
LSU EE 4720 Homework 3 Due: 11 March 2015

Problem 1: For the following question refer to the Intel 64 and IA- 32 Architectures Software
Developer’s Manual linked to the course references page. Intel 64 is an example of a CISC ISA, but
not a good example because it evolved from an ISA designed for a 16-bit address space. Over the
years the size of the general purpose registers increased from 16 bits to 64 bits and the number of
general-purpose registers increased from 8 to 16.

(a) Show the 64-bit names of the general purpose registers provided by Intel 64. (See Chapter 3 of
the manual mentioned above.)

(b) A MIPS assembly language instruction uses the same name for a register regardless of how many
bits of the register we use. For example, sb r1, 0(r2) uses 8 bits of r1 and sw r1, 0(r2) uses
all 32 bits, but in both instructions we refer to r1. Not so in IA-32/Intel 64, in which the name
of the register indicates how many bits to use. Show the names for RAX for the different sizes and
positions in the register.

Problem 2: Diagrams of the MIPS implementation for this problem can be found in EPS format at
http://www.ece.lsu.edu/ee4720/2015/hw02-p3-if-mux-sol.eps and in Inkscape SVG (which
can easily be edited) at http://www.ece.lsu.edu/ee4720/2015/hw02-p3-if-mux-sol.svg.

As has been pointed out in class, MIPS lacks a bgt rs, rt, TARG (branch greater than
comparing two registers) instruction because the ISA was designed for a five-stage implementation
in which the branch is resolved in ID. To resolve bgt in ID one would have to compare two
register values starting about half-way through the cycle, something that might slow down the
clock frequency.

In this problem suppose there was a bgt instruction in MIPS. We would like the implemen-
tation to have the same clock frequency as our bgt-less implementation. One way of doing that is
by resolving bgt in EX (but still resolving the other branches in ID as they are now). If we resolve
in EX we can expect a one-cycle branch penalty, as can be seen in the PED below.

# Cycle 0 1 2 3 4 5 6 7

bgt r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor r6, r7, r8 IF IDx

...

TARG:

lw r9, 0(r10) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

Note that xor is squashed in cycle 3, which is the behavior we want for a taken bgt (see the
second subproblem below). If bgt were not taken then no instruction would be squashed.

(a) Modify the implementation on the next page (taken from the Homework 2 solution) so that
bgt is resolved in EX. Note: The original assignment had a very big typo in the previous sentence:
giving ID instead of EX as the stage to resolve in.

• Pay attention to cost. Assume that a magnitude comparison (e.g., greater than) is relatively
costly.

• Show the control logic for bgt.

• Do not “break” existing instructions.

1

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/2015/hw02-p3-if-mux-sol.eps
http://www.ece.lsu.edu/ee4720/2015/hw02-p3-if-mux-sol.svg


(b) If bgt is taken an instruction will have to be squashed. (Because bgt has just one delay slot,
just like all the other branches.) Add logic so that a one-bit signal sq (squash) is delivered to ID

when the instruction in ID needs to be squashed due to a taken bgt.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+ 15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

is J

is BEQ

is BNE

is BGTZ

is BGEZ

opc 31:26

rt 20:16

=0

31:31

lsb

msb
10

01

jmp

t-br

jmp

t-br

inc

01

00

10

msb lsb

msb

lsb

2


