
LSU EE 4720 Homework 2 Solution Due: 17 September 2010

Problem1: Consider the execution of the code fragments below on the illustrated implementation.

format

immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+4

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

=
=0
<0

E

Z

N

NPC

• A value written to the register file can be read from the register file in the same cycle. (For
example, if instruction A writes r1 in cycle x (meaning A is in WB in cycle x) and instruction
B is in ID in cycle x, then instruction B can read the value of r1 that A wrote.)

• As one should expect, the illustrated implementation will execute the code correctly, as
defined by MIPS-I, stalling and squashing as necessary.

SOLUTION Execution on the resolve-in-ME (illustrated) pipeline

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) IF ID EX ME WB FIRST ITERATION

add r4, r4, r3 IF ID ----> EX ME WB

bne r1, r2 LOOP IF ----> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

xor r7, r8, r3 IF IDx

sw r4, 16(r5) IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) SECOND ITERATION IF ID EX ME WB

add r4, r4, r3 IF ID ----> EX ME WB

bne r1, r2 LOOP IF ----> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

xor r7, r8, r3 IF IDx

sw r4, 16(r5) IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) THIRD ITERATION IF ...

(a) Show a pipeline execution diagram for this code running for at least two iterations.

1

http://www.ece.lsu.edu/ee4720/

Solution appears above.
Grading Note: A common mistake this semester was counting the squashed instructions, xor

and sw, in the formula for the CPI. The CPI is a measure of performance, so it does not make

sense to count instructions that were not supposed to be executed.

• Carefully check the code for dependencies, including dependencies across iterations.

• Base timing on the illustrated implementation, pay particular attention to how the branch
executes.

(b) Find the CPI for a large number of iterations.
The iteration start times of the first three iterations (based on the IF of the first instruction) are 0, 8, and 16. The

first iteration and the second iteration each take 8 cycles. The states of the pipeline at the start of the second and third
iterations are identical (lw in ID, addi in ME, etc.) and therefore the third iteration will take the same amount of time
as the second. Therefore we can safely say that there are 8 cycles per iteration. Since there are four instructions in the

loop the CPI is 8

4
= 2 .

(c) How much faster would the code run on an implementation similar to the one above, except
that it resolved the branch in EX instead of ME? Explain using the pipeline execution diagram above,
or using a new one. An answer similar to the following would get no credit because “should run
faster” doesn’t say much: A resolution of a branch in EX occurs sooner than ME so the code above

should run faster.. Be specific, and base your answer on a pipeline diagram.
With the branch resolved in EX rather than ME the target would be fetched while the branch is in ME rather than

WB, that’s one cycle earlier. Sounds good so far. But let’s not be hasty, let’s do a pipeline diagram, that’s shown below.
The diagram shows that the second iteration starts one cycle earlier than before, but there is also a stall in the lw

because of the dependence with the addi. Because of that stall the execution is no faster. The first iteration takes just
7 cycles, but the second takes 8, and so will subsequent iterations. So it’s no faster.

SOLUTION - Execution on the resolve-in-EX pipeline.

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) IF ID EX ME WB FIRST ITERATION

add r4, r4, r3 IF ID ----> EX ME WB

bne r1, r2 LOOP IF ----> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

xor r7, r8, r3 IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) SECOND ITERATION IF ID -> EX ME WB

add r4, r4, r3 IF -> ID ----> EX ME WB

bne r1, r2 LOOP IF ----> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

xor r7, r8, r3 IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) THIRD ITERATION IF ...

2

Problem 2: Apologies in advance to those tired of the previous problem. Consider the execution
of the code below on the implementation from the last problem. The code is only slightly modified.

(a) Show a pipeline execution diagram for this code, and compute the CPI for a large number of
iterations. It should be faster.

LOOP:

add r4, r4, r3

lw r3, 0(r1)

bne r1, r2 LOOP

addi r1, r1, 4

add r4, r4, r3

sw r4, 16(r5)

The code has been scheduled to avoid dependence stalls, the execution appears below.

SOLUTION Execution on the resolve in ME (illustrated) pipeline

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r4, r4, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

bne r1, r2 LOOP IF ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

add r4, r4, r3 IF IDx

sw r4, 16(r5) IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r4, r4, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

bne r1, r2 LOOP IF ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

add r4, r4, r3 IF IDx

sw r4, 16(r5) IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r4, r4, r3 IF ...

(b) How much faster would the code above run on the implementation that resolves branches in EX

(from the previous problem)?
An iteration takes 6 cycles on the resolve-in-ME version (shown above); for a CPI of 6

4
. On the resolve-in-EX version

the second iteration would start in cycle 5, on cycle earlier, and would not suffer stalls (unlike it’s problem 1 counterpart).

So it would run with a CPI of 5

4
. The question asked how much faster. A correct answer might be 5

4
versus 6

4
. (Any

reasonable comparison would be just as correct.)

(c) Suppose that due to critical path issues, the resolve-in-EX implementation had a slower clock
frequency. Let φME be the clock frequency of the resolve-in-ME implementation (the one illustrated),
and φEX be the clock frequency of the resolve-in-EX implementation. Find φEX in terms of φME such
that both implementations execute the code fragment above in the same amount of time. That is,
find a clock frequency at which the benefit of a smaller branch penalty is neutralized by the lower
clock frequency on the code fragment above.

Let cEX denote the number of cycles per iteration of the resolve-in-EX version and define cME similarly. The
execution time per iteration for the two systems are cEX

φEX

and cME

φME

. Equate the two quantities, cEX

φEX

= cME

φME

, and solve
for φEX:

φEX = φME

cEX

cME

= φME

5

6

3

Grading Note: Too many students apparently did not give their answers some does-this-make-

sense scrutiny. We know that the resolve-in-EX system is faster. Therefore we should expect that

it can run at a lower clock frequency and still equal the performance of the resolve-in-ME system.

4

