Name

Computer Architecture

EE4720

Final Examination

10 May 2014, 10:00-12:00 CDT

Problem 1 (15 pts)
Problem 2 (15 pts)
Problem 3 (15 pts)
Problem 4 (15 pts)
Problem 5 (5 pts)

Problem 6 (10 pts)
Problem 7 (25 pts)

Alias Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (15 pts) Illustrated below is the stall-in-ME version of our MIPS implementation, taken from
the solution to the midterm exam.

ID EX ME WB
m ALU

25:21

Addr Dataj+{ rsv
20:16 Addr Dataj—{ rtv
—Addr DIn

150 /Tormat™ M
Named /

wl
Addr] fd
Mem (Decode) dst
dest. re
Port \dest. reg)
Data
-_— |R | |
Out
FP Reg File
1511 IAddr DatapH fsv
2928 faddr Datalt] ftv
Addr
WE D In

Decode) | | —{ fd
dest. re f

uses FP mul

FP load

(a) Show a pipeline execution diagram of the code below on this pipeline.

(b) Wires in the diagram are labeled A, B, C, and D. Under your pipeline execution diagram show the values
on those wires when they are in use.

D Show pipeline execution diagram. I:] Show values of A, B, C, and D.
add.s f4,f5,f6

sub.s f£7,£f8,f9
lwcl £1, 0(r2)

A:

Problem 2: (15 pts) Illustrated below is a 2-way superscalar MIPS implementation. Design the hardware
described below. You can use the following logic blocks (with appropriate inputs) in your solution: The

output of logic block is 1 if the instruction’s result is computed by the integer ALU. The output of

logic block is 1 if the instruction uses the rt register as a source. The output of logic block
is 1 if the instruction is a store.

ID EX ME WB

Register File alu®
Addr Data [—{rsv® I Mem
Addr Data [—{ rtv® |— 7: alu®H Port
221 addr Data [—{rsv? T[Addr
. M= OI
P 20:16 |] 1 D Datal dmg
E C | Addr Data rtv 0 In out
1
S £ 5 £ L, alu
<o 2o i Mem
— H1
L — i autll | Port
Addr 130 Immed imm?© ,; L Addr
E’Iem 150 Immed imm? == rtvl :::] DSE?: || mdl
. 0 —_—
Ort Data 34—[Irl {Dest. reg) dStO dStO dsto =
Out ir {Dest. reg) dst! dst! dst?

(a) Design logic to generate a signal named STALL, which should be 1 when there is a true (also called data
or flow) dependence between the two instructions in ID.

[] Control logic to detect true dependence in ID and assign STALL.

(b) The code fragment below should generate a stall in our two-way superscalar implementation when the
two instructions are in the same fetch group. However this particular instruction pair is a special case in
which the stall is not necessary when the right bypass path(s) and control logic are provided. Note: There
was a similar-sounding problem in last year’s final, but the solutions are different.

1000: add ri1, r2, r3
1004: sw r1, 0(r5)

[] Add the bypass path(s) needed so that the code executes without a stall.
D Add control logic to detect this special case and use it to suppress the stall signal from the first part.

3

Problem 3: (15 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 23° entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(@) Branch behavior is shown below. Notice that B2’s outcomes come in groups of three, such as 3 gs. The
first outcome of each group is random and is modeled by a Bernoulli random variable with p = .5 (taken
probability is .5). The second and third outcomes are the same as the first. For example, if the first q is T
the second and third q will also be T. If the first s is N, the second and third s will also be N. Answer each
question below, the answers should be for predictors that have already warmed up.

Bi: T T T N N T T T N N
B2: r r r q q q s s s u
B3: T T T T T T T T T T

[] What is the accuracy of the bimodal predictor on branch B1?

D What is the approximate accuracy of the bimodal predictor on branch B27 D Explain.

D What is the minimum local history size needed to predict B1 with 100% accuracy?

D What is the accuracy of the local predictor on branch B2, after warmup. E] Explain.

D What is the best local history size for branch B2, taking warmup into consideration. E] Explain.

D How many different GHR values will there be when predicting B37

Problem 3, continued:

In this part consider the same predictors as on the previous page, except this time the BHT has 24 entries.
Also, consider the same branch patterns, they are repeated below, along with the address of branches B1
and B2. The branch predictors are part of a MIPS implementation.

