LSUEE 4720 Homework 2 soution Due: 26 February 2016

Problem 1: The code fragment below is to execute on the illustrated MIPS implementation.
Unfamiliar instructions can be looked up on the MIPS ISA manual linked to the course references
page. Show the execution of the code fragment below on the illustrated MIPS implementation. All
branches are taken.

e Pay close attention to dependencies, including those for the branch.

e Note that unnecessary stalls are just as incorrect as not stalling when a stall is necessary.

ID EX ME WB
— NPC —Lf ‘ ALU
25:21 l -
+1 Addr DataHHrsv Mem
T 20:26 | yqr patald vk [ALUH | Port
—— Addr
—Addr Din H— D ol vo
> PC F rtv —In Out
2'b0 15;0|format
301 12 immed IMMI—
msb Isb
Addr
Mem (Decode)
dst dst dst |+
Port Data |R | dest. reg)
Out
SOLUTION
Cycle 01 2 3 4 5 6 7 8 9 10 11 12
add r4, r2, r3 IF ID EX ME WB
1w r6, 8(rd) IF ID EX ME WB
sub r1, r6, rb5 IF ID -> EX ME WB
bltz r1 TARG IF -> ID ----> EX ME WB
and r8, r7, ri0 IF ----> ID EX ME WB
or rill, ri12, ri3
xor rl4, ri11, r8
TARG:
sw rl, 0(r2) IF ID EX ME WB
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

Solution appears above. The 1w does not stall because the r4 register value can be bypassed. That's not possible
for the sub, since there is no Hypass Tor the ré value it needs because the ré value isn't available until the end of eycle
4, 100 late 1o bypass. The bltz stalls two cyeles, waiting Tor the value of r1 that it needs to arrive in ID, where it
needs it. The and is in the delay slot and so executes normally. Since the branch resolves in ID (‘AS we can tell by the
connections from ID to the PC mux) the target, sw, Will be in IF when the branch is in EX.

https://www.ece.lsu.edu/ee4720/

Problem 2: The implementation below (which is the same as the implementation for the previous
problem) lacks hardware needed for the bltz instruction. In this problem design such hardware as
described in the parts below. Note: An Inkscape SVG version of the implementation can be found
at https://www.ece.lsu.edu/ee4720/2016/mpipei3.svgl.

31;26 (4 \
opc Eg—/ Detect bltz

instruction.
20:16 Eﬂ ns DEKEN
rt
/ 31:3 Check for bypass opportunity

by comparing ID-stage rs

Detect thatrsv -7 to EX-stage dst.

< 0. (Just look: A 0000
at MSB.) It's okay to look at ALU
25:21 ¥ output because we're just
? =' |> examining one bit. Just one.
ID G EX ME WB
]
NPC
— —L* ALU
+1 2521 [Addr Data}H rsv *} 1| Mem
A 20:10 Iagqdr Datal{ rtv | *} 1AWl [Port
—— HAddr
PC Addr Din - D o Hwo
s Hrevfn_oul | L
e 15;0,formaty il
Addr
Mem (Decode)
dst dst dst
Port pata| | o || \ dest. reg)
Out

(a) Add the hardware needed to detect when a bltz is taken. The hardware should have an output
labeled TAKEN, which should be set to logic 1 if there is a taken bltz in ID. Include control logic,
including the logic for detecting bltz.

The solution appears apove. The \Og\Q in Dlue i3 used for GQIQQUNC’) 9 bltz instruction. That instruction has an
OPQOGQ 0f 1, but also qumeS that the rt field be zero. In the solution above AND gMQS are used to detect these, rather
than the usual and Doxes. Either would be correct. The braneh is taken if the rsv is Y\QgQUVQ, that can
De datected Dy \OOKiﬂg af the MSB. That's shown in green (U\Q solution 1o the p‘Aﬁ Delow 18 also ShO\N\'\). The r'\gmmost
AND g&t@ detects the taken condition for this branen.

(b) The solution to the previous problem (not the previous part to this problem) should have
included a stall due to the branch instruction. Add a bypass path to the hardware designed above
so that the branch from the previous problem can execute without stalling.

LOg\Q also shown above in green. n p&\”UQU\M the green mux and the connection to the OU[pUt of the ALU. We can
g@t away with us’mg the ALY OUIPU'E in this case hecause we on\y need examine one bit. 1f we needed 1o 100k at all 32
DITS there would not be Q[\()Ugh Time 1eft in the clock QyQ\Q.

An 1mp0ﬁ&ﬂt tmng £o remembar is that this is one of the few cases where we can g@t away with Us'mg the ALU
OUIPUI. See Problem 34.

https://www.ece.lsu.edu/ee4720/2016/mpipei3.svg

(¢) Design control logic for the bypass path.

Logie shown in purple.

Problem 3: The code below is similar to the code from the first problem, the only difference is in
the branch instruction. In this problem explain some bad news and good news about that branch.

add r4, r2, r3

1w r6, 8(r4d)

sub rl, r6, r5
beq r0, ri1 TARG
and r8, r7, ri0
or rill, ri12, ri3
xor rl1l4, ri11, r8

TARG:
sw rl, 0(r2)

(a) The bad news is that adding bypass paths for a beq would not be a good idea, even though
adding bypass paths for the bltz was a good idea. Explain why.

Testing the condition for & bltz instruction is simple: just eheck if the MSB of the rs value is 1. That's a good
thing because the bypass path added in the previous problem was from the output of the ALU, and 5o was available at
the end of the eyele. In contrast, the beq must compare two registers, which requires about 7 layers of logic. (An XNOR,
10 Test equality of each bit pair and a 32-input AND gate to check that all XNOR output are 1. The 32-input AND gate
might be realized with five layers of two-input and gates.)

As pointed out in class, the ALY output will not be available until close 1o the end of the clock period, and so there
i3 N0 time Tor testing equality.

Grading Note: Many answered that the difficulty was in the bypass paths since two values had
to be bypassed. Though that’s true it ignores two things. First, for bltz all we need is the MSB,
so the difference between the two cases is more like a factor of 64 than a factor of 2 in bypass path
cost. It also ignores the more significant problem of testing equality, which stretches the critical
path. Nevertheless, full credit was given for the “two values” answer.

(b) The good news is that the program above can easily avoid the stalls by just changing the branch
instruction. Explain how. (Of course, it should go without saying that the changed program must
do the same thing as the original one.)

Change the branch 10 4 beq r6, r5 TARG, thus avoiding the need for a byp&SS. The sub can not be removed
Decause the sw uses the value of ri.

ID = EX ME
y—U NPC ALU
25:21
+1 Addr Datal]rsv Mem
3 2016 faqgr Datal{ rtv AL | Port
—— HAddr
Addr Dln D ol vo
> PC k rtv —{In Out L
b0 15:0[format
3Ol2i2 immed IMM
msb Isb
Addr
Mem (Decode)
Port Data dest. reg dst dst dst |+
IR
Out

WB

