
Name

Computer Architecture

EE 4720

Final Examination

8 May 2012, 12:30–14:30 CDT

Alias

Problem 1 (15 pts)

Problem 2 (10 pts)

Problem 3 (10 pts)

Problem 4 (20 pts)

Problem 5 (15 pts)

Problem 6 (30 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (15 pts) Consider the following method for implementing the MIPS32 integer multiply in-
struction mul (the one that writes ordinary registers, not to be confused with mult) on the implementation
below. The full set of stages M1 to M6 perform floating point multiply, but stages M2 to M4 perform integer
multiplication. The integer multiply mul will read and write registers from the integer register file but will
use M2 to M4 to perform the multiplication. A sample execution appears below. Grading Note: In the original

exam there was an ID-stage stall in cycle 6, implying that there was no WB to EX bypass for the mul.

Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

mul r4, r1, r5 IF ID M2 M3 M4 WB

xor r9, r10, r11 IF ID -> EX ME WB

sub r6, r4, r7 IF -> ID EX ME WB

USE NEXT PAGE FOR SOLUTION

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

USE NEXT PAGE FOR SOLUTION

CONTINUED ON NEXT PAGE

2

(a) Modify the implementation below so that mul uses M2 to M4. Provide any necessary bypass paths so that
the code above executes as shown. For this part do not consider control logic. Hint: Pay attention to source

and destination registers.

Non-control logic modifications for integer mul.

(b) Add control logic related to this implementation of mul to detect the structural hazard on M2 and on WB.
Also add control logic needed for a data dependence between mul and an immediately following instruction.

All those signals should connect to the existing Stall ID signal and use a new uses int mul logic block.

Control logic for WB structural hazard, M2 structural hazard, and the data dependence.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

3

Problem 2: (10 pts) Show the execution of the instructions below on the illustrated implementation. Add
any needed datapath and reasonable bypass paths.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

Show execution. Add datapath and reasonable bypass paths. Double-check for dependencies.

add.s f2, f4, f6

sub.s f8, f10, f12

add r1, r2, r3

mul.s f14, f2, f8

swc1 f14, 0(r1)

4

Problem 3: (10 pts) The code fragments below execute on several different MIPS implementations. In all
cases the loop iterates many times. A five-stage scalar system is shown for reference.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Show the execution of the code below on our familiar scalar pipeline, above. Show enough iterations to
compute the CPI, and compute the CPI.

Execution for enough iterations to determine CPI.

Find the CPI.

Doublecheck for dependencies.

Note that the first instruction in not part of the loop body.

lw r2, 0(r10)

LOOP:

lw r1, 0(r2)

addi r2, r2, 4

bne r2, r4 LOOP

add r5, r5, r1

5

Problem 3, continued:

(b) Show the execution of the code below on a 4-way superscalar statically scheduled system without branch
prediction. The superscalar system has five stages, aligned fetch, and can bypass between the same stages
as can our scalar system. This means there are no bypass paths to the branch condition. Compute the CPI.

Execution for enough iterations to determine CPI.

Find the CPI.

The code below is different than the previous part.

Doublecheck for dependencies.

Note that first instruction not part of loop body.

addi r1, r0, 0

LOOP: # Address of insn below is 0x1000

add r5, r5, r1

lw r1, 0(r2)

bne r2, r4 LOOP

addi r2, r2, 4

6

(c) Show the execution of the code below on a four-way superscalar system with perfect branch prediction.

Execution for enough iterations to determine CPI.

Find the CPI.

The code below is different than the first part.

Doublecheck for dependencies.

Note that first instruction not part of loop body.

addi r1, r0, 0

LOOP: # Address of insn below is 0x1000

add r5, r5, r1

lw r1, 0(r2)

bne r2, r4 LOOP

addi r2, r2, 4

7

Problem 4: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 210-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 12-outcome local history, and one system uses a global predictor
with a 12-outcome global history.

