
LSU EE 4720 Homework 1 Solution Due: 10 February 2014

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same
cycle.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

lw r1, -6(r3)

lw r5, -2(r3)

LOOP:

add r5, r5, r1

lw r1, 2(r3)

bne r3, r4, LOOP

addi r3, r3, 4

jr r31

sw r5, 0(r6)

Solution on next page.

1

https://www.ece.lsu.edu/ee4720/


(a) Show the execution of the code above on the illustrated implementation up to and including the
first instruction of the third iteration (that is, the third time that the add instructions is fetched).

• Carefully check the code for dependencies.

• Be sure to stall when necessary.

• Pay careful attention to the timing of the fetch of the branch target.

Solution appears below.

lw r1, -6(r3) IF ID EX ME WB

lw r5, -2(r3) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID ----> EX ME WB

lw r1, 2(r3) IF ----> ID EX ME WB

bne r3, r4, LOOP IF ID EX ME WB

addi r3, r3, 4 IF ID EX ME WB

jr r31 IF IDx

sw r5, 0(r6) IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID EX ME WB

lw r1, 2(r3) IF ID EX ME WB

bne r3, r4, LOOP IF ID EX ME WB

addi r3, r3, 4 IF ID EX ME WB

jr r31 IF IDx

sw r5, 0(r6) IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID ..

(b) Compute the CPI for a large number of iterations.

Recall that we define an iteration to start when the first instruction is in IF. In the execution above the first

iteration starts in cycle 2 and the second iteration starts in cycle 10, and the third starts in cycle 16.

Notice that the first and second iterations are different: in the first there is a stall, in the second there isn’t a stall.

The first iteration takes 10 − 2 = 8 cycles and the second takes 16 − 10 = 6 cycles.

To compute the CPI for a large number of iterations we need a repeating pattern. The stalls in the first iteration

are caused by instructions before the loop, they won’t affect subsequent iterations. Even so, how can we be sure that the

third and subsequent iterations will be like the second? By looking at the state of the pipeline when the first instruction

in the loop is fetched. For the first iteration the state is add in IF, lw r5 in ID and lw r1 in EX. In the second

iteration we have add in IF, addi in ME and bneq in WB. The third iteration starts exactly the same way as the second.

Therefore the third will look like the second, and by induction all future iterations. So we can use 6 cycles as the iteration

time.

The CPI is then
6 cyc
4 insn = 1.5 CPI.

2



Problem 2: Appearing below are incorrect executions on the illustrated implementation. For
each one explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until

the lw reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

There is no need for a stall because the lw writes r1, it does not read r1.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(c) Explain error and show correct execution.

3



LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct.

But, the stall starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1,

or for that matter that it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

4


	Problem 1
	Part char 97
	Part char 98

	Problem 2
	Part char 97
	Part char 98
	Part char 99
	Part char 100