0x1234: B1: T T T N N T T T N N
0x1242: B2: r r r q q q s s s u
B3: T T T T T T T T T T

(b) Choose an address for branch B3 that will result in a BHT collision with branch B1.

D Address for B3 that results in a collision.

(¢) How does the collision change the prediction accuracy of the bimodal predictor on the two branches?

D Change in B1 and E] Change in B3.

(d) (The answer to the following question does not depend on the sample branch patterns above.) Suppose
we detect a BHT collision (perhaps by using tags). Why should we predict not taken?

D Reason for predicting not-taken for a collision.

Problem 4: (15 pts) The diagram below is for a 256 kiB (2!® B) set-associative cache. Hints about the
cache are provided in the diagram.

(a) Answer the following, formulee are fine as long as they consist of grade-time constants.

D Fill in the blanks in the diagram.

CPU
Data In (

Addr
?D logic

Tag O] Tag O]
Addr Addr
Data | a9 Data | . Tag
-6 Out Out
"Valid "Valid
Data Data
Addr Addr
Data Data
Out Out

D Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address: ’ ‘
31 0

D Associativity:

[] Memory Needed to Implement (Indicate Unit!!):

[] Line Size (Indicate Unit!!):

[] Show the bit categorization for a fully associative cache with the same capacity and line size.

Address: ’

Problem 4, continued: The problems on this page are not based on the cache from the previous page.

The code in the problems below run on a 4 MiB (222 byte) 4-way set-associative cache with a line size of 128
bytes.

Each code fragment starts with the cache empty; consider only accesses to the arrays.
(b) Find the hit ratio executing the code below.

double sum = O0;

double *a = 0x2000000; // sizeof(double) ==
int 1i;

int ILIMIT = 1 << 11; // = 21

for (i=0; i<ILIMIT; i++) sum += al[i];

D What is the hit ratio running the code above? Show formula and briefly justify.

(¢) Find the largest value for BSIZE for which the second for loop will enjoy a 100% hit ratio.

struct Some_Struct {
double val; // sizeof (double) = 8
double norm_val;

double al[14];

};

const int BSIZE = ; // <= FILL IN
Some_Struct *b;

for (int i = 0; i < BSIZE; i++) sum += b[i].val;

for (int i = 0; i < BSIZE; i++) b[i].norm_val = b[i].val / sum;

Problem 5: (5 pts) The displacement in MIPS branches is 16 bits. Consider a new MIPS branch instruction,
bfeq rsn, rtn (branch far), where rsn and rtn are 2-bit fields that refer to registers 4-7. As with beq,
branch bfeq is taken if the contents of registers rsn and rtn are equal. With six extra bits bfeq can branch
64 times as far.

(a) Show an encoding for this instruction which requires as few changes to existing hardware as possible.

D Encoding for bfeq. D Explain how minimizes changes.

(b) Modify the pipeline below to implement the new instruction. Use as little hardware as possible.

D Briefly show changes.

ID EX ME WB

—) NPC mit ALU
25:21 l |
+1 Addr Dataf+{rsv Mem
A 2016 Iaddr Datal{rvl |1 ALUL | Port
—— - Addr
Addr Din - D ol wo
> PC Hrtv{in out

2'60 15;0(format
301 12 immed IMM =
msb Isb

Addr
Mem (Decode\
dst dst dst |+
Port pata| | o || | dest. reg)
Out

Problem 6: (10 pts) Illustrated below is a dynamically scheduled four-way superscalar MIPS implementa-
tion and the execution of code on that implementation.

___‘IIIHI’_stQ — O D) (CEXD
g v Instr. Queue Op, GS1PR, ROB#
8 IDR i
e T eg. Map Physical
\NPC] . Register File
S 2521 Addr Data |_(SPR_ TR rsval
a : r Dataff———o
ID:dst % 20164 pddr Data PR rval
dest. reg o - ID:dst T Addr Dataf———
o .
:g.»('jS‘PHb Din _ Addr
v incmb § 0 o ¢ DIn
-PC OO0 O O
C%aaz T E (WB)
PC ST
v 5| & 3&foroB#
Adar = tail
a Addr ha!VB:ROB # —
ll\D/Iem 3 :WB:C X 8
ort Data IR — § § Common Data Bus (CDB)
— i
C:dstPR DIn Data
Addr
C Reg. Map
LOOP: # Cycle 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwcl £2, 0(rl) IF ID Q RR EA ME WB

