocated.

0 1001 SQDMLAL, SQDMLAL?2 (vector)
0 101l SQDMLSL, SQDMLSL 2 (vector)
0 1101 SQDMULL, SQDMULL2 (vector)
1 1001 Unallocated.

1 1011 Unallocated.

1 1101 Unallocated.

C4.6.10 Advanced SIMD scalar three same

This section describes the encoding of the Advanced SIMD scalar three same instruction class. This sectionis
decoded from Data processing - SIMD and floating point on page C4-233.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-241
ID092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

31 30 29 28|27 26 25 24/23 22 21 20| 16/15 11109 | 5 4| 0|
[0 1Jul1 1 1 1 0o]size|1] Rm | opcode [1] Rn | Rd |

Decode fields
Instruction Page
U size opcode

- - 00000 Unallocated.
- - 0001x Unallocated.
- - 00100 Unallocated.
- - 011xx Unallocated.
- - 1001x Unallocated.
- Ix 11011 Unallocated.
0 - 00001 SQADD
0 - 00101 SQSUB
0 - 00110 CMGT (register)
0 - 00111 CMGE (register)
0 - 01000 SSHL
0 - 01001 SQSHL (register)
0 - 01010 SRSHL
0 - 01011 SQRSHL
0 - 10000 ADD (vector)
0 - 10001 CMTST
0 - 10100 Unallocated.
0 - 10101 Unallocated.
0 - 10110 SQDMULH (vector)
0 - 10111 Unallocated.
0 0x 11000 Unallocated.
0 0x 11001 Unallocated.
0 0x 11010 Unallocated.
0 0x 11011 FMULX
0 0x 11100 FCMEQ (register)
0 0x 11101 Unallocated.
0 0x 11110 Unallocated.
0 0x 11111 FRECPS
C4-242 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields

Instruction Page

U size opcode

0 1x 11000 Unallocated.

0 Ix 11001 Unallocated.

0 1x 11010 Unallocated.

0 1x 11100 Unallocated.

0 Ix 11101 Unallocated.

0 1x 11110 Unallocated.

0 1x 11111 FRSQRTS

1 - 00001 UQADD

1 - 00101 UQSUB

1 - 00110 CMHI (register)
1 - 00111 CMHS (register)
1 - 01000 USHL

1 - 01001 UQSHL (register)
1 - 01010 URSHL

1 - 01011 UQRSHL

1 - 10000 SUB (vector)

1 - 10001 CMEQ (register)
1 - 10100 Unallocated.

1 - 10101 Unallocated.

1 - 10110 SQRDMULH (vector)
1 - 10111 Unallocated.

1 ox 11000 Unallocated.

1 0x 11001 Unallocated.

1 ox 11010 Unallocated.

1 ox 11011 Unallocated.

1 ox 11100 FCMGE (register)
1 ox 11101 FACGE

1 0x 11110 Unallocated.

1 0x 11111 Unallocated.

1 Ix 11000 Unallocated.

1 Ix 11001 Unallocated.

1 Ix 11010 FABD

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C4-243

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
U size opcode

1 1Ix 11100 FCMGT (register)
1 Ix 11101 FACGT

1 Ix 11110 Unallocated.

1 Ix 11111 Unallocated.

C4.6.11 Advanced SIMD scalar two-register miscellaneous
This section describes the encoding of the Advanced SIMD scalar two-register miscellaneousinstruction class. This
section is decoded from Data processing - SIMD and floating point on page C4-233.

31 30 29 28|27 26 25 24/23 22 21 20/19 18 17 16| 121110 9 | 5 4| 0|
[0 1Ju]1 1 1 1 0]size]1 0 0 0 0] opcode [1 0] Rn | Rd |

Decode fields
Instruction Page
U size opcode

- - 0000x Unallocated.
- - 00010 Unallocated.
- - 0010x Unallocated.
- - 00110 Unallocated.
- - 01111 Unallocated.
- - 1000x Unallocated.
- - 10011 Unallocated.
- - 10101 Unallocated.
- - 10111 Unallocated.
- - 1100x Unallocated.
- - 11110 Unallocated.
- 0x 011xx Unallocated.
- 0x 11111 Unallocated.
- Ix 10110 Unallocated.
- Ix 11100 Unallocated.
0 - 00011 SUQADD
0 - 00111 SQABS
0 - 01000 CMGT (zero)
0 - 01001 CMEQ (zero)
C4-244 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields

Instruction Page

U size opcode

0 - 01010 CMLT (zero)

0 - 01011 ABS

0 - 10010 Unallocated.

0 - 10100 SOQXTN, SQXTN2

0 ox 10110 Unallocated.

0 0x 11010 FCVTNS (vector)

0 0x 11011 FCVTMS (vector)

0 0x 11100 FCVTAS (vector)

0 0x 11101 SCVTF (vector, integer)
0 1Ix 01100 FCMGT (zero)

0 1Ix 01101 FCMEQ (zero)

0 Ix 01110 FCMLT (zero)

0 Ix 11010 FCVTPS (vector)

0 Ix 11011 FCVTZS (vector, integer)
0 1x 11101 FRECPE

0 1x 11111 FRECPX

1 - 00011 USQADD

1 - 00111 SQNEG

1 - 01000 CMGE (zero)

1 - 01001 CMLE (zero)

1 - 01010 Unallocated.

1 - 01011 NEG (vector)

1 - 10010 SQOXTUN, SOXTUN2
1 - 10100 UQXTN, UQXTN2

1 0x 10110 FCVTXN, FCVTXN2
1 ox 11010 FCVTNU (vector)

1 ox 11011 FCVTMU (vector)

1 0ox 11100 FCVTAU (vector)

1 0ox 11101 UCVTF (vector, integer)
1 Ix 01100 FCMGE (zero)

1 Ix 01101 FCMLE (zero)

1 Ix 01110 Unallocated.

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C4-245

C4 A64 Instruction Set Encoding

C4.6 Data processing - SIMD and floating point

C4.6.12 Advanced SIMD scalar x indexed element

Decode fields

Instruction Page

U size opcode

1 Ix 11010 FCVTPU (vector)

1 Ix 11011 FCVTZU (vector, integer)
1 Ix 11101 FRSQRTE

1 Ix 11111 Unallocated.

This section describes the encoding of the Advanced SIMD scalar x indexed element instruction class. This section
is decoded from Data processing - SIMD and floating point on page C4-233.

|31 30 29 28|27 26 25 2423 22 21 20/19

1615

1211110 9 | 5 4|

0|

[0 1Jul1 1 1 1 1]size]L|[M] Rm | opcode [H]O]

Rn |

Rd |

Decode fields

Instruction Page

U size opcode

- - 0000 Unallocated.

- - 0010 Unallocated.

- - 0100 Unallocated.

- - 0110 Unallocated.

- - 1000 Unallocated.

- - 1010 Unallocated.

- - 111x Unallocated.

0 - 0011 SQDMLAL, SQDMLAL2 (by element)
0 - 0111 SQDMLSL, SQDMLSL2 (by element)
0 - 1011 SQDMULL, SQDMULL?2 (by element)
0 - 1100 SQDMULH (by element)

0 - 1101 SQRDMULH (by element)

0 1Ix 0001 FMLA (by element)

0 1Ix 0101 FMLS (by element)

0 Ix 1001 FMUL (by element)

1 - 0011 Unallocated.

1 - 0111 Unallocated.

