
Name Solution

Computer Architecture

EE 4720

Final Examination

8 May 2012, 12:30–14:30 CDT

Alias Click Here

Problem 1 (15 pts)

Problem 2 (10 pts)

Problem 3 (10 pts)

Problem 4 (20 pts)

Problem 5 (15 pts)

Problem 6 (30 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (15 pts) Consider the following method for implementing the MIPS32 integer multiply in-
struction mul (the one that writes ordinary registers, not to be confused with mult) on the implementation
below. The full set of stages M1 to M6 perform floating point multiply, but stages M2 to M4 perform integer
multiplication. The integer multiply mul will read and write registers from the integer register file but will
use M2 to M4 to perform the multiplication. A sample execution appears below. Grading Note: In the original

exam there was an ID-stage stall in cycle 6, implying that there was no WB to EX bypass for the mul.

Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

mul r4, r1, r5 IF ID M2 M3 M4 WB

xor r9, r10, r11 IF ID -> EX ME WB

sub r6, r4, r7 IF -> ID EX ME WB

USE NEXT PAGE FOR SOLUTION

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

USE NEXT PAGE FOR SOLUTION

CONTINUED ON NEXT PAGE

2

(a) Modify the implementation below so that mul uses M2 to M4. Provide any necessary bypass paths so that
the code above executes as shown. For this part do not consider control logic. Hint: Pay attention to source

and destination registers.

�Non-control logic modifications for integer mul.

format
immed

IR

Addr25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data

In

Mem
Port

Data

Outrtv

ALU

MD

dst dst dst

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

dst
im im im im

= 0
Stall, WB structural hazard.

='

decode dest reg

uses int mul ='

='

='

25:21

20:16

rs

rt

rt

rs

Stall, M2 structural hazard.

Stall,

depend.

Solution appears in blue above. Connections for the integer multiply source values have been added from the ALU inputs to the
inputs of M2. A connection for the result value has been added from the M4/M5 pipeline latch to the WB-stage multiplexor. A new
pipeline latch has been added to hold the destination register number (dst), creating a sixth stage in the integer pipeline which is
only used by the integer multiply instruction. A new mux selects the destination register in the fifth or sixth stage.

Starting the source value connection at the output of the ALU multiplexor provides access not just to the rsv and rtv values, but
also to values bypassed from ME and WB. In this solution source values must pass through two multiplexors before reaching M2. A
higher-cost, but potentially faster, solution would take the source values from EX.rsv and EX.rtv, but the M2 multiplexors would
need additional inputs for bypassed values. Either solution would get full credit.

3

The destination value is taken from the output of the M4/M5 pipeline, where it will be available at the beginning of the cycle, to
give sufficient time for the register to write back the value. Credit was deducted for solutions that took the value directly from the
output of M4 to the WB multiplexor, because this would likely increase the critical path length and so lower clock frequency.

(b) Add control logic related to this implementation of mul to detect the structural hazard on M2 and on WB.
Also add control logic needed for a data dependence between mul and an immediately following instruction.

All those signals should connect to the existing Stall ID signal and use a new uses int mul logic block.

�Control logic for WB structural hazard, � M2 structural hazard, � and the data dependence.

The control logic for the structural hazards appears in maroon and the control logic for the dependence appears in green.

A stall for the WB structural hazard is generated when there is an integer multiply instruction in EX and there is an instruction in
ID, except integer multiply, that needs to write back an integer register (in which case the destination register would be nonzero).
See the logic generating the signal labeled Stall, WB structural hazard. Such a stall occurs in cycle 2 in Example S1 below.

The stall for the M2 structural hazard is generated when there is an integer multiply in ID and a floating-point multiply in M1, this
is detected with the AND gate whose output is labeled Stall, M2 structural hazard. See cycle 2 in Example S2 below.

SOLUTION -- Example S1, for the WB structural hazard.

Cycle 0 1 2 3 4 5 6

mul r1, r2, r3 IF ID M2 M3 M4 WB

add r4, r5, r6 IF ID -> EX ME WB

SOLUTION -- Example S2, for the M2 structural hazard.

