LSUEE 4720 Homework 1 soution Due: 12 February 2016

Problem 1: Answer each MIPS code question below. Try to answer these by hand (without
running code).

(a) Show the values assigned to registers t1 through t8 (the lines with the tail comment Val:) in
the code below. Refer to the MIPS review notes and MIPS documentation for details.
Solution appears below (1o the right of SOLUTION, of course).

.data

myarray:
.byte 0x10, Ox11, 0x12, 0x13
.byte 0x14, 0x15, 0x16, 0x17
.byte 0x18, 0x19, Oxla, Oxlb
.byte Oxlc, Oxld, Oxle, Ox1f

.text

la $s0, myarray # Load $sO with the address of the first value above.
Show value retrieved by each load below.

lbu $t1, 0($s0) # Val: SOLUTION: 0x10

1bu $t2, 1($s0) # Val: SOLUTION: Ox11

lbu $t2, 5($s0) # Val: SOLUTION: 0x15

lhu $t3, 0($s0) # Val: SOLUTION: 0x1011

lhu $t4, 2($s0) # Val: SOLUTION: 0x1213

addi $s1, $0, 3

add $s3, $s0, $si

lbu $t5, 0($s3) # Val: SOLUTION: 0x13

s1l $s4, $si, 1 SOLUTION: # Note: s4 <= 3<<1 = 6

add $s3, $s0, $s4

lhu $t6, 0($s3) # Val: SOLUTION: 0x1617

sll $s4, $s1, 2 SOLUTION: Note: s4 <= 3<<2 = 12

add $s3, $s0, $s4

lhu $t7, 0($s3) # Val: SOLUTION: Oxlcld

1w $t8, 0($s3) # Val: SOLUTION: Oxlcldlelf

(b) The last two instructions in the code above load from the same address. Given the context, one
of those instructions looks wrong. Identify the instruction and explain why it looks wrong. (Both
instructions should execute correctly, but one looks like it’s not what the programmer intended.)
RQg\StQY s0O holds an address that the programmer decided to call myarray, 50 1ets think of the data stm‘mg at
that address as an array. Norma\\y, 10 access element i of an array that starts at address a, Yyou 10ad data af address a +
i * s, where s is the size of an array element. In the code Tf&ngm above, TQg\ST,QY s0 holds the stm’mg address (a in
the QXEMT\P\Q). From the Way the code is written it 100ks like register s118 ho\dmg the element index (i in the QX‘AmP\Q).
Because the s11 in the last group of four instructions is Qﬁ@@t\VQ\\/ mu\t'\p\y'\ng sl by 41T 100ks like the load should be

1

https://www.ece.lsu.edu/ee4720/

of the s1'th element of an array of alements of size 4. That's consistent with the 1w, whieh 1oads a 4—b\jt@ Q\QQO, and
the 1ast 1hu 100ks out of P\&QQ. The 1hu that 1oads t6 100ks ﬂﬂQ, because its address was Q()mpUIQG from a value of s1
multiplied by 2.
(¢) Explain why the following answer to the question above is wrong for the MIPS 32 code above:
“The 1w instruction should be a 1wu to be consistent with the others.”

There is no 1wy, because when \oad'mg 9 32-Dit qu&nt'\ty into a 32-hit YQg\S‘EQY there is no need to d'\st'mgu'\sh hetween
Q S\gﬁ@d and UY\S'\gﬁQG QU‘AHUW. In contrast, the 1hu and 1h load 4 16-bit QU&T\UW into a 32-hit YQg'\StQT, the 1hu sets

the high 16 DIts To zero, It zero-pads, While 1h sets the high 16 DIts to the value of the MSB of the loaded value, it
sign extends.

Problem 2: Note: The following problem was assigned last year and two years ago and its solution
1s available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in
that case just glimpse. Appearing below are incorrect executions on the illustrated implementation.
For each one explain why it is wrong and show the correct execution.

