
LSU EE 4720 Homework 5 Solution Due: 20 March 2017

Problem 1: Complete MIPS routine fxitos so that it converts a fixed point integer to a single-
precision floating point value as follows. When fxitos starts register a0 will hold a fixed-point
value i and register a1 will hold the number of bits that are to the right of the binary point, d,
with d ≥ 0. For example, to represent 9.7510 = 1001.112 we would set a0 to 0b100111 and a1 to
2. (Or we could set a0 to 0b100111000 and a1 to 5.) When fxitos returns register f0 should be
set to i/2d represented as a single-precision floating point number.

Solve this problem by using a division instruction for i/2d. (The floating division instruction
can be avoided by performing integer arithmetic on the FP representation, but that’s not required
in this problem.)

Submit the solution on paper. Your class account can be used to work on the solution. The
fxitos routine and a testbench can be found in
/home/faculty/koppel/pub/ee4720/hw/2017/hw05/hw05.s, follow the same instructions as for
Homework 1.

fxitos:

## R e g i s t e r U s a g e

#

# CALL VALUES:

# $a0: Fixed-point integer to convert.

# $a1: Number of bits to the right of the binary point.

#

# RETURN:

# [ ] $f0: The value as a single-precision FP number.

## S O L U T I O N

#

# Let d denote value of $a1, # of digits to the right of binary point.

# Let i denote value of $a0, the fixed point number to convert.

# Need to set $f0 to i / 2^d, where 2^d is 2 to the d’th power.

addi $t0, $0, 1

sllv $t2, $t0, $a1 # Construct value 2^d

mtc1 $a0, $f1 # Move i to a FP register. (But it’s still an int.)

mtc1 $t2, $f2 # Move 2^d to a FP register. (Still an int too.)

cvt.s.w $f11, $f1 # Convert i from an integer to SP FP.

cvt.s.w $f12, $f2 # Convert 2^d from an integer to SP FP.

jr $ra

div.s $f0, $f11, $f12 # Compute i / 2^d.
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Problem 2: Appearing below is the MIPS hardware needed to implement bgezall from the
solution to Homework 3. Recall that with bgezall the delay-slot instruction is annulled if the
branch is not taken. Modify the hardware for new instruction bgezalllsu which executes like
bgezall when the branch target is at or before the branch, but when the target is after the branch
the delay-slot instruction is annulled when the branch is taken and allowed to execute normally if
the branch is not taken. The opcode and rt values are the same as for bgezall. Hint: this can be

done with very little hardware, a gate or two, if that.
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Solution appears above. Whether the branch target is before or after the branch can be determined by looking at the
sign bit of the immediate value, which is bit 15 of ID.IR and is labeled backward in the diagram above. If that bit is
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1 it means the immediate is negative and so the branch target is before the branch (to be 100% precise, it means that the
branch target is before the delay slot instruction). Branch bgezalllsu is taken if rsv is not positive, that condition is
provided at the output of the NOT gate and labeled >=0 above. Based on the description of bgezalllsu given in the
problem statement, the delay-slot instruction should be annulled (squashed) if the XOR of these two conditions is true.

Note that in the solution to Homework 3 Problem 1 the NOT gate used to determine the branch-taken condition
is shown there as a bubble at an input to the TAKEN AND gate. Here it is shown as a free-standing NOT gate so that
its value can be used for the XOR. The TAKEN signal itself could have been used instead of the NOT gate output, but
that would have resulted in a slightly longer critical path. Since a synthesis program could easily optimize the logic the
variation to use is the one that’s easier for humans to understand.

Problem 3: Suppose that an analysis of the execution of benchmark programs on our pipelined
MIPS implementation shows that over 75% of bypassed values can be represented with 12 bits or
fewer. A low-cost implementation takes advantage of this fact by using 12-bit bypass paths.

(a) The control logic below is intended for bypass paths that can bypass a full 32-bit value. Modify
the control logic shown so that it works for 12-bit bypass paths. In your modified hardware add a
stall signal to be used when values are too large to be bypassed.

