
LSU EE 4720 Homework 4 Solution Due: 8 March 2013

Problem 1: Recall that the MIPS-I mult instruction reads two integer registers and writes the
product into registers hi and lo. To use the product the values of lo and hi (if needed) have to
be moved to integer registers, done using a move from instruction such as mflo. In this problem
these instructions will be added to the implementation below.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dstdest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

hi

lo

Y1 Y2

63:32

31:0

Solution to Problem 1(d)

Solution to Problem 1 (a) and (b)

Y3

Solution to Problem 2(a)

31:0

Pipeline latch

is optional.

format

immed ihl

Consider an integer multiply unit that consists of two stages, Y1 and Y2. The inputs to Y1 are
the 32-bit multiplier and multiplicand, and the output of Y2 is the 64-bit product. Unit Y1 has
three 32-bit outputs named s0, s1, and s2; unit Y2 has 3 32-bit inputs of the same name. As one
would guess, the data from the s0 output of Y1 should be sent to the s0 input to Y2, likewise for
s1 and s2.

As with other functional units, such as the ALU, inputs to Y1 and Y2 must be stable near the
beginning of the clock cycle and the outputs must be stable near the end of the clock cycle. There
is enough time to put a multiplexer before the inputs, or after the outputs (but not both).

Solve the two parts below together. That is, the hardware for part (a) might take advantage
of the hardware for part (b) and vice versa.

(a) Add the datapath hardware needed to implement the mtlo, mthi, mflo, and mfhi instructions.
Both the ALU and the integer multiply unit have an operation to pass either input to its output
unchanged. That is, let x denote the ALU output and let a and b its inputs. In addition to
operations like x = a+ b and x = a&b, the ALU can also perform a pass-a operation, that is, x = a

and a pass-b operation, x = b. The integer multiply unit also has pass-a and pass-b operations.

• Put the hi and lo registers in the ID stage.

1

http://www.ece.lsu.edu/ee4720/

• Do not write the hi and lo registers earlier than the ME stage.

• As always, cost is a criteria.

• Bypass paths will be added in the parts below.

Solution appears in blue above. The mflo and mfhi instructions, using a new ID-stage multiplexor, route the hi
or lo value to the existing (though renamed) ID/EX.ihl pipeline latch, where it can easily take a path through the
ALU (using a pass b operation) and continue on to write back the integer register file.

The mtlo and mthi use the ordinary multiply unit inputs (see the next problem), but the multiply unit uses a
pass a (since the register is in the rs field). The multiply unit would need to have two versions of pass a, once to pass
to the lower 32 bits of its output, and one to pass to the upper 32 bits. The control logic would also have to enable the
appropriate register (lo or hi).

(b) Add the datapath hardware needed to implement the mult instruction. That is, put the Y1 and
Y2 units in the appropriate stages, and connect them to the appropriate pipeline latch registers
(adding new ones where necessary).

• Don’t add new bypass paths, but take advantage of what is available.

Solution appears in blue, where Y1 is placed in EX and Y2 in ME. Notice that the multiply unit takes advantage of
the multiplexors at the ALU’s inputs. Also notice that the writeback occurs in the WB stage, but that the outputs connect
directly to the hi and lo registers.

Because the output of the multiply unit is written to a fixed register pair the data can arrive at those registers, hi
and lo, close to the end of the cycle. This is different to the writeback of the integer (general-purpose) register file, where
one of 31 registers might be written and bypassing might also be performed and so more time is needed. For that reason,
it might be possible to write back hi and lo in the ME stage, and such an answer did not loose points.

(c) Show the execution of the code below on your hardware so far. That is, your hardware should
not have any new bypass paths, but existing bypass paths in the implementation can be used.

Solution appears below. Notice that there is a dependence between sub and mult, but that it can be handled by
the bypass paths shared with the ALU and so the mult instruction does not stall. There is also a dependence between
the mult and the mflo. Since there are no bypass paths for that, the mflo must stall two cycles.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9

sub r2, r6, r7 IF ID EX ME WB

mult r1, r2 IF ID Y1 Y2 WB

mflo r3 IF ID ----> EX ME WB

add r4, r3, r5 IF ----> ID EX ME WB

2

(d) Add bypass paths so that the code below (which is the same as in the previous part) can execute
without a stall. Assume that an additional multiplexer delay is tolerable.

A bypass path has been added from WB to ME, the appears in green in the diagram. Notice that this bypass path
leads to another bypass path, and so the add instruction receives the correct value of r4.

Grading Note: Some solutions had a bypass from WB to EX. Such a bypass would be from

the mult instruction to the add, which are not directly dependent. To be completely correct such

solutions would have to explain how the control logic can detect such a bypassing opportunity.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9

sub r2, r6, r7 IF ID EX ME WB

mult r1, r2 IF ID Y1 Y2 WB

mflo r3 IF ID EX ME WB

add r4, r3, r5 IF ID EX ME WB

Problem 2: Continue to consider the implementation of the MIPS-I mult instruction. If MIPS
designers thought that an integer multiply unit could be built with two stages they might not have
used special registers, hi and lo, for the product.

(a) Show how the pipeline would look if the multiply unit had three stages, Y1, Y2, and Y3. There
is no need to add bypass paths for this part.

Solution appears in orange where a Y3 stage has been added in WB and a fifth pipeline latch has been added.
Because the multiply unit writes a fixed register (as opposed to the register file) the timing constraints for the writes are
less severe and so the added pipeline latch might not be necessary. If would be necessary if the physical distance between
the multiplier output and the ID stage were large.

(b) Explain why there is much less of a need for the hi and lo registers with a two-stage multiply
unit (the first problem) than with a three-stage unit (this problem).

One reason for having special hi and lo registers is to avoid the structural hazard during writeback. Consider the
example below for the three-stage multiply unit, in which WY indicates the stage in which mult writes back. Both the
mult and add instruction writeback in cycle 5. But because mult is writing back into its special registers there is no
conflict. If mult wrote to the general-purpose registers there would have to be two write ports on the GPR file, which
would be more costly than having the two special registers.

With a two-stage multiply unit, the multiply instruction can write back at the same time as other instructions, so
there would not be a need for a second write port. There is still the problem of the multiply writing back 64 bits. The
expensive solution is to widen the write port to 64 bits (and perhaps write a pair of registers, as is done for floating point).
Another possibility is to have just one special register, for the high 32 bits.

SOLUTION: Code execution for the three-stage multiply unit.

Cycle 0 1 2 3 4 5

mult r1, r2 IF ID EX ME Y3 WY

add r4, r5, r6 IF ID EX ME WB

3