1 - 1011 Unallocated.

1 - 110x Unallocated.

C4-246

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
U size opcode

1 1x 0001 Unallocated.
1 1x 0101 Unallocated.
1 1Ix 1001 FMULX (by element)

C4.6.13 Advanced SIMD shift by immediate

This section describes the encoding of the Advanced SIMD shift by immediate instruction class. This sectionis
decoded from Data processing - SIMD and floating point on page C4-233.

131 30 29 28|27 26 25 24(23 22 11918 16[15 1110 9 | 5 4| 0]
[o]afufo 1 1 1 1 of 1=0000 [immb | opcode [1] Rn | Rd |
immh

Decode fields
Instruction Page

U opcode

- 00001 Unallocated.

- 00011 Unallocated.

- 00101 Unallocated.

- 00111 Unallocated.

- 01001 Unallocated.

- 01011 Unallocated.

- 01101 Unallocated.

- 01111 Unallocated.

- 10101 Unallocated.

- 1011x Unallocated.

- 11101 Unallocated.

- 11110 Unallocated.

0 00000 SSHR

0 00010 SSRA

0 00100 SRSHR

0 00110 SRSRA

0 01000 Unallocated.

0 01010 SHL

0 01100 Unallocated.

0 01110 SQSHL (immediate)
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-247

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page

U opcode

0 10000 SHRN, SHRN2

0 10001 RSHRN, RSHRN2

0 10010 SQSHRN, SQSHRN2

0 10011 SQRSHRN, SQRSHRN2

0 10100 SSHLL, SSHLL2

0 11100 SCVTF (vector, fixed-point)
0 11111 FCVTZS (vector, fixed-point)
1 00000 USHR

1 00010 USRA

1 00100 URSHR

1 00110 URSRA

1 01000 SRI

1 01010 SLI

1 01100 SQSHLU

1 01110 UQSHL (immediate)

1 10000 SQSHRUN, SQSHRUN2

1 10001 SQRSHRUN, SORSHRUN2
1 10010 UQSHRN, UQSHRN2

1 10011 UQRSHRN, UQRSHRN2

1 10100 USHLL, USHLL2

1 11100 UCVTF (vector, fixed-point)
1 11111 FCVTZU (vector, fixed-point)

C4.6.14 Advanced SIMD table lookup

This section describes the encoding of the Advanced SIMD table lookup instruction class. This section is decoded
from Data processing - SIMD and floating point on page C4-233.

C4-248 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

31 30 29 28|27 26 25 24/23 22 21 20| 16/15141312[1110 9 | 5 4| 0|
[o]afo 0 1 1 1 o]op2]o0] Rm [0] ten Jop]0 O] Rn | Rd |

Decode fields
Instruction Page
op2 len op

x1 - - Unallocated.

00 00 0 TBL - Single register table variant on page C7-1372

00 00 1 TBX - Single register table variant on page C7-1374

00 01 0 TBL - Two register table variant on page C7-1372

00 01 1 TBX - Two register table variant on page C7-1374

00 10 0 TBL - Three register table variant on page C7-1372

00 10 1 TBX - Three register table variant on page C7-1374

00 11 0 TBL - Four register table variant on page C7-1372

00 11 1 TBX - Four register table variant on page C7-1374

1x - - Unallocated.

C4.6.15 Advanced SIMD three different

This section describes the encoding of the Advanced SIMD three different instruction class. This section isdecoded
from Data processing - SIMD and floating point on page C4-233.

|31 30 29 28|27 26 25 24(23 22 21 20| 16/15 121110 9 | 5 4| 0|
|O|Q|U|0 111 0|size|1| Rm | opcode |O 0| Rn | Rd |

Decode fields
Instruction Page

U opcode

- 111 Unallocated.

0 0000 SADDL, SADDL2

0 0001 SADDW, SADDW?2

0 0010 SSUBL, SSUBL2

0 0011 SSUBW, SSUBW2

0 0100 ADDHN, ADDHN2

0 0101 SABAL, SABAL2

0 0110 SUBHN, SUBHN2

0 0111 SABDL, SABDL2
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-249

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page

U opcode

0 1000 SMLAL, SMLAL2 (vector)

0 1001 SQDMLAL, SQDMLAL?2 (vector)
0 1010 SMLSL, SMLSL2 (vector)

0 1011 SQDMLSL, SQDMLSL 2 (vector)
0 1100 SMULL, SMULL?2 (vector)

0 1101 SQDMULL, SQDMULL?2 (vector)
0 1110 PMULL, PMULL2

1 0000 UADDL, UADDL2

1 0001 UADDW, UADDW2

1 0010 USUBL, USUBL2

1 0011 USUBW, USUBW2

1 0100 RADDHN, RADDHN2

1 0101 UABAL, UABAL2

1 0110 RSUBHN, RSUBHN2

1 0111 UABDL, UABDL2

1 1000 UMLAL, UMLAL?2 (vector)

1 1001 Unallocated.

1 1010 UMLSL, UMLSL2 (vector)

1 1011 Unallocated.

1 1100 UMULL, UMULL?2 (vector)

1 1101 Unallocated.

1 1110 Unallocated.

C4.6.16 Advanced SIMD three same

This section describes the encoding of the Advanced SIMD three same instruction class. This section is decoded
from Data processing - SIMD and floating point on page C4-233.

C4-250 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

131 30 29 28|27 26 25 24/23 22 21 20|

16/15

11110 9

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

\ 5 4] 0]

[o]aufo 1 1 1 osize[1] Rm |

opcode | 1 |

Rn

Rd |

Decode fields

Instruction Page

U size opcode

0 - 00000 SHADD

0 - 00001 SQADD

0 - 00010 SRHADD

0 - 00100 SHSUB

0 - 00101 SQSUB

[/ 00110 CMGT (register)
[/ 00111 CMGE (register)
0 - 01000 SSHL

0 - 01001 SQSHL (register)
0 - 01010 SRSHL

0 - 01011 SQRSHL

0 - 01100 SMAX

0 - 01101 SMIN

0 - 01110 SABD

0 - 01111 SABA

0 - 10000 ADD (vector)

0 - 10001 CMTST

0 - 10010 MLA (vector)

0 - 10011 MUL (vector)

0 - 10100 SMAXP

0 - 10101 SMINP

0 - 10110 SQDMULH (vector)
0 - 10111 ADDP (vector)

0 0x 11000 FMAXNM (vector)
0 ox 11001 FMLA (vector)

0 0x 11010 FADD (vector)

0 0x 11011 FMULX

0 0x 11100 FCMEQ (register)

ARM DDI 0487A .K_iss10775
1D092916

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C4-251

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
U size opcode

0 0x 11101 Unallocated.

0 0x 11110 FMAX (vector)

0 0x 11111 FRECPS

0 00 00011 AND (vector)

0 o1 00011 BIC (vector, register)

0 1Ix 11000 FMINNM (vector)

0 1Ix 11001 FMLS (vector)

0 Ix 11010 FSUB (vector)

0 1x 11011 Unallocated.