Cycle 0 1 2 3 4 5 6 7 8

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5 M6 WF

mul r1, r2, r3 IF ID -> M2 M3 M4 WB

The dependence control logic, shown in green, checks whether the source register numbers of the instruction in ID matches the
destination register numbers of the instructions in EX and ME, and the instruction is an integer multiply. The logic ignores the
ME-stage destination register if there is already a dependence with the EX-stage destination register (because of the WB structural
hazard this particular situation can’t happen for the mul but might occur for instructions that write back normally).

In example D1 below the add stalls two cycles due to a dependence with the integer mul. In cycle 2 the rs register of the instruction
in ID, the add, matches the destination of the instruction in EX, the mul, and so there is a stall. (For the mul, EX and M2 are
the same stages.) In cycle 3 the add is still in ID but the mul has moved to ME (equivalent to M3). The logic again detects the
dependence and so there is another stall.

Notice that in cycle 2 there are two reasons for the stall, the dependence discussed immediately above, but also the WB structural
hazard. If the WB structural hazard stall always occurred when a mul instruction were in EX then there would be no reason to check
for a dependence with the EX-stage instruction. But the WB structural hazard stall is not generated if the instruction in ID does not
write a register, and for those cases the EX stage must be checked for a dependence. See example D2.

In example D2 the add is replaced by a sw. The stall in cycle 2 is due only to the dependence through register r1, there is no
structural hazard. The stall in cycle 3 is also due to the dependence.

SOLUTION - Example D1, mul dependence with next instruction.

Cycle 0 1 2 3 4 5 6 7

mul r1, r2, r3 IF ID M2 M3 M4 WB

add r3, r1, r4 IF ID ----> EX ME WB

SOLUTION - Example D2, mul dependence with next instruction.

Cycle 0 1 2 3 4 5 6 7

mul r1, r2, r3 IF ID M2 M3 M4 WB

sw r1, 0(r4) IF ID ----> EX ME WB

4

format
immed

IR

Addr25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data

In

Mem
Port

Data

Out
rtv

ALU

MD

dst dst dst

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

dst
im im im im

= 0
Stall, WB structural hazard.

='

decode dest reg

uses int mul ='

='

='

25:21

20:16

rs

rt

rt

rs

Stall, M2 structural hazard.

Stall,

depend.

5

Problem 2: (10 pts) Show the execution of the instructions below on the illustrated implementation. Add
any needed datapath and reasonable bypass paths.

Bypass

from

mul

to swc1

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data

In

Mem
Port

Data

Out
rtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

�Show execution. �Add datapath and reasonable bypass paths. �Double-check for dependencies.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add.s f2, f4, f6 IF ID A1 A2 A3 A4 WF

sub.s f8, f10, f12 IF ID A1 A2 A3 A4 WF

add r1, r2, r3 IF ID EX ME WB

mul.s f14, f2, f8 IF ID ----> M1 M2 M3 M4 M5 M6 WF

swc1 f14, 0(r1) IF ----> ID -------------> ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

The added bypass appears above in blue. A bypass path from WF to M1 (and A1 too) has been added for the sub.s to mul.s
dependence. For the given code example only the lower multiplexor is needed since the dependence is through the second source
operand of mul.s (through the ft field, set to f8 in the example).

For the mul.s to swc1 dependence a bypass path has been added from the end of M6 to EX. A lower-performance option would be
to bypass from WF to ME, this is lower performance under the assumption that the memory ports are always on the critical path and
so inserting a multiplexor between ME.rtv and the memory port Data In connection would lower the clock frequency.

Grading Note: Many solutions had the add instruction stall until after the sub.d wrote back.

7

Problem 3: (10 pts) The code fragments below execute on several different MIPS implementations. In all
cases the loop iterates many times. A five-stage scalar system is shown for reference.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Show the execution of the code below on our familiar scalar pipeline, above. Show enough iterations to
compute the CPI, and compute the CPI.

�Execution for enough iterations to determine CPI.

