
09­1 09­1Multicycle Pipeline Operations

Material may be added to this set.

Long-Latency Operations (Topics)

Typical long-latency instructions: floating point

Pipelined v. non-pipelined execution units

Initiation interval and latency

Implementation of long-latency instructions.

Timing diagrams

09­1 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­1

09­2 09­2Long-Latency Instructions (Operations)

Common Long-Latency Instructions

Fastest (shortest—but still long—latency): Floating-Point Add, Subtract, Conversions

MIPS: add.d, sub.d, cvt.s.w (convert integer to float), etc.

Intermediate Speed: Multiply

MIPS: mul.d, mul.s.

Slowest Speed: Divide, Modulo, Square Root

MIPS: div.d, sqrt.d.

09­2 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­2

09­3 09­3Implementation of Long-Latency Instructions

Implementation balances cost and performance.

Low Cost: Unpipelined, Single Functional Unit, Data Recirculates

Whole functional unit occupied by instruction during computation . . .

. . . so it can execute only one instruction at a time.

Intermediate Cost: Multiple Unpipelined Functional Units

Functional units occupied by instruction during computation . . .

. . . each can execute a different instruction.

Cost a multiple of single-unit cost.

Highest Cost: Pipelined Functional Unit

Functional unit pipelined, at best each stage can hold a different instruction.

Cost disadvantage depends on how unpipelined units implemented.

09­3 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­3

09­4 09­4Floating Point in Chapter-3 MIPS Implementation

Typical Classroom Example Floating Point Functional Units

• FP Add

Four stages, fully pipelined: Latency 3, Initiation Interval 1.

Used for FP Add, FP Subtract, FP Comparisons, etc.

• FP Multiply

Six stages, fully pipelined: Latency 5, Initiation Interval 1.

Used for FP Multiply.

• FP Divide

Twenty five stages, unpipelined: Latency 24, Initiation Interval 25.

09­4 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­4

09­5 09­5Floating-Point Pipeline

Example floating unit implementation main features:

Separate register file.

Number of stages vary depending on functional unit.

Floating-point writeback separate from integer writeback.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr

D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2

M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+

15:0

29:0

0

1

2

09­5 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­5

09­6 09­6Floating-Point Pipeline

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr

D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2

M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+

15:0

29:0

0

1

2

09­6 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­6

09­7 09­7Floating-Point Pipeline

Example floating unit implementation notes:

Bypass paths not shown.

Paths to implement FPR → GFP not shown.

Paths for double FP loads and any FP stores (ldc1, sdc1, etc.) not shown.

Pipeline latches for we and fd may be part of reservation register (covered soon).

Use of register pairs for double operands ignored.

See Spr. 2003 HW 5, Prob. 4, http://www.ece.lsu.edu/ee4720/2003/hw05sol.pdf.

The divide functional unit is not shown.

09­7 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­7

http://www.ece.lsu.edu/ee4720/2003/hw05sol.pdf

09­8 09­8Hazards With Long-Latency Instructions in Chapter-3 Pipeline

Structural Hazards

Functional Unit Structural Hazards

Because an instruction can occupy a functional unit (e.g., DIV) more than one cycle . . .

. . . a following instruction needing that unit may be stalled.

(Occurs when initiation interval greater than one.)

Register Write (WF-Stage) Structural Hazards

Because different units have different latencies . . .

. . . instructions that started at different times can finish at the same time . . .

. . . only one can write results (unless extra register file ports added).

09­8 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­8

09­9 09­9

Data Hazards

RAW Hazards

As with integer operations, result not ready in time.

With long-latency operations instructions may wait longer.

WAW Hazards

Occurs when two nearby instructions write same register . . .

. . . and second instruction finishes first.

WAR Hazards

Cannot occur in Chapter-3 pipeline because instructions start in order.

09­9 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­9

09­10 09­10

Precise Exceptions

A headache because an instruction can be ready to write . . .

. . . long before a preceding instruction raises an exception.

09­10 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­10

09­11 09­11Handling Functional Unit Structural Hazards

Example, 4-cycle latency unpipelined divide.

Unless FU changed, instructions must be stalled to avoid hazard.

div.d f0, f2, f4 IF ID DIV DIV DIV DIV DIV WF

div.d f6, f8, f10 IF ID --------------> DIV DIV DIV DIV WF

Hazard easily handled:

Units provide a ready-next-cycle signal to ID stage.

Instruction stalled if ready-next-cycle for needed unit is 0.