0 Ix 11100 Unallocated.

0 Ix 11101 Unallocated.

0 1Ix 11110 FMIN (vector)

0 1x 11111 FRSQRTS

0 10 00011 ORR (vector, register)

0 11 00011 ORN (vector)

1 - 00000 UHADD

1 - 00001 UQADD

1 - 00010 URHADD

1 - 00100 UHSUB

1 - 00101 UQSUB

1 - 00110 CMHI (register)

1 - 00111 CMHS (register)

1 - 01000 USHL

1 - 01001 UQSHL (register)

1 - 01010 URSHL

1 - 01011 UQRSHL

1 - 01100 UMAX

1 - 01101 UMIN

1 - 01110 UABD

1 - 01111 UABA

1 - 10000 SUB (vector)

1 - 10001 CMEQ (register)
C4-252 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields

Instruction Page

U size opcode

1 - 10010 MLS (vector)

1 - 10011 PMUL

1 - 10100 UMAXP

1 - 10101 UMINP

1 - 10110 SQRDMULH (vector)
1 - 10111 Unallocated.

1 ox 11000 FMAXNMP (vector)
1 ox 11001 Unallocated.

1 ox 11010 FADDP (vector)

1 ox 11011 FMUL (vector)

1 ox 11100 FCMGE (register)

1 0x 11101 FACGE

1 ox 11110 FMAXP (vector)

1 ox 11111 FDIV (vector)

1 00 00011 EOR (vector)

1 01 00011 BSL

1 Ix 11000 FMINNMP (vector)
1 Ix 11001 Unallocated.

1 1x 11010 FABD

1 Ix 11011 Unallocated.

1 Ix 11100 FCMGT (register)

1 1x 11101 FACGT

1 1x 11110 FMINP (vector)

1 Ix 11111 Unallocated.

1 10 00011 BIT

1 11 00011 BIF

C4.6.17 Advanced SIMD two-register miscellaneous

This section describes the encoding of the Advanced SIMD two-register miscellaneous instruction class. This
section is decoded from Data processing - SIMD and floating point on page C4-233.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

1D092916 Non-Confidential

C4-253

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

31 30 29 28|27 26 25 24/23 22 21 2019 18 17 16| 121110 9 | 5 4| 0|
[o]a[ufo 1 1 1 ofsize]1 0 0 0 0] opcode [1 O] Rn | Rd |

Decode fields
Instruction Page
U size opcode

- - 1000x Unallocated.

- - 10101 Unallocated.

- - 11110 Unallocated.

- 0x 011xx Unallocated.

- 0x 11111 Unallocated.

- Ix 10110 Unallocated.

- Ix 10111 Unallocated.

0 - 00000 REV64

0 - 00001 REV 16 (vector)

0 - 00010 SADDLP

0 - 00011 SUQADD

0 - 00100 CL S (vector)

0 - 00101 CNT

0 - 00110 SADALP

0 - 00111 SQABS

0 - 01000 CMGT (zero)

0o - 01001 CMEQ (zero)

0 - 01010 CMLT (zero)

0 - 01011 ABS

0 - 10010 XTN, XTN2

0 - 10011 Unallocated.

0 - 10100 SQXTN, SQXTN2

0 0x 10110 FCVTN, FCVTN2

0 0x 10111 FCVTL, FCVTL2

0 0x 11000 FRINTN (vector)

0 ox 11001 FRINTM (vector)

0 0x 11010 FCVTNS (vector)

0 0x 11011 FCVTMS (vector)
C4-254 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
U size opcode

0 0x 11100 FCVTAS (vector)

0 0x 11101 SCVTF (vector, integer)

0 1Ix 01100 FCMGT (zero)

0 1x 01101 FCMEQ (zero)

0 1Ix 01110 FCMLT (zero)

0 Ix 01111 FABS (vector)

0 Ix 11000 FRINTP (vector)

0 Ix 11001 FRINTZ (vector)

0 1x 11010 FCVTPS (vector)

0 1x 11011 FCVTZS (vector, integer)

0 1x 11100 URECPE

0 1x 11101 FRECPE

0 1x 11111 Unallocated.

1 - 00000 REV 32 (vector)

1 - 00001 Unallocated.

1 - 00010 UADDLP

1 - 00011 USQADD

1 - 00100 CLZ (vector)

1 - 00110 UADALP

1 - 00111 SQONEG

1 - 01000 CMGE (zero)

1 - 01001 CMLE (zero)

1 - 01010 Unallocated.

1 - 01011 NEG (vector)

1 - 10010 SQXTUN, SQXTUN2

1 - 10011 SHLL, SHLL2

1 - 10100 UQXTN, UQXTN2

1 ox 10110 FCVTXN, FCVTXN2

1 0x 10111 Unallocated.

1 0ox 11000 FRINTA (vector)

1 ox 11001 FRINTX (vector)

1 ox 11010 FCVTNU (vector)
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-255

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields

Instruction Page

U size opcode

1 ox 11011 FCVTMU (vector)

1 ox 11100 FCVTAU (vector)

1 0ox 11101 UCVTF (vector, integer)
1 00 00101 NOT

1 o1 00101 RBIT (vector)

1 Ix 00101 Unallocated.

1 Ix 01100 FCMGE (zero)

1 Ix 01101 FCMLE (zero)

1 Ix 01110 Unallocated.

1 1x 01111 FNEG (vector)

1 1x 11000 Unallocated.

1 Ix 11001 FRINTI (vector)

1 Ix 11010 FCVTPU (vector)

1 Ix 11011 FCVTZU (vector, integer)
1 1x 11100 URSQRTE

1 1x 11101 FRSQRTE

1 1Ix 11111 FSQRT (vector)

C4.6.18 Advanced SIMD vector x indexed element
This section describes the encoding of the Advanced SIMD vector x indexed element instruction class. This section
is decoded from Data processing - SIMD and floating point on page C4-233.
|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12]1110 9 | 5 4| 0|
[o]alulo 1 1 1 1]size]L]M] Rm | opcode [H]O] Rn | Rd |
Decode fields
Instruction Page
U size opcode
- - 111x Unallocated.
0 - 0000 Unallocated.
0 - 0010 SMLAL, SMLALZ2 (by element)
0 - 0011 SQDMLAL, SQDMLAL2 (by element)
0 - 0100 Unallocated.
0 - 0110 SMLSL, SMLSL2 (by element)
C4-256 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C4 A64 Instruction Set Encoding

C4.6 Data processing - SIMD and floating point

Decode fields

U size opcode

Instruction Page

SQDMLSL, SQDMLSL2 (by element)
MUL (by element)

SMULL, SMULL2 (by element)

SQDMULL, SQDMULL2 (by element)

SQDMULH (by element)

0 - 0111
0 - 1000
0 - 1010
0 - 1011
0 - 1100
0 - 1101

SQRDMULH (by element)

0 1x 0001

0 1x 0101

FMLA (by element)
FMLS (by element)

0 1x 1001

FMUL (by element)

1 - 0000 MLA (by element)

1 - 0010 UMLAL, UMLAL2 (by element)
1 - 0011 Unallocated.

1 - 0100 MLS (by element)

1 - 0110 UMLSL, UMLSL2 (by element)
1 - 0111 Unallocated.

1 - 1000 Unallocated.

1 - 1010 UMULL, UMULL2 (by element)
1 - 1011 Unallocated.

1 - 110x Unallocated.

1 1x 0001 Unallocated.

1 Ix 0101 Unallocated.

1 1x 1001

FMULX (by element)

C4.6.19 Cryptographic AES

This section describes the encoding of the Cryptographic AES instruction class. This section is decoded from Data

processing - SIMD and floating point on page C4-233.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-257

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

31 30 29 28|27 26 25 24/23 22 21 2019 18 17 16| 121110 9 | 5 4| 0|
[01 00111 0][size][1 010 0] opcode [1 0] Rn | Rd |

Decode fields
Instruction Page
size opcode

- X1xxXx Unallocated.
- 000xx Unallocated.
- 1xxxx Unallocated.
x1 - Unallocated.