See solution below. The first iteration starts in cycle 1 (by definition, when the first instruction of the loop body is in IF), the second
iteration starts in cycle 8, and the third in cycle 14. We know we have enough iterations when the state of the pipeline is identical
at the start of two consecutive iterations; we can use one of those iterations to compute CPI. The second and third iterations start
identically: with lw in IF, add in ID, and bne in EX. So we know that the third iteration (for which only the lw is shown) will be
identical to the second and so there is no need to show any more.

�Find the CPI.

�Doublecheck for dependencies.

�Note that the first instruction in not part of the loop body.

The second iteration is 14− 8 = 6 cycles, and contains 4 instructions, and so the CPI is 6/4 = 1.5.

SOLUTION

lw r2, 0(r10) IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) IF ID -> EX ME WB

addi r2, r2, 4 IF -> ID EX ME WB

bne r2, r4 LOOP IF ID ----> EX ME WB

add r5, r5, r1 IF ----> ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

bne r2, r4 LOOP IF ID ----> EX ME WB

add r5, r5, r1 IF ----> ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) IF ID EX ME WB

8

Problem 3, continued:

(b) Show the execution of the code below on a 4-way superscalar statically scheduled system without branch
prediction. The superscalar system has five stages, aligned fetch, and can bypass between the same stages
as can our scalar system. This means there are no bypass paths to the branch condition. Compute the CPI.

�Execution for enough iterations to determine CPI.

Solution appears below. None of the instructions stall in the first iteration, but in the second iteration the branch stalls due to a
dependency with addi (remember that there are no bypass paths to the branch condition hardware).

Note that because fetch is aligned and because the first instruction of the loop body (add) has an aligned address (the address is a
multiple of 16 [superscalar width of 4 times instruction size of 4 bytes]), all four instructions of the loop body are fetched at the same
time.

�Find the CPI.

�The code below is different than the previous part.

�Doublecheck for dependencies.

�Note that first instruction not part of loop body.

The CPI is (9− 6)/4 = 0.75 or 4

3
IPC, less than half the 4 IPC potential of the hardware.

SOLUTION

addi r1, r0, 0 IF ID EX ME WB

Note: Address of insn below is 0x1000

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

bne r2, r4 LOOP IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

IFx

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IF ->x

add r5, r5, r1 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IF ->x

add r5, r5, r1 IF ID EX ME WB

9

(c) Show the execution of the code below on a four-way superscalar system with perfect branch prediction.

�Execution for enough iterations to determine CPI.

Because there is a branch predictor the branch does not need to be resolved in ID. Instead it will be resolved in EX where it can use
the ALU to compute the condition, and where it can benefit from the existing ALU bypass paths. Therefore the branch instruction
does not stall at all because the value of r2 that the branch needs is bypassable starting when addi is in ME (such as in cycle 4 and
6). (Note that the stalls in cycle 4, 6, 8, etc are due to the dependence between the lw and the add.)

�Find the CPI.

�The code below is different than the first part.

�Doublecheck for dependencies.

�Note that first instruction not part of loop body.

The CPI is (5− 3)/4 = 0.5 or 2 IPC, still half the full potential, due to the load-use dependence.

SOLUTION

addi r1, r0, 0 IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

bne r2, r4 LOOP IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID -> EX ME WB

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF -> ID -> EX ME WB

lw r1, 0(r2) IF -> ID -> EX ME WB

bne r2, r4 LOOP IF -> ID -> EX ME WB

addi r2, r2, 4 IF -> ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF -> ID -> EX ME WB

lw r1, 0(r2) IF -> ID -> EX ME WB

bne r2, r4 LOOP IF -> ID -> EX ME WB

addi r2, r2, 4 IF -> ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF -> ID -> EX ME WB

10

Problem 4: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 210-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 12-outcome local history, and one system uses a global predictor
with a 12-outcome global history.

Insn Branch

Addr Outcomes

0x1000: B1 r r r r r r r r r r r r r r r r

0x1010: B2 T N N N N T N N T N N N N T N N

0x1020: B3 R R R R R R R R R R R R R R R R

0x2000: B4 T T T T T T T T T T T T T T T T

Branch B1 is random, and can be described by a Bernoulli random variable with p = .5 (models a fair coin
toss). The outcome of branch B3 is the same as the most recent execution of B1 (perhaps they are testing
the same condition). For the questions below accuracy is after warmup.

