
Name Solution

Computer Architecture

EE 4720

Midterm Examination

Monday, 19 March 2018, 9:30–10:20 CDT

Alias or r4, 25, r6

Problem 1 (25 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (40 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: [25 pts] Appearing below is the solution to Homework 4, in which additional control logic is
added for the 12-bit bypass paths. The illustrated hardware generates stall signals for a load/use dependence
and for cases in which the value that needs to be bypassed is unknown or too wide for the 12-bit bypass
paths.

USE NEXT PAGE FOR SOLUTION

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

D

dstdst

is Type R

Decode

Dest

=' ='rt 20:16

ByME

rtv

ByWB

imm

ByME

ByWB

00

11

2'b0

msb lsb

31:11

31:11

S
T
A

L
L

abig

=

format
immed

15:0

= lb

= lh

= lw

is Type I

='
='rs 25:21

lb
lwh

lb
lwh

= sb

= sh

= sw

USE NEXT PAGE FOR SOLUTION

(a) Suppose, on further consideration, it was decided that full-sized, 32-bit bypass paths to the upper ALU
mux were needed. Elsewhere 12-bit bypass paths would be retained. Modify the hardware so that a stall
signal would no longer be generated for such too-big values to the upper ALU mux. Do so without affecting
stalls for the 12-bit bypass paths to the lower ALU mux and without affecting stalls for load/use dependencies.

Should not stall anymore, regardless of size of r1.

add $r1, $r2, $r3

lw $r4, 0($r1)

Should still stall.

lw $r5, 0($r6)

addi $r7, $r5, 9

Should still stall if r1 too big for 12-bit bypasses.

add $r1, $r2, $r3

sub $r5, $r6, $r1

2

�Remove hardware generating stall due to values too large for upper ALU bypass paths.

�Do not change stalls for load/use cases and bypasses to lower ALU mux.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

D

dstdst

is Type R

Decode

Dest

=' ='rt 20:16

ByME

rtv

ByWB

imm

ByME

ByWB

00

11

2'b0

msb lsb

31:11

31:11

S
T
A

L
L

abig

=

format
immed

15:0

= lb

= lh

= lw

is Type I

='
='rs 25:21

lb
lwh

lb
lwh

= sb

= sh

= sw

Remove too-big

condition from

rs-can't-bypass-

from-ME

AND gate.

Completely remove

rs-can't-bypass-

from-WB AND gate.

Solution appears above in orange.

3

Problem 1, continued:

(b) Suppose that the bypass paths to the EX-stage rtv mux were also just 12 bits wide. Modify the control
logic on the next page so that a stall signal would be generated when appropriate for store instructions.

Note that a lb produces a value small enough for the 12-bit bypass paths and that the store value needed
by a sb is always small enough for the 12-bit bypass paths. See the examples below.

USE NEXT PAGE FOR SOLUTION

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

D

dstdst

is Type R

Decode

Dest

=' ='rt 20:16

ByME

rtv

ByWB

imm

ByME

ByWB

00

11

2'b0

msb lsb

31:11

31:11

S
T
A

L
L

abig

=

format
immed

15:0

= lb

= lh

= lw

is Type I

='
='rs 25:21

lb
lwh

lb
lwh

= sb

= sh

= sw

USE NEXT PAGE FOR SOLUTION

sb should not stall for this dependency.

add $r1, $r2, $r3 IF ID EX ME WB

sb $r1, 0($r4) IF ID EX ME WB

sw should stall for one cycle.

lb $r1, 0($r5) IF ID EX ME WB

sw $r1, 0($r4) IF ID -> EX ME WB

sh should stall only if r1 is too large.

add $r1, $r2, $r3 IF ID EX ME WB

sh $r1, 0($r4) IF ID ----> EX ME WB

4

�Generate stall for unbypassable value from prior instructions to store value (not store address). �Consider
store size and any load size. (See examples on previous page.)

