
LSU EE 4720 Homework 4 Due: 24 March 2014

Problem 1: The following code fragments execute incorrectly on the following pipeline. For each
fragment describe the problem and correct the problem.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

(a) Describe problem and fix problem.

lwc1 f2, 0(r1) IF ID EX ME WF

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

(b) Describe problem and fix problem.

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

addi r1, r1, 4 IF ID EX ME WB

lwc1 f2, 0(r1) IF ID EX ME WF

(c) Describe problem and fix problem.

add.d f1, f2, f3 IF ID A1 A2 A3 A4 WF

1

http://www.ece.lsu.edu/ee4720/


Problem 2: The code fragment below contains a MIPS floating-point comparison instruction and
branch. The pipeline illustrated below does not have a comparison unit, in this problem we will
add one. The comparison unit to be used has two stages, named C1 and C2. The output of C2 is
one bit, indicating if the comparison was true.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

c.gt.d f2, f4

bc1t TARG

add.d f2, f2, f10

...

TARG: xor r1, r2, r3

(a) Add the comparison unit to the pipeline above. Also add a new register FCC (floating point
condition code) that is written by the comparison instruction and is used by the control logic to
determine if a floating-point branch is taken.

2



The FCC register should have a data and write-enable input, show the control logic generating
the write-enable signal. Show a cloud labeled “branch control logic” and connect it to appropriate
datapath components.

(b) Show the execution of the code sample above on your modified hardware, but without any
bypass paths for the added hardware.

(c) Add whatever bypass paths are needed so that the code executes with as few stalls as possible
but without having a major impact on clock frequency. Assume that C2 produces a result in about
80% of the clock period.

Source files for the diagram are at:
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.eps,
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.svg. The svg file can be edited using Inkscape.

3

http://www.ece.lsu.edu/ee4720/2014/mpipeifp.eps
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.svg

