
Name

Computer Architecture

EE 4720

Final Examination

4 May 2016, 15:00–17:00 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: (20 pts) Appearing below is our two-way superscalar MIPS implementation with a single,
unconnected memory port in the ME stage. Since there is only one memory port there will have to be a slot-1
ID-stage stall whenever ID contains two memory instructions, for example:

Cycle 0 1 2 3 4 5

lw r1, 0(r2) IF ID EX ME WB

lw r3, 0(r4) IF ID -> EX ME WB

(a) On the next page add datapath to the implementation so that the memory port can be used by a load
or store instruction in either slot. Pay attention to the cost of pipeline latches.

(b) On the next page add control logic needed for the datapath changes. The control logic should be for any
multiplexors that you’ve added, don’t include control logic for the memory port itself.

(c) On the next page add control logic to generate a STALL_ID_1 signal when there are two memory instruc-
tions in ID, as occurs in cycle 1 to the lw r3 in the example above.

Use next page for solution.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Immed

Addr

Data

Out

D

In

Mem

Port

Use next page for solution.

2

Problem 1, continued:

Datapath so that memory port can be used by a load or store in either slot.

Control logic for multiplexors that you’ve added. Control logic to generate STALL ID 1.

Pay attention to pipeline latch cost and the critical path.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Immed

Addr

Data

Out

D

In

Mem

Port

3

(d) Notice that the two instructions in the code below load from adjacent addresses. The superscalar
implementation from the previous page would stall the lbu r3. But that might not be necessary because
the memory port retrieves 32 b of data. A properly designed alignment network could provide data for both
instructions, in some cases. Let’s call such nice situations, shared loads.

lbu r1, 0(r2)

lbu r3, 1(r2)

Only show ID-stage changes. Show control logic to detect possible shared loads in ID. Generate a signal
named SHARED_LOAD which is 1 if the instructions in ID could form a shared load, based on register numbers
and immediate values.

Control logic to detect possible shared loads.

Explain why alignment and critical path make it impossible to know for sure in ID that a shared load
is possible.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Immed

Addr

Data

Out

D

In

Mem

Port

4

The following part was NOT on the final exam as given. It will be assigned as homework in 2017.

(e) Notice that the two instructions in the code below load from adjacent addresses. The superscalar
implementation from the previous page would stall the lbu r3. But that might not be necessary because
the memory port retrieves 32 b of data. A properly designed alignment network could provide data for both
instructions, in some cases. Let’s call such nice situations, shared loads.

lbu r1, 0(r2)

lbu r3, 1(r2)

Here’s the plan: In ID detect whether a shared load is possible. In EX check addresses. In ME have memory
port perform only one kind of load, 32 b (stores are unaffected). In WB have a separate alignment network
for each slot.

Show control logic to detect possible shared loads in ID. Generate a signal named SHARED_LOAD which is
1 if the instructions in ID could form a shared load, based on register numbers and immediate values. In
EX generate a STALL-EX-1-SL signal if the shared load cannot be performed. This will stall the pipeline
allowing the slot-0 load to proceed normally in the current cycle and the slot-1 load to be executed in the
next cycle. Show connections for the alignment units in the appropriate places.

Control logic to detect possible shared loads.

Explain why alignment and critical path make it impossible to know for sure in ID that a shared load
is possible.

EX-stage hardware to generate STALL-EX-1-SL if can’t do shared load based on addresses.

Add remaining ME- and WB-stage hardware.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Immed

Addr

Data

Out

D

In

Mem

Port

5

Problem 2: (20 pts) Show the execution of the code fragments below on the illustrated MIPS implemen-
tations. All branches are taken. Don’t forget to check for dependencies.

(a) Show executions.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Show execution of this simple code sequence.

add r1, r2, r3

sub r4, r1, r5

Show execution of the following code sequence.

beq r1, r1 TARG

or r2, r3, r4

sub r5, r6, r7

xor r8, r9, r10

TARG:

lw r10, 0(r11)

6

(b) Show the execution of the code sequences below on the illustrated MIPS implementation. Don’t forget
to check for dependencies.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode

dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

Show execution of the following code sequence.

mul.s f5, f6, f7

add.s f1, f2, f3

sub.s f4, f8, f5

7

(c) Add any datapath hardware needed to execute the code sequence below, and show its execution. (Control
logic is not needed.) Don’t forget to check for dependencies.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode

dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

Add hardware needed by, and show execution of, the following code sequence.

Consider both stores and, as always, avoid unnecessary costs.

add.s f2, f3, f4

swc1 f1, 0(r7)

swc1 f2, 4(r8)

8

Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 10-outcome local history, and one system has a global predictor with
a 10-outcome global history.

(a) Branch behavior is shown below. Two repetitions of a repeating sequence are shown for branches B1 and
B2. Branch B2 generates the following repeating sequence: the eight outcomes TNTNTNTN followed by either
NN, probability .2, or TT, probability .8. These last two outcomes are shown below as r r and q q.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: N N T T T N T N N T T T N T · · ·

B2: T N T N T N T N r r T N T N T N T N q q · · ·

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the bimodal predictor on branch B2?