Insn Branch

Addr Outcomes

0x1000: B1 r r r r r r r r r r r r r r r r

0x1010: B2 T N N N N T N N T N N N N T N N

0x1020: B3 R R R R R R R R R R R R R R R R

0x2000: B4 T T T T T T T T T T T T T T T T

Branch B1 is random, and can be described by a Bernoulli random variable with p = .5 (models a fair coin
toss). The outcome of branch B3 is the same as the most recent execution of B1 (perhaps they are testing
the same condition). For the questions below accuracy is after warmup.

What is the accuracy of the bimodal predictor on B2?

What is the accuracy of the bimodal predictor on B3?

Considering BHT size, what is the approximate accuracy of the bimodal predictor on B4? Explain.

What is the accuracy of the local predictor on B2?

What is the minimum local history size needed to predict B2 with 100% accuracy?

What is the accuracy of the global predictor B3? Explain

How many PHT entries are used by the global predictor to predict B2?

8

Problem 5: (15 pts) The diagram below is for an eight-way set-associative cache. The size of a tag is 42
bits and the size of a line is 128 = 27 bytes.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=
Tag

Valid

Data

 Addr

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

Out

64 b

:2

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Cache Capacity (Indicate Unit!!):

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

9

Problem 5, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 128-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the array, a.

(b) Find the hit ratio executing the code below.

What is the hit ratio running the code below? Show formula and briefly justify.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[i];

(c) Find the minimum positive value of OFFSET needed so that the code below experiences a hit ratio of 0%
on accesses to a. Explain.

Minimum positive OFFSET to achieve 0% hit ratio. Explanation.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11;

int OFFSET = <-- FILL IN

for (i=0; i<ILIMIT; i++) sum += a[i] + a [i + OFFSET];

10

Problem 6: (30 pts) Answer each question below.

(a) For the SPECcpu benchmark suite results can be reported using two tuning levels, base and peak.
Consider a new level, no-opt in which the code is compiled without optimization. How valuable would no-
opt tuning scores be to the people that care about SPECcpu scores? How different is no-opt tuning from
base tuning?

Value of no-opt tuning level?

Difference between no-opt tuning and base tuning?

(b) The lw below will experience a TLB miss exception when it first executes, remember that this exception
is considered routine and is not due to any kind of error. The word in memory at location 0x12345678 is
0x222. Show the execution of this code on our five-stage static pipeline until the add instruction reaches
writeback, and show the value in register r1 when the handler starts (see code).

Show execution from lui to when add reaches WB.

FILL IN the value that will be in r1 when the handler starts.

lui r1, 0x1234

lw r1, 0x5678(r1)

add r2, r2, r1

HANDLER:

Value of r1 is <- FILL IN

sw ...

...

11

(c) The instruction below is not a good candidate for a RISC ISA. Explain why in terms of hardware, not
just in terms of a rule the instruction would violate. add (r1), r2, (r3)

Instruction above unsuitable for RISC because the implementation . . .

Provide a quick sketch to illustrate your answer.

(d) With the aid of a diagram, explain why a 5n-stage pipeline would need fewer bypass paths than a 5-stage,
n-way superscalar implementation. (Both implementations are statically scheduled.)

Diagram showing why there are fewer bypass paths in 5n-stage pipeline than 5-way superscalar.

(e) Why is it more important to have a good compiler for a superscalar statically scheduled system than a
scalar statically scheduled system?

Compiler more important for superscalar because . . .

12

(f) Consider the executions of the MIPS code below on a 4-way superscalar dynamically scheduled system
of the type discussed in class (method 3). The first execution is correct, the others, though they would run
the program correctly, have problems. Describe the problems by completing the statements below.

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

lh r1, 0(r6) IF ID Q RR EA ME WB C

sub r7, r1, r3 IF ID Q RR EX WB C

The one-commit-per-cycle execution below is silly because . . .

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

lh r1, 0(r6) IF ID Q RR EA ME WB C

sub r7, r1, r3 IF ID Q RR EX WB C

The stalls shown below would be necessary on a statically scheduled pipeline because . . .

. . . but should not occur on a dynamically scheduled one because . . .

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q ----> RR EX WB C

lh r1, 0(r6) IF ID Q ----> RR EA ME WB C

sub r7, r1, r3 IF ID Q ----------> RR EX WB C

13