00 00100 AESE

00 00101 AESD

00 00110 AESMC

00 00111 AESIMC

1x - Unallocated.

C4.6.20 Cryptographic three-register SHA
This section describes the encoding of the Cryptographic three-register SHA instruction class. This section is
decoded from Data processing - SIMD and floating point on page C4-233.

|31 30 29 28/27 26 25 24(23 22 21 20| 16/1514 12[1110 9 | 5 4| 0
|O 101111 0|size|0| Rm |0|opcode|0 O| Rn | Rd |

Decode fields
Instruction Page
size opcode

- 11 Unallocated.

x1 - Unallocated.

00 000 SHA1C

00 001 SHA1P

00 010 SHAIM

00 011 SHA1SUO

00 100 SHA256H

00 101 SHA256H2

00 110 SHA256SU1

1x - Unallocated.
C4-258 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

C4.6.21 Cryptographic two-register SHA
This section describes the encoding of the Cryptographic two-register SHA instruction class. This section is
decoded from Data processing - SIMD and floating point on page C4-233.

31 30 29 28|27 26 25 24/23 22 21 2019 18 17 16| 121110 9 | 5 4| 0|
[01 01111 0]size][1 010 0] opcode [1 0] Rn | Rd |

Decode fields
Instruction Page
size opcode

- Xx1xx Unallocated.
- X1XXX Unallocated.
- 1xxxx Unallocated.
x1 - Unallocated.
00 00000 SHA1H

00 00001 SHA1SU1

00 00010 SHA256SU0

00 00011 Unallocated.

1x - Unallocated.

C4.6.22 Floating-point compare
This section describes the encoding of the Floating-point compare instruction class. This section is decoded from

Data processing - SIMD and floating point on page C4-233.

|31 30 29 28|27 26 25 24(23 22 21 20| 16/1514 1312[1110 9 | 5 4| 0
|M|0|S|1 111 0|type|1| Rm |op |1 00 O| Rn | opcode2 |

Decode fields
Instruction Page
M S type op opcode2

- - - - XXXX1 Unallocated.
_ - - - XXX1x Unallocated.
_ - - - XX1xX Unallocated.
- - - x1 - Unallocated.
- - - x - Unallocated.
- - 10 - - Unallocated.
_ 1 - - - Unallocated.
0 0 00 00 00000 FCMP
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-259

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
M S type op opcode2

0 0 00 00 01000 FCMP

0 0 00 00 10000 FCMPE

0 0 00 00 11000 FCMPE

0 0 01 00 00000 FCMP

0 0 o1 00 01000 FCMP

0 0 o1 00 10000 FCMPE

0 0 o1 00 11000 FCMPE

1 - - - - Unallocated.

C4.6.23 Floating-point conditional compare
This section describes the encoding of the Floating-point conditional compare instruction class. This sectionis
decoded from Data processing - SIMD and floating point on page C4-233.

|31 30 29 28|27 26 25 2423 22 21 20| 16/15 121110 9 | 5 4|3 0]
|M|O|S|1 111 0|type|1| Rm | cond |O 1| Rn |op| nzcv |

Decode fields
Instruction Page
M S type op

- - 10 - Unallocated.

- 1 - - Unallocated.

0 o 00 0 FCCMP - Single-precision variant on page C7-843

0 o 00 1 FCCMPE - Single-precision variant on page C7-845

0 o o1 0 FCCMP - Double-precision variant on page C7-843

0 o o1 1 FCCMPE - Double-precision variant on page C7-845

1 - - - Unallocated.

C4.6.24 Floating-point conditional select

This section describesthe encoding of the Floating-point conditional select instruction class. This section isdecoded
from Data processing - SIMD and floating point on page C4-233.

C4-260 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

131 30 29 28|27 26 25 24/23 22 21 20|

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

16/15 121110 9 | 5 4| 0]

[Mo]s]1 1 1 1 oftype|1]

Rm | cond [1 1] Rn | Rd |

Decode fields
Instruction Page
M S type

- - 10 Unallocated.

- 1 - Unallocated.

0 0 00 FCSEL - Single-precision variant on page C7-867

0 0 o1 FCSEL - Double-precision variant on page C7-867

1 - - Unallocated.

C4.6.25 Floating-point data-processing (1 source)

This section describes the encoding of the Floating-point data-processing (1 source) instruction class. This section
is decoded from Data processing - SIMD and floating point on page C4-233.

131 30 29 28|27 26 25 24/23 22 21 20|

151413 12/1110 9 | 5 4| 0]

[Mo]s]1 1 1 1 oftype|1]

opcode |1 0 0 0 O Rn | Rd |

Decode fields

Instruction Page

M S type opcode
- - - XIXXXX Unallocated.
- - - IXXXXX Unallocated.
- 1 - - Unallocated.
6 o0 00 000000 FMOV (register) - Single-precision variant on page C7-974
0 o 00 000001 FABS (scalar) - Single-precision variant on page C7-831
0 o0 00 000010 FNEG (scalar) - Single-precision variant on page C7-993
0 o0 00 000011 FSQRT (scaar) - Single-precision variant on page C7-1038
0 0 00 000100 Unallocated.
6 o0 00 000101 FCVT - Single-precision to double-precision variant on page C7-869
0 0 00 000110 Unallocated.
0 o 00 000111 FCVT - Single-precision to half-precision variant on page C7-869
0 o 00 001000 FRINTN (scalar) - Single-precision variant on page C7-1019
e 0 00 001001 FRINTP (scalar) - Single-precision variant on page C7-1023
e o 00 001010 FRINTM (scalar) - Single-precision variant on page C7-1015
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-261

1D092916

Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
M S type opcode

6 o0 00 001011 FRINTZ (scalar) - Single-precision variant on page C7-1031

0 o 00 001100 FRINTA (scalar) - Single-precision variant on page C7-1007

0 0 00 001101 Unallocated.

e 0 00 001110 FRINTX (scalar) - Single-precision variant on page C7-1027

o o0 00 001111 FRINTI (scalar) - Single-precision variant on page C7-1011

e o o1 000000 FMOV (register) - Double-precision variant on page C7-974

0 o o1 000001 FABS (scalar) - Double-precision variant on page C7-831

0 o o1 000010 FNEG (scalar) - Double-precision variant on page C7-993

0 o o1 000011 FSQRT (scalar) - Double-precision variant on page C7-1038

0 o o1 000100 FCVT - Double-precision to single-precision variant on page C7-869

0 0 o1 000101 Unallocated.

0 0 o1 000110 Unallocated.

6 o o1 000111 FCVT - Double-precision to half-precision variant on page C7-869

0 o o1 001000 FRINTN (scalar) - Double-precision variant on page C7-1019

0 o o1 001001 FRINTP (scalar) - Double-precision variant on page C7-1023

e o o1 001010 FRINTM (scalar) - Double-precision variant on page C7-1015

0 o o1 001011 FRINTZ (scalar) - Double-precision variant on page C7-1031

e o o1 001100 FRINTA (scalar) - Double-precision variant on page C7-1007

0 0 o1 001101 Unallocated.

0 o o1 001110 FRINTX (scalar) - Double-precision variant on page C7-1027

0 o o1 001111 FRINTI (scalar) - Double-precision variant on page C7-1011

0 0 10 00XXXX Unallocated.

