
021 021Benchmarks

Benchmark:

Program used to evaluate performance.

Uses

• Guide computer design.

• Guide purchasing decisions.

• Marketing tool.

021 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 021



022 022

Using Benchmarks to Guide Computer Design

Measure overall performance.

Determine characteristics of programs.

E.g., frequency of floating-point operations.

Determine effect of design options.

022 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 022



023 023Choosing Benchmark Programs

Important: Choice of programs for evaluation.

Optimal but unrealistic:

The exact set of programs customer will run.

Problem: computers used for different applications.

Therefore, must model typical users’ workload.

023 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 023



024 024Benchmark Types

Benchmark Classifications

Based on how benchmark is to be used.

Real Programs:

Programs chosen using surveys, for example.

Example: Photoshop (Image editing program.)

+ Measured performance improvements apply to customer.

– Large programs hard to run on simulator. (Before system built.)

Kernels:

Use part of program responsible for most execution time.

Example: Photoshop code for shrinking an image.

+ Easier to study.

– Not all program have small kernels.

024 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 024



025 025

Microbenchmarks:

Code written to test a specific feature of a system.

Example: Measure maximum number of FP divisions per second.

+ Useful for tuning specific features during implementation development.

- One might get too fixated on narrow feature.

Toy Benchmarks:

Programs written casually, without insuring that they measure something useful.

Example: The pi program used in class.

+ Easier to write.

– Not realistic.

Commonly Used Benchmark Categories

Overall performance: real programs

Test specific features: microbenchmarks.

025 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 025



026 026Benchmark Suites

Benchmark Suite:

A named set of programs used to evaluate a system.

Typically:

• Developed and managed by a publication or non-profit organization.

E.g., Standard Performance Evaluation Corp., PC Magazine.

• Tests clearly delineated aspects of system.

E.g., CPU, graphics, I/O, application.

• Specifies a set of programs and inputs for those programs.

• Specifies reporting requirements for results.

026 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 026



027 027

What Suites Might Measure

• Application Performance

E.g., productivity (office) applications, database programs.

Usually tests entire system.

• CPU and Memory Performance

Ignores effect of I/O.

• Graphics Performance

027 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 027



028 028

SPEC CPU Suites

Measure CPU and memory performance on integer and FP programs.

Respected measure of CPU performance.

Managed by Standard Performance Evaluation Corporation . . .

. . . a non-profit organization funded by computer companies and other interested parties.

028 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 028



029 029SPECcpu Benchmarks

SPEC CPU Suite Goals

Measure CPU and memory system.

Avoid benchmarks making lots of disk I/O, etc.

Measure potential of newest implementations and ISAs.

Tester compiles benchmark using own tools.

Trustworthiness of Suite.

Suite developed by competitors, and other interested parties.

Trustworthiness of Results.

Easy for anyone to duplicate test results, so erroneous results quickly exposed.

029 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 029



0210 0210

SPEC CPU2006 Suites and Measures

Suite of integer programs run to determine:

• SPECint2006, execution time of tuned code.

• SPECint base2006, execution time of untuned code.

• SPECint rate2006, throughput of tuned code.

• SPECint rate base2006, throughput of untuned code.

Suite of floating programs run to determine:

• SPECfp2006, execution time of tuned code.

• SPECfp base2006, execution time of untuned code.

• SPECfp rate2006, throughput of tuned code.

• SPECfp rate rate2006, throughput of untuned code.

0210 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 0210



0211 0211

The Three SPEC CPU2006 “Axes”

Integer v. Floating Point

Refers to two suites of programs.

Execution Time v. Throughput

Execution Time: One program running, measure its run time.

Throughput: Multiple copies of same program running, measure N/t.

Untuned v. Tuned

Untuned (Base, Result): Prepared by skilled and conscientious programmer.

Tuned (Peak): Prepared by hyper-motivated expert.

0211 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 0211



0212 0212

Integer v. Floating Point

SPECcpu programs divided into two sets, integer and floating-point.

Neither set is affected much by:

Disk access.

Other I/O, including graphics.

Floating-Point Programs

Have many floating point operations. (Of course.)

Have loops that iterate for many iterations.

Have fewer branch instructions.

0212 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 0212



0213 0213

SPEC Testing Procedure

Defined by Run & Reporting Rules.

Carried out by tester (not SPEC).

0213 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 0213



0214 0214

Test Procedure

Get:

System Under Test (SUT):

The computer on which benchmarks are to be run.

A copy of the SPECcpu benchmark suite.

Compilers and other build tools for your system.

Prepare a config file:

Name of system, build tools, etc.

Location of compiler.

Portability switches.

Optimization switches.

0214 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 0214



0215 0215

Run the SPEC script:

Script will..

Compile benchmarks, profile, compile again.

Run benchmarks three times, verify outputs.

Generate reports.

Evaluate results:

If not satisfied

Try different optimization switches.

Substitute different compilers, libraries, etc.

Convince customers that for them SPECcpu results are irrelevant.

0215 EE 4720 Lecture Transparency. Formatted 9:25, 13 March 2015 from lsli02. 0215