09­11 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­11

09­12 09­12

Eliminating Hazards

Provide more than one functional unit.

Example, provide two 4-cycle latency divide units, DVa and DVb.

div.d f0, f2, f4 IF ID DVa DVa DVa DVa DVa WF

div.d f6, f8, f10 IF ID DVb DVb DVb DVb DVb WF

Pipeline functional unit.

Example, use 5-cycle latency, initiation interval 2, pipelined divide . . .

. . . and live with single stall cycle.

div.d f0, f2, f4 IF ID DV0 DV0 DV1 DV1 DV2 DV2 WF

div.d f6, f8, f10 IF ID --> DV0 DV0 DV1 DV1 DV2 DV2 WF

09­12 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­12

09­13 09­13

Handling Register Write Structural Hazards

Example (stall to avoid hazard in cycle 8)

!Cycle 0 1 2 3 4 5 6 7 8 9

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

addi r1, r1, 1 IF ID EX MEM WB

add.d f6, f8, f10 IF ID --> A1 A2 A3 A4 WF

09­13 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­13

09­14 09­14Handling Register Write Structural Hazards

Method 1: Delay instruction in ID. (Used above.)

Include a shift register called a reservation register.

Each cycle the reservation register is shifted.

A 1 indicates a “reservation” to enter WF.

Bit position indicates time . . .

. . . with the LSB indicating two cycles later . . .

. . . the next bit indicating three cycles later . . .

. . . and so on.

The ID stage controller, based on the opcode of the instruction . . .

. . . knows the number of cycles before WF will be entered.

It checks the corresponding reservation register bit . . .

. . . if it’s 1 then IF and ID are stalled . . .

. . . if it’s 0 then the bit is set to 1 and the instruction proceeds.

If such a stall occurs the reservation register is still shifted . . .

. . . and so a 0 will eventually move into the bit position.

09­14 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­14

09­15 09­15

Method 2: Delay instructions ready to enter WF.

Each functional unit provides a signal . . .

. . . indicating when it has an instruction ready to enter WF.

One of those signals is chosen (using some method) . . .

. . . the corresponding instruction moves to WF . . .

. . . while the others are stalled.

09­15 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­15

09­16 09­16

Comparison of Method 1 and 2

Method 1 is easier to implement . . .

. . . since logic remains in one stage.

In contrast, logic for method 2 would span several stages . . .

. . . since stages back to IF might need to be stalled . . .

. . . and so critical paths would be long.

Method 2 is more flexible . . .

. . . since priority could be given to longer-latency instructions.

09­16 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­16

09­17 09­17

Handling RAW Hazards

The interlock mechanism for RAW hazards . . .

. . . must keep track of registers with pending writes . . .

. . . and use this information to stall instructions.

Consider, add.s f1, f2, f3.

Check if any uncompleted preceding instructions write f2 or f3.

If so, stall until register(s) written or can be bypassed to adder.

09­17 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­17

09­18 09­18

Possible RAW Interlock Implementations.

Brute Force: Check all following stages

As done for integer operations, check following stages . . .

. . . for pending write to register.

Each stage of every pipelined unit must be checked.

Too expensive.

Register file includes ready bit for each register.

Ready bit normally 1, indicating no pending writes (so value valid).

When instruction issued, bit set to 0 . . .

. . . when instruction completes and result written, set back to 1.

Instruction stalls if either operand’s ready bit is 0 . . .

. . . and cannot be bypassed.

09­18 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­18

09­19 09­19

WAW Hazards

Example with 3-stage pipelined multiply and one-stage add, no MEM.

mul.s f0, f1, f2 IF ID M0 M1 M2 WF

add.s f0, f3, f4 IF ID A0 WF ! Incorrect execution!!

09­19 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­19

09­20 09­20

Handling WAW Hazards

The interlock mechanism for RAW hazards handles WAW hazards in which there is an inter-
vening read.

Example with 3-stage pipelined multiply and one-stage add, no MEM.

mul.s f0, f1, f2 IF ID M0 M1 M2 WF

sub.s f5, f0, f6 IF ID -----> A0 WF

add.s f0, f3, f4 IF -----> ID A0 WF ! No problem.

If there is no intervening write the earlier instruction can be squashed.

mul.s f0, f1, f2 IF ID M0x

add.s f0, f3, f4 IF ID A0 WF

09­20 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­20

09­21 09­21

WAR Hazards

Possible when register read delayed.