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

D

dstdst

is Type R

Decode

Dest

=' ='rt 20:16

ByME

rtv

ByWB

imm

ByME

ByWB

00

11

2'b0

msb lsb

31:11

31:11

S
T
A

L
L

abig

=

format
immed

15:0

= lb

= lh

= lw

is Type I

='
='rs 25:21

lb
lwh

lb
lwh

= sb

= sh

= sw

For purposes of rt-register stalls, treat sh and sw

in the same way as Type R instructions.

A sb now only stalls due

to a dependence with

a load in EX.

Solution appears above in orange.

5

Problem 2: [20 pts] Answer the following questions about two versions of our bypassed MIPS implemen-
tation.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Show the execution of the code below on the implementation illustrated above when the branch is taken.

� Show Execution.

�Check the code for dependencies.

SOLUTION

Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

addi r1, r2, 3 IF ID -> EX ME WB

bne r1, r3 TARG IF -> ID ----> EX ME WB

ori r1, r9, 10 IF ----> ID EX ME WB

andi r11, r1, 14

Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TARG:

xor r20, r11, r1 IF ID EX ME WB

6

(b) Each mux in the implementation below is labeled with a circled letter, and mux inputs are numbered.
Some wires are colored to make them easier to follow. Write code sequences that use the mux inputs as
requested below. Some code sequences may consist of a single instruction.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B

1

A

0 1

F

�Use C0 to carry r1, elsewhere r1 not used.

Cycle 0 1 2 3 4 5 SAMPLE SOLUTION

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

�Use D3 to carry r1, elsewhere r1 not used.

Solution appears below. Note that the D mux is used to bypass an rt value and so r1 had to be the rt source of the or instruction.
In other words or r7, r1, r8 WOULD BE WRONG.

Cycle 0 1 2 3 4 5 6 SOLUTION - D3 used in cycle 4.

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

or r7, r8, r1 IF ID EX ME WB

�Use E0 to carry r1, elsewhere r1 not used.

Solution appears below. Note that the E mux is only used by store instructions, and that rtv is the store value, not the address.

Cycle 0 1 2 3 4 5 SOLUTION - E0 used in cycle 3.

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r2) IF ID EX ME WB

7

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2
E

D

C

0

B

1

A

0 1

F

�Use A1.

Solution appears below. Only a branch uses the ID-stage adder and so the instruction must be some kind of a branch.

Cycle 0 1 2 3 4 SOLUTION - A1 used in cycle 1.

beq r0, r0, TARG IF ID EX ME WB

�Use B0.

Solution appears below. B1 carries the rsv to the PC, and so this could only be used by a jr or jalr instruction. B0 carries a
value from the ALU to the PC, which could only reasonably be a bypassed value needed by a jr or jalr instruction. The existing
connections to the ALU would allow it to compute the branch target, but there’s already an ID-stage adder and so there is no need
to do so.

Cycle 0 1 2 3 4 5 6 SOLUTION - B0 used in cycle 3.

addi r1, r1, 4 IF ID EX ME WB

sub r2, r3, r4 IF ID EX ME WB

jr r1 IF ID EX ME WB

�Use C1.

Solution appears below. The only instructions that would save the NPC would be a jal or a jalr. (There is already an ID-stage
adder for the branch, so a branch would not use NPC.)

Cycle 0 1 2 3 4 SOLUTION - C1 used in cycle 2.

jal SOMEWHERE IF ID EX ME WB

8

9

Problem 3: [15 pts] The floating point code fragment below computes f2 = f3 * f0 + f1, where f3 is
a call argument and f0 and f1 are loaded from a table. A total of eight instructions are used to load the
constants into f0 and f1. Re-write the code so that fewer instructions are used. It is possible to load both
registers using a total of two instructions.

�Load constants into f0 and f1 using two or three instructions.

�The constants must be loaded from the table.