0 o 11 000100 FCVT - Half-precision to single-precision variant on page C7-869

0 o 11 000101 FCVT - Half-precision to double-precision variant on page C7-869
0 o 11 00011x Unallocated.

0 0 1 001101 Unallocated.

1 - - - Unallocated.

C4.6.26 Floating-point data-processing (2 source)

This section describes the encoding of the Floating-point data-processing (2 source) instruction class. This section
is decoded from Data processing - SIMD and floating point on page C4-233.

C4-262 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

131 30 29 28|27 26 25 24/23 22 21 20|

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

16/15 121110 9 | 5 4| 0]

[Mo]s]1 1 1 1 oftype|1]

Rm

| opcode |1 O| Rn | Rd |

Decode fields

Instruction Page

M S type opcode

- - - Ixx1 Unallocated.

- - - 1x1x Unallocated.

- - - 11xx Unallocated.

- - 1o - Unallocated.

- 1 - - Unallocated.

o o 00 0000 FMUL (scalar) - Single-precision variant on page C7-985

e 0o 00 0001 FDIV (scalar) - Single-precision variant on page C7-929

o o o0 0010 FADD (scaar) - Single-precision variant on page C7-838

o o o0 0011 FSUB (scalar) - Single-precision variant on page C7-1041

o o o0 0100 FMAX (scalar) - Single-precision variant on page C7-935

o 0o 00 0101 FMIN (scalar) - Single-precision variant on page C7-951

o o 00 0110 FMAXNM (scalar) - Single-precision variant on page C7-939
o o 00 0111 FMINNM (scalar) - Single-precision variant on page C7-955
o o o0 1000 FNMUL (scalar) - Single-precision variant on page C7-998

o o o1 0000 FMUL (scalar) - Double-precision variant on page C7-985

o o o1 0001 FDIV (scalar) - Double-precision variant on page C7-929

o o o1 0010 FADD (scalar) - Double-precision variant on page C7-838

e o o1 0011 FSUB (scalar) - Double-precision variant on page C7-1041

o o o1 0100 FMAX (scalar) - Double-precision variant on page C7-935

o o o1 0101 FMIN (scalar) - Double-precision variant on page C7-951

o o o1 0110 FMAXNM (scalar) - Double-precision variant on page C7-939
o o o1 0111 FMINNM (scalar) - Double-precision variant on page C7-955
o o o1 1000 FNMUL (scalar) - Double-precision variant on page C7-998
1 - - - Unallocated.

C4.6.27 Floating-point data-processing (3 source)

This section describes the encoding of the Floating-point data-processing (3 source) instruction class. This section
is decoded from Data processing - SIMD and floating point on page C4-233.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-263
Non-Confidential

1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

|31 30 29 28|27 26 25 24(23 22 21 20| 16/15 14 | 109 | 5 4| 0|
[Mo]s]1 1 1 1 1]type o] Rm o0 Ra | Rn | Rd |
Decode fields
Instruction Page
M S type o1 o0
- - 10 - - Unallocated.
-1 - - - Unallocated.
0 o o0 0 0 FMADD - Single-precision variant on page C7-931
0 o o0 0 1 FMSUB - Single-precision variant on page C7-979
o o 00 1 0 FNMADD - Single-precision variant on page C7-994
o o 00 1 1 FNMSUB - Single-precision variant on page C7-996
e o o1 0 0 FMADD - Double-precision variant on page C7-931
0 o o1 0 1 FMSUB - Double-precision variant on page C7-979
0 o o1 1 0 FNMADD - Double-precision variant on page C7-994
0 o o1 1 1 FNMSUB - Double-precision variant on page C7-996
1 - - - - Unallocated.

C4.6.28 Floating-point immediate
This section describes the encoding of the Floating-point immediate instruction class. This section is decoded from
Data processing - SIMD and floating point on page C4-233.
|31 30 29 28(27 26 25 2423 22 21 20| | 1312|1110 9 | 5 4| 0]
[Mo]s]1 1 1 1 oftype|1] imm8 [1 0 o] imm5 | Rd |
Decode fields
Instruction Page
M S type imm5
- - - XXxx1 Unallocated.
- - - XXx1x Unallocated.
- - - xx1xx Unallocated.
- - - X1XXX Unallocated.
- - - 1XXXX Unallocated.
- - 10 - Unallocated.
- 1 - - Unallocated.
C4-264 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

1D092916

ARM DDI 0487A.k _iss10775

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
M S type imm5

0 o 00 00000 FMOV (scalar, immediate) - Single-precision variant on page C7-978

o o o1 00000 FMQV (scalar, immediate) - Double-precision variant on page C7-978

1 - - - Unallocated.

C4.6.29 Conversion between floating-point and fixed-point
This section describes the encoding of the Conversion between floating-point and fixed-point instruction class. This
section is decoded from Data processing - SIMD and floating point on page C4-233.

|31 30 29 28/27 26 25 24(23 22 21 20[19 18 16|15 | 109 | 5 4| 0
|sf|O|S|1 111 0|type|0kmode| opcode| scale | Rn | Rd |

Decode fields
Instruction Page
sf S type rmode opcode scale

- - - - 1xx - Unallocated.

- - - x0 00x - Unallocated.

- - - x1 01x - Unallocated.

- - - 0x 00x - Unallocated.

- - - 1x 01x - Unallocated.

- - 10 - - - Unallocated.

-1 - - - - Unallocated.

0 - - - - oxxxxx Unallocated.

0 o o0 00 010 - SCVTF (scaar, fixed-point) - 32-bit to single-precision variant on
page C7-1177

0 o o0 00 011 - UCVTEF (scalar, fixed-point) - 32-bit to single-precision variant on
page C7-1403

0 o o0 11 000 - FCVTZS (scaar, fixed-point) - Single-precision to 32-bit variant on
page C7-914

0 o o0 11 001 - FCVTZU (scdar, fixed-point) - Single-precision to 32-bit variant on
page C7-923

0 o o1 00 010 - SCVTF (scaar, fixed-point) - 32-bit to double-precision variant on
page C7-1177

0 o o1 00 011 - UCVTEF (scaar, fixed-point) - 32-bit to double-precision variant on
page C7-1403

0 o o1 11 000 - FCVTZS (scaar, fixed-point) - Double-precision to 32-bit variant on
page C7-914

