
Name Solution

Computer Architecture

EE 4720

Midterm Examination

Wednesday, 30 March 2016, 9:30–10:20 CDT

Alias Apple/Maté?

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (12 pts)

Problem 4 (28 pts)

Problem 5 (10 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: [25 pts] Appearing below are what are supposed to be pipeline execution diagrams (PEDs) of
code fragments executing on the illustrated implementation. The PEDs are incorrect.

(a) Correct the PEDs.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

�Correct the PED below.

add r1, r2, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID -> EX ME WB

SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

Solution appears above. Note that the dependency can be bypassed and so there is no need to stall.

�Correct the PED below.

lw r3, 0(r1) IF ID EX ME WB

add r4, r3, r5 IF ID -> EX ME WB

sub r6, r7, r8 IF ID EX ME WB

SOLUTION

Cycle 0 1 2 3 4 5 6 7

lw r3, 0(r1) IF ID EX ME WB

add r4, r3, r5 IF ID -> EX ME WB

sub r6, r7, r8 IF -> ID EX ME WB

The sub has to stall in cycle 3 since ID is occupied by the add.

2

�Correct the PED below.

Cycle 0 1 2 3 4 5 6 7

beq r1, r1 TARG IF ID EX ME WB # Branch is taken.

xor r5, r6, r7 IF IDx

add r8, r9, r10 IFx

TARG:

sub r2, r3, r4 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

SOLUTION

Cycle 0 1 2 3 4 5 6 7

beq r1, r1 TARG IF ID EX ME WB # Branch is taken.

xor r5, r6, r7 IF ID EX ME WB

add r8, r9, r10

TARG:

sub r2, r3, r4 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

The delay-slot instruction should be executed, and the branch is resolved in ID so the target must be fetched when the branch is in
EX.

3

(b) Appearing below are more PEDs which are not correct for the illustrated implementation. This time
modify the implementation so that the executions are correct. Only make necessary changes.

• Delete a bypass path by showing an × at the mux input where it ends.

• Do not delete or add more hardware than is necessary.

IR

Addr
25:21

20:16

IF ID

EX

WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D
0

1

dstdst

msb lsb

msb

lsb

Eliminate bypass paths for

rs value from ME and WB.

Add bypass

from WB

to D In of

Mem Port.

=

format
immed

15:0

�Modify the implementation so that the execution below is correct.

add r1, r2, r3 IF ID EX ME WB

sub r3, r1, r5 IF ID ----> EX ME WB

�Modify the implementation so that the execution below is correct.

lw r1, 0(r2) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB

4

Problem 2: [25 pts] The implementation below is based on the solution to Homework 2 Problem 2 in
which a bypass was added for bltz instructions.

Use Next Page for Solution

IR

Addr

25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D
0

1

dstdst

msb lsb

msb

lsb

31:31

31:31

='

TAKEN

25:21

= bltz

is Load

STALL

=

format
immed

15:0

Use Next Page for Solution

(a) The implementation can only bypass values in EX to a bltz. Modify the implementation on the next

page so that values can be bypassed from both EX and ME. With these changes the two fragments below

should run without a stall and of course bypass the correct value.

Example 1

add r1, r2, r3

sub r4, r5, r6

bltz r1, TARG

Example 2.

add r1, r2, r3

sub r1, r1, r6

bltz r1, TARG

(b) A bypass from EX isn’t possible for the code fragment below, and a bypass from ME is problematic too.
On the next page add logic to generate a stall signal for these situations (load/bltz dependencies) and

connect it to the word STALL in the upper-right of the diagram. Notice that there is an is Load logic block
in ID.

lw r1, 0(r2)

bltz r1, TARG

(c) Explain why it would not be a good idea to bypass the load value to the bltz when the load is in ME.

�Bypassing load from ME not a good idea because:

Because data is available at the D Out output of the memory port very late in the clock cycle and so it can’t be used for anything
without increasing the clock period. That is, D Out is on the critical path.

5

Problem 2, continued:

�Modify implementation so bltz can bypass from EX and ME.

The solution appears below in blue. Note that the multiplexor is positioned such that if there is a dependence both on the instruction
in EX and ME, the sign bit from the EX stage will be used. See Example 2 on the previous page.

�Logic to generate stall signal for bltz dependent on load.

Solution appears in green. Note that the stall is generated if the respective instructions are in the respective stages and if there’s a
dependence. A common mistake was to also check whether the “sign bit” was 1 (whether the branch is taken). That doesn’t make
sense because the sign bit isn’t really available, if it was we wouldn’t need to stall.

�Answer part c.

I remembered, but thanks for the reminder.

IR

Addr

25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D
0

1

dstdst

msb lsb

msb

lsb 31:3131:31
='

TAKEN

25:21

= bltz

is Load

STALL

='31:31

1 0

Path for ME-stage sign bit.

Note that the EX-stage sign

bit is used if there's a dependence

with the insn in EX and ME.

=

format
immed

15:0

6

Problem 3: [12 pts] Answer each question below.

(a) Each code fragment below writes register f30 with the sum f2 + 4720.

Plan A

addi $t0, $0, 4720

mtc1 $t0, $f17

cvt.s.w $f16, $f17

add.s $f30, $f2, $f16

Plan B

lui $t0, 0x4593

ori $t0, $t0, 0x8000

mtc1 $t0, $f16

add.s $f30, $f2, $f16

�What is the difference between mtc1 and cvt?