IF ID EX ME WB
NPC NPC ALU
+1 2521 [Aqdr Data|—]rsv Mem
T 20:26 [r patald v I ALUH | Port
I | HAddr
—Addr Din D D[wp
> PC rtv f—{in Out
260 15:0|format | |
304 42 immed MM :Ei E L
Addr
Mem (Decode
dst dst dst |
Port Data IR | dest. reg)
Out

(a) Explain error and show correct execution.

LOOP: # Cycles 01 2 3 4 5 6 7
1w r2, 0(rd) IF ID EX ME WB

add ri1, r2, r7 IF ID EX ME WB
LOOP: # Cycles 01 2 3 4 5 6 7

The add depends on the 1w through r2, and for the illustrated implementation the add has to stall in ID until
the 1w reaches WB.

LOOP: # Cycles 01 2 3 4 5 6 7 SOLUTION
1w r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

LOOP: # Cycles 01 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB

lw rl, 0(r4) IF ID -> EX ME WB
LOOP: # Cycles 0 1 2 3 4 5 6 7

Thaere is no need for a stall because the 1w writes ri, it does not read ri.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION
add rl, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

LOOP: # Cycles 01 2 3 4 5 6 7

(¢) Explain error and show correct execution.

LOOP: # Cycles 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB

sw rl, 0(r4) IF ID -> EX ME WB
LOOP: # Cycles 01 2 3 4 5 6 7

A \Oﬂng stall is needed here because the sw reads ri and it must wait until add reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION
add r1, r2, r3 IF ID EX ME WB

sw rl, 0(r4) IF ID ----> EX ME WB

LOOP: # Cycles 01 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 01 2 3 4 5 6 7
add ri1, r2, r3 IF ID EX ME WB

xor r4, rl, r5 IF ----> ID EX ME WB
LOOP: # Cycles 01 2 3 4 5 6 7

The stall above allows the xor, when it is in ID, 10 get the value of r1 written Dy the add; that part is correct.
But, the stall starts in cycle 1 before the xor reaches ID, 0 how could the control logic know that the xor needed ri,
or for that matter that it was an xor? The solution i 1o start the stall in cycle 2, when the xor is in ID.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION
add ri1, r2, r3 IF ID EX ME WB

xor r4, rl, r5 IF ID ----> EX ME WB

LOOP: # Cycles 01 2 3 4 5 6 7

Problem 3: Show the execution of the MIPS code below on the illustrated implementation. The
register file is designed so that if the same register is simultaneously written and read, the value
that will be read will be value being written. (In class we called such a register file internally
bypassed.)

e Check carefully for dependencies.

e Pay attention to when the branch target is fetched and to when wrong-path instructions are
squashed.

e Be sure to stall when necessary.

IF ID EX ME WB
\;D NPC NPC ALU
+1 2521 [Addr Data|—{rsv Mem
T 20:16 |y yor Datal rtv | ALV | Port
—— | HAddr
—Addr Din D b vo
> PC rtv f—{in Out
260 15:0|format | |
304 {2 immed MM :Ei e L
Addr
Mem (" Decode
dst dst dst |
Port pata| | o || \ dest. reg)
Out

The solution appears below. Note that because MIPS branenes are delayed, the Lw instruction is allowed o complete
axecution even though the braneh is taken. The xor, in CONTrast is on the wrong p&lh and so is squashed after the branen
resolves. Also note the timing of the Teten of the branch target based on This particular implementation: the branch target,
ori, enters IF in the cycle after the branch leaves ME.

SOLUTION

Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
add r1, r2, r3 IF ID EX ME WB

sub r4, rl1, rb5 IF ID ----> EX ME WB

beq ril, ril, SKIP IF ----> 1D EX ME WB

1w r6, 0(r4d) IF ID -> EX ME WB

xor r7, r8, r9 IF -> x

SKIP:

ori r9, r10, 11 IF ID EX ME WB

Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