�What is the accuracy of the bimodal predictor on B2?

In the diagram below the value of the bimodal predictor’s 2-bit counter corresponding to B2 is shown before each execution of the
branch. Counter values are shown only for one pass through the TNNNNTNN pattern. At the start of the second pass the counter
has the same value, 0, as it had at the start of the first and so there is no need to continue (because we know the counter values
will repeat). The bimodal predictor will predict not-taken when the counter value is 0 or 1, and so all predictions will be not-taken,

resulting in an accuracy of 6/8 .

Solution Tips: Be sure to base your answer on a repeating pattern. Obviously it would be wrong to base the accuracy only on the
N outcomes (that would be 100% accuracy), but basing a solution on ten outcomes or twelve outcomes would also be wrong. Another
thing to look out for is making sure the pattern repeats. Here we only needed to work out the counter values for one iteration to find
a repeating pattern. If we used an initial counter value of 3 then we’d need to work counter values out for two passes through the
TNNNNTNN pattern, and we’d need to base the prediction accuracy only on the second pass.

SOLUTION: Diagram to work out the values of the bimodal 2-bit counter.

BIMODAL COUNTER: 0 1 0 0 0 0 1 0 0

0x1010: B2 T N N N N T N N T N N N N T N N

PRED RESULT: x x

�What is the accuracy of the bimodal predictor on B3?

The 2-bit counter used to predict B3 is not affected by B1. Because the probability that B3 is taken is .5 the accuracy is .5 .

�Considering BHT size, what is the approximate accuracy of the bimodal predictor on B4? �Explain.

Since the predictor has 210 entries it will be indexed by bits 11 : 2 of the address of the branch being predicted. Notice that those
bits are all zero for both branches B4 (its address is 0x1000) and B1 (its address is 0x2000), and so they will share an entry.
Since both branches occur at the same frequency and B4 is always taken, there will be no way for the counter to be decremented.

It will change between 3 and 4 and so B4 will be predicted with 100% accuracy . Grading Note: The problem would have

been more interesting if p < 0.5 or if B1 were executed more frequently than B4.

�What is the accuracy of the local predictor on B2?

The pattern length of B2, 8, easily fits in the local history of 12 and so the accuracy is 100% .

�What is the minimum local history size needed to predict B2 with 100% accuracy?

Six outcomes.

Five is insufficient, for example, pattern NNTNN occurs twice, once followed by a N and once by a T.

11

�What is the accuracy of the global predictor B3? �Explain

The 12-bit global history is long enough so that B3 can “see” B1’s most recent outcome. The PHT entries will eventually warm up

and predict B3 with 100% accuracy .

�How many PHT entries are used by the global predictor to predict B2?

To answer this question we need a way to represent the GHR contents. Lets use r, R, and T for branches B1, B3, and B4, respectively.
For B2 use a 2. A GHR value pattern is then 2RTr2RTr2RTr. Each R can have two values, so for all three there are 23 = 8
possibilities. The first two r’s each match one of the R’s and so don’t contribute additional patterns. The last (rightmost or most
recent) r does not correlate with any Rs in the pattern so there are two more possibilities for a total so far of 8 × 2 = 16. The
three 2’s are for branch B2. Those three outcomes can have four possible values, TNN, NNN, NNT, and NTN. (For example, three

consecutive outcomes of B2 can never be TTT.) The total number of patterns now is 8× 2× 4 = 64. Therefore, 64 entries are
used to predict B2.

12

Problem 5: (15 pts) The diagram below is for an eight-way set-associative cache. The size of a tag is 42
bits and the size of a line is 128 = 27 bytes.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=
Tag

Valid

Data

 Addr

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

Out

64 b

32b

63:22

21:2

63:2221:7

21:7

21:2

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

63 22

Index

21 7

Offset

6 2 1 0

�Cache Capacity (Indicate Unit!!):

The cache capacity can be determined from the following pieces of information: the 42-bit tag (given explicitly in the first paragraph),
the 8-way associativity (also given explicitly), and the 64-bit address space (from the number of address bits shown in the diagram
near the upper-left). From the 42-bit tag and 64-bit address space we know that the low tag bit is 64 − 42 = 22, and so the

capacity of a way is 222 bytes or 4MiB. Since the cache is 8-way the total capacity is 222 × 8 = 225 bytes or 32MiB .