The mtc1 instruction moves a value from an integer register to a floating-point (co-processor 1) register. The cvt instruction
converts a value from one format to another, in the example above from integer to single-precision floating point. So the difference
is, mtc1 moves its operand from an integer to FP register, while cvt changes the value of its operand from an integer to FP value.

�Why doesn’t Plan B need a cvt?

Because the register contents is already in a FP format.

(b) All MIPS integer instructions have their source register numbers in the rs and, if needed, rt fields. But
the destination register number can be found in either the rt or rd fields.

�How does limiting integer sources to rs and rt reduce cost and improve performance?

It reduces cost because no mux is needed at the register file Addr inputs. It improves performance for the same reason, there is no
delay that there would be with a mux, which includes the logic generating the mux’s control signal.

�Why isn’t performance hurt by having the destination in either rt or rd?

Because the dst value is not needed until the end of ID (for the pipeline latch) and so the mux and its control logic are not on the
critical path.

7

Problem 4: [28 pts] Answer each question below.

(a) The statement below omits an important reason why customers can be kept by companies that manage
an ISA and implementation as two different things.

By separating the ISA from the implementation we can keep our customers by offering them a faster

implementation when they are ready to buy a new system.

�What is the important reason that has been omitted?

Short Answer: . . ., that runs the software that they already have.

More details: Software compatibility. The newer, faster computer must be an implementation of the same ISA or a superset of it.

8

(b) To use profiling to improve performance a program is compiled twice.

�What is done between the first and second compilation?

The program is run using typical input data, the run is called a training run. (Sorry about using the word run three times in one
sentence.)

�Why does the program need to be compiled a second time?

So that the compiler can read the results of the training run and use that to make better optimization decisions.

� Suppose that taken branches have a penalty. Show how profiling helps.

Suppose that in the first code fragment below the branch is mostly taken, meaning that the ELSEPART is frequently executed. When
the compiler learns this by reading the output of the training run it will rearrange code so that the branch is mostly not taken. It
will also move the less-frequently executed IF PART out of the way. In the optimized code zero control transfers are needed for the
frequent case.

SOLUTION

Before optimization. Either branch or jump always taken.

Assume that branch is mostly taken.

add r1, r2, r3

beq r4, r5, ELSEPART

xor r6, r7, r8

IF_PART:

lw r8, 0(r9)

...

j ENDIF

add r10, r11, r12

ELSEPART:

lw r8, 0(r20)

...

ENDIF:

sw r21, 0(r22)

After optimization. Now branch is mostly not taken.

add r1, r2, r3

bne r4, r5, IFPART

xor r6, r7, r8

ELSEPART:

lw r8, 0(r20)

...

ENDIF:

sw r21, 0(r22)

...

IF_PART:

lw r8, 0(r9)

...

j ENDIF

add r10, r11, r12

9

Problem 4, continued:

(c) Consider an instruction such as add (r1), r2, 4(r3). What about it makes it unsuitable for a RISC
ISA? Explain why it would be difficult to implement in our pipelined design.

� add (r1), r2, 4(r3) unsuitable for RISC because:

� It would be difficult to implement because:

The instruction is unsuitable for RISC because it both performs arithmetic and accesses memory, a RISC no-no. This makes it hard
to implement in a pipelined microarchitecture because the instruction would need to access memory twice, once for the source, 4(r3)
and once to write the result, (r1), which would require extra memory ports, and that’s costly, or it would require some way of using
the memory port from different stages, which would greatly complicate the design.

(d) When we compared the un-optimized and optimized versions of the π program we found that the optimized
version had many fewer load and store instructions. Why?

�The optimized π program had fewer loads and stores because:

Without optimization, the compiler will emit code to load the value of a variable into a register each time it is used and to write the
value to memory each time it is changed. But if a variable is updated and used many times (say, in a loop body) then the value can
be loaded just once, into a register, before the loop and stored just once, after the loop. That was the case with the π program where
all loads and stores were eliminated from the loop body.

(e) A tester preparing a run of the SPECcpu suite is responsible for compiling the benchmarks. Why does
that make SPECcpu results interesting to computer engineers?

�Tester compilation makes SPECcpu interesting to computer engineers because:

Computer engineers can evaluate the performance of new microarchitectural features, such as bypass paths, by running the SPECcpu
benchmarks with a compiler back-end designed to take advantage of the new features. They also can run the benchmarks on new
ISAs. Note that the tester is the computer engineer.

10

Problem 5: [10 pts] Answer the following questions about bypass paths.

(a) Consider the two statements below about bypasses in implementations like our five-stage MIPS running

typical programs.

A: Compiler scheduling makes bypass paths unnecessary.

�Explain why the statement above is wrong.

In typical programs the compiler cannot always schedule instructions to avoid stalls because it can’t always find enough instructions
to put between a dependent pair. The problem is exacerbated without bypass paths because dependent pairs must be farther apart.

B: Bypass paths make compiler scheduling unnecessary.

�Explain why the statement above is wrong.

Bypass paths don’t exist for every possible dependence, such as a lw followed by an add.

(b) Consider the two above statements (about bypass paths) again as it applies to our MIPS implementation,
but this time running a special set of programs. We plan to design an implementation for this set of
programs. For these programs the two statements are true! Note: The original exam did not mention the

new implementation, and it had an “or both” option below.

�For such programs should we eliminate bypass paths or should we eliminate compiler scheduling?

�Explain.

Bypass paths, because that would save money. Note that just because both statements are true does not mean that bypass paths and
compiler scheduling can be eliminated at the same time. Statement A implies that compiler scheduling is eliminating stalls without
the help of bypass paths. But if scheduling is also eliminated there can be stalls.

11