.data

famous_constants: # 0x10010300

.float 2.718282818

.float 3.141592654

.text

pie:

Load f0 with first element of table.

lui $t0, 0x1001

ori $t0, $t0, 0x300

lw $t1, 0($t0)

mtc1 $t1, $f0

Load f1 with second element of table.

lui $t0, 0x1001

ori $t0, $t0, 0x304

lw $t1, 0($t0)

mtc1 $t1, $f1

Don’t modify the code below this line.

mul.s $f2, $f3, $f0

add.s $f2, $f2, $f1

Solution on next page.

10

Two solutions appear below, A and B. In both solutions mtc1 instructions are avoided by loading directly into floating-point registers.
The ori instructions are avoided by using the load offset to add on the lower 16 bits of the famous constants table address. In
Solution A a ldc1 instruction is used to load both of the floating-point registers with just one instruction. Solution B uses two
instructions.

Grading Note: The idea of using a ldc1 to load both registers was from a student’s solution, my best solution was the three-
instruction version.

.data

famous_constants: # 0x10010300

.float 2.718282818

.float 3.141592654

.text

pie:

SOLUTION A -- Two Instructions

lui $t0, 0x1001

ldc1 $f0, 0x300($t0) # Note: loads both f0 and f1.

SOLUTION B -- Three Instructions

lui $t0, 0x1001

lwc1 $f0, 0x300($t0)

lwc1 $f1, 0x304($t0)

Don’t modify the code below this line.

mul.s $f2, $f3, $f0

add.s $f2, $f2, $f1

11

Problem 4: [40 pts] Answer each question below.

(a) In class we said that MIPS-I lacks an instruction like bgt (branch greater-than) because the magnitude
comparison would take a little too long. MIPS-I does have beq and bne instructions that compare two
registers. However, SPARC v8 has a bgt instruction, but it is done in such a way that here is no risk of
critical path impact.

�How is the actual SPARC bgt different than a hypothetical MIPS bgt?

The SPARC bgt uses the condition code register to determine if the branch should be taken, whereas the MIPS bgt would compare
the contents of two registers.

�How does that difference avoid critical path impact in resolve-in-ID implementations?

Short Answer: The branch condition is computed in SPARC using a 4-bit condition code register rather than retrieving and then
examining 2× 32 = 64 bits of the two registers, which would take longer.

Explanation: The integer condition code register, icc, is only four bits and so checking for a particular bit configuration won’t
take much time. For bgt the hardware would check that the N (negative) and Z (zero) bits are both zero (meaning that the last
cc operation produced a value that was positive). Further, there is no need to retrieve icc from anywhere. In contrast, for an
instruction like bgt r1, r2, TARG the contents of registers r1 and r2 would first have to be retrieved, which would take some
time, and then a magnitude comparison would have to be made.

�Explain why a bgt r1, r2, TARG would not have a big critical path impact if it were resolved in EX.

Because the r1 and r2 values would be available at the beginning of the clock cycle, rather than the middle as they would be in ID.

12

(b) In the MIPS add instruction the sa field must have a value of zero. Consider a future version of MIPS
in which the sa field would hold a scale factor, s. The result of the add would be rsv + rtv * s. Suppose
that analysis of users’ programs found that such an instruction would be very useful and that it could easily

be implemented in hardware. Should the add be extended in that way? If not, suggest another way of
providing the scaled add.

� Should add be extended to compute rsv + rtv*s?

No. No! Noooo!!!!!

�Explain a possible objection and suggest an alternative way of including the instruction.

Since the sa field must be zero in MIPS-I instructions add instructions written for MIPS-I would produce the wrong answer on
implementations with the scaled add. An alternative would be to define the instruction result as rsv + rtv * (sa + 1), so
that when sa is zero the instruction behaves like the original add. The scaling feature is still available (and can reach 32 instead of
31). The assembly language format for the instruction could be defined something like add rd, rs, rt, s with sa = s - 1 .

