
11­1 11­1This Set

These slides do not give detailed coverage of the material. See class notes and solved
problems (last page) for more information.

Text covers multiple-issue machines in Chapter 4, but does not cover most of the topics
presented here.

Outline

• Superscalar Machines

• VLIW Machines

• Vector Instructions

• Sample Problems

11­1 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­1

11­2 11­2Routes to Higher Performance

We Are Here

The elegant and efficient five-stage RISC implementation.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

We have the fastest device technology available (assume).

We have the most talented digital logic designers (assume).

What if our five-stage implementation is not fast enough?

11­2 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­2

11­3 11­3

Routes to Higher Performance

Faster Implementations—Higher Peak Performance

Deeply Pipelined Implementations: More stages, higher φ.

Multiple Issue, Superscalar Implementations: Handle > 1 insn per cycle.

Vector (SIMD) Instructions

Smarter Implementations—Higher Typical Performance

Dynamic Scheduling

Branch Prediction

Parallel Implementations—As much performance as you can afford*.

Multi-Core Chips, Multiprocessors

Computing Clusters

Distributed Systems
* Parallelization costs may apply. Results not guaranteed. Not all code is parallelizable, and
not all parallelizable code is parallizable by all programmers. Code may run slower, may be
more difficult to debug, and harbor more latent bugs. Parallelization can be frustrating, not
responsible for broken keyboards, monitors, etc.

11­3 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­3

11­4 11­4Multiple Issue

Multiple-Issue Machine:

A processor that can sustain fetch and execution of more than one instruction per cycle.

n-Way Superscalar Processor:

A multiple issue machine that can sustain execution of n instructions per cycle.

Scalar (Single-Issue) Processor:

A processor that can sustain execution of at most one instruction per cycle. A neologism for
the five-stage MIPS implementation we have been working with.

Sustain Execution of n IPC:

Achieve a CPI of 1

n
for some code fragment . . .

. . . written by a friendly programmer . . .

. . . to avoid cache misses and otherwise avoid stalls.

11­4 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­4

11­5 11­5Types of Multiple Issue Machines

Superscalar Processor:

A multiple-issue machine that implements a conventional ISA (such as MIPS and SPARC).

Code need not be recompiled.

General-purpose processors were superscalar starting in early 1990’s.

VLIW Processor:

A multiple-issue machine that implements a VLIW ISA . . .

. . . in which simultaneous execution considered. (More later.)

Since VLIW ISAs are novel, code must be re-compiled.

Idea developed in early 1980’s, . . .

. . . so far used in special-purpose and stillborn commercial machines, . . .

. . . and is being used in Intel’s next generation processor.

Intel’s Itanium implements the Itanium (née IA-64) VLIW ISA.

(Name of ISA and implementations are both Itanium.)

11­5 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­5

11­6 11­6Superscalar Machines

n-Way Superscalar Machine Construction

Start with a scalar, a.k.a. single-issue, machine.

Duplicate hardware so that most parts can handle n instructions per cycle.

Don’t forget about control and data hazards.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

D

In

D

In

11­6 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­6

11­7 11­7Superscalar Difficulties

Register File

Scalar: 2 reads, 1 write per cycle.

n-way: 2n reads, n writes per cycle.

Dependency Checking and Bypass Paths For ALU Instructions

Scalar, about 4 comparisons per cycle.

n-way, about n(2(2n+ n− 1) = 6n2
− 2n comparisons.

Loads-Use Stalls

Scalar, only following instruction would have to stall (if dependent).

n-way, up to the next 2n− 1 instructions would have to stall (if dependent).

11­7 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­7

11­8 11­8Superscalar Difficulties

Instruction Fetch

Memory system may be limited to aligned fetches . . .

. . . for example, if branch target is 0x1114 . . .

. . . instructions starting at 0x1110 may be fetched (and the first ignored) . . .

. . . wasting fetch bandwidth.

11­8 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­8

11­9 11­9Typical Superscalar Processor Characteristics

Instruction Fetch

Instructions fetched in groups, which must be aligned in some systems.

Unneeded instructions ignored.

Instruction Decode (ID)

Entire group must leave ID before next group (even 1 insn) can enter.

Execution

Not all hardware is duplicated . . .

. . . and therefore some instruction pairs cause stalls.

For example, early processors could simultaneously start one floating-point and one integer
instruction . . .

. . . but could not simultaneously start two integer instructions.

