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1.1 Introduction
The relationship between cache structure and the binary representation of an effective address is simple

and when understood the ≈ third problem on the final exams will be a big chunk of easy credit (except,
perhaps for the part d or e’s). These notes are intended to help everyone (in EE 4720) get their big chunk
of credit. They consist of a description of cache structure, a note-sheet-ready diagram, and a discussion of
exam problem types.

1.2 Cache Structure
A typical direct-mapped cache is illustrated below, control logic and connections needed to write the

cache are omitted. The illustration uses the same symbols that appear in the class lecture notes, homeworks,
and exams. Further below the relationship between cache structure and the address bits is shown.

The address space size is the number of bits in an address, denoted a. For older systems, and most
examples in class, a = 32, for modern systems, a = 64.

The Addr output port of the illustrated CPU is used for load and store instructions and for instruction
fetch. The discussion below is for load and store instructions in which the Addr lines will carry the effective

address, that is, the address to load or store from.
On a load the index bits (see diagrams) of the effective address are used to look up a tag in the Tag

Store (labeled “Tag” in the illustration) while the combined index and offset bits are used to retrieve the
data from the Data Store. If the valid bit retrieved from the Tag Store is 1 then the data retrieved from
the Data Store is valid. (Uninitialized entries are invalid, as are entries removed from the cache [for reasons
not covered in class].) The retrieved data might be valid but for a different address. To verify that it’s for
the address appearing on the CPU Addr port the tag of the stored data (retrieved from the Tag Store) is
compared to the tag bits of Addr. If they are the same and the valid bit is 1 there is a cache hit. The
alignment network (labeled Align) is used when the size of the data being retrieved is smaller than the
width of the bus, w. It puts the requested data in the least significant bits of w and sets the other bits of w
to 0 (unsigned request) or 1 (signed request and retrieved data is negative).

Data is managed in units called blocks or lines (both terms are used). There is one tag for each line in
the cache. Symbol l denotes log2 of the line size. Since each Tag Store entry covers a line and each line is 2l

characters, the lowest address bit used for the Tag Store lookup is at position l.
Symbol w denotes the bus width, the number of bits that the CPU can read at once. (A computer

may have many busses, w only applies to this particular connection.) Symbol c denotes the character size,
in bits. (Each address stores one character, on many systems a character is eight bits.) On most examples
given in class c = 8 and w = 32, this allows the CPU to read a 32-bit integer in one step. In the illustrated
example w = 16c = 128 bits, probably larger than most real systems. The number of alignment bits, d, is
log2

w

c
, in the example d = 4. The alignment bits are the low-order d bits of the address, they are used by

the alignment network to determine how much to shift the data by. The lowest bit position used for the
Data Store lookup is d, and bits 0 to d− 1 are used by the alignment network.

Symbol s denotes log2 of the number of sets in the cache. Sets are numbered from 0 to 2s − 1 and the
set number for an address is the value of its index bits. In a direct-mapped cache (illustrated) each set holds
one line; in an x-way set-associative cache each set holds x lines. All the lines in a set have the same index
(by definition of a set) and different tags.

The number of bits used for the Tag Store lookup is s, the index bits. (If this is not obvious re-read
the preceding paragraph.) The number of bits used for the Data Store lookup is s + l − d. Each entry in
the data store is 2d characters (to match the bus width) and therefore the storage capacity of the Data
Store is 2s+l−d2d = 2s+l characters. For a direct-mapped cache, this is the cache capacity. For an x-way
set-associative cache, which by definition has x Data Stores, the capacity is x2s+l.

A special case: If the line size equals the bus width then the bits used for lookup in the Tag and Data
store will be identical. (In the illustration, if the line size were changed to 16 characters the bits used for
both the Data and Tag Store would be 10:4.) (If you need to memorize this special case you haven’t studied
enough.)
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In an x-way, set-associative cache the Tag Store, Data Store, and the logic generating the Hit signal
are duplicated x times, each duplicate is called a way. For a particular access at most one way can hit, a
multiplexor selects the data from that way. The cache described earlier is a special case, a direct-mapped

cache, and might also be called 1-way set-associative. (“Might” and not “is” because since it’s 1-way it’s
not really set-associative, in the same way a 1-way superscalar processor isn’t really superscalar.) As stated
above, in a set-associative cache each set can hold x lines, one line per way.

1.3 Cache Illustration, Program, Address Bit Categorization
A simple program, a cache, and an address bit categorization are illustrated below. It is important

that the relationship between these is thoroughly understood. The better understood, the easier it is to
remember. For more on the program see the Stride or Two-Dimensional Array Access section below.

The cache illustrated is direct mapped (1-way set associative). (The address bit categorization shows
the capacity of an x-way cache.) There are two definitions of offset bits, the larger one is usually used, an
exception is the diagram. The program accesses something which is not quite a two dimensional array. (It
would be a 2-D array if SL were the same as IL.)
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a = 32 bits
c = 8 bits
w = 16 c
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// sizeof(int) = 4 characters

extern int *a;

int AL = 2; // log-base-2( sizeof(int) )

int SL = 9; // Stride log_2

int STRIDE = 1 << SL; // = 2^9 = 512;

int IL = 7;

int ICOUNT = 1 << IL; // = 2^7 = 128;

int JL = 5;

int JCOUNT = 1 << JL; // = 2^5 = 32;

for ( int i=0; i<ICOUNT; i++ )

for ( int j=0; j<JCOUNT; j++ )

sum += a[ i + j * STRIDE ];

