Problem 1: Consider the execution of the code fragments below on the illustrated implementation.

- A value written to the register file can be read from the register file in the same cycle. (For example, if instruction A writes \(r1 \) in cycle \(x \) (meaning A is in WB in cycle \(x \)) and instruction B is in ID in cycle \(x \), then instruction B can read the value of \(r1 \) that A wrote.)

- As one should expect, the illustrated implementation will execute the code correctly, as defined by MIPS-I, stalling and squashing as necessary.

\[
\text{LOOP:} \quad \begin{align*}
\text{lw} & \quad r3, \quad 0(r1) \\
\text{add} & \quad r4, \quad r4, \quad r3 \\
\text{bne} & \quad r1, \quad r2 \quad \text{LOOP} \\
\text{addi} & \quad r1, \quad r1, \quad 4 \\
\text{xor} & \quad r7, \quad r8, \quad r3 \\
\text{sw} & \quad r4, \quad 16(r5)
\end{align*}
\]

(a) Show a pipeline execution diagram for this code running for at least two iterations.

- Carefully check the code for dependencies, including dependencies across iterations.

- Base timing on the illustrated implementation, pay particular attention to how the branch executes.

(b) Find the CPI for a large number of iterations.

(c) How much faster would the code run on an implementation similar to the one above, except that it resolved the branch in \(\text{EX} \) instead of \(\text{ME} \)? Explain using the pipeline execution diagram above, or using a new one. An answer similar to the following would get no credit because “should run faster” doesn’t say much: \(A \text{ resolution of a branch in } \text{EX} \text{ occurs sooner than } \text{ME} \text{ so the code above should run faster.} \). Be specific, and base your answer on a pipeline diagram.
Problem 2: *Apologies in advance to those tired of the previous problem.* Consider the execution of the code below on the implementation from the last problem. The code is only slightly modified.

(a) Show a pipeline execution diagram for this code, and compute the CPI for a large number of iterations. It should be faster.

```
LOOP:
    add r4, r4, r3
    lw r3, 0(r1)
    bne r1, r2 LOOP
    addi r1, r1, 4
    add r4, r4, r3
    sw r4, 16(r5)
```

(b) How much faster would the code above run on the implementation that resolves branches in EX (from the previous problem)?

(c) Suppose that due to critical path issues, the resolve-in-EX implementation had a slower clock frequency. Let ϕ_{ME} be the clock frequency of the resolve-in-ME implementation (the one illustrated), and ϕ_{EX} be the clock frequency of the resolve-in-EX implementation. Find ϕ_{EX} in terms of ϕ_{ME} such that both implementations execute the code fragment above in the same amount of time. That is, find a clock frequency at which the benefit of a smaller branch penalty is neutralized by the lower clock frequency on the code fragment above.