• Indicate which parts of the added logic, if any, may lengthen the critical path.

• As always, avoid costly or slow hardware.

Attention perfectionists: An Inkscape SVG version of the implementation below can be found at
http://www.ece.lsu.edu/ee4720/2017/mpipei3c.svg.

Solution starts on next page.
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Solution appears above. Logic has been added at the output of the ALU (in the EX stage, shown in green) that
checks whether the value is too big for the 12-bit bypass paths. It does so by checking whether bits 31 through 11 are
either all 0 (a small positive value) or all 1 (a small negative value). (The reason that bits 31:11 rather than 31:12 are
checked is to make sure that the sign bit of the 12-bit bypassable portion matches the parts that we won’t bypass.) If the
value at the output of the ALU is too big to bypass then the output of the NOR gate is 1, that signal is put in the abig
(ALU output is big) pipeline latch.

Added control logic, shown in blue, checks this abig signal. If ByME is 1 that means the instruction in ID will
need to use the ByME bypass path in the next cycle (when it is in EX). The upper blue AND gate checks whether the
value in EX is too large to bypass, if so the stall signal is 1. If the instruction in ID will need to use the ByWB path and
the abig bit in the ME stage is 1 we will also need to stall.

This logic only works for dependencies to the rt register (of the instruction in ID), and only when the producing
instruction (the instruction in EX or ME while the consuming instruction is in ID) uses the ALU (not the memory port)
to produce a value. See the examples below.

It would be a simple matter—simple enough for a midterm exam problem—to modify the logic to handle a dependency
to the rs register of the instruction in ID, such as Example II below. On the other hand, bypassing for a lw is hopeless
due to our usual critical path assumptions.
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The logic generating the abig signal might be stretching the critical path since it doesn’t get started until the
ALU produces a value. If we really need such a signal we might ask the ALU guys whether they can design an ALU that
produces an abig-like signal without threatening the critical path, perhaps taking advantage of carry-lookahead logic,
for example.

# Example I

# Cycle 0 1 2 3 4 5 # Control logic works for this case.

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r1 IF ID EX ME WB # Logic active in cyc 2, bypass in cyc 3.

# Example II

# Cycle 0 1 2 3 4 5 # Control logic NOT shown for this case.

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

# Example III

# Cycle 0 1 2 3 4 5 6 # Control logic works for this case.

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

xor r7, r8, r1 IF ID EX ME WB # Logic active in cyc 3, bypass in cyc 4.

# Example IV

# Cycle 0 1 2 3 4 5 6 # Control logic doesn’t account for this case.

lw r1, 0(r2) IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

xor r7, r8, r1 IF ID EX ME WB

(b) Why would it be far more challenging for a compiler to optimize for these 12-bit paths than for
ordinary full-width bypass paths?

The compiler would need to know whether it was possible to use a bypass path for some pair of dependent instructions,
which means the compiler would need to know whether the register value would fit in 12 bits. In most cases the compiler
will not be able to tell the size of a value in a register because that can depend on input data that can vary from run to
run or it might depend on other pieces of code that the compiler does not have access to. There are a few situations in
which the compiler could figure it out. For example:

andi r1, r2, 0xff # Value in r1 must be between 0-255.

addi r3, r1, 3 # Value in r3 must be between 3-258.

sub r4, r5, r3 # Can use 12-bit bypass here for r3.

In the example above the values in r1 and r3 can easily fit in 12 bits (since the r1 value was masked down to 8
bits). Therefore the compiler can assume a bypass can be used from the addi to the sub and so it will not was time
finding instructions to put between them.

The compiler could also use profiling to determine at least a range of values for registers. The compiler doesn’t need
to be 100% sure that register values are small, since the hardware will stall if the values are too large.

The problem statement mentioned that 75% of bypassed values fit within 12 bits, and we might expect that a
profiling analysis to come to the same conclusion. However that doesn’t really help us because that doesn’t mean that
75% of dependent instruction pairs pass values that fit within 12 bits.
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