Grading Note: Many solutions argued that the scaled add would be cumbersome to implement. Ordinarily, that would be a good
point, but the problem said to suppose that the hardware would be easy to implement. In the original exam boldface was not used
for emphasis.

(c) The MIPS-I assembly instruction below is invalid. Explain why and replace it with one that correctly
adds two double-precision values.

add.d $f0, $f1, $f2

Double precision instructions must use even numbered registers. A correct version appears below.

add.d $f0, $f10, $f2 # SOLUTION

13

(d) What is the difference between a dependency and a hazard?

�The difference between a dependency and a hazard is:

A dependency describes a relationship between instructions in a program, while a hazard describes a potential problem an implemen-
tation can have executing instructions.

(e) Identify the type of dependence between each pair of instructions below, and indicate the corresponding
hazard.

�The type of dependence is:Output . The corresponding hazard is: WAW

add r1, r2, r3

sub r1, r5, r6

�The type of dependence is: True . The corresponding hazard is: RAW

add r1, r2, r3

sub r4, r1, r6

Note: The dependency above is known by three names: true, data, and flow. Full credit would be given for any of those names.

�The type of dependence is: Anti . The corresponding hazard is: WAR

add r1, r4, r3

sub r4, r2, r6

14

(f) In class we said that the lifetime of an ISA can be decades and so it must be carefully designed to take
into account current and future implementation technologies. Is IA-32 (80x86) a good example of this rule?
Explain.

� IA-32 © is ×© is not a good example of this rule because

Short Answer: . . . because despite being designed to fit on small chips of the time, it has been implemented in successively larger
chips, and done so in a way that overcomes shortcomings (such as a limited number of registers and segmented addressing) to the
point where IA-32 implementations were faster than implementations of much well-designed RISC ISAs. If the rule were always correct
IA-32 implementations would be slower.

Details: The earliest ISA that could be called IA-32, implemented by the Intel 8086 and less costly 8088, was limited by the number
of transistors that could fit on chips of the time. The ISA was never designed to last decades and to host a robust operating system.
It was IBM’s second choice for CPU in their initial entry into the personal computer market, the IBM PC. Their first choice was
the Motorola 68000, but Motorola could not make enough of them for IBM’s initial order and so the 8088 it was. The IBM PC
was spectacularly successful, spawning a large market for IBM-compatible (and so 8088-compatible) software. Switching ISAs in the
IBM PC, say to 68000 (which had problems of its own), would risk alienating customers, so IBM continued using the 8088 and its
descendants. Intel deftly made improved implementations of IA-32 (or pre IA-32), overcoming its various weaknesses. Early RISC
implementations would easily outperform IA-32 implementations, but some time in the aughts IA-32 implementations took the top
spot, at least in the SPECcpu benchmarks. The ISA too was extended from the original 8088, to the first “real” IA-32, implemented
in the 80386, up until the present. Currently IA-32 is sort of a subset of Intel 64. Adding features to an ISA does not change what’s
already there and that just made implementations that much harder. Many Intel 64 implementations work by cracking Intel 64 (or
IA-32) instructions into micro-ops. Micro-ops are kind of like RISC instructions, and they are executed by something kind of like a
RISC implementation. RISC implementations don’t have to crack instructions, making implementations less expensive and easier to
design.

IA-32 was not designed to last decades. According to the rule it should not have been a long-term success because future implementa-
tions would be hobbled by shortsighted ISA features. But that didn’t happen and so IA-32 is not a good example of the rule. (Future
implementations weren’t hobbled because Intel could afford to put a large number of engineers on the design team to work around
the ISA shortcomings.)

(g) Indicate the most appropriate ISA family for each ISA below.

� Intel 64 is considered © RISC ×© CISC © VLIW

� Itanium is considered © RISC © CISC ×© VLIW

�MIPS is considered ×© RISC © CISC © VLIW

� SPARC is considered ×© RISC © CISC © VLIW

�VAX is considered © RISC ×© CISC © VLIW

15