Can’t happen in five-stage MIPS because instructions

(1) read registers in ID

(2) pass through ID in program order

(3) and produce results only after leaving ID.

Consider:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11

mul.s f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 M6 M7 WF

add.s f1, f3, f4 IF ID A0 A1 A2 A3 WF

There would be a WAR hazard if addf wrote f1 before multf read it.

That can’t happen since multf would leave ID (with f1) as addf just enters ID.

09­21 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­21

09­22 09­22CPI and Multicycle Operations

With long-latency ops, dependencies trickier . . .

. . . and structural hazards now present (in our implementations).

Finding CPI for a loop

As before, find a repeating pattern of iterations.

Look out for structural hazards.

Loop Example:
LOOP:

addi $t0, $t0, -1

mul.s $f2, $f2, $f1 # Note loop-carried dependency through $f2

bne $t0, $0 LOOP

lwc1 $f1, 4($t1)

Runs on implementation illustrated earlier . . .

. . . with a full set of floating-point bypass paths added.

All bypass paths for integer instructions shown.

What is the CPI during the execution of this loop?

09­22 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­22

09­23 09­23Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: # First Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF ID -> EX ME WB

lwc1 $f1, 4($t1) IF -> ID EX ME WF

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: # Second Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID -> M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF -> ID EX ME WB

lwc1 $f1, 4($t1) IF ID EX ME WF

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cycle 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LOOP: # Third Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID ----> M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF ----> ID EX ME WB

lwc1 $f1, 4($t1) IF ID EX ME WF

Cycle 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Note: Each iteration above starts differently.

First, Cycle 0: IF, addi; ID, etc. pre-loop instructions.

Second, Cycle 5: IF, addi; ID, lwc1; EX, bne; M3, mul.s.

Third, Cycle 10: IF, addi; ID, lwc1; EX, bne; M2, mul.s. (Similar, but different.)

09­23 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­23

09­24 09­24

Cycle 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

LOOP: # Third Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID ----> M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF ----> ID EX ME WB

lwc1 $f1, 4($t1) IF ID EX ME WF

Cycle 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

LOOP: # Fourth Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID ----> M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF ----> ID EX ME WB

lwc1 $f1, 4($t1) IF ID EX ME WF

Cycle 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Third, Cycle 10: IF, addi; ID, lwc1; EX, bne; M2, mul.s.

Fourth, Cycle 16: IF, addi; ID, lwc1; EX, bne; M2, mul.s.

Since third and fourth start the same way, pattern will repeat.

CPI is
16 − 10

4
= 1.5.

09­24 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­24

09­25 09­25

Precise Exceptions

Problem is registers written out of order . . .

. . . so some registers must be unwritten . . .

. . . so that when handler starts . . .

. . . it must seem as though . . .

. . . all instructions before faulting instructions executed . . .

. . . while no instructions after faulting instruction execute.

mul.s f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 *M6* WF

add.s f1, f3, f4 IF ID A0 A1 A2 A3 WF

To do this either . . .

. . . add lots of stalls so instructions do finish in order . . .

. . . limit those instructions that can raise precise exceptions . . .

. . . or need to unexecute instructions.

The first option is fine for debugging, too slow otherwise.

The second option requires lots of hardware.

09­25 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­25

09­26 09­26Stalling to Maintain Precise Exceptions

Method 1: Stall so that instructions complete in order.

mul.s f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f1, f3, f4 IF ID ---------> A0 A1 A2 A3 WF

This works, (WF in program order) but reduces performance.

09­26 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­26

09­27 09­27

Method 2: Early Detection of Exceptions

FP unit raises exceptions early in computation . . .

. . . if computation passes that point, it will finish without exceptions.

For example, 26-cycle DIV unit may check operands by cycle 3 . . .

. . . if computation reaches cycle 4 there is no possibility of an exception.

Instructions only stall until preceding instruction checked for exceptions.

For example, suppose the FP multiply unit finds exceptions by end of M5.

Then at cycle 8 (below) addf can write (no chance of an exception in M6).

Cycle: 0 1 2 3 4 5 6 7 8 9

mul.s f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f1,f3,f4 IF ID -> A0 A1 A2 A3 WF

09­27 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­27

09­28 09­28

Method 3: Have precise and non-precise FP operations.

Let the names of imprecise instructions end in ip.

Second addf doesn’t stall since an exception in multfip need not be precise.

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.s f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f1,f3,f4 IF ID ---------> A0 A1 A2 A3 WF

mul.sip f5,f6,f7 IF ---------> ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f6,f8,f9 IF ID A0 A1 A2 A3 WF

09­28 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­28

09­29 09­29

Method 4: FP instructions precise when followed by special test instruction.

