
LSU EE 4720 Homework 1 Solution Due: 2 March 2011

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem
Port

Addr

DataOut

Addr

DataIn

Mem
Port

DataOut
rtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

0 1

15:0

c4:r2
c6:r1

c8:r3

c11:r2 Impractical Bypass!

SOLUTION

lw r2, 0(r5) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r1, 0(r2) IF ID -> EX ME WB FIRST ITERATION

lw r3, 0(r1) IF -> ID -> EX ME WB

sw r3, 4(r2) IF -> ID -> EX ME WB

bne r3, r0 LOOP IF -> ID EX ME WB

addi r2, r3, 0 IF ID EX ME WB

Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r1, 0(r2) SECOND ITERATION IF ID EX ME WB

lw r3, 0(r1) IF ID -> EX ME WB

sw r3, 4(r2) IF -> ID -> EX ME WB

bne r3, r0 LOOP IF -> ID EX ME

addi r2, r3, 0 IF ID EX

Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r1, 0(r2) THIRD ITERATION IF ID

(a) Show a pipeline execution diagram for enough iterations to determine the CPI. Compute the
CPI for a large number of iterations.

Pipeline diagram appears above. Note that execution is shown to the start of the third iteration. That was necessary
to insure that a repeating pattern has been established, meaning that the state of the pipeline was the same in consecutive
iterations. The first iteration starts at cycle 1 (by definition with the fetch of the first instruction of the loop), the pipeline

1

http://www.ece.lsu.edu/ee4720/

has the first instruction in IF and a non-loop instruction in ID. The second iteration starts in cycle 9, there the ID stage
has a different instruction than in the first iteration. The third iteration starts in cycle 16, the stage contents here are
the same as the start of the second iteration, addi in ID, bne in EX, and sw in ME. Therefore whatever happens in the
second iteration will happen in the third iteration, and all following iterations (so long as the loop branch is taken).

The second iteration takes 16− 9 = 7 cycles, so the CPI is 7

5
= 1.4 .

(b) Show when each bypass path is used. Do so by drawing an arrow to a multiplexor input and
labeling it with the cycles in which it was used and the register. For example, something like

C10/r9 −→ to show that the input is used in cycle 10 carrying a value for r9.
The labels are shown in the diagram above in blue.

Problem 2: Continue to consider the pipeline and code from the previous problem. The store
instruction and the branch could both benefit from a new bypass connection.

(a) Show a new bypass connection for the store.
The store needs the value of the preceding load. That’s available too late for the bypass connection in the EX stage.

A new bypass has been added to the ME stage, that is shown in green.

(b) Indicate the impact of the new store bypass connection on critical path length.
The memory port is assumed to be on the critical path, however it would be reasonable to assume that it’s the

address input and data output that are critical. If so, the added multiplexor would not increase critical path.

(c) Show a new bypass connection needed by the branch.
Bypass needed from ME to the comparison unit in ID. Though it is impractical, it’s shown in red.

(d) Indicate the impact of the new branch bypass connection on critical path length.
The output of the memory port will not be available until the very end of the cycle, so this bypass would certainly

lengthen the critical path and so should not be added.

(e) Suppose that the cost of the two bypass connections were equal and that both had no critical
path impact. If only one could be added to an implementation which would you add? Base your
answer not on the example code above, but on what you consider to be typical programs.

The branch bypass. Branches occur frequently and its reasonable that it would use a value loaded by a nearby
instruction. The store bypass, since it’s only useful when the bypassed value is from an immediately preceding load, would
only be useful for programs that are copying data from one area of memory to another, and there are ways of separating
such load/store pairs.

2