11­9 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­9

11­10 11­10VLIW

Very-Long Instruction Word (VLIW):

An ISA or processor in which instructions are grouped into bundles which are designed to be
executed as a unit.

Explicitly Parallel Instruction Computing:

Intel’s version of VLIW. Here, VLIW includes EPIC.

Key Features

Instructions grouped in bundles.

Bundles carry dependency information.

Can only branch to beginning of a bundle.

11­10 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­10

11­11 11­11

Current Examples

Texas Instruments VelociTI (Implemented in the C6000 Digital Signal Processor).

Intended for signal processors, which are usually embedded in other devices . . .

. . . and do not run general purpose code.

11­11 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­11

11­12 11­12

Intel Itanium (née IA-64) ISA (Implemented by Itanium, Itanium 2).

Intended for general purpose use.

VLIW-Related Features

Instructions grouped into 128-bit bundles.

Each bundle includes three 41-bit instructions and five template bits.

Template bits specify dependency between instructions and the type of instruction in each
slot.

Other Features

128 64-bit General [Purpose Integer] Registers

128 82-bit FP Registers

Many additional special-purpose registers.

Makes extensive use of predication.

11­12 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­12

11­13 11­13

Cray Tera MTA implemented by the Tera Computer Company.

(Tera bought by Cray.)

Intended for scientific computing.

VLIW-Related Features

Instructions grouped into 64-bit bundles.

Each bundle holds three instructions.

Restrictions: one load/store, one ALU, and one ALU or branch.

Bundle specifies number of following non-dependent bundles in a lookahead field.

Serial bit for specifying intra-bundle dependencies.

11­13 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­13

11­14 11­14

Other Features

Radical: Can hold up to 128 threads, does not have data cache.

Ordinary: 32 64-bit registers.

Extra bits on memory words support inter-processor synchronization.

Branches can examine any subset of 4 condition code registers.

11­14 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­14

11­15 11­15VLIW Bundle and Slot Definitions Definitions

Bundle: a.k.a. packet

The grouping of instructions and dependency information which is handled as a unit by a
VLIW processor.

Slot:

Place (bit positions) within a bundle for an instruction.

A typical VLIW ISA fits three instructions into a 128-bit bundle . . .

. . . such a bundle is said to have three slots.

Example: Itanium (née IA-64)

Bundle Size, 128 bits; holds three instructions.

Slot 2

127 87

Slot 1

86 46

Slot 0

45 5

dep. info

4 0

11­15 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­15

11­16 11­16Instruction Restrictions In Bundles

ISA may forbid certain instructions in certain slots . . .

. . . e.g., no load/store instruction in Slot 1.

Tera-MTA: Three slots per 64-bit bundle. (Slot 0, Slot 1, Slot 2.)

Slot 0: Load/Store

Slot 1: ALU

Slot 2: ALU or Branch

Itanium (née IA-64): Three slots per 128-bit bundle.

Slot 0: Integer, memory or branch.

Slot 1: Any instruction

Slot 2: Any instruction that doesn’t access memory.

There are further restrictions.

11­16 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­16

11­17 11­17Dependency Information in Bundles

Common feature: Specify boundary between dependent instructions.

add r1, r2, r3

sub r4, r5, r6

! Boundary: because of r1 instruction below might wait.

xor r7, r1, r8

Because dependency information is in bundle less hardware is needed to detect dependencies.

How Dependency Information Can Be Specified (Varies by ISA):

• Lookahead:

Number of bundles before the next true dependency.

• Stop:

Next instruction depends on earlier instruction.

• Serial Bit:

If 0, no dependencies within bundle(can safely execute in any order).

11­17 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­17

11­18 11­18Specifying Dependencies Using Lookahead

Used in: Tera MTA.

Lookahead:

The number of consecutive following bundles not dependent on current bundle.

If lookahead 0, may be dependencies between current and next bundle.

If lookahead 1, no dependencies between current and next bundle, but may be dependencies
between current and 2nd following bundle.

Setting the lookahead value:

Compiler analyzes dependencies in code, taking branches into account.

Sets lookahead based on nearest possible dependency.

11­18 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­18

11­19 11­19Lookahead Example: (Two-instruction bundles.)

Bundle1: add r1, r2, r3

add r4, r5, r6

Lookahead = 1 ! Bundle 2 not dependent.

