LSUEE 4720 Homework 4 sowtion Due: 24 March 2014

Problem 1: The following code fragments execute incorrectly on the following pipeline. For each
fragment describe the problem and correct the problem.

200 ID EX ME WB

Int Reg File

NPC~‘ ALU
Addr Data fFrsv | Mem
Addr Data frtv ALUE | Port
i | Addr
—JAddr mn | r|pataDatg {MD
v P e ot
@
[0

|| (Decode —{dst dst dst
dest. reg

IR
_— - _—
FP Reg File [WF
0
151} IAddr Data{fsv A 1
20:16 [Addr_Data}l] ftv M B

Addr
WE

DIn

—(uses FP mu% 4
—esPaad 1 oy, stal
~—(FPload

(a) Describe problem and fix problem.
lwcl £2, 0(rl) IF ID EX ME WF
add.s f1, f2, £3 IF ID A1 A2 A3 A4 WF

There is o dependence between the 1wcl and the add.s through £2 and so the add.s should have stalled.
correct execution appears below Tor 4 pipeline in whieh Dypass paths exist from WE into Al and M1.

SOLUTION 01 2 3 4 5 6 7 8 9
lwcl £2, 0(rl) IF ID EX ME WF
add.s f1, f2, £3 IF ID -> A1 A2 A3 A4 WF

http://www.ece.lsu.edu/ee4720/

(b) Describe problem and fix problem.

Cycle 01 2 3 4 5 6
add.s f1, f2, £3 IF ID A1 A2 A3 A4 WF
addi ri1, r1, 4 IF ID EX ME WB
lwcl £2, 0(rl) IF ID EX ME WF

There are two instructions in WF in QyQ\Q 6, which 18 '\mposs'\b\o. on this p'\p@\me. The solution is to stall 1wel b\/
one cyele, shown Delow.

SOLUTION 0 1 2 3 4 5 6
add.s f1, f2, £3 IF ID A1 A2 A3 A4 WF
addi ri1, ri1, 4 IF ID EX ME WB

lwcl £2, 0(rl) IF ID -> EX ME WF

Note that it the addi and the 1wcl ehanged places there would De no reason to stall. However the problem wasn't
a stall, the problem was that the hardware should have stalled and didn't, presumabty resulting in an incorrect value in
either £2 or £1. S0 swapping the two instruction doesn't Nx the problem it just works around (Q\IO'\GS) it.

(¢) Describe problem and fix problem.

add.d f1, f2, f£3 IF ID A1 A2 A3 A4 WF

The instruction above is & dOUD\@-pYQQ'\S'\Oﬂ add (T\OUQQ the .d at the Qﬂd). In MIPS-1 and other 32-bit RISC 1SAS
double precision instructions can only use even-numbered registers as operands. (EQQT\ 64-Dit operand is obtained from
Two registers, the even-numbared register and the next register, for Qxamp\ce, £10and £11.

Lets TIX this under the assumption that the programmer meant Lo use & double-precision add but used the wrong
registers. In that case make the odd registers even:

add.d f£10, f2, f4 IF ID A1 A2 A3 A4 WF

Problem 2: The code fragment below contains a MIPS floating-point comparison instruction and
branch. The pipeline illustrated below does not have a comparison unit, in this problem we will
add one. The comparison unit to be used has two stages, named C1 and C2. The output of C2 is
one bit, indicating if the comparison was true.