add.s f4, f4, f2 IF ID Q RR Al A2 A3 A4 WB
bne rl, r2, LOOP IF ID Q RR B WB
Q
2

addi ri, ri, 4 IF ID RR EX WB
LOOP: # 0 1 3 4 5 6 7 8 9 10 11 12 13 14
lwcl £2, 0(rl) IF ID Q RR EA ME WB
add.s f4, f4, £2 IF ID Q RR Al A2 A3 A4 WB
bne ri, r2, LOOP IFIDQ RRB WUB
addi ri, ri, 4 IF ID Q RR EX WB
Cycle 0 1 2 3 4 5 6 7 8 9 1011 12 13 14

(a) On the diagram above indicate when each instruction will commit.

D Show commits on diagram above.

(b) What is the execution rate, IPC, for the code above for a large number of iterations assuming perfect
branch prediction. Note that the system is dynamically scheduled.

[] IPC for code above for large number of iterations.

(¢) On the next page there is a table showing the values of selected signals during the execution of the code,
the signals are related to register renaming. Show values where indicated on the table. Note that ID:incmb
is already shown in cycle 1, show its values for later cycle(s).

9

= Instr. Queue
”: Zn‘) { Op, dstPR, ROB#
- _ 2 l _I ID Reg. Map Physical
I INPC] 25:01 'sPR Register File
9 Addr Daa ="~ Addr Data Y3
Decode \D:dst | & 20:16 Addr Data Val
3 st}) 1o Addr Data |2
o DdstPR Y Addr
ll * ID:incmb D Out 4D In
v
AR — W)
v 5 QF' 2 2foroB®
Addr 5 tail
a WB:ROB # b
Ve fecl | |3
Port Data IR — § (wB) g Common Data Bus (CDB)
o
— C:incmb
C:dstPR DIn Data
C Reg. Map
D Show values where indicated.
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
lwel £2, 0(rl) IF ID @ RR EA ME WB
add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB
bne rl, r2, LOOP IF ID Q RR B WB
addi ri, ri, 4 IF ID Q RR EX WB
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
lwcl £2, 0(rl) IF ID Q RR EA ME VB
add.s f4, f4, f2 IF ID Q RR Al A2 A3 A4 VB
bne ri1, r2, LOOP IF ID Q@ RR B WB
addi ri, ri, 4 IF ID Q RR EX WB
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID:dstPR O (lwcil) 65 62
ID:dstPR 1 (add.s) 97 69
ID:dstPR 3 (addi) 60 79
Show values for signals below, including incmb.
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID:incmb 0 (lwcl) 83
ID:incmb 1 (add.s) 20
ID:incmb 3 (addi) 67
ID:rsPR 0 (lwcl)
ID:rsPR 1 (add.s)
ID:rsPR 3 (addi)
ID:rtPR 1 (add.s) <- rt, not rs
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
WB:dstPR 0 (lwcil)
WB:dstPR 1 (add.s)
WB:dstPR 3 (addi)
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

=

)

oy

10

Problem 7: (25 pts) Answer each question below.

(a) Describe how cost and performance limit the practical largest value of width (value of n) in an n-way
superscalar implementation.

D Cost limiter.

D Performance limiter.

(b) What is the most important factor in determining the size of a level 1 cache?

[] Most important factor in L1 cache size.

11

(¢) Suppose the 16-bit offset in MIPS 1w instructions was not large enough. Consider two alternatives. In
alternative 1 the offset in the existing 1w instruction is the immediate value times 4. So, for example, to
encode instruction 1w r1, 32(r2) the immediate would be 8. In alternative 2 the behavior of the existing
1w is not changed but there is a new load 1ws r1, 32(r2), in which the immediate is multiplied by 4. Note
that alternative 2 requires a new opcode. Which instruction should be added to a future version of MIPS?

[] Should choose alternative 1 or alternative 2? | | Explain.

(d) The SPECcpu suite comes with the source code for the benchmark programs. How does that help with
the goal of measuring new ISAs and implementations?

D Source code helps with testing new implementations because:

(e) What’s the difference between a 4-way superscalar implementation (of say MIPS) and a VLIW system
with a 4-slot bundle?

D Difference between superscalar and VLIW.

12