What is the accuracy of the local predictor on B2?

What is the minimum local history size needed to predict B1 with 100% accuracy?

What is the minimum local history size needed to predict B2 with maximum accuracy?

9

Problem 3, continued:

(b) The diagram below shows four branches. Branches B1 and B3 are loop branches, each in a 30-iteration
loop. Branches B2 and B4 are perfectly biased branches (B2 always taken, B4 never taken). Consider their
execution on the three variations of the global predictor shown below.

B1: TT · · · TN TT · · · TN TT · · · TN

B2: T T T

B3: TT · · · TN TT · · · TN

B4: N N

a d

PHT

12

2

GHR

d
12

2

PC

xor a d

PHT

12

2
GHR

PC

xor

13:2

a d
12

2

PC

7:2

a d

PHT

12

2
GHR

PC

6

Pred A

Pred B

Pred C

12

Which variation (A, B, or C) will predict B2 or
B4 poorly?

Why does the variation do poorly on one or both
of these simple to predict branches?

Which variation (A, B, or C) is best for B2 and
B4 and also for branches with repeating patterns?

Show an example that one variation predicts ac-
curately that the other can not.

10

Problem 4: (20 pts) The diagram below is for a three-way set-associative cache. Hints about the cache are
provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

64

8 c

20:

:6

Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Cache Capacity Indicate Unit!!:

Memory Needed to Implement Indicate Unit!!:

Line Size Indicate Unit!!:

Show the bit categorization for the smallest direct mapped cache with the same line size and which can
hold at least as much data as the cache above.

Address:

11

Problem 4, continued: The problems on the following pages are not based on the cache from Part a.
The code in the problems below run on a 16MiB (224 byte) two-way set-associative cache with a line size of
28 = 256 bytes. Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

long double sum = 0;

long double *a = 0x2000000; // sizeof(long double) == 16

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[i];

What is the hit ratio running the code above? Show formula and briefly justify.

12

Problem 4, continued: The code in the problem below runs on a 16MiB (224 byte) two-way set-associative
cache with a line size of 28 = 256 bytes. Each code fragment starts with the cache empty; consider only
accesses to the arrays.

(c) The code below scans through an array (or arrays) twice, once in the First Loop and a second time in
the Second Loop. Three different variations are shown, Plan A, Plan C, and Plan D. For each Plan, find
the largest value of BSIZE for which the second loop will have a 100% hit ratio.

// Note: sizeof(double) == 8

// Plan A

struct Some_Struct { double val, norm_val; double stuff[14]; };

// Plan C

struct Some_Struct { double val, norm_val; };

struct Some_Struct_2 { double stuff[14];};

// Plan D

double *vals, *norm_vals;

struct Some_Struct_2 { double stuff[14]; };

// Plan A and Plan C

Some_Struct *b;

for (int i = 0; i < BSIZE; i++) sum += b[i].val + b[i].norm_val; // First Loop.

for (int i = 0; i < BSIZE; i++) b[i].norm_val = b[i].val / sum; // Second Loop.

// Plan D

for (int i = 0; i < BSIZE; i++) sum += vals[i] + norm_vals[i]; // First Loop.

for (int i = 0; i < BSIZE; i++) norm_vals[i] = vals[i] / sum; // Second Loop.

Largest BSIZE for Plan A. Show work or explain.

Largest BSIZE for Plan C. Show work or explain.

Largest BSIZE for Plan D: Show work or explain.

(d) What’s wrong with the statement below:

In the first iteration of the First Loop under Plan C there will be one miss but with Plan D there will

be two misses. Therefore Plan C is better, at least for the First Loop.

What’s wrong with the statement?

13

Problem 5: (20 pts) Answer each question below.

(a) Suppose that a new ISA is being designed. Rather than requiring implementations to include control
logic to detect dependencies the ISA will require that dependent instructions be separated by at least six
instructions. As a result, less hardware will be used in the first implementation.

Explain why this is considered the wrong approach for most ISAs.

What is the disadvantage of imposing this separation requirement?

(b) In the execution below the add.s instruction encounters an arithmetic overflow when in the A4 stage and
as a result raises an exception in cycle 6.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add.s f1, f2, f3 IF ID A1 A2 A3 A* WFx

lwc1 f3, 0(r2) IF ID EX ME WB

lw r4, 0(r5) IF ID EX ME WBx

add r6, r7, r8 IF ID EX MEx

HANDLER:

sw IF ID ..

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Explain why this exception can’t be precise.

Describe something the handler could do if the exception were precise.

14

(c) Chip A has 60 2-way superscalar cores and Chip B has 20 4-way superscalar cores. Both chips run at
3GHz, and so Chip A has a higher peak instruction throughput. The cost and power consumption of the
two chips are identical. Why might someone prefer Chip B over Chip A?

Chip B preferred, despite lower peak throughput, because:

(d) The SPECcpu suite is used to test new chips that might have cost hundreds of millions of dollars to
develop, and test results are closely watched.

Why might we trust the SPECcpu selection of benchmarks and rules for building and running the
benchmarks?

Why might we trust the SPECcpu scores that Company X publishes?

15