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-265

1D092916 Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields

Instruction Page

sf S type rmode opcode scale
0 o o1 11 001 - FCVTZU (scdlar, fixed-point) - Double-precision to 32-bit variant on
page C7-923
1 o 00 00 010 - SCVTF (scaar, fixed-point) - 64-bit to single-precision variant on
page C7-1177
1 o 00 00 011 - UCVTEF (scaar, fixed-point) - 64-bit to single-precision variant on
page C7-1403
1 o 00 11 000 - FCVTZS (scaar, fixed-point) - Single-precision to 64-bit variant on
page C7-914
1 o 00 11 001 - FCVTZU (scdar, fixed-point) - Single-precision to 64-bit variant on
page C7-923
1 o o1 00 010 - SCVTF (scaar, fixed-point) - 64-bit to double-precision variant on
page C7-1177
1 o o1 00 011 - UCVTEF (scalar, fixed-point) - 64-bit to double-precision variant on
page C7-1403
1 o o1 11 000 - FCVTZS (scaar, fixed-point) - Double-precision to 64-bit variant on
page C7-914
1 o o1 11 001 - FCVTZU (scdlar, fixed-point) - Double-precision to 64-bit variant on
page C7-923
C4.6.30 Conversion between floating-point and integer
This section describes the encoding of the Conversion between floating-point and integer instruction class. This
section is decoded from Data processing - SIMD and floating point on page C4-233.
|31 30 29 28|27 26 25 24]23 22 21 20|19 18 16/1514 1312|1110 9 | 5 4| 0|
[sflo]s]1 1 1 1 o]type]1 kmodd opcode [0 0 0 0 0 0] Rn | Rd |
Decode fields
Instruction Page
sf S type rmode opcode
- - - x1 01x Unallocated.
- - - x1 10x Unallocated.
- - - 1x 01x Unallocated.
- - - 1x 10x Unallocated.
- 0 10 - 0xx Unallocated.
- 0 10 - 10x Unallocated.
- 1 - - - Unallocated.
0 0 00 x1 11x Unallocated.
C4-266 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775

1D092916

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields

Instruction Page

sf S type rmode opcode
0 0o 00 00 000 FCVTNS (scalar) - Single-precision to 32-bit variant on page C7-893
o 0o 00 00 001 FCVTNU (scalar) - Single-precision to 32-bit variant on page C7-897
o o 00 00 010 SCVTF (scdar, integer) - 32-bit to single-precision variant on page C7-1179
o o 00 00 011 UCVTF (scalar, integer) - 32-bit to single-precision variant on page C7-1405
o o 00 00 100 FCVTAS (scalar) - Single-precision to 32-hit variant on page C7-873
0o 0o 00 00 101 FCVTAU (scalar) - Single-precision to 32-bit variant on page C7-877
0o 0o 00 00 110 FMOV (general) - Single-precision to 32-bit variant on page C7-975
o 0o 00 00 111 FMQV (genera) - 32-bit to single-precision variant on page C7-975
o o 00 01 000 FCVTPS (scalar) - Single-precision to 32-bit variant on page C7-901
0 o 00 01 001 FCVTPU (scalar) - Single-precision to 32-bit variant on page C7-905
0 0 00 1x 11x Unallocated.
0o 0o 00 10 000 FCVTMS (scaar) - Single-precision to 32-bit variant on page C7-883
0o 0o 00 10 001 FCVTMU (scalar) - Single-precision to 32-bit variant on page C7-887
o 0o 00 11 000 FCVTZS (scalar, integer) - Single-precision to 32-bit variant on page C7-916
o o 00 11 001 FCVTZU (scdar, integer) - Single-precision to 32-bit variant on page C7-925
0 0 01 - 11x Unallocated.
0 o o1 00 000 FCVTNS (scalar) - Double-precision to 32-bit variant on page C7-893
o o o1 00 001 FCVTNU (scaar) - Double-precision to 32-bit variant on page C7-897
o o o1 00 010 SCVTF (scaar, integer) - 32-bit to double-precision variant on page C7-1179
o o o1 00 011 UCVTF (scaar, integer) - 32-bit to double-precision variant on page C7-1405
o o o1 00 100 FCVTAS (scalar) - Double-precision to 32-bit variant on page C7-873
o o o1 00 101 FCVTAU (scalar) - Double-precision to 32-bit variant on page C7-877
0 o o1 01 000 FCVTPS (scalar) - Double-precision to 32-hit variant on page C7-901
o o o1 01 001 FCVTPU (scalar) - Double-precision to 32-bit variant on page C7-905
e o o1 10 000 FCVTMS (scalar) - Double-precision to 32-bit variant on page C7-883
o o o1 10 001 FCVTMU (scalar) - Double-precision to 32-bit variant on page C7-887
o o o1 11 000 FCVTZS (scalar, integer) - Double-precision to 32-bit variant on page C7-916
o o o1 11 001 FCVTZU (scdar, integer) - Double-precision to 32-bit variant on page C7-925
0 0 10 - 11x Unallocated.
1 0 00 - 11x Unallocated.
1 o 00 00 000 FCVTNS (scalar) - Single-precision to 64-bit variant on page C7-893
1 o 00 00 001 FCVTNU (scalar) - Single-precision to 64-bit variant on page C7-897
ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C4-267

1D092916

Non-Confidential

C4 A64 Instruction Set Encoding
C4.6 Data processing - SIMD and floating point

Decode fields
Instruction Page
sf S type rmode opcode

1 0 00 00 010 SCVTF (scaar, integer) - 64-bit to single-precision variant on page C7-1179
1 o 00 00 011 UCVTF (scaar, integer) - 64-bit to single-precision variant on page C7-1405
1 0 00 00 100 FCVTAS (scalar) - Single-precision to 64-bit variant on page C7-873
1 0 00 00 101 FCVTAU (scalar) - Single-precision to 64-bit variant on page C7-877
1 0 00 01 000 FCVTPS (scalar) - Single-precision to 64-hit variant on page C7-901
1 0 00 01 001 FCVTPU (scalar) - Single-precision to 64-bit variant on page C7-905
1 0 00 10 000 FCVTMS (scaar) - Single-precision to 64-bit variant on page C7-883
1 o 00 10 001 FCVTMU (scaar) - Single-precision to 64-bit variant on page C7-887
1 0 00 11 000 FCVTZS (scalar, integer) - Single-precision to 64-bit variant on page C7-916
1 0 00 11 001 FCVTZU (scdar, integer) - Single-precision to 64-bit variant on page C7-925
1 0 01 x1 11x Unallocated.
1 o o1 00 000 FCVTNS (scalar) - Double-precision to 64-bit variant on page C7-893
1 o o1 00 001 FCVTNU (scaar) - Double-precision to 64-bit variant on page C7-897
1 o o1 00 010 SCVTEF (scalar, integer) - 64-bit to double-precision variant on page C7-1179
1 o o1 00 011 UCVTF (scalar, integer) - 64-bit to double-precision variant on page C7-1405
1 o o1 00 100 FCVTAS (scalar) - Double-precision to 64-bit variant on page C7-873
1 o o1 00 101 FCVTAU (scalar) - Double-precision to 64-bit variant on page C7-877
1 o o1 00 110 FMOV (general) - Double-precision to 64-bit variant on page C7-975
1 o o1 00 111 FMOV (general) - 64-bit to double-precision variant on page C7-975
1 o o1 01 000 FCVTPS (scalar) - Double-precision to 64-bit variant on page C7-901
1 o o1 01 001 FCVTPU (scalar) - Double-precision to 64-bit variant on page C7-905
1 0 01 1x 11x Unallocated.
1 o o1 10 000 FCVTMS (scalar) - Double-precision to 64-bit variant on page C7-883
1 o o1 10 001 FCVTMU (scalar) - Double-precision to 64-bit variant on page C7-887
1 o o1 11 000 FCVTZS (scalar, integer) - Double-precision to 64-bit variant on page C7-916
1 o o1 11 001 FCVTZU (scalar, integer) - Double-precision to 64-bit variant on page C7-925
1 0 10 x0 11x Unallocated.
1 0 10 01 110 FMOV (general) - Top half of 128-bit to 64-bit variant on page C7-975
1 0 10 01 111 FMOV (general) - 64-hit to top half of 128-bit variant on page C7-975
1 0 10 1x 11x Unallocated.
C4-268 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential 1D092916

Chapter C5
The A64 System Instruction Class

This chapter describes the A64 System instruction class, and the System instruction class encoding space, that isa
subset of the System registers encoding space. It contains the following sections:

. The System instruction class encoding space on page C5-270.

