
LSU EE 4720 Homework 1 Solution Due: 12 February 2016

Problem 1: Answer each MIPS code question below. Try to answer these by hand (without
running code).

(a) Show the values assigned to registers t1 through t8 (the lines with the tail comment Val:) in
the code below. Refer to the MIPS review notes and MIPS documentation for details.

Solution appears below (to the right of SOLUTION, of course).

.data

myarray:

.byte 0x10, 0x11, 0x12, 0x13

.byte 0x14, 0x15, 0x16, 0x17

.byte 0x18, 0x19, 0x1a, 0x1b

.byte 0x1c, 0x1d, 0x1e, 0x1f

.text

la $s0, myarray # Load $s0 with the address of the first value above.

Show value retrieved by each load below.

lbu $t1, 0($s0) # Val: SOLUTION: 0x10

lbu $t2, 1($s0) # Val: SOLUTION: 0x11

lbu $t2, 5($s0) # Val: SOLUTION: 0x15

lhu $t3, 0($s0) # Val: SOLUTION: 0x1011

lhu $t4, 2($s0) # Val: SOLUTION: 0x1213

addi $s1, $0, 3

add $s3, $s0, $s1

lbu $t5, 0($s3) # Val: SOLUTION: 0x13

sll $s4, $s1, 1 SOLUTION: # Note: s4 <= 3<<1 = 6

add $s3, $s0, $s4

lhu $t6, 0($s3) # Val: SOLUTION: 0x1617

sll $s4, $s1, 2 SOLUTION: Note: s4 <= 3<<2 = 12

add $s3, $s0, $s4

lhu $t7, 0($s3) # Val: SOLUTION: 0x1c1d

lw $t8, 0($s3) # Val: SOLUTION: 0x1c1d1e1f

(b) The last two instructions in the code above load from the same address. Given the context, one
of those instructions looks wrong. Identify the instruction and explain why it looks wrong. (Both
instructions should execute correctly, but one looks like it’s not what the programmer intended.)

Register s0 holds an address that the programmer decided to call myarray, so lets think of the data starting at
that address as an array. Normally, to access element i of an array that starts at address a, you load data at address a +

i * s, where s is the size of an array element. In the code fragment above, register s0 holds the starting address (a in
the example). From the way the code is written it looks like register s1 is holding the element index (i in the example).
Because the sll in the last group of four instructions is effectively multiplying s1 by 4, it looks like the load should be

1

https://www.ece.lsu.edu/ee4720/

of the s1’th element of an array of elements of size 4. That’s consistent with the lw, which loads a 4-byte element, and
the last lhu looks out of place. The lhu that loads t6 looks fine, because its address was computed from a value of s1
multiplied by 2.

(c) Explain why the following answer to the question above is wrong for the MIPS 32 code above:
“The lw instruction should be a lwu to be consistent with the others.”

There is no lwu, because when loading a 32-bit quantity into a 32-bit register there is no need to distinguish between
a signed and unsigned quantity. In contrast, the lhu and lh load a 16-bit quantity into a 32-bit register, the lhu sets
the high 16 bits to zero, it zero-pads, while lh sets the high 16 bits to the value of the MSB of the loaded value, it
sign extends.

2

Problem 2: Note: The following problem was assigned last year and two years ago and its solution

is available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in

that case just glimpse. Appearing below are incorrect executions on the illustrated implementation.
For each one explain why it is wrong and show the correct execution.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D

dstdst

E

2'b0 format
immed =

(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until
the lw reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

There is no need for a stall because the lw writes r1, it does not read r1.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

3

(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct.
But, the stall starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1,
or for that matter that it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

4

Problem 3: Show the execution of the MIPS code below on the illustrated implementation. The
register file is designed so that if the same register is simultaneously written and read, the value
that will be read will be value being written. (In class we called such a register file internally

bypassed.)

• Check carefully for dependencies.

• Pay attention to when the branch target is fetched and to when wrong-path instructions are
squashed.

• Be sure to stall when necessary.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D

dstdst

E

2'b0 format
immed =

The solution appears below. Note that because MIPS branches are delayed, the lw instruction is allowed to complete
execution even though the branch is taken. The xor, in contrast is on the wrong path and so is squashed after the branch
resolves. Also note the timing of the fetch of the branch target based on this particular implementation: the branch target,
ori, enters IF in the cycle after the branch leaves ME.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID ----> EX ME WB

beq r1, r1, SKIP IF ----> ID EX ME WB

lw r6, 0(r4) IF ID -> EX ME WB

xor r7, r8, r9 IF -> x

SKIP:

ori r9, r10, 11 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5