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 225 bytes, plus 8× 222−6 (64− 22 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

63 25

Index

24 7

Offset

6 2 1 0

13

Problem 5, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 128-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the array, a.

(b) Find the hit ratio executing the code below.

�What is the hit ratio running the code below? Show formula and briefly justify.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[i];

The line size of 27 = 128 bytes is given, the size of an array element, of type half, is 2 = 21 characters, and so there are
27/2 = 27−1 = 26 = 64 elements per line. The first access, at i=0, will miss but bring in a line with 26 elements, and so
the next 26 − 1 accesses will be to data on the line. The access at i=64 will miss and the process will repeat. Therefore the

hit ratio is 63

64
.

(c) Find the minimum positive value of OFFSET needed so that the code below experiences a hit ratio of 0%
on accesses to a. Explain.

�Minimum positive OFFSET to achieve 0% hit ratio. �Explanation.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11;

int OFFSET = 1 << 24; // <----------------------------- SOLUTION

for (i=0; i<ILIMIT; i++) sum += a[i] + a [i + OFFSET];

To achieve a zero percent hit ratio each line brought into the cache must be evicted before it is used again. The code above accesses
a sequentially at two different places: at i and at i+OFFSET. Sequential accesses of two-byte elements should yield a hit ratio of 63

64

on this cache, as computed in the previous part. To reduce that to zero one must choose OFFSET so that a[i] and a[i+OFFSET]
fall in the same set, meaning that their addresses have the same index and different tags. Since it’s a direct-mapped cache there
cannot be two different lines with the same index in the cache at the same time. The index bits are at positions 24:7. Let x be
some memory address. Address y will have the same index as x if y = x+ 225 (note that adding 1 to the 25th bit position won’t
affect the index bit positions). For our particular problem we need to choose OFFSET such that the difference between a[i] and
a[i+OFFSET] is 225. Since the size of an element of a is two bytes, that means OFFSET must be 225−1 = 224 =1<<24.

14

Problem 6: (30 pts) Answer each question below.

(a) For the SPECcpu benchmark suite results can be reported using two tuning levels, base and peak.
Consider a new level, no-opt in which the code is compiled without optimization. How valuable would no-
opt tuning scores be to the people that care about SPECcpu scores? How different is no-opt tuning from
base tuning?

�Value of no-opt tuning level?

No-opt tuning would not be of much value because it reflects the performance of a system running improperly prepared software.
In other words, no-opt tuning would be useful to people who care about performance but for some silly reason don’t compile with
optimization turned on, or they get software from developers that don’t turn optimization on.

Grading Notes: Some answered that the performance on unoptimized code might help predict the performance on optimized code,
and for that reason no-opt is useful. That’s wrong for two reasons. First, there are many reasons why system A can be faster than
B on unoptimized code but B can be faster than A with optimization on. Second, peak and base both measure system performance
on optimized code, so there is no need to have a third tuning level just to predict the first two.

�Difference between no-opt tuning and base tuning?

Programs prepared under the base tuning rules are optimized using normal effort by an experienced programmer. Such a program
would at least use a no-brainer flag like -O3 or -fast. That’s far from no optimization.

(b) The lw below will experience a TLB miss exception when it first executes, remember that this exception
is considered routine and is not due to any kind of error. The word in memory at location 0x12345678 is
0x222. Show the execution of this code on our five-stage static pipeline until the add instruction reaches
writeback, and show the value in register r1 when the handler starts (see code).

�Show execution from lui to when add reaches WB.

� FILL IN the value that will be in r1 when the handler starts.