IF 5.0 290 ID EX ME WB
L Int Reg File
J % NPc1 B ALU
+1 2522 Yaddr Data | rsv |- Mem
f 20:16 Foddr pata b ov |- [AW | port
 Addr
PC —1A99" pin . | r|pataDatg{MD
- ————Hv Fln out

—
forma A

Addr
Mem (Decode
dst dst dst

dest. re

Port patd | rL \dest. reg/
Out
FP Reg File
1511 FAddr Datal{fsv __ iA__ll:
N _—
20:16 | Addr Datal{ ftv ;l:
Addr
WE DIn non - xw o
e
we we in wel —fq"¢ ij)__ we we we
(Decode) 1 fd fd '}7 wl_ " | K fd fd
dest. re - FL‘ - - - - _T
4 uses FP mu% H
Iz Iz
DW ID
“—{ FPload)

c.gt.d £2, f4
bclt TARG
add.d f£2, f2, £10

TARG: xor rl, r2, r3

(a) Add the comparison unit to the pipeline above. Also add a new register FCC (floating point
condition code) that is written by the comparison instruction and is used by the control logic to
determine if a floating-point branch is taken.

The FCC register should have a data and write-enable input, show the control logic generating
the write-enable signal. Show a cloud labeled “branch control logic” and connect it to appropriate
datapath components.

solution appears Delow in green. (TY\Q solution to part ¢ is in D\UQ.)

The comparison units were added to the two stages before WE. The write enable signal enters the pipeline in M4,
using o dedicated laten segment named fw. The fw signal is set by logic in the ID stage detecting instructions that write
the FCC regjster, including c. (TT\Q c instruction cannot use the we signal used by other FP instructions beeause that is
meant for the FP register ﬂ\Q.)

The new FCC register is snown in the ID stage, with its output connected to & new branen control logic cloud. The
OUTput of That cloud connects to the PC mux.

Notice that there is no stall logic for the ¢ instruction. That was not asked for in This prob\em, and it would not be
needed it only five-stage instructions could write FCC.

: ME
IF 7290 ID EX WB
L Int Reg File
k NPQ |NPC1 B ALU
- 25:21
+1 Addr Datafrsv b Mem
202° Yaddr_Datd v | || ALUH | Port
- 4 Addr
T DataDatgfMD
PC ———— v P ou]
IIOII IMM
30 2
Addr
Mem dst dst dst
Port patd | | rI ‘
out WF
| FP Reg File lc1
. 0
Y s | B 1 5= :
Branch)]
logic A |
Addr [fw fw fw
WE Din wo
Jk < Y XW
FCC we wel— 1) > wel =) w we
—1°" b (DecodeY N a « fd . 4 d K
e \dest. reg ‘ - FL‘ - - - L W
—(uses FP mu% 4
1=, =
G : e
DW 1D
—(FP load)
4 writes fcc }

(b) Show the execution of the code sample above on your modified hardware, but without any
bypass paths for the added hardware.
solution appears Delow. Note that the bclt instruction must wait in ID until the ¢ instruction reaches WF.

SOLUTION 01 2 3 4 5 6 7 8 9 10
c.gt.d £f2, f4 IF ID C1 C2 WF

bclt TARG IF ID ----> EX ME WB

add.d f£f2, f2, f10 IF --—-> ID A1 A2 A3 A4 WF
TARG: xor rl, r2, r3 IF ID EX ME WB

(¢) Add whatever bypass paths are needed so that the code executes with as few stalls as possible
but without having a major impact on clock frequency. Assume that C2 produces a result in about
80% of the clock period.

The added byp&SS p&ﬂ\ are in SKy blue on the d'\ggr&m apove. (Th@ path goes from the OUIpUI of C2 10 the
bf&ﬂ@h-QOﬁUO\-\Og\Q Q\OUG.) With this byP&SS p&ﬂ’\ one fewer stall is needed. That execution is shown below.

SOLUTION 01 2 3 4 5 6 7 8 9
c.gt.d £2, f4 IF ID C1 C2 WF

bclt TARG IF ID -> EX ME WB

add.d f£2, f2, f10 IF -> ID Al A2 A3 A4 WF
TARG: xor rl, r2, r3 IF ID EX ME WB

Source files for the diagram are at:
http://www.ece.lsu.edu/eed720/2014/mpipeifp.eps,
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.svy.
The svg file can be edited using Inkscape.

http://www.ece.lsu.edu/ee4720/2014/mpipeifp.eps
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.svg

