
LSU EE 4720 Homework 5 Due: 20 March 2017

Problem 1: Complete MIPS routine fxitos so that it converts a fixed point integer to a single-
precision floating point value as follows. When fxitos starts register a0 will hold a fixed-point
value i and register a1 will hold the number of bits that are to the right of the binary point, d,
with d ≥ 0. For example, to represent 9.7510 = 1001.112 we would set a0 to 0b100111 and a1 to
2. (Or we could set a0 to 0b100111000 and a1 to 5.) When fxitos returns register f0 should be
set to i/2d represented as a single-precision floating point number.

Solve this problem by using a division instruction for i/2d. (The floating division instruction
can be avoided by performing integer arithmetic on the FP representation, but that’s not required
in this problem.)

Submit the solution on paper. Your class account can be used to work on the solution. The
fxitos routine and a testbench can be found in
/home/faculty/koppel/pub/ee4720/hw/2017/hw05/hw05.s, follow the same instructions as for
Homework 1.

fxitos:

R e g i s t e r U s a g e

#

CALL VALUES:

$a0: Fixed-point integer to convert.

$a1: Number of bits to the right of the binary point.

#

RETURN:

[] $f0: The value as a single-precision FP number.

jr $ra

nop

1

http://www.ece.lsu.edu/ee4720/

Problem 2: Appearing below is the MIPS hardware needed to implement bgezall from the
solution to Homework 3. Recall that with bgezall the delay-slot instruction is annulled if the
branch is not taken. Modify the hardware for new instruction bgezalllsu which executes like
bgezall when the branch target is at or before the branch, but when the target is after the branch
the delay-slot instruction is annulled when the branch is taken and allowed to execute normally if
the branch is not taken. The opcode and rt values are the same as for bgezall. Hint: this can be

done with very little hardware, a gate or two, if that.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D

dstdst

msb lsb

msb

lsb

op

mopmop

decode

mem op

decode

dest reg

b
r/

ju
m

p

lo
g
ic

31:2631:26

20:16

taken

squash (annul)

regimm

bgezall

sq

nop

fmt
imm

1
6
'd

4

is Type R

is Store

is Branch

is J

is JAL

Dest is rd.

No dest (use r0).

Dest is r31.

Dest is rt.

rt 20:16

rd 15:11

5'd0

5'd31

00

11

01

10

lsb

msb

15:0

3
1
:3

1
2
'b

0

lsb

=

2

Problem 3: Suppose that an analysis of the execution of benchmark programs on our pipelined
MIPS implementation shows that over 75% of bypassed values can be represented with 12 bits or
fewer. A low-cost implementation takes advantage of this fact by using 12-bit bypass paths.

(a) The control logic below is intended for bypass paths that can bypass a full 32-bit value. Modify
the control logic shown so that it works for 12-bit bypass paths. In your modified hardware add a
stall signal to be used when values are too large to be bypassed.

• Indicate which parts of the added logic, if any, may lengthen the critical path.

• As always, avoid costly or slow hardware.

Attention perfectionists: An Inkscape SVG version of the implementation below can be found at
http://www.ece.lsu.edu/ee4720/2017/mpipei3c.svg.

It’s small on purpose, use next page for solution.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D
0

1

dstdst

mx1

is Type R

lsb

msb

Decode

Dest

='
rt 20:16

ByME

rtv

ByWB

imm

ByME

rtv

ByWB

imm

00

01

10

11

ID.IR signals in purple.

2'b0

msb lsb

='

=

format
immed

It’s small on purpose, use next page for solution.

(b) Why would it be far more challenging for a compiler to optimize for these 12-bit paths than for
ordinary full-width bypass paths?

3

http://www.ece.lsu.edu/ee4720/2017/mpipei3c.svg

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D
0

1

dstdst

mx1

is Type R

lsb

msb

Decode

Dest

='
rt 20:16

ByME

rtv

ByWB

imm

ByME

rtv

ByWB

imm

00

01

10

11

ID.IR signals in purple.

2'b0

msb lsb

='

=

format
immed

4