Call the special instruction testexc.

No stalls (and imprecise exceptions) where testexc not used.

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

mul.s IF ID M0 M1 M2 M3 M4 M5 M6 WF

testexc IF ID -----------------> EX MEM WF

add.s IF -----------------> ID A0 A1 A2 A3 WF

mul.s IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s IF ID A0 A1 A2 A3 WF

09­29 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­29

09­30 09­30

Unexecuting Instructions

An instruction is unexecuted . . .

. . . by restoring the previous contents of any register or memory location it wrote.

A system that un-executes can have precise exceptions . . .

. . . for FP operations which execute with few stalls.

Text describes several techniques for unexecution on statically scheduled systems . . .

. . . these not covered in course.

Unexecuting much easier on dynamically scheduled systems, covered soon.

09­30 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­30

09­31 09­31Performance of FP in the Chapter-3 DLX Implementation

Stalls per FP operation on SPEC 92 FP benchmarks.

Number of stalls

0.0 25.05.0 10.0 20.015.0

FP SPEC

benchmarks

doduc

ear

hydro2d

mdljdp

su2cor

0.6
18.6

1.6
1.5

0.7

0.0
24.5

2.9
1.2

2.1

0.0
0.4

3.2
2.5

2.3

0.0
12.4

2.5
2.0

1.6

2.0
15.4

3.7
1.7
1.7

Compares MultiplyAdd/subtract/convert

Divide structuralDivide

FIGURE 3.48 Stalls per FP operation for each major type of FP operation.

Running SPEC 92 benchmarks
on DLX compiled using old
version of gcc.

Uses perfect cache.

Value indicates stall cycles per
instruction type.

E.g., running doduc, there are
an average of 1.7 stall cycles
due to each compare.

Stall cycles are due to RAW
hazards except for divide struc-

tural bars.

09­31 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­31

09­32 09­32

Number of stalls determined by:

• latency of functional unit,

• characteristics of program, and

• quality of compiler.

Example:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.s f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f3,f0,f4 IF ID ---------------------> A0 A1 A2 A3 WF

Here, six stall cycles “charged” to mul.s.

Lower latency (better functional unit) would mean fewer stall cycles.

09­32 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­32

09­33 09­33

Example, better scheduling:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.s f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WF

c.gt.s f6,f7 IF ID A0 A1 A2 A3 WF

sub.d f8,f10,f12 IF ID A0 A1 A2 A3 WF

add.s f3,f0,f4 IF ID -------------> A0 A1 A2 A3 WF

Here mul.s charged with only four cycles because of gtf and subd.

The existence of such instructions depends on program characteristics.

Discovery and scheduling (arrangement) of such instructions depends on compiler.

09­33 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­33

09­34 09­34Performance of FP in the Chapter-3 DLX Implementation

Number of stalls

0.00 1.000.200.10 0.40 0.80 0.900.60 0.700.30 0.50

FP SPEC

benchmarks

doduc

ear

hydro2d

mdljdp

su2cor

0.01
0.01
0.02

0.61

0.00
0.03

0.10
0.88

0.00
0.04

0.22
0.54

0.00
0.07
0.09

0.52

0.08
0.08
0.07

0.98

FP compare stalls

FP structural

FP result stalls

Branch/load stalls

FIGURE 3.49 The stalls occurring for the DLX FP pipeline for the five FP SPEC
benchmarks.

Running SPEC 92 benchmarks
on DLX compiled using old
version of gcc.

Uses perfect cache.

Value indicates stalls per in-
struction by cause.

Stalls caused primarily by RAW
hazards.

09­34 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­34

09­35 09­35

Pipeline CPI

0.00

3.00

0.50

1.00

2.00

1.50

2.50

SPEC92 benchmark
co

m
pr

es
s

eq
nt

ot
t

es
pr

es
so gc

c li
do

du
c

ea
r

hy
dr

o2
d

m
dlj

dp
su

2c
or

Load stalls Branch stallsBase

FP structural stallsFP result stalls

Performance of MIPS R4000.

Running SPEC 92 benchmarks
on R4000.

In R4000:

Load latency is two cycles.

Uses perfect cache.

Branch penalty two cycles.

FP functional units partially
pipelined.

09­35 EE 4720 Lecture Transparency. Formatted 9:28, 14 March 2014 from lsli09. 09­35

