
Name

Computer Architecture

EE 4720

Midterm Examination

Wednesday, 22 March 2017, 9:30–10:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: [20 pts] Appearing below is our familiar MIPS implementation.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Show pipeline execution diagrams for the code fragments below executing on the illustrated implemen-
tation and label as indicated.

Show pipeline diagram. Doublecheck dependencies.

Label bypass paths used at mux inputs with C : I, where C is the cycle number (such as 2) and I is the
instruction consuming the bypassed value. Be sure to check for dependencies.

add r1, r2, r3

sub r4, r5, r6

sw r4, 8(r1)

Show pipeline diagram. Doublecheck dependencies.

Label bypass paths used at mux inputs with C : I, where C is the cycle number (such as 2) and I is the
instruction consuming the bypassed value. Be sure to check for dependencies.

and r1, r2, r3

lw r4, 16(r1)

ori r5, r4, 7

2

Problem 1, continued:

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(b) Show a pipeline execution diagram for an execution of the code fragment below when the branch is taken.
Label the ID-stage unit as indicated.

Show pipeline diagram. Pay close attention to the branch.

Label the inputs and outputs of the ID-stage unit that computes the branch target. Label with c : v, where
c is the cycle number and v is the value on the input or output.

0x4000: addi r1, r2, 3

0x4004: bne r1, r6, TARG

0x4008: lw r4, 0(r5)

0x400c: addi r5, r5, 4

0x4010: xor r8, r9, r10

TARG:

0x4014: add r5, r4, r4

3

Problem 2: [20 pts] Appearing below is a partial implementation of ARM A64 taken from the solution
to Homework 4. The WB-stage mux is crossed out because it’s wasteful to use a 64-bit mux when the same
functionality can be realized using less expensive logic in the ID stage. For reference, some A64 instructions
are shown below, the comments show which field registers are encoded in.

IR

addr

IF ID EX WBME

rnv

rmv

IMM

ALU
addr

data

data

addr

D
 I
n

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outmdin

ALU

MD

62 2
2'b0

PC

+

D

msb lsb

we

fmt

imm

dcd wr rd

dcd wr rn

register file
rn: 9:5

rm: 20:16

addr

rn

rd

rnwe

rdwe

4:0

9:5
rn

rd

rnwe

rdwe

rn

rd

rnwe

rdwe

addr
we

23:5

is load

@ rd rn : Writes rd and rn

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

@ rd, rn, rm : Writes rd

add x3, x4, x1 @ x3 = x4 + x1

@ rd, rn : Writes rd

and x1, x2, #34 @ x1 = x2 & 34;

Complete the changes so that instructions such as the ones above can write back their results. Assume that
only the load instructions write the rn-field register.

In WB consider re-connecting wires broken by the removal of the mux.

In ID make changes so that instruction results can be written back to the correct registers.

Make the best use of the existing from-WB bypass path.

4

Problem 3: [20 pts] Appearing below again is the partial implementation of ARM A64 taken from the
solution to Homework 4.

addr

EX WBME

rnv

rmv
ALU

addr

data

data

addr

+1

Mem

Port

Addr

Data

Out

Addr

D

Mem
Port

Out

ALU

MD

62 2
2'b0

+

D

m�� l��

we

fmt

imm

dcd wr rd

dcd wr rn

register file
rn: 9:5

rm: 20:16

addr

rn

rd

rnwe

rdwe

4:0

9:5
rn

rd

rnwe

rdwe

rn

rd

rnwe

rdwe

addr
we

23:5

is load

mdin

@ rd rn : Writes rd and rn. Post-index

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

@ rd rn : Writes rd and rn. Pre-index

ldr x1, [x2, #8]! @ x2 = x2 + 8; x1 = Mem[x2];

@ rd rn rm

str x1, [x2, x3] @ Mem[x2+x3] = x1

(a) Make changes needed to implement the store instruction, see the example above. Just show datapath,
not control logic.

Changes for the store instruction.

(b) Do we really need both pre-index and post-index addressing for loads and stores? Eliminating either of
them will reduce cost, but one’s elimination would reduce cost by more than the other’s. Indicate which
saves more and show the hardware that can be removed and other needed changes. Note: The phrase and
other needed changes was not in the original exam.

Greater cost reduction by eliminating: © pre-index © post-index (check exactly one).

Show the hardware that’s not needed and other needed changes.

5

Problem 4: [20 pts] When MIPS routine coursei is called register a0 will hold an entry number, referring
to the table at label courses. Complete the routine so that when it returns register v0 will have the integer
representation of entry number a0 in the table. Note that the table itself holds floats. For example, when
called with a0=0 it should return with v0=2740, when called with a0=2 it should return with v0=3755, etc.

Complete so v0 is integer representation of a0th table entry.

Read the table as it is, don’t modify it or read a different table.

.data

courses:

.float 2740

.float 3750

.float 3755

.float 4755

.float 4720

.float 7722

.float 7725

.text

CALL VALUE: $a0: Entry in table to look up.

RETURN: $v0: Table entry #$a0 represented as an integer.

coursei:

la $t0, courses

jr $ra

nop

6

Problem 5: [20 pts] Answer each question below.

(a) What kind of implementations were RISC ISAs designed to simplify?

Kinds of implementations that RISC designed to simplify:

(b) Describe how the features below simplify RISC ISA implementations.

Fixed-size instructions.

Avoiding arithmetic instructions that access memory.

(c) The SPECcpu package contains the source code for the SPEC benchmarks and scripts to compile and
run them, but it does not come with compilers. The tester provides his or her own. Consider a SPECcpu+

package that comes with compilers, and the requirement that those compilers be used. Why would that
make SPECcpu+ less useful to computer engineers?

SPECcpu+ less useful because:

7

(d) In class we described some optimizations as high-level, and some as low-level, performed by the back
end. What distinguishes high- and low-level optimizations? Provide an example of a low-level optimization
that could only be performed by the compiler back end.

Difference between high- and low-level optimization.

Example of an optimization that must be low-level (that can only be done in the back end).

Briefly explain why.

(e) MIPS I has instruction bgtz r1, TARG in which the branch is taken if r1>0 but it lacks an instruction
like bgt r1, r2, TARG that would branch if r1>r2. Why?

Why does MIPS lack bgt r1, r2, TARG?

What would be the impact on performance of including bgt r1, r2, TARG in MIPS on “our” five-stage
implementation?

8