Address Bits:
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←−−−−−−−−−−−−−−−−−− a : Address space size is 2a addresses (characters). −−−−−−−−−−−−−−−−−−→

←− s : Cache has 2s sets. −→←−−−−−− l : Line size is 2l. −−−−−−→

←−−−− s+ l : Capacity of x-way cache is x2s+l characters. −−−−→

←− d : Bus is 2d c. −→

←−−−− log2
w

c
−−−−→

←−−−−−−−−− tag bits −−−−−−−−−→←−−−−− index bits −−−−−→←− offset bits −→←− alignment bits −→

←−−−− offset bits (sometimes) −−−−→

←−−− Tag Store Addr −−−→

←−−−−−−−−− Data Store Addr −−−−−−−−−→

SL+JL+AL-1
15
←−−−− JL: j bits −−−−→

SL+AL
11

AL+IL-1
8
←−−−−−−−−− IL: i bits −−−−−−−−−→

AL
2
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1.4 Common Exam Problem Types
Nearly every final exam will have some type of cache question, parts of these questions fall into a few

types. The types are explained below along with a list of final exams where they appear.

1.4.1 Cache Structure

Given some information about the cache structure, determine other information. This is usually parts
(a) and (b). If these notes are understood such questions can be answered in under a minute. Really, and
you don’t have to be that smart either. Concentrate on the address bit categorization.

1.4.2 Different Cache, Same Capacity

Cache B is like cache A except for X. Find the Y for cache B. For example: call the cache illustrated

here A and consider a new cache in which the line size is four times as long but the associativity and capacity

are the same. Determine s and l and show the bits used for the Tag and Data Store lookups.

These problems are also fairly easy, the solution usually involves changing some combination of s, l,
and x. If the cache capacity of both caches is to be the same then choose xB , sB , and lB such that
xA2

sA+lA = xB2
sB+lB , where xA is the associativity of cache A, etc.

Problems: Spring 2002 4a (last part), Fall 2001 3a (last part), Spring 2000 4c Fall 2000, 4 (last part)

1.4.3 Find the Hit Ratio

Find the hit ratio for a cache (usually from an earlier part) while running the given program, usually in
C. This type of question is easy if the program reads memory sequentially. To solve it determine the size of
the array element (it’s given in the comments) and from that determine how many will fit on a line. Access
to the first element on a line will miss, the rest will hit.

Problems: A question of this type is asked on almost every final exam. Spring 2003 4b, Fall 2002 4b,
Fall 2001 3b (first part), Spring 1999 3b

In one variation on this question the array access is in a nested loop. The hit ratio for the first iteration
of the outer loop can be found using the procedure above. For subsequent iterations of the outer loop you
need to determine if data brought in on the first iteration is still there.

Problems: Spring 2002 4b (first part)

1.4.4 Stride or TwoDimensional Array Access

In some problems a two-dimensional array is accessed. (In some cases it is not called a two-dimensional
array.) Though the array is logically two dimensional it is declared as an ordinary (one-dimensional) array
in C. For example, if a is to be a 32 × 16 array it would be declared as a 512-element array; to access
element i,j the code a[ i + j * 32 ] would be used. (In some problems the 32 is replaced with a symbol,
often called something like “STRIDE.”) In these problems the array dimensions will usually be a power of
2, greatly facilitating the solution. The key to solving a problem of this type is to find which bit positions
of the address are affected by i and j. In the above example, if i ranges from 0 to 31 and a is a character
array then i affects bits 0 to 4. If a were an integer array and integers were four characters then i would
affect bits 2 to 6. (BTW, the same thing holds for one-dimensional arrays.) If a is a character array and
variable j ranges from 0 to 15, then j would affect bits 5 to 8 (because multiplying j by 32 shifts it five bit
positions to the left). How the cache behaves depends upon how i and j overlap the tag, index, and offset
bits.

The cache illustration (the big program/cache/bits diagram above) shows an example of how i and j

relate to the address bits, including of course the tag, index, and offset. To make the program example the
same as the example just discussed set AL=0 (for a character array), and SL=5. (IL and JL don’t matter.)
For the Spring 2001 Problem 3b set AL=0, SL=10, IL=5, and JL=8 (i and j are reversed).

Problems: Spring 2001 3b, Fall 1999 2a

1.4.5 Find a Cache Configuration the Maximizes the Hit Ratio

Find an alternate cache configuration, usually of the same capacity, that maximizes the hit ratio (or
achieves some other goal). To solve it determine which bits of the address are affected by the loop indices
(see the multiple-dimension stuff above), and “move” the index, offset, and tag bits so their overlap achieves
the desired result.

Problems: Fall 2002 4c, Fall 1999 2b.
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1.4.6 Fill The Cache

In this question write a program or modify a given one to fill the cache with the minimum number of
accesses. If it’s an ordinary cache this type of question is easy. Set the stride to the line size (taking into
account the array element size), the number of iterations should be the number of lines in the cache, x2s.

Problems: Fall 2001 3b (second part), Spring 2000 4b, Spring 1999 3c

1.4.7 Maximize (or Minimize) the Hit Ratio

Modify a given program following some constraint to maximize or minimize the hit ratio. The constraint
might be keeping a certain value as small as possible. These problems can be moderately difficult.

Problems: Spring 2002 4b (second part)

1.4.8 Miscellaneous

Modify a program so that a particular array will be evicted from the cache with the minimum number
of accesses. Spring 2003 Final, 4c.

Determine line size, associativity and other items from number of misses: Spring 2005 Final problem 4c
and 4d.

Other Problems: Spring 2001 3
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