. Special-purpose registers on page C5-293.

. A64 system instructions for cache maintenance on page C5-347.
. A64 system instructions for address translation on page C5-365.

. A64 system instructions for TLB maintenance on page C5-378.

See General information about the A64 instruction descriptions on page C2-137 for information about entries used
in the instruction encoding descriptions.

ARM DDI 0487A .k_iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C5-269
ID092916 Non-Confidential

C5 The A64 System Instruction Class
C5.1 The System instruction class encoding space

C5.1 The System instruction class encoding space

Part of the A64 instruction encoding spaceisassigned to instructionsthat accessthe System register encoding space.
These instructions provide:

. Accessto System registers, including the debug registers, that provide system control, and system status
information.

. Access to Special-purpose registers such as SPSR_EL x, ELR_EL x, and the equivalent fields of the Process

State.
. The cache and TLB maintenance instructions and address transl ation instructions.
. Barriers and the CLREX instruction.

. Architectural hint instructions.

This section describes the general model for accessing this functionality.

Note

. See Fixed values in AArch64 instruction and System register descriptions on page C2-137 for information
about abbreviations used in the System instruction descriptions.

. In AArch32 state much of this functionality is provided through the System register interface described in
The AArch32 System register interface on page G1-3877. In AArch64 state, the parameters used to
characterize the System register encoding space are { op@, op1, CRn, CRm, op2} . These are based on the
parameters that characterize the AArch32 System register encoding space, which reflect the origina
implementation of these registers, as described in Background to the System register interface on
page G1-3879. In ARMVS, there is no particular significance to the naming of these parameters, and no
functional distinction between the opn parameters and the CRx parameters.

Principles of the System instruction class encoding describes some general properties of these encodings. System
instruction class encoding overview on page C5-271 then describes the top-level encoding of theseinstructions, and
the following sections then describe the next level of the encoding hierarchy:

. op0==0b00, architectural hints, barriers and CLREX, and PSTATE access on page C5-272.

. op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-275.
. op0==0b10, Moves to and from debug and trace System registers on page C5-279.

. op0==0b11, Moves to and from non-debug System registers and Special-purpose registers on page C5-281.
. Reserved encodings for IMPLEMENTATION DEFINED registers on page C5-291.

C5.1.1 Principles of the System instruction class encoding

In ARMVS, an encoding in the System instruction spaceisidentified by aset of arguments,{ op@, op1, CRn, CRm, op2}.
These form an encoding hierarchy, where:

op@ Definesthetop-level division of the encoding space, see System instruction class encoding overview
on page C5-271.

opl Identifies the lowest Exception level at which the encoding is accessible, as follows:
Accessible at ELO opl hasthe value 3.

Accessible at EL1 opl hasthevalue 0O, 1, or 2. The value is the same as the op1 value used to
access the equivalent AArch32 register.

Accessible at EL2 opl hasthe value 4.
Accessible at EL3 opl has the value 6.
ARM strongly recommends that implementers adopt this use of opl when using the IMPLEMENTATION DEFINED

regions of the encoding space described in Reserved encodings for IMPLEMENTATION DEFINED registers on
page C5-291.

C5-270 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775
Non-Confidential ID092916

C5 The A64 System Instruction Class
C5.1 The System instruction class encoding space

System register width

In AArch64 state, each encoding in the System instruction space can provide accessto a64-bit register. An AArch64
System register is described as either a 32-bit register or a 64-bit register. For a 32-bit registers, the upper bits,
bitg[63:32], are RESD.

C5.1.2 System instruction class encoding overview

The encoding of the System instruction class describes each instruction as being either:
. A transfer to a System register. Thisis a System instruction with the semantics of awrite.
. A transfer from a System register. Thisis a System instruction with the semantics of aread.

A System instruction that initiates an operation operates asif it was making a transfer to aregister.
In the AArch64 instruction set, the decode structure for the System instruction classis:

3130292827262524232221201918 1615 12 11 87 54 0
110101010 0[L[Op0] Op1 CRn CRm Op2 | Rt

The value of L indicates the transfer direction:
0 Transfer to System register.
1 Transfer from System register.

The opo field is the top level encoding of the System instruction type. Its possible values are:

0b0o These encodings provide:
. Instructions with an immediate field for accessing PSTATE, the current PE state.
. The architectural hint instructions.

. Barriers and the CLREX instruction.
For more information about these encodings, see op0==0b00, architectural hints, barriers and
CLREX, and PSTATE access on page C5-272.

0b01 These encodings provide the cache maintenance, TLB maintenance, and address trandation
instructions.

Note
These are equivalent to operations in the AArch32 (coproc==0b1111) encoding space.

For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions on page C5-275.
0b10 These encodings provide moves to and from:

. Legacy AArch32 System registers for execution environments, to provide access to these
registers from higher exception levelsthat are using AArch64.

. Debug and trace registers.

—— Note
These are equivalent to the registersin the AArch32 (coproc==0b1110) encoding space.

For more information, see op0==0b10, Moves to and from debug and trace System registers on
page C5-279.

0b11 These encodings provide:

. Moves to and from Non-debug System registers. The accessed registers provide system
control, and system status information.

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C5-271
ID092916 Non-Confidential

C5 The A64 System Instruction Class
C5.1 The System instruction class encoding space

—— Note

The accessed registers are equivalent to the registersin the AArch32 (coproc==0b1111)

encoding space.

. Access to Special-purpose registers.

For more information, see Instructions for accessing Special-purpose registers on page C5-290 and
Instructions for accessing non-debug System registers on page C5-281.

UNDEFINED behaviors

In the System register instruction encoding space, the following principles apply:

. All unallocated encodings are treated as UNDEFINED.

. All encodings with L==1 and op0==0b0x are UNDEFINED, except for encodingsin the areareserved for
IMPLEMENTATION DEFINED use, see Reserved encodings for IMPLEMENTATION DEFINED registers on

page C5-291.

For registers and operations that are accessible from a particular Exception level, any attempt to access those
registers from alower Exception level is UNDEFINED.

If aparticular Exception level:

. Defines aregister to be RO, then any attempt to write to that register, at that Exception level, is UNDEFINED.
This means that any access to that register with L==0iS UNDEFINED.

. Definesaregister to be WO, then any attempt to read from that register, at that Exception level, iSUNDEFINED.
This means that any access to that register with L==1 iS UNDEFINED.

For IMPLEMENTATION DEFINED encoding spaces, the treatment of the encodings iS IMPLEMENTATION DEFINED, but

see the recommendation in Principles of the System instruction class encoding on page C5-270.