SOLUTION

Cycles 0 1 2 3 4 5 6 7 8 9 1010 11 12 13 14 15 16

lui r1, 0x1234 IF ID EX ME WB

lw r1, 0x5678(r1) IF ID EX ME* IF ID EX ME WB

add r2, r2, r1 IF ID EX* IF ID EX ME WB

HANDLER:

Cycles 0 1 2 3 4 5 6 7 8 9 1010 11 12 13 14 15 16

Value of r1 is 0x12340000 <- SOLUTION

sw ... IF ID EX ME WB

...

eret IF ID EX ME WB

Solution appears above. The value of r1 reflects correct execution up to but not including lw. The handler ends by executing an
eret (exception return) instruction which jumps to the lw, which executes completely this second time around.

15

(c) The instruction below is not a good candidate for a RISC ISA. Explain why in terms of hardware, not
just in terms of a rule the instruction would violate. add (r1), r2, (r3)

� Instruction above unsuitable for RISC because the implementation . . .

. . . would either need two memory ports (memory ports are expensive) or else would require this add instruction to use the ME stage
twice, which would make the control logic far more complex. The former implementation would be too expensive, the later would go
against the goal of simple pipelined implementations.

�Provide a quick sketch to illustrate your answer.

See the diagram below in which the added hardware is in blue and in which bypass paths have been omitted for clarity. Assuming that
memory addresses for the source and destination operands are just register values (no offsets added), then a sixth memory source
stage could be added between ID and EX to fetch a source operand that comes from memory, see stage MS the pipeline diagram
below. The existing ME stage can write the result, though additional multiplexors were added so the rd register value can be used
as a memory address and the ALU output can be used for the write data.

Execution with new memory source stage added.

add (r1), r2, (r3) IF ID Ms EX ME WB

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

rsv

rtv

IMM

NPC

dst

Addr

Mem
Port

Out
D

msvAddr Data
15:11

rdv

rdv

MS

(d) With the aid of a diagram, explain why a 5n-stage pipeline would need fewer bypass paths than a 5-stage,
n-way superscalar implementation. (Both implementations are statically scheduled.)

�Diagram showing why there are fewer bypass paths in 5n-stage pipeline than 5-way superscalar.

Both systems would have 2n results that could be bypassed (from the original ME and WB stages). However the superscalar would
have n instructions in EX to which a result could be bypassed, while the deeply pipelined would have just 1. (There are two ALU
inputs for each instruction.)

16

(e) Why is it more important to have a good compiler for a superscalar statically scheduled system than a
scalar statically scheduled system?

�Compiler more important for superscalar because . . .

. . . dependent instructions must be further apart to avoid a stall and so the compiler must be better at scheduling (finding instructions
to put between dependent pairs). In the scalar system there is no need to stall even for adjacent dependent ALU instructions (thanks
to the bypass paths). In an n-way superscalar system there must be up to n− 1 instructions between dependent ALU instructions
to avoid a stall, and so the compiler must be good at finding instructions to put between such dependent pairs.

(f) Consider the executions of the MIPS code below on a 4-way superscalar dynamically scheduled system
of the type discussed in class (method 3). The first execution is correct, the others, though they would run
the program correctly, have problems. Describe the problems by completing the statements below.

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

lh r1, 0(r6) IF ID Q RR EA ME WB C

sub r7, r1, r3 IF ID Q RR EX WB C

�The one-commit-per-cycle execution below is silly because . . .

. . . it will execute at a maximum rate of one instruction per cycle, and yet it has enough fetch, decode, and presumably execute
hardware to sustain 4-instruction-per-cycle execution. The reasonable thing to do is to allow 4 IPC commit.

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

lh r1, 0(r6) IF ID Q RR EA ME WB C

sub r7, r1, r3 IF ID Q RR EX WB C

�The stalls shown below would be necessary on a statically scheduled pipeline because . . .

. . . there is a single pipeline and instructions must remain in program order within the pipeline. If one instruction must wait, so must
the unlucky instructions ahead of it.

� . . . but should not occur on a dynamically scheduled one because . . .

. . . it is designed to execute instructions out of program order. The IF/ID/Q and RR/EX/WB are each separate pipelines, and so
the add instruction waits for the lw in buffers, not in pipelines, allowing the lh to proceed without delay.

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q ----> RR EX WB C

lh r1, 0(r6) IF ID Q ----> RR EA ME WB C

sub r7, r1, r3 IF ID Q ----------> RR EX WB C

17