Bundle2: add r7, r7, r9

add r10, r11, r12

Lookahead = 2 ! Bundle 3 and Bundle 1 not dependent.

Bundle3: add r2, r1, r14

bneq r20, Bundle1

Lookahead = 0 ! Bundle 1 is dependent.

Bundle4: add r18, r8, r19

bneq r21, Bundle1

Lookahead = 11 ! Assuming twelfth bundle below uses r18.

Bundle5: nop

nop

! (Next 10 bundles contain only nops)

11­19 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­19

11­20 11­20Specifying Dependencies Using Stops

Used by: Itanium (née IA-64)

Stop:

Boundary between instructions with true dependencies and output dependencies.

Stop (and taken branches) divide instructions into groups.

Groups can span multiple bundles.

Within a group true and output register dependencies are not allowed, with minor exceptions.

Memory dependencies are allowed.

Assembler Notation (Itanium): Two consecutive semicolons: ;;.

Example:

L1: add r1= r2, r3

L2: add r4= r5, r6 ;;

L3: add r7= r1, r0 ;;

L4: add r8= r7, r0

L5: add r9= r4, r0

! Three groups: Group 1: L1, L2; Group 2: L3; Group 3: L4, L5

11­20 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­20

11­21 11­21VLIW and Superscalar Comparison

What is Being Compared

An n-way superscalar implementation of conventional ISA.

An n-way implementation of a VLIW ISA.

Common Benefit

Can potentially execute n instructions per cycle.

11­21 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­21

11­22 11­22

Vector Instructions

SW Idea:

CPU has a set of vector registers, typically 128 to 512 bits.

Each register holds several values.

Vector instruction performs operation on each value.

11­22 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­22

11­23 11­23

Example: (Intel-64 AVX)

Let ymm0 - ymm15 be 256-bit vector registers, each holding 8 singles.

ymm9 = { 1.1, 1.2, ..., 1.8 }

ymm8 = { 2.01, 2.02, ..., 2.08 }

vaddps %ymm9, %ymm8, %ymm10 # ymm10 = ymm9 + ymm8

ymm10 = {3.11, 3.22, ... 3.88}.

Equivalent MIPS Code
add.s f0, f2, f4

add.s f6, f8, f10

add.s f12, f14, f16

add.s f18, f20, f22

add.s f24, f26, f28

add.s f30, f32, f34

add.s f36, f38, f40

add.s f42, f44, f46

11­23 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­23

11­24 11­24

Vector Instruction Implementation

Front

End

FP Func Unit Lane 1
FP Regs

Lane 1

IF ID

F1 F2 F3 F4 F5 F6 F8

Control

FP Func n

Int unit

now shown.

FP Regs

n

One insn for

all n lanes.

11­24 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­24

11­25 11­25

Vector Instruction ISA Extensions

IA-32, Intel 64

First Vector Extension: MMX— 64-bit vector registers.

SSE, SSE2-SSE4: 128-bit vector registers.

AVX, AVX2: 256-bit vector registers.

ARM:

A64 Advanced SIMD: 32 × 128-bit vector registers.

A32, T16 Advanced SIMD: 32 × 64-bit vector registers.

11­25 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­25

11­26 11­26Deep Pipelining

Deep Pipelining:

Increasing or using a large number of stages to improve the performance.

If each stage in a base design can be divided into exactly n stages . . .

. . . such that the critical path in the new stages is 1

n
of the base design . . .

. . . and if pipeline latches have zero setup time . . .

. . . then performance will be n times larger.

11­26 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­26

11­27 11­27

Pipelining Performance

Let tn denote the time or an instruction to traverse an n-stage pipe.

Let tL denote the setup time for a pipeline latch.

The latency of an n-stage unit is then

tn = t1 + (n− 1)tL

and the clock frequency is

φ =

(

tL +
t1

n

)

−1

; or when tL ≪
t1

n
, φ ≈

n

t1
,

assuming that the unit is split perfectly into n pieces.

11­27 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­27

11­28 11­28Parallelism

Parallelism:

Execution of multiple operations at the same time.

Serial Execution Model:

An execution model in which instructions have an exact program-determined order in which
an instruction starts only after its predecessor finishes.

Instruction-Level Parallelism:

The parallel execution of instructions of a program in a serial execution model such that results
are no different than if the instructions executed serially.

11­28 EE 4720 Lecture Transparency. Formatted 9:12, 21 April 2017 from lsli11. 11­28