C5.1.3 op0==0b00, architectural hints, barriers and CLREX, and PSTATE access
The different groups of System register instructions with op@==0b00:
. Areidentified by the value of CRn.
. Are always encoded with avalue of 0b11111 in the Rt field.
The encoding of these instructionsis:
3130 29 28 27 26 25 24 23 22 21 20 19 18 16 15 1211 8 7 5 4 0
110101010 0[L[0 O] opt CRn CRm op2 [1 1111
op0 Rt
The encoding of the CRn field isas follows:
0b0010 See Architectural hint instructions.
0b0011 See Barriers and CLREX on page C5-273.
0b0100 See Instructions for accessing the PSTATE fields on page C5-274.
Architectural hint instructions
Within the op0==0b00 encodings, the architectural hint instructions areidentified by CRn having the value 0b0010. The
encoding of these instructionsis:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 1211 5 4 0
110101010 o0[ofooJo11]o0 10 Op<6:0> [1 1111
Op0 Op1 CRn CRm Op2 Rt
The value of op<6:0>, formed by concatenating the CRm and op2 fields, determines the hint instruction as follows:
0b0000000 NOP instruction. This has no effect on architectural state other than to advance the PC.
C5-272 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487A.k _iss10775

Non-Confidential

1D092916

C5 The A64 System Instruction Class
C5.1 The System instruction class encoding space

0b0000001 YIELD instruction.
0h0000010 WFE instruction.
0b0000011 WFI instruction.
0b0000100 SEV instruction.
0b0000101 SEVL instruction.
0b0000110-0b1111111
Unallocated values. These encodings behave as NOPs.

Note
. Instruction encodings with bits[4:0] not set to 6b11111 are UNDEFINED.

. The operation of the A64 instructions for architectural hints are identical to the corresponding A32 and T32
instructions.

For more information about:
. The WFE, WFI, SEV, and SEVL instructions, see Mechanisms for entering a low-power state on page D1-1599.
. The YIELD instruction, see Software control features and ELO on page B1-64.

Barriers and CLREX

Within the op@==0b00 encodings, the barriers and CLREX instructions are identified by CRn having the value 0b0o11.
The encoding of these instructionsis:

313029 28 27 26 2524 23 22212019 18 16 15 121 8 7 5 4 0
110101010 o0[ofooJo11]o0 1 1] CRm op2 [1 11 1 1
op0 op1 CRn Rt
The value of op2 determinesthe instruction, asfollows. For theDSB and DMB instructions, CRm controls theinstruction
options.
0b010 CLREX instruction. The value of CRm is ignored.
0b100 DSB instruction. The value of CRm sets the option type, see Table C5-1.
ob101 DMB instruction. The value of CRm sets the option type, see Table C5-1.
0b110 ISB instruction. The value of CRm isignored.
0b000, 0b001, 0b011, Ob111

UNDEFINED.

Note
Instruction encodings with bit[4:0] not set to 0b11111 are UNDEFINED.

Table C5-1 shows the CRm encodings for the data barrier option types.

Table C5-1 CRm encoding for DMB and DSB instructions

CRm value Option, for DMB and DSB Meaning
0001 OSHLD QOuter Shareable, load
0010 OSHST Outer Shareable, store
0011 OSH Outer Shareable, al
0101 NSHLD Non-sharesble, load
0110 NSHST Non-sharesble, store
0111 NSH Non-sharesgble, all

ARM DDI 0487A .k _iss10775 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. C5-273

1D092916 Non-Confidential

C5 The A64 System Instruction Class
C5.1 The System instruction class encoding space

Table C5-1 CRm encoding for DMB and DSB instructions (continued)

CRm value Option, for DMB and DSB Meaning

1001 ISHLD Inner Shareable, load
1010 ISHST Inner Shareable, store
1011 ISH Inner Shareable, all
1101 LD Full system, load
1110 ST Full system, store
0000, 0100, 1000, 1100 #<imm>@ Full system, all

1111 Sy Full system, all

a #<imm> isa4-bit unsigned immediatein the range 0-15, encoded in the CRm field.

Note

The operation of the A64 instructions for barriers and CLREX are identical to the corresponding A32 and T32

instructions.

For more information about:

. The barrier instructions, see Memory barriers on page B2-87.
. The CLREX instruction, see Synchronization and semaphores on page B2-108.

Instructions for accessing the PSTATE fields

Within the op@==0b00 encodings, the instructions that can be used to modify PSTATE fields directly are identified
by CRn having the value 0b0100. The encoding of theseinstructionsis:

3130292827262524232221201918 1615 1211 7 5 4 0
110101010 o0[ofo 0] opt [O 1 00] Imm4 op2 |1 1111
op0 CRn CRm Rt
These instructions are:
MSR DAIFSet, #Imm4 ; Used to set any or all of DAIF to 1
MSR DAIFClr, #Imm4 ; Used to clear any or all of DAIF to 0
MSR SPSel, #Imml ; Used to select the Stack Pointer, between SP_ELO® and SP_ELx

The value of op2 selects the instruction form, which defines the constraints on the values of the op1 and Imm4

arguments, as follows:

op2==0b101 SelectstheMSR SPSel instruction.
opl must be 0b000.

Thisinstruction is accessible at EL1 or higher.

Imm4<0> Selects the accessed stack pointer, as follows:

0 Selects SP_ELO.
1 Selects SP_ELx on page K12-5664, where x is the number of the current Exception
level, 1, 2, or 3.

Imm4<3:1> are SBZ.

0p2==0b110 SelectstheMSR DAIFSet instruction, that setsthe specified PSTATE{D, A, |, F} bitsto 1.

opl must be 0bo11.

Thisinstruction isaccessible at EL1 or higher, and when the value of the SCTLR_EL1.UMA bit is

litisalso accessible at ELO.

C5-274

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487A.k _iss10775
1D092916

C5 The A64 System Instruction Class
C5.1 The System instruction class encoding space

Imm4 determines which of the PSTATE{D, A, |, F} bitsare set to 1, as follows:

Imm4<3> If thisbit is set to 1 then the D bit is set to 1, otherwise the D bit is not changed.
Inmd<2> If thishitisset to 1 thenthe A bit is set to 1, otherwise the A bit is not changed.
Imm4<1> If thisbit isset to 1 then the | bit is set to 1, otherwise the | bit is not changed.
Inmd<0> If thishitisset to 1 then the F bit isset to 1, otherwise the F bit is not changed.

op2==0b111 SelectstheMSR DAIFCIr instruction, that clearsthe specified PSTATE{D, A, |, F} bitsto 0.
opl must be 0b011.

Thisinstruction is accessible at EL1 or higher, and when the value of the SCTLR_EL1.UMA bitis
litisalso accessible at ELO.

Imnm4 determines which of the PSTATE.{D, A, |, F} bitsiscleared to O, as follows:

Inmd<3> If thishitisset to 1 then the D bit is cleared to 0, otherwise the D bit is not changed.
Imm4<2> If thisbit is set to 1 then the A bit is cleared to O, otherwise the A bit is not changed.
Inmd<l> If thishitissetto 1thenthel bitis cleared to 0, otherwisethe | bit is not changed.
Imm4<0> If thisbit is set to 1 then the F bit is cleared to 0, otherwise the F bit is not changed.

All other combinations of op1 and op2 are reserved, and the corresponding instructions are UNDEFINED.

Note
For PSTATE updates, instruction encodings with bits[4:0] not set to 6b11111 are UNDEFINED.

Writesto PSTATE{D, A, |, F} occur in program order without the need for additional synchronization. Changing
PSTATE.SPSel to use EL 0O synchronizes any updatesto SP_EL 0 that have been written by an MSR to SP_ELO,
without the need for additional synchronization.

C5.1.4 op0==0b01, cache maintenance, TLB maintenance, and address translation instructions

The System instructions are encoded with op@==0b01. The different groups of System instructions are identified by
the values of CRn and CRm, except that some of this encoding space is reserved for IMPLEMENTATION DEFINED
functionality. The encoding of these instructionsis:

3130292827262524232221201918 1615 12 11 87 54 0
1